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Abstract
This volume contains the papers presented at the International Workshop DETERMINED 2022: Neu-
rodevelopmental Impairments in Preterm Children — Computational Advancements that was held at the
University of Ljubljana, Faculty of Computer and Information Science in Ljubljana, Slovenia on 26
August, 2022. The workshop, held in a hybrid mode, consisted of fourteen contributions: a keynote
speech given by Marinka Žitnik from Harvard Medical School and thirteen oral presentations based
on as many submissions accepted after a single-blind peer-review process. Each oral presentation was
complemented by a poster displayed throughout the workshop. The workshop organisers thank all
authors, contributors, and attendees to DETERMINED 2022.

Keywords
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1. Introduction

The first instalment of the DETERMINED 2022 international workshop was held at the University
of Ljubljana, Faculty of Computer and Information Science in Ljubljana, Slovenia on 26 August
2022. The workshop was held in conjunction with the machine learning training school that
has been organised in the framework of the PARENT project funded by the European Union’s
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Horizon 2020 research and innovation program under the Marie Sklodowska-Curie-Innovative
Training Network 2020, Grant Agreement N° 956394 (https://parenth2020.com/). The goal of
the DETERMINED 2022 workshop was to provide a unique forum for graduates, post-docs, and
other scientists to present and exchange new research and ideas for the advancement of early
diagnosis of motor and cognitive impairments in preterm children. This year the workshop
hosted an exciting keynote talk, oral presentations, poster exhibitions, and a networking event
to discuss such advancements.

DETERMINED 2022 was held in person with around fifty attendees. The whole workshop
was also streamed live via ZOOM.

2. Call for papers, submission, and peer-review process

The call for papers was published on the workshop website1 and distributed to the researchers
via e-mails. The invitation to participate in the workshop aimed to gather contributions in terms
of research ideas, research results, or literature reviews exploring technological innovations
related to neurodevelopmental disorders, focusing primarily on preterm infants. Contributions
targeted the following areas but not limited to:

• Machine Learning for Preterm Neonatal Care Applications;
• Big Data Analytics;
• Medical Image Processing and Signal Processing;
• Clinical Decision Support Systems (CDSSs);
• Precision Medicine;
• Biology and Bioinformatics;
• Neuroscience and Computational Neuroscience;
• IoT for Healthcare;
• Computational Modelling in Biological Systems and Medicine.

Authors submitted the papers to the workshop via EasyChair2 conference management
system. The system was used also for gathering the reports from reviewers selected by the
scientific committee.

Each paper was reviewed by at least three independent reviewers through a single-blind
review process. Thirteen papers (out of 15 submitted) were accepted for an oral presentation at
the workshop.

3. Scientific Programme

DETERMINED 2022 opened with a keynote “Enabling scientific discovery using artificial intelli-
gence” given by Marinka Žitnik, an Assistant Professor of Biomedical Informatics at Harvard
Medical School. The keynote lecture was followed by the oral presentations given by the authors
of the accepted submissions. The presentations were organised in two sessions.

1https://parenth2020.com/2022-determined/
2https://easychair.org/
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The oral presentations were supported by posters that were displayed during a co-located
training event of the PARENT project and during the workshop.

3.1. Keynote speaker

Marinka Žitnik is an Assistant Professor at Harvard University with appointments in the
Department of Biomedical Informatics, Broad Institute of MIT and Harvard, and Harvard Data
Science. She studies applied machine learning with a focus on challenges in scientific discovery
and medicine. Her methods leverage biomedical data at the scale of billions of interactions
among millions of entities, blend machine learning with statistics and data science, and infuse
biomedical knowledge into deep learning. Problems she investigates are motivated by network
biology and medicine, genomics, drug discovery, and health.

Before joining Harvard, she was a postdoctoral scholar in Computer Science at Stanford
University. She was also a member of the Chan Zuckerberg Biohub at Stanford. She received
her bachelor’s degree, double majoring in computer science and mathematics, and her Ph.D.
in Computer Science from the University of Ljubljana. During her Ph.D. studies she was also
researching at Imperial College London, University of Toronto, Baylor College of Medicine, and
Stanford University.
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Abstract
Eye-hand coordination is a challenging skill to measure objectively, especially in children with motor
disabilities such as Cerebral Palsy (CP). The recent development of robotic technology provides non-
invasive tools for the simultaneous acquisition of eye and hand movement data. One such technology is
the remote eye-tracking and virtual-reality systems namely the Kinarm Gaze-TrackerTM installed in the
Kinarm ExoskeletonTM. Unfortunately, no standard software interface exists to extract the data contained
in the Kinarm proprietary files for an efficient further analysis in common programming languages
such as Python. Additionally, in the standard Kinarm reports only hand movements parameters are
available, while eye movements are only stored as raw data files. These limitations lead to difficulties in
performing a complete analysis of eye-hand coordination in research settings. Additional problems can
arise in the case of missing data (due to loss of tracking). The software described in this paper allows
the extraction of the hands and eye-gaze time series for efficient further analysis directly from the raw
data. Furthermore, a study of the distribution of missing data is presented. Finally, this paper describes a
revised median filter application to deal with large windows of missing data.

Keywords
Eye-Gaze, Software, Median Filter, Unilateral Cerebral Palsy, Kinarm

1. Introduction

Cerebral Palsy (CP) describes, based on an international consensus, ”a group of permanent
disorders of movement and posture, causing activity limitations, that are attributed to non-
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progressive disturbances that occurred in the developing foetal or immature brain. The motor
disorders of CP are often accompanied by disturbances of sensation, perception, cognition,
communication, and behavior, by epilepsy, and by secondary musculoskeletal problems” [1].
The development of movement capacity in addition to muscle tone and posture [1, 2] is affected
by brain injury in the prenatal, perinatal, and postnatal phase up to the age of two years [3]. CP
is a neurological disorder recognized as the leading cause of childhood motor disability and its
appearance is estimated from 1 to nearly 4 per 1,000 live births [1]. Children with CP develop a
wide range of conditions that may affect their functional abilities [4]. The clinical variability
of children with CP can be explained by the heterogeneity of the underlying brain injury [5],
which also affects the nonmotor pathways of the developing brain. Among these, the visual
network is often affected in children with CP [6]. This leads to impairments in visual function
[7] which is a prerequisite for typical eye-hand coordination [8] since it is crucial for planning
and performing movements [9, 10]. Therefore, children with CP also suffer from difficulty in
grasping objects [11].

Accurate reaching develops in children between 5 to 13 months of age [12] and is fine-tuned
over a longer period of several years (often more than 8) [12, 13]. In this process, eye-hand
coordination plays a fundamental role. Despite a large amount of research in this area, several
aspects of the development of eye-hand coordination remain unsolved in children with CP.
In addition to motor problems, 60 to 75% of children with CP also have visual deficits [14, 7].
Eye-tracker systems, which allow quantification of looking behaviour, nowadays are considered
a valid tool for investigating visuomotor coordination in CP children [15, 16]. Furthermore, their
implementation with robotic technology can provide an in-depth quantification of eye-hand
movement impairments in the pediatric neurological population. Previous studies [15, 16, 17]
attempted to quantify eye-hand coordination in children with CP using different methodologies.
Results showed that children with CP have increased visual attention towards the impaired
limb during object grasping and reaching [18, 17] and impaired anticipatory visual control in
eye-hand coordination when compared to typically developing children [15, 19].
One novel application is the use of the Kinarm Exoskeleton [20] which allows an in-depth

