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Abstract
Motivation: Biomarker discovery is one of the most frequent pursuits in bioinformatics and is crucial for precision medicine, disease prognosis,
and drug discovery. A common challenge of biomarker discovery applications is the low ratio of samples over features for the selection of a reli-
able not-redundant subset of features, but despite the development of efficient tree-based classification methods, such as the extreme gradient
boosting (XGBoost), this limitation is still relevant. Moreover, existing approaches for optimizing XGBoost do not deal effectively with the class
imbalance nature of the biomarker discovery problems, and the presence of multiple conflicting objectives, since they focus on the training of a
single-objective model. In the current work, we introduce MEvA-X, a novel hybrid ensemble for feature selection (FS) and classification, combin-
ing a niche-based multiobjective evolutionary algorithm (EA) with the XGBoost classifier. MEvA-X deploys a multiobjective EA to optimize the
hyperparameters of the classifier and perform FS, identifying a set of Pareto-optimal solutions and optimizing multiple objectives, including classi-
fication and model simplicity metrics.

Results: The performance of the MEvA-X tool was benchmarked using one omics dataset coming from a microarray gene expression experi-
ment, and one clinical questionnaire-based dataset combined with demographic information. MEvA-X tool outperformed the state-of-the-art
methods in the balanced categorization of classes, creating multiple low-complexity models and identifying important nonredundant biomarkers.
The best-performing run of MEvA-X for the prediction of weight loss using gene expression data yields a small set of blood circulatory markers
which are sufficient for this precision nutrition application but need further validation.

Availability and implementation: https://github.com/PanKonstantinos/MEvA-X.

1 Introduction

Due to the exponential increase of computational power in
the last decades, life sciences and biology increasingly rely on
informatics to tackle the complexity of the systems they exam-
ine. In addition, in the time of -omics, where the feature space
is vast and the number of samples is usually small, finding re-
liable nonredundant biomarkers is one of the most frequent
quests for scientists (Aronson and Ferner 2017). Biomarkers
are useful indicators for the early detection of various pathol-
ogies such as neurodegenerative diseases, and different types
of cancer and can help in the surveillance of the progression
of these pathologies with low-cost and minimally invasive
techniques (Chahine et al. 2014, Ganepola et al. 2014, Leuzy
et al. 2022). Even with previous technologies such as microar-
rays, the number of genes detected—ranging from 2000 up to
more than 20 000—is many times greater than the number of

samples (Mukhopadhyay and Mandal 2014, Boucheham
et al. 2015). Bioinformatics emerged from these needs, aiming
to bridge the gap between those fields by introducing new
computational tools tailored to the demands of biomedical
applications (Manisekhar et al. 2020).

In the last decades, many algorithms have tried to deal with
the complexity of real-life problems which possess multiple
and conflicting objectives. Hybrid wrapper and ensemble clas-
sification techniques have been developed by combining evo-
lutionary algorithms (EAs) and machine learning methods
such as k-nearest neighbors, artificial neural networks (Salari
et al. 2014), and others (Rapakoulia et al. 2014, Kleftogiannis
et al. 2015). Heuristic and metaheuristic techniques have been
introduced that search for acceptable solutions in a wide fea-
ture space without providing any mathematical proof for the
optimality of the revealed solutions (Swiercz et al. 2014,
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Boucheham et al. 2015). Inspired by the theory of evolution
in nature, EAs are among the most used methods in these
cases with multiple variations being proposed over the years
(Corthésy et al. 2018, Lambora et al. 2019, Chen et al. 2020,
Katoch et al. 2021). Multiobjective EA can be combined with
Pareto techniques that apply selective pressure to yield a set of
equally good solutions, instead of trying to find the global
best, since the nature of these problems does not allow for a
trivial or easy way to converge to one solution only
(Abraham and Jain 2005). Moreover, it is important to allow
the exploration of a wide set of the dominant solutions of the
Pareto optimal set to avoid premature convergence in nonop-
timal solutions. One of the successful techniques that have
been proposed to deal with these requirements is niching,
where solutions of the same Pareto set get penalized according
to their similarity (Fonseca and Fleming 1993). Recently, a
novel gradient-boosting technique called XGBoost (Chen and
Guestrin 2016) has been proposed, and since then it has
gained a lot of attention in computer science challenges hosted
by Kaggle competitions.

