
01 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Intelligent Execution of Computer Vision Tasks in Delay-Constrained UAV-aided Networks / Varshney, Nancy;
Puligheddu, Corrado; Chiasserini, Carla Fabiana; Casetti, Claudio; De, Swades. - STAMPA. - (2023), pp. 86-91.
(Intervento presentato al convegno 2023 IEEE Globecom Workshops (GC Wkshps) tenutosi a Kuala Lumpur (Malaysia)
nel December 4-8, 2023) [10.1109/GCWkshps58843.2023.10464820].

Original

Intelligent Execution of Computer Vision Tasks in Delay-Constrained UAV-aided Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/GCWkshps58843.2023.10464820

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982448 since: 2023-09-25T09:30:42Z

IEEE

Intelligent Execution of Computer Vision Tasks in
Delay-Constrained UAV-aided Networks

Nancy Varshney*, Corrado Puligheddu †, Carla Fabiana Chiasserini†, Claudio Casetti†, and Swades De*

* Department of Electrical Engineering, Indian Institute of Technology Delhi, India
†Department of Electronics and Telecommunications, Politecnico di Torino, Italy

E-mail: nancyv.ece16@itbhu.ac.in, {corrado.puligheddu, carla.chiasserini, claudio.casetti}@polito.it,
and swadesd@ee.iitd.ac.in

Abstract—Autonomous unmanned aerial vehicles (UAVs) are
crucial in critical target tracking and disaster management ser-
vices. However, challenges arise due to limited channel capacity
causing large transmission delays and constraints imposed by
UAV batteries when running computationally intensive object
detection and tracking algorithms. To address this, we propose in-
telligent offloading computer vision tasks to a high-computational
edge server at millimeter wave (mmWave) frequency. Transmis-
sion at mmWave needs large transmission power and is suscep-
tible to blockages that necessitate considering the link quality
in the offloading policy. Additionally, the timely processing of
frames containing objects of interest is essential for context-based
UAV operations to achieve a low frame drop rate. In this work,
we present a delayed-reward reinforcement learning framework
to determine the offloading policy of computer vision tasks in
a delay-constrained environment. This approach considers the
importance of the content within frames, which is unknown to the
UAV. The objective is to jointly reduce UAV energy consumption
and frame drop rates, leveraging statistical information of both
the channel and the frame semantics. Through extensive sim-
ulations, we demonstrate by considering statistical information
of the communication channel and frame semantics, we achieve
approximately 45% energy savings compared to the UAV’s energy
consumption when processing all frames locally and maintaining
the drop rate of delay-constrained frames below 5%.

Index Terms—Communication channel, delay, unmanned
aerial vehicle (UAV), frame semantics, offloading.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have emerged as a promi-
nent technology for surveillance applications, offering the abil-
ity to navigate various environments and providing effective
monitoring. Moreover, integrating sensing and communication
technologies, such as cameras and radars, into UAV systems
has allowed advanced computer vision functionalities like
object detection, tracking, and obstacle avoidance. In [1], a
UAV-based surveillance system with cognitive abilities was
proposed, enabling real-time identification of critical situa-
tions. However, achieving autonomous UAV operation requires
efficient and low-latency object detection capabilities. State-
of-the-art video object detection methods, like deep neural
networks, are resource-intensive for UAVs, impacting power,
bandwidth, and computation. Moreover, the hardware needed
for real-time video processing is bulky and unsuitable for small
drones. Besides sensors, the UAVs are equipped with com-
munication modules for data offloading for the execution of

computer vision tasks and exchanging commands with ground
control stations (GCS), enabling seamless coordination.

A. Motivation and contribution

Energy-efficient UAV surveillance has been a focus of
research in the existing literature, with some works focusing
on intelligent UAV navigation and control [2] while others
focusing on joint optimization of trajectory and resource
allocation for UAV swarm using various reinforcement learn-
ing (RL) techniques [3]. Offloading computer vision tasks
to a GCS equipped with a high-end processor significantly
reduces processing time while maintaining detection accuracy.
Additionally, the transmission power is generally lower than
the computational power required for object detection. This
has been verified at sub-6 GHz in [4], which compares the
energy consumption and processing time of running a face
recognition algorithm on a video at the UAV versus at GCS.