quantification of bimanual motor control during symmetrical and asymmetrical tasks and
the simultaneously recording of eye movements via the Kinarm Gaze-Tracker [21]. With
this technology, both motor and gaze measures can be seamlessly integrated for effective
experimental control and data analysis. To our knowledge, no previous work fully evaluated eye-
hand coordination in children with CP with the use of such a technology, although investigating
this relationship would provide a better understanding of the complex function of the visual
motor system. In addition, such results would provide useful information for clinicians and
researchers to be applied in diagnosis and possible rehabilitation settings.
The first step for such an analysis is the extraction of information, such as gaze and hands

parameters over the time course of a movement, from the Kinarm saved files. This is not a trivial
task as the data is stored in proprietary file formats, making the desired analysis very difficult.
This work addresses this problem and describes a possible solution. The contributions of this
paper are fourfold. First, it describes a software framework able to extract hands and eye-gaze
coordinates with time from the Kinarm Exoskeleton files as time series (a time series is, in its
most common occurrence, a sequence of points taken at successive equally spaced points in
time). Secondly, this work describes and discusses a variation of the median filter for data with
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large windows of missing values. Thirdly, this paper analyses missing data windows in terms
of distributions of width and frequency of the gaps in the data in two separate cases. Finally,
it demonstrates the median filter variation described in this paper applied to two different
examples with very different distributions of missing data windows.
The paper is organised as follows. In Section 2, the Kinarm Exoskeleton and the eye-gaze

module are briefly described. The data and the median filter are also discussed and defined
respectively. In Section 2.4, the different tasks possible with the Kinarm exoskeleton are
described. In Section 2.6, the monitored parameters are listed. In Section 3, the Software is
described. In Section 4, the results are presented and in Section 5, the conclusions are discussed.

2. Methodology and Data

2.1. The Kinarm Exoskeleton

Data collection was carried out with the Kinarm Exoskeleton Lab (BKIN Technologies, Kingston,
ON, Canada) [20] combined with an integrated EyeLink 1000 Plus eye tracking system (SR
Research, Ottawa, ON, Canada) [21]. The Kinarm Exoskeleton can be seen in Figure 1. The
Kinarm Exoskeleton Lab (BKIN Technologies, Kingston, ON, Canada) allows movement of the
arm in the horizontal plane such as flexion and extension of the shoulder and elbow joints
[20]. The hands are free to interact with objects in the environment surrounding the subject.
Patterns of joint motion are recorded and the system computes muscular torques, allowing the
study of upper limb movement and coordination. The use of Kinarm Lab’s operating system
and its control software, Dexterit-ETM [20], allows data collection in a user-friendly way. At
the end of each experimental task, reports can be extracted from the Dexterit-ETM software in a
Comma-Separated Values format (CSV) where a division in LEFT and RIGHT-hand parameters
is available.

2.2. Eye-Gaze tracking system and parameters

Eye tracking and gaze estimation systems are well-established techniques used to study eye
movements and position, both in clinical and research settings [22]. In eye tracking systems, the
eye position is calculated through different sequential steps (detection of the eyes, interpretation
of eye positions, and frame-to-frame tracking) with the help of the pupil or the iris centre [23].
Gaze estimation, that is, the process made to estimate and track the 3D line of sight, is calculated
from the analysis of eye movements through a device called gaze tracker [23]. A gaze tracker
simultaneously records the location of the eye position and its motion to determine the direction
of the gaze [24]. The EyeLink 1000 Plus system (SR Research, Ottawa, ON, Canada) integrated
into the Kinarm Exoskeleton Lab (BKIN Technologies, Kingston, ON, Canada) allows recording
binocular eye movements at up to 2000 frames per second. Camera images are processed using
a real-time operating system from which gaze data is recorded. More information on the eye
gaze estimation system can be found in the work of A. Kar et al. [25]. Eye tracking systems
allow the quantification of different types of eye movements such as fixations, saccades, and
smooth pursuit.

3 



Figure 1: Kinarm Exoskeleton Lab (BKIN Technologies, Kingston, ON, Canada) [20] with integrated
EyeLink 1000 Plus system (SR Research, Ottawa, ON, Canada) [21].

This paper will specifically focus on the data used to estimate fixations and saccades [26].
A visual fixation is the maintenance of gaze in a single location or area [27]. Fixations phases
are defined as moments where the eyes are stationary between movements while the visual
input occurs. A saccade is a quick and simultaneous movement of the eyes between phases of
fixation in the same direction [27]. Saccades are mainly used for orienting the gaze towards an
object of interest. They can be triggered voluntarily or involuntarily, with both eyes moving in
the same direction.

Fixations and saccades can be quantified in terms of different parameters which can be used
for further analysis (i.e., eye-hand coordination). The mathematical algorithms to compute
them are not discussed in the present paper. For further information, the interested reader can
refer to the following papers [28, 25].
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The data output from Kinarm software includes gaze position (𝑥 and 𝑦 positions), gaze
direction, pupil position (𝑥, 𝑦 and 𝑧 positions) and area, time stamps, and events such as start
and end of fixations and saccades. The Kinarm software automatically saves these features in
stored files, making them available to researchers. If necessary, averages and other statistical
analyses of the available metrics are then possible. Additionally, by adding the formerly listed
features, the parameters mentioned below can be calculated.
Fixations and saccade parameters include:

• Fixation Duration - total duration of a fixation in seconds.
• Fixation Area - position where the fixation is recorded in meters.
• Saccadic Peak velocity - the highest velocity recorded during the saccade in metres per
second.

• Saccadic amplitude - the horizontal displacement during eye movement in meters.
• Saccade Duration - total duration of a saccade in seconds.
• Gaze latency - time taken from the appearance of a target to the beginning of a saccade
in response to that target in seconds.

• Gaze Accuracy - the average distance between the target and the participant’s eye position
in meters.

2.3. Data

In the present paper, data from two subjects, namely A and B, are discussed. Both participants
have been diagnosed with unilateral CP (mean age: 11y4m). Test subjects are chosen only if they
have minimal ability to actively grasp and hold an object and sufficient cooperation to perform
the assessments. None of the participants received botulinum toxin injections six months before
testing or had a history of arm surgery two years prior to the assessment. Each experimental
session lasted about one hour. After the experimental session, the data were anonymised and
extracted from Dexterit-ETM software in a Comma Separated Values (CSV) format where a
division in the left and right upper limbs and the left and right eye gaze parameters is available.
The available records for this study consist of two separate file groups: group A is defined

as the group that contains the first cohort of experiments, and group B is the second group.
Both groups contain eight files for the three different tasks studied: Ball On Bar task (2 files),
Object Hit task (2 files), and Visually Guided Reaching task (4 files). The files of the second group
contain incomplete and damaged data: missing values are detected for the Gaze X and Gaze Y
positions. In addition, the remaining values translate into a different gaze behaviour.

A comparative view of the gaze behavior in the three tasks can be seen in Figure 4. Due to the
individual differences in the task protocol and the numerous rows that make up the experiment
dataframes, the CSV files are of various sizes. In Table 1, the average total lines and the size of
the CSV files related to subjects A and B are reported.
Size differences are directly correlated with the duration of recorded trials ( number of

attempts) on tasks (i.e., exercise type).
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Table 1
Time series length from groups A and B. The Average file size is the total length of the CSV file, the
Average total lines represents the average line count of a type of task, and the Maximum size is the
maximum line count.

Exercise type Average file size Average total lines Maximum size

Ball On Bar 81 032 79 918 130 621
Object Hit 15 274 10 427 28 080
Visually Guided Reach. 49 787 46 002 107 427

2.4. Experiment tasks and datasets differences

In this paper, the focus is on three custom experimental tasks (i.e., Kinarm standard test-KST),
namely, the Ball On Bar, Object Hit, and Visually Guided Reaching task. Each task is standardised
and performed with the Kinarm Exoskeleton, allowing the assessment of upper limbs’ motor
control and the simultaneous acquisition of eye-movements data [29]. A description of the KST
taken from the Kinarm manual is provided below.