It has been demonstrated that the combination of an
XGBoost model with a genetic algorithm (GA) can substan-
tially enhance its performance by allowing for the search for
the optimal hyperparameters of the classifier (Chen et al.
2020). Despite XGBoost classifiers performing reasonably
well with their default parameters on various datasets, opti-
mizing their parameters in an unbiased way is important for
achieving higher performance. XGBoost possesses many
hyperparameters and their effect on the performance of the
trained models is important. Deng et al. (2022) proposed a
similar method where the XGBoost algorithm was used as an
ensemble-based feature selection (FS) method to get a subset
of the initial number of genes, which later they used as input
for the GA they use for training multiobjective models. Even
though this approach showed promising results, as a greedy
algorithm, XGBoost may neglect genes that might have some
statistical meaning.

In their work, Corthésy et al. (2018) implemented a similar
solution to the proposed method, but with a different
classifier.

XGBoost has already been applied alone in many bioinfor-
matics and biomedical applications (Li et al. 2022, Ma et al.
2022) while the use of metaheuristics for optimizing their
hyperparameters has also been successfully performed in
many other applications (Desdhanty and Rustam 2021,
Ghatasheh et al. 2022, Syed et al. 2022). However, most of
these approaches do not deal with multiple objectives and are
not able to effectively handle the data missingness, the class
imbalance, and the high dimensionality of the data which are
used for the discovery of predictive biosignatures.
Multiobjective EAs have already been applied for this purpose
but without using XGBoost as a classifier. For instance, a sup-
port vector classifier was used as an estimator (Corthésy et al.
2018), neglecting at that time the potential discrimination
power of boosting algorithms. In a more recent application, a
novel framework, named AUTODC (Bai et al. 2022), has
been introduced and tested for disease classification using
other boosting and tree-based classification and optimizing
them with a novel heuristic method based on a two-layer
Multi-Armed Bandit framework. This method outperformed
existing tools for biomarker discovery by effectively selecting
features and hyperparameters for the classification datasets.
However, it neither included XGBoost in the classification

methods nor provided a solution for multiple objectives opti-
mization, class imbalance, or multiple solutions for the same
problem.

In the present work, we introduce MEvA-X, a multiobjec-
tive hybrid ensemble EA framework for optimizing the hyper-
parameters of an XGBoost classifier for biomarkers discovery
applications. The boosting algorithm has been selected as a
binary discriminator, and its hyperparameters get optimized
over the generations of the EA. In the presented method, we
use a niched Pareto frontier scheme, which helps to conserve
the diversity of the solutions by distributing the population
over several different peaks (niches) and avoiding premature
convergence of the algorithm (Horn et al. 1994). This allows
for a general-purpose biomarker discovery tool that works
with numerical features not only for omics but also for clinical
features. MEvA-X was benchmarked against other estab-
lished state-of-the-art methods, such as the XGBoost algo-
rithm alone, Random Forests, and XGBoost combined with
other standard FS techniques to validate its performance.

Two publicly available datasets were used to test the pro-
posed method for evaluation purposes. The first dataset is
from a study that investigated the relationship between weight
loss through lifestyle interventions and gene expression pro-
files in peripheral blood (Blackburn et al. 2015, Ellsworth
et al. 2015). This study collected data over the span of 1 year
from people with high cardiac risk. Our interest was to use
the baseline measurements at the beginning of the study and
create models to predict if a person will lose weight with the
examined intervention, as well as to find biomarkers that can
help us decide if this intervention will be suitable for other
subject based on their gene expression profile. Toward this
goal, MEvA-X retrieved 24 solutions from the dominant
Pareto frontier and exceeded 75% receiver operating charac-
teristic (AUC) with the best performing one including only
nine selected genes, and significantly improved the classifica-
tion of the minority class compared with the state-of-the-art
methods considering that this is an imbalanced dataset with a
very low samples-to-features ratio.