The study in [5] presented a comprehensive survey of
decision-making approaches considering service latency, en-
ergy consumption, and processing delay. Similarly, [4] com-
pared the processing delay and energy consumption of a face
recognition algorithm over videos of different lengths on a
Raspberry Pi unit onboard a UAV and a laptop as the GCS
server. The tests were conducted using a UAV integrated with
a real-life LTE network and an edge server. [6] proposed an
energy-efficient and secure offloading solution that minimizes
UAV energy consumption and computational load. Another
work [7] examined different modes for image processing and
feature extraction at UAV versus edge, considering factors
such as network conditions and processing time to determine
whether and what to offload. The above-mentioned works
highlight a trade-off between power consumption, computa-
tional complexity, and processing time when running high-
end computer vision algorithms on UAVs. Though using a
low-capability server reduces power consumption, it increases
processing time, which can be critical for delay-intolerant
autonomous UAV operations.

In [8], the authors optimized offloading decisions for com-
puter vision tasks to minimize computation time and UAV
energy consumption using a deep RL framework. However,
their approach did not consider other time delays, such as
transmission and propagation time of large-sized packets, as

well as waiting time in case of unsuccessful frame transfers to
the edge. Also, it did not provide insights into the actual frame
drop rate, a key metric for assessing system performance.

Moreover, surveillance videos usually consist of a large
number of redundant frames with no object of importance.
We denote such frames as non-critical frames and the frame
having the object of interest as critical frames. Critical frames
usually form a small fraction of the total video, but their
timely detection (equivalent to a low drop rate) is crucial for
delay-constrained autonomous UAV operations, especially in
surveillance scenarios. To this end, various studies explored
different schemes for offloading execution of computer vision
tasks; the majority primarily focused on computational energy
consumption, processing complexity, and processing time as
the key metrics. Only a few studies considered communication
channel conditions (e.g., [8]), and none accounted for the
criticality of data within the frames (or frame semantics) when
determining optimal offloading policy.

While employing millimeter-wave (mmWave) technology
may overcome the bandwidth insufficiency for transmitting
frames with high data bits, in critical scenarios where real-
time object detection is essential, it is still advantageous to
process the delay-constrained critical frames locally at the
UAV when communication channel conditions are poor as
mmWave channel is highly susceptible to blockages at the cost
of high power consumption at UAV. Thus, there is a trade-off
between the frame drop rate and UAV power consumption.
Besides, offloading and execution of computer vision tasks
based on the semantics of the frame necessitate running the
object detection algorithm at the UAV to know if the frame is
critical or not, which again consumes energy.

Therefore, in this work, we propose an RL framework for
determining an offloading policy for a camera-equipped UAV
engaged in surveillance within a designated area at mmWave
range, relying on statistical knowledge of the communication
channel and frame semantics to make intelligent decisions.
The overall contributions of this work are as follows.

1) We propose a delayed-reward State-Action-Reward-State-
Action (SARSA) algorithm-based RL framework for de-
signing the optimal offloading decision policy with the
aim of reducing the UAV’s energy consumption under
the constraint of frame drop rates. The future channel
transmission condition and frame semantics are modeled
as a two-state Markov Decision Process (MDP).

2) We present experimental results of the mean frame ex-
ecution time and mean energy consumption of running
object detection algorithms on the low-power server at
UAV as well as high power server at the GCS. These
values are later used for RL training.

3) Finally, through extensive simulations, we compare the
performance of our proposed framework against two
benchmark scenarios. The results demonstrate that lever-
aging statistical knowledge of both the communication
channel and frame semantics significantly enhances the
performance of UAV-aided networks by keeping the drop
rate of delay-constrained critical frames below 5%.