Ball On Bar The Ball on Bar task assesses the ability of subjects to perform a motor activity
that requires coordination of the two arms. [30] A virtual bar is presented between the
subject’s hands, and a virtual ball is placed on the bar. The objective of the task is to move
the virtual ball on the bar to successively presented targets as quickly and accurately as
possible.

Object Hit The Object Hit task [31] assesses rapid motor skills throughout the workspace. It
is developed to assess the ability of a subject to select and engage in motor actions with
both hands over a range of speeds and a large workspace. Good performance requires the
ability to generate a goal-directed motor action on a moving target, bimanual planning to
select which arm to use to hit each object, and spatial awareness across the workspace.

Visually Guided Reaching The purpose of the Visually Guided Reaching task is to quantify
voluntary control directed toward the goal [32]. This task assesses visuomotor response
time and arm motor coordination. During this task, a central target is presented, and the
subject must move a cursor (white circle) representing hand position to this target.

For each task, the Kinarm software can automatically compute a standard report (SR), as
well as a CSV file [33]. CSV files contain a metadata header with calibration and experimental
set-up information such as the Kinarm experiment instructions, the accessories used and the
calibration values. The file header also includes the definition of all recorded channels that
measure features with their unit of measurement. For each task, a different number of trials
are presented, namely an attempt to accomplish the exercise. Note that the number of trials
varies depending on the task exercise in both groups (A and B). For the Object Hit task, there
is a single trial in each file. A total of 1 to 3 trials are presented for the Ball On Bar, and 1 to
24 for the Visually Guided Reaching task. In the trial information, the different time series are
provided in terms of a dataframe where each row contains the data measured at a given time in
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milliseconds. Rows are separated by 1 ms intervals. The individual trials also include a trial
header with several lines regarding metadata that needs to be removed in pre-processing.

2.5. Files processing

The experiment files are presented as CSV files containing dataframes. In this case, the columns
are the measured kinematics features, and the rows are the individual values of each frame
saved. The extraction process allows the reading of the dataframes contained as raw content.
Furthermore, the goal is to obtain the experiment data as time series. In the files, each trial
is represented as a separate dataframe. The pre-processing algorithm allows us to extract
these dataframes by splicing the CSV files and removing the general metadata header and the
individual trial headers. This is done for each of the four possible tasks. The methods involved
can be used for new experiment files to automate the analysis.

Table 2
Parameters of interest selected from the list of features.

Parameter (measurement unit) Definition

Sample duration (s) Interval between each data sample taken

Sample count Total number of data points for each measurement

Frame number Individual identifier of each row in the dataframe

Frame time(s) Unique timestamp to each row.
Starts at 0 for each trial

Event name Name of the event, automatically given by Kinarm

Event time (s) Frame time of the detected event

Right and left hand
position (m) Position of each hand, X and Y component

Gaze position (m) Gaze position in global coordinates, X and Y component

Right and left hand
speed (m/s) Individual speed of each hand

Right and left hand
acceleration (m/s2) Individual acceleration of each hand

Ball position (m) Only for Ball-On-Bar exercises, ball X and Y position on screen

Ball relative position (m) Only for Ball-On-Bar exercises, ball relative position on the bar

2.6. Monitored parameters

The features of interest used for visualisation and analysis are listed in Table 2. Note: the total
real time of each trial is equal to sample count multiplied by sample duration. It can also be
retrieved by looking at frame time in the last row of the selected trial. All tasks from both file
groups are saved in a single trial (that is, in one dataframe). Some files contain more than one
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trial: in the first group of files, the two Ball-On-Bar tasks include, respectively, 3 and 2 trials,
and the two Visually Guided tasks include 3 (for the child practise set) and 24 (for the complete
exercise) trials. And in the second group, two out of four Visually Guided tasks contain 9 trials.

2.7. Analysis of Missing Data in the Eye-Gaze Measurements

As mentioned in Section 2.3, some of the experiment data lines contained in the CSV files of the
second group of files appear incomplete. The features presented previously require continuous
data to study the detailed actions of gaze and hands. In practise, the missing values detected
in the files make a complete analysis and visualisations impossible; since both gaze and hands
position data in multiple time windows are missing. Indeed, events like fixations and saccades
cannot be entirely detected and understood when positions are only partially saved during a
given time window. As a first step, the number of extended regions of continuous missing data,
or gaps, are counted and their respective lengths measured. Depending on the type of trial,
the complete length of recorded experimental data changes, but it is possible to estimate the
percentage of missing data for each trial to quickly quantify the impact on the final analysis.
And this is possible for each experiment regardless of the length. This result is represented in
Table 3.

Table 3
List of the nine trials contained in the CSV report file of a Visually Guided Reaching task for group B.
The Average gap size column shows the rounded averages over all the detected gap sizes of size 1 and
more. The amount of gaps detected in a trial is noted in the Gaps count column. Max gap size contains
the size of the largest gap in the trial. Not a Number values (NaN values) column contains the total
amount of NaN values in each trial, the Total length column contains the time series entire length.

Trial ID Average gap size Gaps count Max gap size NaNs values Total length NaNs %

0 181 3 281 543 3353 16.2
1 98 10 318 980 8414 11.7
2 60 9 192 539 5857 9.2
3 126 9 576 1132 4838 23.4
4 41 32 228 1299 8258 15.7
5 65 10 222 654 6665 9.8
6 65 36 1051 2355 8880 26.5
7 200 1 200 200 1269 15.8
8 210 1 210 210 2586 8.1
Mean 116 12.3 364.2 879.1 5569 15.2
Std Dev 62 12.1 267.7 633.9 2591 6.0
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The selected example file from a task of Visually Guided Reaching in group B contains 9
separate trials, all of which are made of a large amount of NaN values. The minimum value of
missing values is 8.1% (in trial 8) of the total data points, while the maximum is 26.5% (in trial 6).
The mean proportion of missing values over the 9 trials is 15.2%. The example is representative
of group B, where each file contains randomly placed NaNs gaps of various sizes.

Table 4
List of trials containing gaps from a CSV report file of a Visually Guided Reaching task from group A.
The file contains 24 trials, of which only 4 contain NaN values represented in the table. The remaining
20 trials do not contain gaps or a single NaN value. The Average gap size column shows the rounded
averages over all the detected gap sizes of size 1 and more. The amount of gaps detected in a trial is
noted in the Gaps count column. Max gap size contains the size of the largest gap in the trial. NaNs
values column contains the total number of NaN values in each trial, the Total length column contains
the time series entire length.

Trial ID Average gap size Gaps count Max gap size NaNs values Total length NaNs %

4 24 1 24 24 5559 0.4
10 104 1 104 104 4941 2.1
20 144 1 144 144 5303 2.7
21 83 1 83 83 4312 1.9
Mean 14.8 1 14.8 88.7 4177 1.8
Std Dev 43.3 0 43.3 43.3 1340 0.8

2.8. Median Filter

To preserve the recorded data saved in the incomplete files and to reduce noise, a median filtering
technique is applied. The method is compatible with missing data. Due to the noise reduction
obtained, the local trend can be preserved by replacing incorrect data. The median filter
eliminates extreme or empty values without having to do a mean averaging of the neighbour
values, which would heavily impact the correct values. Although typically used for image
pre-processing [34], the algorithm can be applied to one-dimensional signals [35] as is the case
here. When used on one-dimensional input, the process is simplified : the neighbourhood
includes values before and after the index.