The second dataset is linked to the retrospective analysis of
a population study on 631 chronic pain patients who were
prescribed opioid painkillers, and who were treated with topi-
cal analgesics formulations. The information contained in this
dataset comes from the answers of the subjects in the Brief
Pain Inventory (BPI) (Cleeland and Ryan 1994) at the begin-
ning (baseline) and at the follow-up period, and it is encoded
in numerical scaled values. The study aimed to document
changes in 3 months in four categories: BPI pain severity, pain
interference relating to Quality of Life components, other
medication usage, and the qualitative health complaints of
these patients (Gudin et al. 2017).

In this dataset, MEvA-X achieved high improvement for all
four labels, since the imbalance is even greater which favors the
proposed method compared with other techniques. There was an
increase of 16%–32% in the weighted geometric mean (wGM)
in absolute numbers and an 8%–10% increase in balanced accu-
racy, while 8–19 features were used for the four labels.

Several configurations and combinations of the parameters
for the EA were tested to evaluate the whole pipeline and to as-
sess the robustness of the method against the baseline and the
models with a selected subset of features (see Supplementary
File). In all these cases, we found that MEvA-X classification
outperforms the state-of-the-art methods while providing a
nonredundant set of features as biomarkers.
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2 Materials and methods
2.1 Datasets

The first dataset was obtained by merging two different data
sources downloaded from the Gene Expression Omnibus
(GEO) databank. In greater detail, the accession number
GSE66175 (Blackburn et al. 2015) contains 26 patients, plus
another 63 patients who are collected from an older dataset
(GSE46097) (Ellsworth et al. 2014), and 71 control subjects.
The above-mentioned 89 patient subjects in total, were people
having either a coronary artery disease (CAD) event or being
at high risk of developing a CAD, following a therapeutic
strategy characterized by a combination of an active lifestyle
and diet modification targeting a relevant change in their
weight in 3 and 12 months. The active lifestyle changes con-
sisted of 3 h/week of aerobic exercise and 1 h of daily stress
management, while the diet modification refers to a low-fat
vegetarian diet known as Ornish. Blood samples were drawn
at the beginning of the study (baseline) and later during the
re-examination periods. The gene expression levels in periph-
eral whole blood samples were measured for these patients us-
ing the Affymetrix Human Genome U133A 2.0 Array
platform (Blackburn et al. 2015).

The two patient cohorts contained in GSE66175 have been
unified by a batch effect correction method (Zhang et al.
2020), and the duplicated gene names were grouped, taking
their average values. Therefore, the merged dataset consists of
89 patients. In this dataset, weight loss information trans-
formed into a binary label: participants with a weight loss
higher than a selected threshold equal to 10% were consid-
ered to belong in the positive class (Responders), whereas
participants with lower weight loss or even increased
weight were considered to belong in the negative class
(Non_responders). Based on the above-defined threshold, the
label distribution of the dataset is 35 “Non_responders” and
54 “Responders,” with 13 239 unique gene and transcript
names.

The second dataset included data from the Optimizing
Patient Experience and Response to Topical Analgesics
(OPERA) study. The OPERA dataset consists of 631 patients
with chronic pain in the intervened group, answering the BPI-
validated questionnaire along with some supplementary ques-
tions before and after a follow-up period (Gudin et al. 2017)
for a total of 50 survey questions as features. Therefore, this
is a dataset made of 631 patients each with 50 features.

The target of the researchers releasing the OPERA dataset
was to investigate the effect of replacing opioid therapies with
topical analgesics on patients with chronic pain and record
the changes in multiple aspects of their life such as pain and
medicine reduction, interference with everyday activities, and
reduction of complaints. Consequently, four different labels
in this dataset refer to the changes the scientist measured dur-
ing the study (see Supplementary Table S1), and so all four of
them were considered as different datasets and used to vali-
date the performance of the proposed method.