II. SYSTEM MODEL

Consider a camera-equipped UAV following a route R with
a time-varying communication link to a GCS for information
exchange, as shown in Fig. 1(a). The camera captures a frame
every ∆t = 1/FPS seconds, where FPS stands for frames per
second. Time is divided into slots, with each slot’s duration
equal to the channel coherence time TCoh. In each slot, the
communication link to the GCS can be either good (i.e.,
perfect data transmission) or bad (i.e., complete link blockage).
We model the channel over slots using a two-state MDP and
channel transition matrix:

PCh =

[
p 1− p

1− q q

]
(1)

where p, 1 − p, 1 − q, and q denote channel transition
probabilities from good to good, good to bad, bad to good, and
bad to bad states, respectively. Additionally, the transmission
of a frame data packet can occur over one or more time
slots, depending on the data packet size and available channel
bandwidth. A frame’s complete execution occurs when the
channel remains good throughout its execution time at the
GCS. Since the video semantics do not change abruptly,
we model the frame states using a two-state MDP process,
with states given by critical and non-critical, and transition
probability:

PF =

[
v 1− v

1− w w

]
. (2)

Here, v, 1 − v, 1 − w, and w denote frame transition
probabilities from non-critical to non-critical, non-critical to
critical, critical to non-critical, and critical to critical states,
respectively. The values of {p, q} and {v, w} are estimated
during RL training period based on information obtained from
delayed feedbacks.

When n-th frame is processed locally at the UAV, knowl-
edge of the frame’s criticality status is obtained after its
processing time tUAV

process (see Fig. 1(b)), with n = {1, . . . , NF },
NF being the total number of frames over an episode of UAV
surveillance. In contrast, when the frame packet is successfully
received at the GCS, the UAV anticipates receiving feedback
within a duration of Twait after making the decision at time
t. This feedback includes criticality status information of the
frame and an acknowledgment of its reception. The feedback
waiting time Twait depends on following delays (Fig. 1(b)):
transmission time delay ttrans, propagation time delay tprop,
execution time delay at GCS tGCS

process, feedback delay tfb, and
buffer delay tb. Let BW be the bandwidth of the UAV-GCS
communication link and B be the mean number of data bits per
packet of a frame, then ttrans=B/BW and tprop=d/c, where
d is the 3-dimensional distance of UAV-GCS link and c is the
speed of light. Similarly, let Bf be the number of bits in the
feedback packet from GCS to UAV, then tfb=Bf/BW + d/c.
Thus, the total computer vision task execution time is

texec =

{
tGCS

process + 2tprop + ttrans + tfb; executed at GCS
tUAV

process; executed at UAV.

UAV movement direction along the corridor

Non-critical data

Data transmission link

GCS

Critical data

(a)

Time

UAV

GCS

(n-1) feedback

Pa
ck

et

Lo
st

pa
ck

et

Pa
ck

et

(n-2) feedback

(n+1) feedback

(b)

Figure 1: (a) System model of UAV-assisted surveillance over route R. (b) Time diagram of frame packet transmission and processing.

III. DELAYED-REWARD SARSA FRAMEWORK

RL techniques use experience-based learning and have the
advantage of requiring fewer training samples and achiev-
ing fast convergence compared to deep learning models [9].
SARSA is particularly well-suited when compared to deep
learning models for the small action set in offloading-type
problems. In contrast to Q-learning [10], which is commonly
used for off-policy RL and is particularly effective for episodic
tasks, SARSA exhibits low per-sample variance. Consequently,
we employ SARSA to determine the optimal offloading policy,
and its corresponding framework is described next.