Definition 1. Given an array of 𝑀 values (𝑋1, ..., 𝑋𝑀), the median filter (MF) of size 𝑄 (in this
paper 𝑄 is taken to be odd for simplicity of notation) is a mapping ℝ𝑀 → ℝ𝑀. By defining
𝑄 = 2𝑛 + 1, the output of the MF will be an array with elements 𝑋 𝑓

𝑖 given by

𝑋 𝑓
𝑖 = median({𝑋𝑖 − 𝑛, ..., 𝑋𝑖 + 𝑛}) (1)

The median filter algorithm replaces each individual value 𝑋𝑖 (starting from 𝑖 = 𝑛) of the original
array by the median of the following and previous 𝑛 values. The window or filter size of total
size 𝑄 defines the amount of neighbour values considered to compute the new filtered signal 𝑋 𝑓.
Since there are no values preceding the first and last elements of the signal, the first and last values
are repeated until enough values are reached to fill the window.
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Figure 2 shows an example of the median filter applied to a hypothetical data set with some
quantity (𝑥𝑖) measured at specific time points 𝑡𝑛. In Step 1, a time window is selected (in Figure 2
the selected time window includes the time points 𝑡2 to 𝑡6). In Step 2, the values are sorted, and
the median value is selected (Step 3). The time window then moves along the entire data set.

Figure 2: Diagram of an example application of the median filter to a hypothetical dataset. A hypo-
thetical dataset with some quantity (𝑥𝑖) measured at specific time points 𝑡𝑛 is considered. In Step 1, a
time window is selected (in this example the selected time window includes the time points 𝑡2 until 𝑡6).
In Step 2, the values are ordered, and the median value is selected in Step 3.

The median filtering is applied to the experimental data in Figure 5, with two filter sizes
presented. Fixations and saccades rely on specific windows of gaze position. It is important to
note, as a downside, the risk of losing short movement detections as the filter size selected gets
larger. Movements shorter than the filter window might be lost. This is a risk in the time series
containing gaze positions if the filter is longer than some of the actual events happening within
the task. The window size choice is an important parameter further developed in the article.

2.9. The Median Filter for Large Windows of Missing Data (MFLWMD)

A statistical analysis of the features of saccades and fixations is made difficult, if not impossible,
when large windows of missing data are present. The most appropriate solution is to split the
time series each time a gap larger than a specific size is encountered. As a possible solution
to the presence of large windows of missing data, the following median filter application is
presented. Given a certain measurement of a generic quantity 𝑥𝑖 (for example, the 𝑥 coordinate
of the eye-gaze) at various 𝑡𝑖 time points (for 𝑖 = 1, ..., 𝑀). A median filter of size 𝑛 can be applied
by sliding a window of size 𝑛 on the measured data. Let us also suppose that 𝑀 ∈ ℕ windows
of missing data, in which gaps of size 𝑠𝑖 are present at various positions along the array 𝑥𝑖. If
a missing data window is encountered, there are two possible scenarios. Let us indicate with
𝑔 ∈ ℕ an integer that can be called threshold.
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1. 𝑠𝑖≥𝑔: the array 𝑥𝑖 is split at that point and every calculation of the statistical estimators is
stopped. The two parts are considered for all purposes as separate files.

2. 𝑠𝑖 < 𝑔: the median filter can be applied simply by removing the missing data and consid-
ering only the available values.

The best choice of 𝑔 is, of course, related to the median filter window size. 𝑔 should be larger
than 𝑛 to make this proposed variation of the median filter meaningful. From the available
missing values files and experiments, and since the filters span across windows of size 𝑛, the
authors propose that a good choice is 𝑔 ≳ 2𝑛 to 3𝑛. If the threshold is less than 𝑛, complete
missing value gaps are never considered since the filter size will cover all possible cases. On the
other hand, if the threshold is greater than 3𝑛 the starting and end points are considered too far
apart for the filter to sufficiently fill the gap considered.

3. Software Functionalities

The KinarmPython extraction library presented in this article, called KiPy, can read CSV files
generated from the Kinarm Dexterit-ETM software [33] and support their analysis. The software
provides the user with the ability to parse all accessible kinematics logs. Concerning the research
questions previously mentioned in Section 2.3, the software extracts relevant information and
can create visualisations which can also be easily changed by the user. The tool currently uses
command-line scripts and Python functions; the goal is to keep it simple, configurable, and
performant. The application is written in Python 3.8 and requires the additional Pandas, NumPy,
Pickle, and Matplotlib libraries. It is open source and is available on GitHub [36]. Once the files
are read, all metadata are excluded, and the remaining data are read as a Pandas DataFrame. The
Pandas DataFrame is an efficient data structure to store structured data and provides powerful
functions to filter and search for specific rows of columns.

Figure 3: Software Component Diagram. The main components of the software package KiPy are
depicted in this Figure. The different parts (sub-packages, notebooks, functions and classes) are repre-
sented with different colors explained in the legend. Further documentation is available online [36].

From the extracted dataframes, the algorithm accesses the visual data events. For each trial,
the duration and count of all the events are given. This information can be further used to
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analyse the frequency of the events over a single trial, a complete experiment, or a group of
experiments (e.g., the events statistics for a given type of experimental task).

4. Results
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Figure 4: Gaze comparison: group A and B. Group A and group B tasks are represented on the left and
right sides, respectively. Numbers 1 to 2 represent X and Y movements of the gaze on the Ball On Bar
tasks. The ball position is shown in dotted grey lines. Numbers 3 to 4 correspond to an Object Hit task,
and numbers 5 to 6 correspond to the Visually Guided Reaching task.

4.1. Eye-gaze and Hand Position Data

The central idea behind the software tool is to give the user the ability to read the CSV files and
visualise and analyse the Kinarm experiments. The software makes it possible to first, given
any task input, visualise the movements of the gaze and hands. The visualisation can be done
with both static plots and animations. Animations are short videos that the user can produce at
a chosen speed. Examples of visualisations can be seen in Figure 4 for gaze movements and in
Figure 6 for hands movements over the duration of the task in the three different tasks. The
figures display the differences between the two groups of files. One can identify gaps of missing
values, saved as NaNs in files, and numerous peaks, hence the name of noisy flickering data.
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4.2. Median Filter Application

Examples of the distribution of NaN gaps in gaze time series are presented in Tables 3 and 4.
The examples selected are described with a precise description of the impact of the missing
values. The difference is comparably significant over all the tasks and trials. In group A of the
files, only 17 of 65 total trials contain missing values, and the average proportion of missing
values within the 17 affected trials is 2.8%. However, 29 of the 29 trials in group B have missing
values, which represent 18.8% of the total trial values on average. Due to the high variation
rates and missing values in group B, the median filter technique was developed and applied to
gaze X and Y time series of this group. An example of a median filter application is shown in
Figure 5. In each of the three panels, missing data points are not replaced by the median filter.
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Figure 5: Median filter application: two different filter sizes applied to a Ball On Bar task result file. In
this example application, extreme flickering values are effectively removed. On the left panel are the
original Gaze X and Y over time. On the center panel a filter of size 140 is applied. On the right panel
the filter is of size 500. The filter is centered on the current value if this value is not a NaN, as presented
in Section (2.8).

Two different filter sizes are applied: 140 and 500, respectively, on the centre and right panels,
with the filter centred on the replaced value. On the gaze Y, the range of values went from
0.0-0.83, to 0.17-0.61 in the 140-filtered time series, and to 0.22-0.46 in the 500-filtered time series.
A similar result is obtained for the Gaze X values. Although some flickering outliers remain
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in the 140-filtered time series, they are all smoothed in the 500-filtered time series. In this
example, the smoothing appears to be effective. In practice, a 500-sized filter may be damaging
for some tasks since it represents half a second of gaze movements; ruling out the gaze events
with shorter durations. The filter of 500ms is used here as a display example of a high value.
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Figure 6: Hands movements comparison: group A and B. Group A and B tasks are represented on the
left and right sides, respectively. Number 1 to 2 represent X and Y movements of the hands on the Ball
On Bar tasks. The ball position is not plotted for visibility. Numbers 3 to 4 correspond to an Object Hit
task, and numbers 5 to 6 correspond to the Visually Guided Reaching task. In black: left hand position,
gray: right hand position.