2.2 Methods

A hybrid ensemble algorithm for FS and classification, based
on a multiobjective EA (Fig. 1) has been developed and intro-
duced. MEvA-X optimizes the hyperparameters of an
XGBoost Classifier while selecting nonredundant features
(potential biomarkers) to reduce the dimensionality of the
given problem. The presented method follows four individual
main steps which are: data preprocessing, training of

individual models, evaluation of the trained models, and pop-
ulation update based on the evolutionary processes.

Specifically, MEvA-X, except the main framework of the
EA with the known operators (selection, crossover, mutation),
implements a niched Pareto frontier ranking scheme which
makes it appropriate for searching big feature spaces without
converging to one local minimum (Horn et al. 1994). The
niches are essentially different peaks (local maxima) in the ob-
jective function and this method keeps a relative balance be-
tween the distribution of the solution in these valleys to
preserve pluralism and promote the searching of the feature
space. After this ranking, the selection of solutions indicates
which of the individuals in the population will pass their
genes to the next generations through their offspring by
recombining their chromosomes in pairs in the crossover op-
eration. The mutation operator is also allowed in the off-
spring introducing further stochasticity in the process to allow
better exploration of the search space.

The preprocessing steps of the pipeline are described in de-
tail in the Supplementary Methods and include the transfor-
mation of nominal values to numeric, imputation of missing
values, normalization of the features, and merging of dupli-
cated features.

2.3 The MeVA-X evolutionary framework
2.3.1 Feature selection

As an additional preprocessing step, features are selected us-
ing four different univariate and multivariate FS methods,
namely, SelectKBest, Wilcoxon Rank Sums, Joint mutual in-
formation (JMI), and Minimum Redundancy Maximum
Relevance (mRMR) (Rosner et al. 2003, Vergara and Estévez
2014). This way some of the solutions of the population can
randomly select features from a lower-dimensional space
which is based on statistical methods and can help in creating
some niches (local minima) to improve the search for good
feasible solutions. In the chromosome of each solution, there
are specific “genes” that drive the individual to select features

Figure 1. Flow chart of MEvA-X. The evolutionary process begins with

data preprocessing and population initialization. The collection of individual

solutions that encode the information in the form of chromosomes is

used to train independent ensemble models using the XGBoost classifier

in a 10-fold cross-validation framework. The solutions are ranked in

frontiers through the Pareto Frontier method and similar solutions

belonging in the same niche are degraded. The evolutionary operations

(selection, crossover, and mutation) apply on the solutions and if the end

criteria are not met the procedure starts over.
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based on some FS methods and other “genes” responsible for
the parameters of these methods.

2.3.2 Initialization of population

The population of the first generation is generated in a pseu-
dorandom manner by selecting values for the parameter genes
following a uniform distribution for the range of the mini-
mum and maximum allowed values for every parameter. The
selection and activation of feature genes is also a random pro-
cess, but the initial total number of active genes in any indi-
vidual chromosome is constrained to less than 30, which are
then filtered according to the FS genes.

2.3.3 Stratified cross-validation data splitting

A stratified 10-fold cross-validation scheme with a different
random state in every generation is used in MEvA-X, splitting
the data into training and validation sets to provide concrete
results of the trained models’ performance dealing effectively
with the imbalanced nature of most of the clinical and biologi-
cal datasets. In this way, the results are less prone to biases
caused by single splits and the ratio of the positive and nega-
tive classes is preserved while keeping the same random state
across the given generation allowing for comparable results
between the solutions.

2.3.4 Classification and hyperparameter tuning

In the presented method, XGBoost classifiers are used to dis-
criminate the samples of the dataset according to the labels.
The instructions to build each classifier are encoded in every
individual solution in the last seven parameter genes (see
Supplementary Table S2). The information contained in the
chromosomes included seven hyperparameters of the classi-
fier, namely the learning rate, the maximum depth of each
tree, two pruning parameters, two generalization parameters,
and a balancing parameter.