The on-policy model free SARSA is described by a 4- tuples
⟨S,A, T,R⟩, where S is the set of all states, A is the set of
all actions, T (sn+1, an, sn)=P (sn+1|sn, an) is the transition
function, and R is the set of all rewards. The reward function
is rn=r(an, sn). For discount factor 0 ≤ γ ≤ 1, The objective
of the agent is to determine an optimal policy π∗=P (an|sn)
that maximizes the expected discounted return

Rn = rn + γrn+1 + γ2rn+2 + · · · =
∞∑
k=0

γkrn+k. (3)

Further, the UAV receives the reward rn on a frame after a
time interval ∆t ≤ Twait. To address this, we use the delayed
reward SARSA, which involves maintaining two copies of
the Q-table: the current and the target copy. During training,
the agent interacts with the environment, observes the current
state, takes actions based on a specific policy using the target
Q-table, and receives rewards. In this delayed reward SARSA
approach, the current Q-table is updated as soon as a delayed
reward is received. On the other hand, the target Q-table is
updated periodically or after a certain number of iterations to
align with the current network’s parameters. In the proposed
delayed reward SARSA, the target network is used to estimate
the maximum Q-value for the next state. Using a target
network, the Q-values in the Q-table can be updated based
on a more stable and less volatile estimate of the maximum
Q-value of the next state, which improves the learning stability
and convergence of the Q-table method.

A. State space

We model states in the RL environment based on com-
munication channel conditions and frame semantics. We as-
sume that the UAV continuously monitors the communication
control signals. As described in Sec. II, the communication
channel is modeled over the entire allowable duration of a
frame execution time, considered as a single unit. Therefore,
at the n-th epoch, the agent observes either of the two channel
states s′n ∈ S1≜{good, bad}. To successfully transmit a frame
packet to GCS, the UAV requires a minimum of N continuous
good time slots, out of N ′=⌈Twait/TCoh⌉ slots, to complete the
transmission, execution, and obtain feedback from the GCS.
The value of N is computed as:

N =
⌈ ttrans + 2tprop + tGCS

process + tfb

TCoh

⌉
. (4)

It is important to note that NTCoh ≤ Twait. Thus, at the n-th
epoch, if in the last N ′ slots the agent observes that at least
N continuous good slots were present, then s′n=good channel;
otherwise bad channel.

We model the RL environment based on frame semantics as
well. Therefore, the frame captured at the n-th epoch can have
either of the two frame states s′′n ∈ S2≜{critical, non-critical}.
If the latest feedback available at the UAV contains the actual
frame semantics state, i.e., either critical or non-critical state
for (n−m)th frame, then the state of the frame to be processed
at epoch n is predicted using MDP as P (s′′n|s′′n−m)=Pn−m

F .
Subsequently, there are four states sn ∈ S1×S2 as listed in

Tab. I. Depending on the state, the agent takes action an ∈ A
and receives a delayed reward rn.

Table I: State description

State Description
sn = 1 {Good channel, Non-Critical frame}
sn = 2 {Good channel, Critical frame}
sn = 3 {Bad channel, Non-Critical frame}
sn = 4 {Bad channel, Critical frame}

B. Action space

We consider two possible actions an∈A at UAV for the n-th
frame. The first one, an=1, involves offloading the computer
vision task to the GCS and is ideally taken when the commu-
nication channel is good, irrespective of the frame semantics.
This requires less energy to transmit data with texec≪tUAV

process.
The second action, an=2, entails processing the frame locally
at UAV and is ideally chosen when the communication channel
is in a bad state and the frame drop rates cross the threshold
values. Even in the latter case, the UAV can opt for action
an=1 to conserve UAV power consumption if the frame drop
rate is below the threshold. However, the state sn describes
the previous channel state and the actual channel during
the transmission of the n-th frame follows the true channel
statistics. Therefore, experiencing-based learning can lead to
suboptimal actions. Moreover, SARSA employs an ϵ-greedy
action selection policy [11], i.e., it selects the best action with
a probability ϵ to maximize the cumulative reward over a finite
time horizon through exploration. In our implementation, we
set ϵ to 0.2 and use an ϵ-decay factor of 0.995.