5. Conclusions

Eye movement tracking combined with bimanual motor movement recording allows a com-
plete experimental analysis during symmetrical and asymmetric tasks. From the combined
measurements, precise parameters can be extracted and analysed. In this paper data extracted
from measurements obtained with the experimental setup described in Section 2.1 and 2.2, is
used to highlight the possible applications of the KiPy software analysis library. For each task,
it is possible to extract the recorded parameters, including the gaze and hands positions with
the timestamp, thanks to various automated functions. Additionally, statistics of ranges of
movements and speeds can be individually calculated. If files with flickering and missing values
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are present, the software can smooth the flickering signals, detect the size of missing value gaps,
and effectively count the number of consecutive data sections. The visualisations and statistics
on incomplete experimental data are therefore possible, allowing the analysis of all datasets,
including those that present a high percentage of missing data. In the available data, half of the
files displayed such problems.
The ability to obtain as much information as possible from the experiments is crucial. The

variation of the median filter described in this paper can be applied to all kinds of datasets. To
derive an optimal strategy for the choice of the parameter 𝑄, more experimental and different
data will be needed. This analysis is planned for a future publication.

To the best knowledge of the authors, no previous work has looked at the automatic detection
and filtering of missing data in Kinarm report files. With access to more statistical samples, the
KiPy software can be confidently used to extract the desired features and make the analysis
much more robust. The authors plan to use and apply the KiPy software to the analysis of a
larger dataset to study the eye-hand coordination in a group of children with unilateral cerebral
palsy.
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Abstract
Brain injury in preterm infants is associated with a high risk of neurodevelopmental disability. One of
the most frequent forms of brain injury is white matter injury. The largest white matter structure is the
corpus callosum and measurements of this structure have been associated with white matter volume.
Consequently, quantification of the corpus callosum could provide an insight into the white matter
injury related to preterm birth. However, manual measurements require an experienced rater, are highly
time-consuming and suffer from high inter- and intra-rater variability.

In this paper, we present an automated method for measuring the corpus callosum on T1-weighted
images of children, and we evaluate the model in terms of accuracy performance. Automatic measure-
ments of the anterior area, posterior area and length of the corpus callosum have a good intraclass
correlation coefficient while relatively low absolute error compared to the same measurement performed
manually by an expert child neurologist.

Keywords
MRI quantification, follow-up of preterm infant, corpus callosum, white matter injury

1. Introduction

Brain injury in preterm infants is associated with a high risk of neurodevelopmental disability
[1]. White matter injury (WMI) is one of the most frequent forms of brain injury in this
population [2]. It includes a spectrum of lesions from periventricular leukomalacia (PVL) to a
diffuse pattern of WMI [2]. WMI is associated with adverse neurodevelopmental outcomes, for
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example, around 10 % of infants with very low birth weight (those born with 1500g or less ) that
develop PVL later exhibit cerebral palsy and 50% have cognitive and behavioral deficits [3].

The corpus callosum (CC) is the largest white matter (WM) structure and has a key role in
interhemispheric functional connectivity [4]. As a result of the importance of this brain structure,
the CC is defined as a region of interest in several assessment tools of brain abnormality in
preterm infants[5] and children [6]. In addition, this WM structure is associated with WM
volume in children with cerebral palsy [7].

Consequently, quantification of this structure could provide an insight into the WM injury
related to preterm birth. In spite of the potential of manual quantification of CC [8, 9], these
manual measurements require an experienced rater, are highly time-consuming and suffer from
high inter- and intra-rater variability [10].

In contrast, artificial intelligence-based software for analysing magnetic resonance images
(MRI) has proven to be highly successful in boosting accuracy and increasing time efficiency.
In a systematic literature review, Cover et al. summarized the methods for segmentation and
parcellation of CC divided in model-based, region-based, thresholding and machine learning
[10].

A semi-automatic segmentation tool via constrained elastic deformation of flexible Fourier
contour model was applied to a pediatric dataset [11]. Despite the high reliability of the method
segmenting the CC (test-retest intra-class correlation coefficient of 0.99), user interaction is
required to correct the automatic segmentation. The development of a fully automatic tool for
quantification of CC in pediatrics is delayed significantly due to considerable challenges such as
partial volume effect, intensity inhomogeneity, extremely variable anatomy, and image artifact
(e.g. ghost artifact).

In this study, we aim to overcome these challenges and propose a novel methodology that
automatically quantifies the CC and its subregions. Moreover, we will evaluate the performance
of these measurements compared with those obtained by manual segmentation.

2. Dataset and methods

2.1. Dataset

Table 1: Demographics of the dataset
# Patients 65

Sex Female (%) 36 (55.3%)
Age (min-max) 8.48 (6.37-10.25) years

Gestational Age at birth (min-max) 29.6 (24.0-34.0) weeks
Birth Weight (min - max) 1325 (550 - 2345) g
Birth Weight<1500g (%) 48 (73.8%)

The dataset is composed of 65 MRI
scans from patients that had been
admitted at the Neonatal Intensive
Care Unit after being born preterm.
These scans were performed during
the follow-up of these children at 8
years of age.

T1-weighted (T1w) images were
acquired at the Hospital Puerta del
Mar, Cadiz, using a Siemens Sym-
phony 1.5T MRI system with two different scanning parameters (repetition time = 1910 ms,
echo time = 3.5 ms, flip angle = 15 degrees, voxel, size = 1𝑥1𝑥1 mm3) and (repetition time = 2200
ms, echo time = 3.25 ms, flip angle = 8 degrees, voxel, size = 0.5𝑥0.5𝑥1 mm3). Two scans were
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excluded due to low image quality. Table 1 summarizes the main demographic characteristics
of this population.

2.2. MRI analysis

Automatic quantification of the CC from a T1w image was performed in several steps. Figure 1
illustrates the steps proposed in this algorithm. Below, we describe the different steps in detail.

Figure 1: Main processing steps of the pipeline to obtain the automatic measurements of the corpus
callosum

2.2.1. Pediatric icobrain

Pediatric icobrain is a model optimized for the pediatric population that is based on the medical
device software of icobrain adult pipeline. In summary, the icobrain adult pipeline works as
follows: After skull stripping, bias correction and atlas to image registration, the T1w image
is segmented optimizing a Gaussian Mixture Model that considers the image intensity, the
spatial prior knowledge, the intensity nonuniformities and the spatial consistency [12]. As
icobrain is an adult-based pipeline, it was modified to be used for pediatric patients by including
age-specific pediatric atlases [13, 14] . Automated segmentation of WM, CC and vermis of the
cerebellum was performed on the T1w MR scans using the Pediatric Icobrain model.

2.2.2. Selection of the Optimal Slice

CC is well defined in the 2D midsagittal plane. However, this structure can not be defined in
the axial plane and coronal plane since there is not a discontinuity in the WM tracks. Therefore,
structural measurements of the CC are performed in the midsagittal plane.

Midsagittal plane is the sagittal slice in which the 4th ventricle and the vermis of the
cerebellum are maximally visible. Taking into consideration these prior anatomical landmarks,
we used the 𝑎𝑟𝑔𝑚𝑎𝑥 algorithm to select the midsagittal plane as the sagittal slice with maximum
area of vermis.
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𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

𝑓(𝑥) := {𝑥 : 𝑓(𝑠) ≤ 𝑓(𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑋} (1)

where 𝑓(𝑥) denotes the amount of the vermis in an 𝑥 sagittal slice and 𝑋 the complete set of
the sagittal slices.