In every iteration of the cross-validation, the XGBoost clas-
sifier denotes the performance of both training and validation
sets on the area under the AUC curve. In the cases where the
validation AUC does not improve for more than 50 iterations,
the training is terminated to avoid overfitting and the algo-
rithm returns the ensemble up to the last best validation
iteration.

2.3.5 Network creation and bioinformatics analysis

The analysis of the data was made with the programming lan-
guages Python version 3.9 and R version 4.1.2. For the
Ornish diet dataset, a coexpression network constructed with
the help of InSyBio BioNets (Theofilatos et al. 2016) tool us-
ing the Spearman correlation (Artusi et al. 2002) and node
PageRank centrality (Coppola et al. 2019) metrics for the se-
lection of the most significant nodes. The visualization and
further analysis of the network were done with Cytoscape
(Shannon et al. 2003) version 3.9.1 and the tissue specificity
analysis was conducted with the GTExPortal (Lonsdale et al.
2013). Additionally, the Spearman correlation and the princi-
pal component analysis (PCA) (Abdi and Williams 2010)
were also calculated for the selected features of the MEvA-X
models for both datasets. The results of these analyses can be
seen in Fig. 3.

2.3.6 Fitness functions

Based on the evolutionary operators, the solutions of the pop-
ulation “compete” to improve their fitness and survive in

every iteration/generation of the algorithm, and the competi-
tion is held based on the objectives the EA ultimately tries to
optimize. In MEvA-X, the multiple objectives mostly refer to
the metrics used to evaluate the performance of the trained
XGBoost classifier models, which are coordinated by the
chromosomes of the individual solutions in the population.
The coordination is done by the parameter genes and the fea-
ture genes of the solutions, which are the blueprints for the
construction of the discrimination models.

The proposed method is designed to maintain a balance be-
tween the high discrimination performance and the low com-
plexity of the models. Thus, the evolutionary pressure drives
the population towards more sparse chromosomes with as
few active feature genes as possible, while maintaining high
classification performance. Feature_model_complexity and
Split_model_complexity are used to measure the complexity
of the trained models. The value of these metrics is lower for
complex models and higher for simpler ones. Particularly, the
more active gene features a solution has, the lower the feature
model complexity metric will be. Similarly, a model with
fewer splits and a simpler structure will have a greater split
complexity score than a model with more trees in the ensem-
ble and many splits.

On the other hand, metrics that evaluate the discrimination
of the models based on the prediction and the probabilities of
the predictions of the classes are used as well. More specifi-
cally, accuracy, wGM, F1 score, F2 score, precision, recall,
balanced accuracy, and the AUC were considered as evalua-
tion metrics.

Finally, the overall score and the weighted overall score are
also calculated to give an easy comparison between the solu-
tions. The overall score considers each of the previously re-
ferred metrics as of equal importance, while the weighted
overall score is a user’s choice array of weights mapped to the
metrics based on the importance of each one of them. This
way, the user of MEvA-X has an additional degree of freedom
to drive the population toward solutions with higher scores
on the preferred objectives.

2.3.7 Niched Pareto frontier

The trained models are ranked based on their multiple evalua-
tion metrics through a Pareto Frontier operation (Abraham
and Jain 2005). A niched Pareto frontier ranking approach
has been selected like the proposal of Erickson et al. (2001) to
avoid the premature convergence of the algorithm and for a
more exhaustive search of the feature and parameter space.
This way similar solutions that belong to the same Pareto
front get penalized even if they reach a very high score. In this
manner, the pluralism of solutions is guaranteed during the
passage of generations and local maxima are avoided.

In MEvA-X, there is a hybrid approach of binary and con-
tinuous encoding on the chromosomes, and so the calculation
of the distance between two solutions belonging to the same
Pareto frontier is a two-step process.