C. Rewards

The reward function is designed based on the remaining
UAV energy Erem, while also considering constraints DC

th and
DNC

th , respectively, on the critical frames drop rate DC
n and

non-critical frames drop rate DNC
n . The goal is to determine

the optimal offloading policy, and the corresponding optimiza-
tion problem is expressed as:

max
π

f(Erem)

s.t. C1 : 0 ≤ Erem ≤ Emax

C2 : DC
n ≤ DC

th;C3 : DC
n ≤ DNC

th , ∀n.
(5)

The remaining UAV energy ERem,n at epoch n, after taking
action an, is updated as follows

ERem,n =

{
ERem,n−1 − ttransPt; an = 1

ERem,n−1 − tUAV
processP

UAV
process; an = 2.

(6)

Here, PUAV
process represents the frame processing power at the

UAV, and Pt is the UAV transmission power. The frame drop
rate at epoch n is updated as

DC/NC
n =

No. of critical/non-critical packets dropped

Total delayed feedbacks available
× 100% .

To solve (5), we use the reward shaping technique to
incorporate the constraints directly. The reward function is
appropriately shaped to encourage the agent to take actions
that maximize rewards and adhere to the constraints. The total
reward over all the NF frames of a video is defined as

Reward =
1

NF

NF∑
n=1

η1rn,1 + η2rn,2 + η3rn,3 . (7)

In (7), rn,1 corresponds to the reward/penalty for the judicious
use of remaining UAV energy and is given by:

rn,1 =
2

(1 + eb1
ERem,n
Emax)

∈ [0, 1] (8)

Reward rn,1, with hyperparameter b1, appropriately incor-
porates a sigmoidal shape that sensitively responds to UAV
energy variations bounded within [0, 2]. Given the frame drop
rate Dn and drop rate threshold Dth at the n-th epoch, let

zn(Dn, Dth)=

(

Erem,n

Emax

)c1

1− 21+e
b2

Dn−Dth
Dth

 ; Dth ̸=0

c2
(

Erem,n

Emax

)c1
; Dth=0 .

The amplitude of zn ∈ [−1, 1] varies as a function of the
remaining UAV energy controlled by hyperparameter c1, while
the hyperparameter b2 controls the shape of zn around the
threshold value Dth. Then the reward functions corresponding
to the critical frame drop constraint and non-critical frame drop
constraint in (7), respectively, are defined as

rn,2=zn(D
C
n , D

C
th), rn,3=zn(D

NC
n , DNC

th). (9)

At an epoch, either the frame is critical or non-critical.
Therefore, the maximum value of a reward function at an
epoch is 2, and similarly, the minimum value is -2. The value
of indicator variables η1, η2, and η3 used for designing the
reward system are provided in Tab. II.

D. Q-value update

To update the Q-value, we use expected SARSA, which is
a variation of SARSA exploiting the statistical knowledge of
communication channels to prevent stochasticity in the policy
from further increasing variance. The Q-value for each state-
action pair (sn, an) is updated using the rule [11]

Q(sn, an) =Q(sn, an) + α[rn+

γ
∑
sn+1

P (sn+1|sn)Q(sn+1, an+1)−Q(sn, an)].

(10)
The state sn+1∈S represents the channel condition and frame
semantics for the next epoch and is predicted using the
joint channel and frame semantics MDP. This information is
integrated into the SARSA algorithm to minimize variations