Alignment with the horizontal axis. As there is considerable heterogeneity in the CC
orientation within healthy brains, mainly following the orientation of the brainstem, expert
readers typically align all the CC by manually defining the anterior and posterior points of the
CC. The proposed algorithm takes advantage of the morphology of the CC to mimic this manual
process. Firstly, the contour of the segmentation was fitted to an ellipse. The major axis of the
ellipse represents the maximal anterior-posterior distance of the CC and therefore, it can be
used to rotate and align all the images (see Figure 2). Alignment of all the images using the CC
anterior-posterior axis facilitates the visual interpretation of the parcellation while enhancing
the explainability of the algorithm.

Figure 2: Midsagittal plane of T1-weighted image. Note how the corpus callosum is aligned with the
horizontal axis by capturing the anterior-posterior axis of this structure with an ellipse fitting.

2.3. Post-processing

Several post-processing steps were conducted in order to fine-tune the segmentation of the CC.

Prior Anatomical Knowledge of the CC defines WM as the only tissue in this structure.
Consequently, this anatomical knowledge was forced into the CC segmentation.

Smoothing of the contours. Alignment of the CC requires a rotation and therefore, an
interpolation (bilinear), producing noisy sharp edges in the contour of the CC (which does
not represent the anatomy of the structure). This noise was removed using a morphological
operation of opening.

𝐶𝐶 ∘𝐾 = (𝐶𝐶 ⊖𝐾)⊕𝐾 (2)

where ∘ denotes the morphological operation of opening, which is just an erosion 1 ⊖ followed
by a dilation 2 ⊕, 𝐾 denotes a 2𝑥2 kernel.
1Erosion. The value of the output pixel is the minimum value of all pixels in the neighborhood defined by the kernel.
2Dilation. The value of the output pixel is the maximum value of all pixels in the neighborhood defined by the
kernel.
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Largest connected component. CC appears in the midsagittal plane as a single component.
However, in some patients the CC is over-segmented, capturing another WM structure, the
fornix. The selection of the largest connected component (i.e. the CC) removed the unconnected
segmentation of the fornix. This step has the potential limitation of removing an unconnected
region of the CC mask, although, as consequence of the robust pediatric icobrain pipeline were
atlas to image registration is used, there are no cases with an unconnected CC mask.

Equidistant parcellation and area computation The subdivision of the CC into smaller
regions, such as rostrum, genu, body and splenium, is known as parcellation [10]. Our parcella-
tion is based on the study by Park et al. [4], which was also used in prior manual segmentation.
The subdivision in 3 sub-regions is proposed in this work in order to be easily reproducible in
the clinical setting. In our model, a longitudinal division of 5 equidistant regions was computed.
These regions were then clustered as follows: the anterior region, including the rostrum and
genu; the central region, including the 2nd, 3er and 4th equidistant regions of the body of the
CC; and the posterior region, including the splenium. The anterior-posterior length was also
computed.

2.4. Statistical methodology

Accuracy can be defined as the degree of closeness of measurements of a quantity (e.g. area of
the CC) to that quantity’s actual value. In most cases, this actual value will not be known and,
therefore, the accuracy is assessed by comparing the measurements produced by the algorithm,
with reference values (ground truth), in this case, produced by an independent child neurologist.

Intraclass correlation coefficient (ICC) computes the reliability of measurements of two
raters (i.e. manual and automatic). We selected the two-way random-effects model with absolute
agreement. Interpretation of ICC follows the well-known guidelines presented in [15].

Mean absolute error (MAE) is a measure of errors between automatic and manual quantifi-
cation of the regions.

𝑀𝐴𝐸 =

∑︀𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖̂|

𝑛
(3)

where 𝑛 denotes the number of patients, 𝑦𝑖 the measurement of the manual expert and 𝑦𝑖̂ the
automatic measurement.

3. Results

3.1. Quantitative analysis

The ICC (CI 95%) performance of the algorithm is not uniform in all the measurements, ranging
from 51.23 (2.03-74.06) for the central region to 94.77 (85.86 - 97.53) in the measurement of the
length. Automatic measurements of the anterior area and length show a good ICC with the
manual measurements with a relatively low percentage of mean absolute error (i.e. <10%). A
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more detailed description of this inter-rater reliability experiment can be seen in Figure 3 and
Table 2.

Figure 3: Scatter plots illustrating the corpus callosum quantification compared to the manual quantifi-
cation of an expert child neurologist.

Table 2
Accuracy of the automatic measurements compared with expert manual quantification. The reference
for the Mean Absolute Error is the manual measurement

Region ICC (CI 95%) Mean Absolute Error (%)

Anterior 86.48 (76.25 - 92.08) 16.33 mm2, (9,61%)
Central 51.23 (2.03 - 74.06) 40.83 mm2, (21,12%)
Posterior 88.12 (20.34 - 96.11) 16.40 mm2, (10,94%)
Length 94.77 (85.86 - 97.53) 1.89mm, (2,79%)

The central region has a mean absolute error higher than 20%. As illustrated in Figure
4, measurements in this region have a non-zero difference due to an overestimation of the
automatic method.
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Figure 4: Bland−Altman plot of the corpus callosum measurements. Horizontal lines represent the
average difference and the 95% limits of agreement (i.e. average difference ± 1.96 standard deviation of
the difference).

3.2. Qualitative analysis

Figure 5 illustrates the automatic parcellation of the CC in three patients. We can observe an
accurate segmentation in patients A and B. In contrast, in patient C, there is prominent thinning
of the CC producing an extreme variability from the healthy anatomy and consequently, an
inaccurate quantification (see red circle in Figure 5).

4. Discussion and conclusions

In this paper, we presented a preliminary evaluation of the proposed automatic method. Results
seem to be in line compared with other proposed methods, although direct comparison is not
possible as no other work computes the same region of interest.

Measurements of the anterior area and length of the CC have a good ICC while relatively low
absolute error compared to manual measurement of an expert child neurologist. In the posterior
region, the ICC is high although the poor level of reliability of 95% confident interval should be
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Figure 5: Illustration of the corpus callosum parcellation for several anatomical variabilities.

further studied. These promising results allow a quantitative and objective future investigation
of the relationship between the anatomy of the CC and white matter injury related to preterm
birth.

In contrast, the automatic measurement of the area of the central region of the CC shows
a high error with respect to the manual measurement. This overestimation of the area is
consequence of the over-segmentation of the CC including the fornix in this central region.
Segmentation of CC without including the fornix is a complex task as both structures are similar
and proximal [10].

We have been able to show that the methodology has the potential to properly handle the
main challenges in pediatric quantification of the CC (e.g. intensity heterogeneity, minor image
artifact). However, in some cases where there is extremely variable anatomy (i.e. prominent
thinning of the CC) the algorithm under-segments this structure, proving an even lower vol-
ume quantification. Nevertheless, this low volume quantification also highlights the volume
abnormality.

The methodology will be further improved in order to face the mentioned challenges. The
pediatric icobrain block could be updated with a more advance supervised learning methodology
(i.e. deep convolutional neural networks) which will allow to remove consistent errors, such as
the over-segmentation of the fornix or under-segmentation in cases with extremely variable
anatomy, by adding new training cases [16]. Moreover, the current turn-around-time of 30
minutes could be potentially improved by removing the computationally expensive registrations.
In addition, the performance of the model could be further validated in a multi-center study
and the reliability could be assessed in a test-retest study. After these improvements and
additional validations, we will investigate the relationship of the CC measurement with the
clinical outcome and WM volume.
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Abstract
Premature birth exponentially increases the risk for impaired neurological outcomes later in life, and
early diagnosis is critical to optimise therapeutic options. There is evidence that oculomotor movements
can be used as biomarkers for cognitive impairment (CI) in adults and young children. The aim of this
study is to develop a prototype of a test battery using screen-based eye-tracking for detecting early
signs of CI in preterm children and monitoring their neurological development. The study will also
delve into identifying potential biomarkers of cognitive functions based on oculomotor movements
found in medical literature, and provide methods to design explainable features and models. Finally, we
summarise the most common experimental design practices, and propose an eye-tracking test battery
that, by combining different stimuli, could be able to measure CI in different cognitive domains.