For measuring the difference between two individual solu-
tions belonging to the same Pareto front, we introduced a
dual distance metric. One part of the metric refers to the con-
tinuous values of the parameters to be optimized and the sec-
ond to the binary selection of features of the dataset (see
Supplementary Methods). According to the closeness of the
solutions, a degradation function is applied for similar solu-
tions to reduce the possibility of the algorithm accumulating
all solutions in a local minimum.
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The applied evolutionary operators, termination criteria,
and additional details on the evolutionary framework of
MEvA-X are provided in Supplementary Methods.

2.4 Training final ensemble classification models

When at least one of the stop criteria is fulfilled, the EA stops
operating. Then, the final solutions are ranked once more
with the Pareto frontier method. The models that end up in
the first Pareto frontier are the dominant ones and the solu-
tion with the highest overall score is the best compromise.
Except for the overall best, it is possible to take advantage of
the contradictive objectives and so the dominant solutions are
combined to create an ensemble of classifiers with two major-
ity voting methods. In the first method, the final prediction of
the ensemble is the one that has the highest number of votes
from the individual models in the ensemble, which is also
known as “hard” majority voting. The second method im-
plied is the so-called “soft” majority voting which considers
the probability the XGBoost classifier gives to the prediction.
In both cases, a filtering of the solutions participating in the
voting is taking place, because some of the models end up in
the first Pareto frontier simply because they are very low in
complexity, but they might also have no discrimination value
to add to the ensemble, and so solutions that classified all
instances in the same class in the cross-validation, are ex-
cluded from the majority voting.

3 Results

The performance and robustness of MEvA-X have been com-
pared with the existing state-of-the-art XGBoost classifier by
several experiments that were conducted with both datasets
(Ornish diet and OPERA) using the stratified 10-fold cross-
validation framework. In these experiments, MEvA-X’s per-
formance was benchmarked against single XGBoost models
(baseline) and XGBoost models trained on a subset of the fea-
tures with the FS techniques of Wilcoxon ranked sum,
SelectKBest, JMI, and mRMR. For the comparison with the
state-of-the-art methods, a radar plot was used to visualize
the improvement of the models created by MEvA-X in terms
of simplicity and balance in the discrimination of classes
(Fig. 2).

A coexpression network of the selected features and their
neighborhoods was reconstructed, the distribution of the fea-
tures was visualized, a correlation heatmap of the selected fea-
tures was created, and a tissue specificity analysis was
conducted for the revealed Ornish diet weight-loss prediction
biosignature to interpret and explore the patterns and associa-
tions between the gene expression biomarkers (Fig. 3).

Additionally, enrichment analysis has been conducted to re-
veal any underlying pathways but for the given set of bio-
markers, no term was found enriched. Furthermore, a PCA
and the contribution of the features in the loadings of PCA
were calculated and presented in Supplementary Figs S1–S5.

To benchmark the MEvA-X against another established
method, we used Random Forests combined with a grid
search for parameter optimization. Comparative results, as
shown in Supplementary Tables S5 and S6, demonstrated that
MEvA-X was able to substantially increase classification met-
rics, with a balanced accuracy increase from 61% to 76%.

The proposed algorithm was tested also on the four chronic
pain-related endpoints of the second (OPERA) dataset using
data from a questionnaire survey. As before, radar plots were

used to depict the evaluation metrics of the different frame-
works against the MEvA-X tool (Fig. 4).

A Spearman’s correlation feature association analysis was
conducted for the features selected for all four endpoints of
the dataset as shown in the heatmaps in Fig. 5. For the indi-
vidual endpoints, MEvA-X selected a different set of features.
For the Severity Change endpoint, a subset of 14 features was
selected as important, while for the second endpoint (Change
in Interference), 19 features were selected (Supplementary
Table S9).

Regarding the third endpoint in the dataset (Change in
Medicines), the algorithm ended up in a subset of eight fea-
tures, and finally, in the last label (Change in Complaints) 15
features remained in the subset (Supplementary Table S9).

Further analysis of the principal components made for the
OPERA datasets along with a feature importance ranking
of the principal component loadings are provided in
Supplementary Figs S6–S25.