Table II: State-Action-Reward design for proposed SARSA

{Channel during
transmission of
n-th frame, n-th
frame semantics}

Action
an

Frame drop rate
conditions

Reward indicators

{Good, Non-critical}
an=1

DNC
n ≤ DNC

th η1=+1, η2=0, η3=+1

DNC
n > DNC

th η1=+1, η2=0, η3=−1

an = 2
DNC

n ≤DNC
th η1=−1, η2=0, η3=+1

DNC
n >DNC

th η1=−1, η2=0, η3=−1

{Good, Critical}
an = 1

DC
n ≤ DC

th η1=+1, η2=+1, η3=0

DC
n >DC

th η1=+1, η2=−1, η3=0

an = 2
DC

n≤D
C
th η1=−1, η2=+1, η3=0

DC
n > DC

th η1=−1, η2=−1, η3=0

{Bad, Non-critical}
an = 1

DNC
n ≤DNC

th η1=+1, η2=0, η3=−1

DNC
n > DNC

th η1=−1, η2=0, η3=+1

an = 2
DNC

n ≤DNC
th η1=−1, η2=0, η3=+1

DNC
n >DNC

th η1=+1, η2=0, η3=−1

{Bad, Critical}
an = 1

DC
n≤D

C
th η1=+1, η2=−1, η3=0

DC
n >DC

th η1=−1, η2=+1, η3=0

an = 2
DC

n≤D
C
th η1=−1, η2=+1, η3=0

DC
n >DC

th η1=+1, η2=−1, η3=0

in estimating the policy. To simplify the mathematical analysis
and predict the availability of a minimum of N consecutive
good time slots, we calculate the channel transition probability
for the transmission time of the n-th frame by considering the
probability of the next N time slots using the MDP model for
the channel. Hence, the state transition probability is

P (s′n+1|s′n) = PN
Ch . (11)

Further, the considered system forms an uncontrolled MDP
where the state transition probabilities do not depend on the
action taken [12]. Thus, the overall state transition matrix is

P (sn+1|sn) = PN
Ch ⊗ PF . (12)

IV. RESULTS AND DISCUSSIONS

In this section, we first present the experimental values
of mean power consumption and mean processing time of
execution of computer vision tasks on servers with different
computational capacities. Thereafter, we provide the results
for the proposed delayed-reward SARSA RL framework that
optimize the offloading policy.

A. Experimental results: Mean processing time and mean
power consumption

Initially, we examine the mean power consumption and
mean processing time values for the execution of the single
object tracking (SOT) algorithm and video object detection
(VOD) algorithm on the UAV and GCS server at different
values of FPS. The specification of the SOT and VOD algo-
rithm, along with the training set used, are given in Tab. III.
The UAV server and GCS server details are given in Tab. IV.

Algorithm 1 Delayed-reward SARSA algorithm
1: Initialize current and target Q-tables, α, γ, ∆target, PF , PCh

2: S = ∅, Snext = ∅, A = ∅, Anext = ∅
3: Initialize state s0 and s′′ñ; {S}←{S} ∪ s0
4: Sample a0 form ϵ-greedy policy π(sn, an) and {A}←{A} ∪ a0

5: for each episode do
6: for each frame or step do
7: Find remaining UAV energy Erem

8: Update PCh

9: Predict s̄n+1 using (12)
10: {Snext}←{Snext} ∪ s̄n+1

11: Sample ān+1 from policy π(s̄n+1, ān+1)
12: using target Q-table
13: {Anext}←{Anext} ∪ ān+1

14: if delayed reward present then
15: Get the reward for frame ñ, ñ ≤ n
16: Update PF

17: Update current Q-table using (10)
18: {S}←{S}\sñ ; {A}←{A}\añ

19: {Snext}←{Snext}\añ+1 ; {Anext}←{Anext}\añ+1

20: s′′ñ← true ñth frame semantics
21: end
22: if remainder of (step/∆target) == 0 then
23: Replace: target Q-table ← current Q-table
24: end
25: Update s′n+1 with past channel information
26: Predict s′′n+1 using PF and s′′ñ
27: Determine sn+1; {S}←{S} ∪ sn+1

28: Sample an+1 from policy π(sn+1, an+1) using target Q-table
29: {A}←{A} ∪ an+1

30: Update α
31: end
32: end

Table III: Object detection and tracking algorithm specifications

Algorithm VOD SOT
Model SiamRPN++ Deep feature flow
Backbone R-50 R-50-DC5
Training dataset ImageNET VID LaSOT
Accuracy 50.4 Success 70.3 box AP@50