Keywords
Eye-tracking, premature children, neurodevelopment impairment

1. Introduction

An estimated 15 million births in the world every year are preterm, amounting to 9.4% of all live
births [1]. Prematurity leads to an increased risk of altered neurodevelopmental outcomes in
childhood and adolescence (such as Autism Spectrum Disorder [2], altered brain development [3],
or cognitive and motor delays [4]), with many survivor children facing a lifetime of disability
[5]. Despite that advances in neonatal care have greatly improved survival of preterm born
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infants even at an extremely low gestational age, long-term neurodevelopmental outcomes have
not improved significantly. For this reason, early diagnosis is an important strategy that could
lead to a quick treatment and a wider array of therapeutic options.

There is evidence that oculomotor movements during specific tasks, such as smooth pursuit
[6, 7], reading [8] and dot counting [9] are biomarkers for impaired cognitive processes in
adults (e.g. linked to Alzheimer or Parkinson’s disease). In the case of children, eye-tracking has
been used to measure sensory [10], cognitive [11] and social [12] functions. Thus, a combined
eye-tracking test battery able to summarise the state of the patient’s cognitive development
appears feasible; and it would help identifying early signs of altered brain maturation and detect
a wider spectrum of symptoms.

The objective of this work is to summarise the current standard practices in test design and
data analysis, and to provide the reader with a handbook of eye-tracking-based diagnostics.
Moreover, we propose a novel testing paradigm that, by combining existing methodologies,
allows to monitor the neurodevelopment of young children. In the Sections 2-3 we describe
the state of the art in using a screen-based eye-tracking with children, highlighting the most
common issues and challenges of creating a test battery for very young patients. We will also
present existing eye-tracking test batteries based on machine learning [8, 13] used as part of
a clinical decision support system. In Section 4 we present a prototype of our combined test
battery for children (as young as 3 months corrected age) and briefly describe how data may be
parsed.

2. Related Work

The non-invasiveness of eye-tracking methods has made them a particularly appealing approach
with younger patients and has inspired a variety of works in the last two decades [14]. In
Section 3, we build upon the previous work by Venker et al. [15], which presents an overview of
using eye-tracking with children afflicted by Autism Spectrum Disorders, and Gredeback et al. [7]
which summarises how eye-tracking can be used to monitor neurodevelopment in children.
We review the state-of-the-art in diagnosing with oculomotor movements and highlight the
challenges of testing younger patients with eye-tracking.

Different test procedures have been used with children to measure cognitive functions such
as ability to smooth pursuit [10], attention [11], spatial inhibition [16], memory [17], and social
orienting [12], these works offer adaptations of existing cognitive tests to the eye-tracking
paradigm. An alternative approach is proposed by Oakes [18], who advises against using the
device to adapt tests that could be conducted by medical professionals and instead suggests
a more exploratory approach of gaze trajectories during everyday activities. Data disruption
is investigated by Wass et al. [19], where they describe how age can impact the quality of
eye-tracking data and design some strategies to preprocess raw data. Other factors that have
been found to influence data quality are eye colour [20] and head positioning [21]. Moreover,
as reported in previous studies [15, 10], standard calibration procedures can prove difficult with
younger patients.

Test batteries using oculomotor movements as a biomarker to detect cognitive impairment
have been employed with ageing patients for an early diagnosis of dementia [22, 13, 8]. With a
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similar approach, Kaul et al. relate eye movements during smooth pursuit to neuropsychological
tests taken at 6.5 years. These methodologies, once properly adapted by age group, provide a
blueprint for our combined test battery.

3. Eye-tracking tests overview

From a physiological point of view, there are three main types of eye movements: saccades are
very rapid movements that align a stimulus to the area of highest acuity (fovea), a fixation is
defined as the moment where gaze position is fixed on the image, usually between two saccades.
Finally, smooth pursuit is the type of movement where eyes remain fixed on a moving object
without saccadic activity and thus the gaze position changes slowly. Smooth pursuit develops
early in life [10] and it is a biomarker of cognitive functions [6, 23].

There are two main types of eye-tracking devices used in infancy research: head-mounted
and screen-based [24]. In the former case, the device is fitted on a helmet and can be carried as
the patient moves in an environment; in the latter case, the eye-tracker is fixed under a screen
where the stimuli are presented. In both setups the gaze is recorded by capturing the cornea
reflection of a small infrared light with a camera and reconstructing the person’s point of view.
Since we aim at creating a test battery that can be applied to patients as young as 3 months
old and a head mounted tracker could prove uncomfortable for infants, in this work we focus
our attention on the screen-based eye-tracker. This choice allows us to create different types
of tests for the same instrument and monitor patients during early development. Nonetheless,
both methods present advantages and disadvantages in a clinical setting and for an overview
we refer to [24].

In the next section we compare the setup and of medical studies using eye-tracking in children,
especially if preterm, describe tests batteries based on eye-tracking, and present how the data
can be parsed and analysed.

3.1. Patient setup and calibration procedure

During testing, the patient is seated comfortably in front of the screen from a distance that
varies from 60 cm [17, 25, 16] to around 120 cm [26, 10, 27, 11, 28], younger patients can be
positioned in either a baby seat by themselves [26, 16] or in their caretaker’s lap [10, 11]. Ben
Itzhak et al. [29] compile a set of good practices to follow when setting up the environment (e.g.
having natural light coming from the side). The authors warn about having the caretaker behind
the patient, which is a very common practice, since the eye-tracking device could erroneously
detect their gaze, and suggest to employ sunglasses to solve this problem. Another difference
that can influence analysis [19] is the sampling rate of the eye-tracker, which can reach the 300
Hz [26, 17] in a hospital setting but for a widespread application the commercially available 60
Hz sampling device is more affordable due to cost.

Calibration is an essential first step when using an eye-tracker. The participant needs to look
at different points spanning the entire screen, this allows the device to adapt to the patient and
map camera signals to gaze positions. For adults and older children (≥ 6 years) the procedure
poses no issue, the patient can simply be instructed to look at the dots. Thus, a higher (5 to
8) number of dots is used to ensure high precision in the measurements during testing, the
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sufficient number of dots is suggested by the device’s manufacturer. In case of younger patients,
calibration becomes challenging since the participant cannot be instructed and might not pay
attention to the screen. The common solution employed [19, 10] is using a lower number of
points (2 to 4), substituting dots with attractive stimuli such as smiling faces and coloured balls,
and animating the stimuli and playing a rhythmic sound.

3.2. Type of stimuli and analysis

We divide the stimuli in three macro categories depending on the type of eye-movements the
test should elicit:

1. Smooth pursuit tasks present an object (usually a dot but sometimes a smile for younger
patients [10]) moving in a periodic pattern, usually a sinus wave [10, 22, 9] but some
works use in addition triangular waves [26, 6, 23]. The stimulus can move either in
one dimension along the horizontal or vertical direction [26, 6, 9, 22, 23] or in a circular
pattern to test both directions simultaneously [10]. One approach is to study smooth
pursuit from an input/output dynamical system prospective, with the moving stimulus
as input term and the gaze position as output [23, 10]. Features encoded within this
paradigm are inspired by dynamical systems and time series analysis (e.g. gain ratio,
phase shift, cross-correlation, and mean squared error between input and output). It is
detected that with high frequency stimuli often the patient starts compensating with
anticipatory saccades [9, 10, 23], in this case it is possible to separate the saccadic and
smooth pursuit contributions and analyse them separately.