MEvA-X increased the performance in the classification of
the minority class with features that have low intercorrela-
tion, leading to fewer nonredundant markers and relatively
simple models.

4 Discussion

From the obtained results, it was shown that the MEvA-X al-
gorithm is beneficial in two major aspects of biomedical clas-
sification problems. Optimizing the hyperparameters and
features of the XGBoost classifier using the multiobjective op-
timization framework of MEvA-X resulted in the improve-
ment of classification metrics, that are appropriate for
imbalanced datasets (e.g. wGM) compared with XGBoost,
XGboost coupled with FS methods, and grid searched opti-
mized Random Forests. In both datasets used in the present
work, the classification metrics significantly improved without

Figure 2. Comparative radar plots between the average performance of

models for the Ornish diet dataset. (A) Simple XGBoost estimator, (B)

best model with FS applied (JMI with k¼ 5), (C) MEvA-X models with the

highest overall metric in the population, and (D) majority voting of the

solutions in the first Pareto frontier. The metrics and their standard

deviations calculated from the 10-fold cross-validation analysis are

provided in the Supplementary File (Supplementary Table S5). Each panel

colors the metrics of each presented method and shows in gray the rest.
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a substantial corresponding decrease in the rest of the metrics.
Moreover, MEvA-X increased substantially the simplicity of the

final models and especially the model with the highest overall
score yield by MEvA-X. The decrease in the complexity of the
model is up to 60% in absolute numbers, meaning that the al-
gorithm can identify features that improve the classification of
the data without keeping redundant and low-informative ones.
Especially for -omics datasets, such as the Ornish diet dataset,
except for the very high features–samples ratio problem, there is
high redundancy due to the coexpression of genes, making the
identification of nonredundant biomarkers a challenge that our
algorithm proved able to overcome.

Regarding the performance of MEvA-X on the correct clas-
sification of the minority class, it is superior to all bench-
marked methods (see Supplementary Tables S3 and S4).
Without the use of the EA, most of the instances are classified
as the majority class resulting in very low wGM and balanced
accuracy scores. Our algorithm can correct this misclassifica-
tion in these difficult and imbalanced problems.

It is worth mentioning that the use of standard FS techni-
ques alone was not proven to be efficient for both datasets. In
the OPERA dataset, JMI and mRMR created very simple
models of limited discrimination ability, while SelectKBest
and Wilcoxon’s rank sum had poor performance in both
datasets. XGBoost with no FS performed much better than
the FS techniques for the OPERA dataset. Rapakoulia et al.
(2014) showed that EAs optimized classification models are
beneficial for problems with missing values when majority
voting is used. A similar approach was adopted in MEvA-X,
which enables the identification of multiple similarly perform-
ing prediction models. Majority voting was applied but the
performance of this metaclassifier did not outperform the pre-
diction performance of the best-performing model for each
dataset, but no missing values were present in our datasets.
Nevertheless, the training of multiple models with similar

Figure 4. Comparative radar plots between the baseline and the MEvA-X

solutions for the four endpoints of the OPERA dataset. MEvA-X

outperforms the baseline models, both in simplicity (number of features

used) and in the discrimination power of the minority class. (A) Endpoint

related with the chainge in pain severity over the follow-up period. (B)

Endpoint related to the difference in the interference of pain in everyday

tasks over the follow-up period. (C) Endpoint showing the change of the

total prescribed medicine to patients over the follow-up period. (D)

Endpoint depicting the change of complaints of the patients over the

course of the follow-up period. The metrics and their standard deviations

calculated from the 10-fold cross-validation analysis are provided in the

Supplementary File (Supplementary Table S7).

Figure 3. Bioinformatics analysis of the MEvA-X precision nutrition biosignature. (A) The coexpression network of the selected features and their

immediate and two-steps-away neighbors, with the border color of the nodes representing the clusters in the network. (B) Correlation matrix of the

selected features using Spearman’s correlation. (C) Expression of selected genes on different tissues and organs (https://gtexportal.org). (D) Violin plots of

the distribution of the selected features based on the label (responders/nonresponders).
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classification performance is extremely important for biomed-
ical applications since different measurements are conducted
in different patient cohorts with high missing values rate.