Table IV: UAV and GCS server specifications

Server Server 1 Server 2
Class UAV GCS
CPU Intel i7-7700HQ 2× AMD EPYC 7601
CPU TDP (W) 45 2 × 180
GPU Nvidia MX150 Nvidia GV100
GPU TDP (W) 25 250

Fig. 2(a) shows that using a powerful server at the GCS
reduces the processing time of both the SOT and VOD
algorithms compared to the local processing of the frames on
a small server onboard the UAV. This improvement comes at
the cost of higher computational power, as shown in Fig. 2(b),
while maintaining an accuracy of 70.3%.

B. Simulated results: SARSA

We now present the performance of the SARSA algo-
rithm under the following settings: carrier frequency=28 GHz,
BW=400MHz, B=10MB, UAV transmit power Pt=1W,
TCoh=10ms, FPS=5, NF = 1000, Twait=200ms. As a
result, ttrans=25ms; also, tprop=0.0003ms. Assuming feed-
back packet of 1 KB, tfb=0.0025ms and N=8. From the
results in Sec. IV-A, at FPS=5, we have tUAV

process=151.3ms,
tGCS

process=35.72ms, and the mean power required for running the
SOT algorithm at the UAV and GCS are 30.34W and 40.89W,
respectively. Also, p=0.9, q=0.8, v=0.85, and w=0.85. The
RL simulation parameters are γ=0.4, DC

th=0%, DNC
th =5%,

b1=3, b2=3, c1=0.01, c2=0.8, ∆target=2 s, and α=0.2. Fur-
ther, we compare our proposed 4-states RL framework with
the following two benchmarks RL frameworks:
• 1-state RL: In this benchmark, there is only 1 RL state,

and the agent can choose any action an∈A;
• 2-states RL: In this benchmark, there are 2 RL states

s′∈S′, which correspond to the mmWave communication
channel. The agent can take any action an∈A.

Fig. 3(a) highlights the impact of leveraging frame seman-
tics on the performance of DC

n and DNC
n in approaching

threshold values, surpassing the results obtained solely through
the utilization of channel statistical information to train the

(a) Mean processing time tprocess (b) Mean power consumption Pprocess

Figure 2: Mean processing time tprocess (a) and mean power consump-
tion Pprocess (b) of the SOT and VOD algorithms, when implemented
on UAV server and GCS server.

(a) Frame Drop rates D
C/NC
n (b) Normalized cumulative reward (c) Remaining UAV energy Erem

Figure 3: (a) Convergence of DC
n and DNC

n over time steps of last training episode, (b) convergence of normalized cumulative reward over
time steps of last training episode, and (c) convergence of remaining UAV energy over 5000 training episodes, with the three RL frameworks.

UAV. In contrast, employing neither channel nor frame se-
mantics leads to the most severe packet loss, as it overfits the
model. It is notable that the values of DC

n and DNC
n do not

satisfy the required threshold constraints since, in our proposed
RL framework, these constraints have been designed using
reward functions that either reward or penalize the system
based on whether the constraints are met or not.

In case no intelligence is used at UAV, processing all frames
locally on the UAV results in the maximum energy expenditure
of Emax=4.9505 KJ, whereas offloading all frames to the GCS
incurs a mere 0.025 KJ of UAV energy, although at the cost
of significantly higher frame drop rates.

Fig. 3(b) compares the cumulative rewards achieved, while
Fig. 3(c) analyzes the remaining UAV energy across three
RL frameworks. The proposed 4-states RL framework stands
out as it achieves the lowest critical frame drop rate of
5% while saving approximately 45% of UAV energy and
achieving highest reward. The 2-states RL framework achieves
approaximately 60% reduction in UAV energy consumption
but comes with a higher critical frame drop rate of 10%. In
contrast, the 1-state RL framework achieves 99.5% energy
savings by offloading all frames to the GCS but this comes at
the cost of a substantial 25% drop in critical frames.