In the precision diet dataset, further bioinformatics analysis
was performed on the selected biosignature set to interpret
the results (Fig. 3). Based on the correlation analysis of the
biosignatures, it appears that there is little correlation between
them, indicating the effective selection of nonredundant fea-
tures by the tool. This was confirmed when attempting to per-
form pathway and functional enrichment analysis with no
term being significantly enriched in the revealed biosignature.
Additionally, the coexpression network of the selected fea-
tures with their first- and second-degree neighbors was recon-
structed. Three of the selected features of MEvA-X (AP2B1,
RAC3, and TMEM33) were identified as hubs according to a
PageRank centrality-based analysis for their subnetworks,
suggesting that these features could potentially be markers to
indicate if this specific diet would be beneficial for a patient.
Adapter-related protein complex 2 subunit beta 1 (AP2B1)
encodes one of the large chain components of the assembly
protein complex 2 whose functionality is to protein transport
via transport vesicles in different membrane traffic pathways.
Rac Family Small GTPase 3 (RAC3) encodes a protein that
according to Gene Ontology is involved in GTP binding and
calcium-dependent protein binding. Transmembrane Protein
33 (TMEM33) encodes a protein that is involved in the struc-
tural constituent of the nuclear pore and was found to main-
tain intracellular calcium homeostasis (Arhatte et al. 2019).
Furthermore, from the tissue-specificity bioinformatics analy-
sis, it is observed that these genes are not specific in
metabolism-related tissues and organs. The non-coding
LINC00588 and the BIK gene are gender-specific since they
are mostly expressed in the testis and prostate, but the dataset
is balanced between male and female subjects that eliminate
the sex bias, so their changes are most likely explained from
differential expression between responders and not

responders within the male group. Even though most of the
selected genes have a notable expression in the pancreas, thy-
roid, liver, and stomach, no previous association has been
made between these markers and weight loss except one study
identifying AP2B1 as a potential marker for eosinophilic gas-
troenteritis (Zhang et al. 2022), linking it thus indirectly to
weight loss. These genes are associated with completely differ-
ent molecular functions and pathways while their indepen-
dent predictive potential is small with univariate statistical
analysis showing marginal significance or no significant
changes between responders and nonresponders (Fig. 3D).
This suggests that the MEvA-x method was able to generate a
highly accurate biosignature combining weak independent
features, without being limited by the inherent assumptions of
parametric tests for differential expression and removing re-
dundancy from the selected features.

MEvA-X has the potential to become part of the Artificial
Intelligence (AI) tools arsenal existing for solving difficult
medical and biological problems. Advancements in AI have
already allowed algorithms to be used in translational re-
search applications having prospects in many diseases such as
cancer, diabetes, and others (Bohr and Memarzadeh 2020,
Rompianesi et al. 2022). Another very promising field for bio-
marker discovery is neurodegenerative diseases with substan-
tial progress being made lately in conditions such as
Alzheimer’s disease (Hansson 2021). This tool can help in the
identification of potential biomarkers and can become part of
a pipeline for the exploration of neuro diseases.

Data availability

The Ornish diet dataset was obtained from National Center
for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) and is accessible through GEO Series acces-
sion number GSE66175 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE66175). The OPERA dataset was

Figure 5. Correlation of the selected features by MEvA-X, for the OPERA dataset for the four labels. (A) Label 1 “Total Severity Change.” (B) Label 2

“Interference Change.” (C) Label 3 “Grant Total Medicine Change.” (D) Label 4 “Total Complaints Change.” Spearman’s correlation method was used

and plots depict the Spearman’s Rho coefficient.
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provided by Clarity Science LLC and is available upon request
to the corresponding author with permission of Clarity
Science LLC.
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Supplementary data are available at Bioinformatics online.
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