V. CONCLUSIONS

The quality and reliability of the channel directly impact
data transmission efficiency, making it essential to consider
the communication channel condition when deciding whether
to offload frames to the GCS. The existing literature on
UAV offloading strategies and data processing lacks attention
to communication channel constraints and the criticality of
data content to achieve low frame drop rates. To optimize
power usage and maximize the UAV’s operation, frames can
be offloaded to the GCS if the channel is good allowing
the UAV to allocate its resources to process critical frames
during unstable channel conditions. To address these gaps,
this study designed a UAV-aided monitoring mechanism that
considers UAV energy limitations, frame drop rate constraints
for timely object detection, and communication channel con-
straints. Moreover, using the delayed-reward SARSA frame-
work, the UAV can strike a balance between transmitting all
frames to the GCS for processing and processing all frames
locally with optimized power usage. UAV energy savings of
up to 45% compared to locally processing all the frames

can be achieved while maintaining low frame drop rates,
particularly of delay-constrained critical frames below 5%.
Exploration of the optimization of reward functions based on
parameters beyond the UAV’s remaining energy to enhance
system performance will be undertaken as part of future work.

VI. ACKNOWLEDGEMENT

This work was partially funded by the Indian Ministry
of Science and Technology and the Italian Ministry of For-
eign Affairs through the Executive Programme for Scientific
and Technological Cooperation (project. no. IN22MO05), and
partially funded by the European Union under the Italian
National Recovery and Resilience Plan (NRRP) of NextGener-
ationEU, partnership on “Telecommunications of the Future”
(PE00000001 - program “RESTART”).

REFERENCES

[1] D. Cavaliere, S. Senatore, and V. Loia, “Proactive uavs for cognitive
contextual awareness,” IEEE Systems Journal, vol. 13, no. 3, pp. 3568–
3579, 2018.

[2] M. J. Er, C. Ma, T. Liu, and H. Gong, “Intelligent motion control of
unmanned surface vehicles: A critical review,” Ocean Engineering, vol.
280, p. 114562, 2023.

[3] F. Koohifar, A. Kumbhar, and I. Guvenc, “Receding horizon multi-
UAV cooperative tracking of moving RF source,” IEEE Communications
Letters, vol. 21, no. 6, pp. 1433–1436, 2016.

[4] N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-based IoT platform: A
crowd surveillance use case,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 128–134, 2017.

[5] S. A. Huda and S. Moh, “Survey on computation offloading in UAV-
Enabled mobile edge computing,” Journal of Network and Computer
Applications, vol. 201, p. 103341, 2022.

[6] T. Bai, J. Wang, Y. Ren, and L. Hanzo, “Energy-efficient computation
offloading for secure UAV-edge-computing systems,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 6, pp. 6074–6087, 2019.

[7] S. Hayat, R. Jung, H. Hellwagner, C. Bettstetter, D. Emini, and
D. Schnieders, “Edge computing in 5G for drone navigation: What to
offload?” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2571–
2578, 2021.

[8] D. Callegaro and M. Levorato, “Optimal edge computing for
infrastructure-assisted UAV systems,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 2, pp. 1782–1792, 2021.

[9] S. Tripathi, C. Puligheddu, C. F. Chiasserini, and F. Mungari, “A context-
aware radio resource management in heterogeneous virtual RANs,” IEEE
Transactions on Cognitive Communications and Networking, vol. 8,
no. 1, pp. 321–334, 2021.

[10] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms:
A comprehensive classification and applications,” IEEE access, vol. 7,
pp. 133 653–133 667, 2019.

[11] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, 1998, vol. 135.

[12] J. P. Epperlein, R. Overko, S. Zhuk, C. King, D. Bouneffouf, A. Cullen,
and R. Shorten, “Reinforcement learning with algorithms from proba-
bilistic structure estimation,” Automatica, vol. 144, p. 110483, 2022.