2. Fixation and saccade tasks measure how quickly (time to first fixation) and how long
(looking time) the patient fixates on a new stimulus. This paradigm covers a wide variety
of approaches aimed at monitoring different cognitive functions, depending on the type
and timing of the stimuli. Attention tests measure reaction time to a stimulus given
different cues [11, 28, 25]. Memory capabilities are measured by presenting a pattern,
letting the patient get acclimatised to it, displaying the same image with some differences
and measuring the looking time to the novel stimuli [16, 17]. Social interaction is tested
by presenting images containing or not human presence and measuring the difference in
looking pattern [30, 12, 31]. The study by Oyama et al. [13] proposes an example of a test
battery consisting exclusively of fixation tasks, displaying the versatility of this type of
tasks.

3. General tasks that mimic everyday activities instead of adapting existing neuropsycho-
logical tests, and as such can elicit saccades, fixations and smooth pursuit. In contrast
with the other categories, in this case the objective is data exploration and the challenge
is feature design, since there is no well-defined cognitive ability under scrutiny. The
approach then consists in finding differences in gaze behaviours during complex activities,
and the challenge lies in designing suitable features and parsing methods without specific
domain knowledge. An example is given by paper [8], where the authors show that there
is a significant difference in reading behaviour between healthy and cognitively impaired
individuals when measuring reading time and the distribution of forward (right) and
backward (left) saccades.
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4. Combined test battery

Combining the works presented in Section 3 and building up from existing test batteries to
diagnose cognitive impairment in adults [8, 9], we present a first prototype of test battery
designed to identify and monitor cognitive impairment due to premature birth. The test is
appropriate for 4 months old participants and as such it contains no complex tasks and no
instructions.

The present study was conducted on 23 babies (10 females and 13 males, 15 term babies ranging
from 3 to 24 months of age, and 8 preterm babies ranging from 3 to 20 months of corrected age)
at the Hospital Universitario Puerta del Mar, Cadiz (ethical committee code PIEBA 0672-N-22,
register number 44.22). The babies’ caretakers voluntarily accepted to participate in the pilot
study after routine visits at the hospital. The aim of this pilot study is designing a first version
of a test battery to study the feasibility of employing eye-tracking to find statistically significant
differences in gaze behaviour of premature children. In particular, we investigate if the tasks
can be presented in a single session and how long we could feasibly keep the participant’s
attention. The considerations in the current paper are mostly qualitative, and data analysis is
left for future work. The setup is inspired by previous works in the field described in Section 3:
the procedure is conducted in a small room lighted from the side, the patient is seated on their
caretaker’s lap at 60 cm from a 24 inches computer screen. A simple seven points calibration
procedure using a sequence of white crosses as fixation stimuli proved to work correctly for the
majority of the patients, as such we do not employ different stimuli for the calibration process
in this test. All tests were conducted using a Tobii 4C Eye-Tracker working at 90 Hz.

The test battery is designed to measure responses across a wide variety of cognitive functions
while at the same time being short enough that an average young child will not become fussy
before the end. The test battery is comprised of the following tasks, which are presented on a
black background to offer the maximal contrast with the stimuli, and are interspersed with a
smile appearing at the centre of the screen to attract the patient’s attention:

• Sensation task: a smooth pursuit task with a sinusoidal ∼0.4 Hz one dimensional wave
and a smiling face as stimulus. The original study [10] reports that 5 months old children
are able to follow a smiling face in a circular movement and the optimal frequency to
minimise missing data is between 0.1 and 0.4 Hz. The movement is exclusively horizontal
since it develops earlier than vertical smooth pursuit [6, 9]. The stimulus remains on the
screen for a total of 8 s. Figure 1a shows an explicative diagram of the task.

• Attention task: this task takes inspiration from similar existing methodologies [11, 28]
to measure the response of the patient given a cue. First a smile appears in the centre
to induce a fixation, then an auditory aid accompanies a visual cue to one side of the
screen along the horizontal axis followed by an attractive target (the colourful image of
an animal). The cue can appear in the same position of the target (valid anticipation), in
the opposite side (invalid anticipation), in both sides (double) or not appear at all (baseline).
If the child inhibits correctly then we expect the valid modality to show faster reactions
time compared to baseline, while the invalid modality should be slower than both. A
summarising picture can be found in Figure 1b. The smile appears for 1.5 s followed by
the cue that lasts 100 ms, then after a 100 ms delay the target appears and remains on the
screen for 1 s.
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• Memory task: a task inspired by [17] that checks the predisposition of children to fixate
on novel stimuli. Two pictures are shown to the patient for 1 s, followed by a blank screen
lasting 500 ms, then the pictures are presented again with one of them substituted with a
new image and remain on the screen for 3 s. We use three types of differences to measure
what the child is able to identify: colour, shape, and faces. The face pictures are taken
from the London Set Dataset [32]. A summarising picture can be found in Figure 1c.

• Social orienting task: the aim of this task is measuring if the children displays social
responses to human stimuli, and is inspired by the previous similar studies [12, 31]. The
patient is presented with two pictures for 5 s, one containing a human face and the other
containing the front of a house, and the looking time to the former is measured. The face
pictures are taken from the London Set Dataset [32] and the house pictures are taken
from the DalHouses Dataset [33]. An example of how the task appears to the participant
can be found in Figure 1d.

• Face exploration task: in this task the patient is presented with the image of a human
face with a neutral expression viewed from the front and taken from the London Set
Dataset [32] (see Figure 1e for an example). Telford et al. [12] showed how the gaze
trajectories while observing a human face, and in particular the difference of looking
time with respect to the eyes and the mouth could be influenced by premature birth. In
total the face remains on the screen for 10 s.

Table 1
Order and duration of each task composing the test battery. The block described in the table is repeated
four times, for a total duration of 223.2 s.

Task Task duration Cumulative duration
Smile 1.5 s 1.5 s

Sensation 7.5 s 9 s
Attention 2.7 s 11.7 s
Attention 2.7 s 14.4 s
Attention 2.7 s 17.1 s
Attention 2.7 s 19.8 s
Smile 1.5 s 21.3 s s

Memory (colour) 4.5 s 25.8 s
Smile 1.5 s 27.3 s s

Memory (shape) 4.5 s 31.8 s
Smile 1.5 s 33.3 s s

Memory (face) 4.5 s 37.8 s
Smile 1.5 s 39.3 s

Social orienting 5.0 s 44.3 s
Smile 1.5 s 45.8 s

Social orienting 10.0 s 55.8 s

Each task is repeated four times and the test battery lasts approximately 223 s, which during
the pilot study appeared to be a time frame where we can expect the the children to be able to
maintain their attention. The timings of the singular tasks were kept as specified in the studies
that inspired them. Gaze trajectories acquired during the test battery are parsed and a first set
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of features can be computed following the original works that inspired the different tasks, as
found in Section 3.

(a) The sensation task shows a smile moving horizontally in a sinusoidal pattern.

(b) The attention task. From top to bottom: valid, invalid, double, and baseline.

(c) The memory task. From top to bottom: colour, shape, and face differences.
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(d) Pictures appearing on the screen during the Social orienting task.

(e) Picture appearing on the screen during the Face exploration task.

Figure 1: Example of how the tasks appear on the screen.

5. Conclusions

In this study, we have reviewed current medical literature on the topic of eye movements and in
particular the recent advances in the application of eye-tracking to young children and infants.
We supplied a general guideline on how similar tests have been conducted: how the calibration
procedure should be modified to address the needs of younger patients, how to avoid fussiness
in the participant through a correct experimental setup, and how to optimise the quality of
acquired data. Then, we reported which stimuli can be employed to monitor neuropsychological
development in children. Finally, we presented a prototype transversal test battery that, by
combining and shortening existing experimental paradigms, might supply information on the
state of different cognitive functions in developing children.

Future works will consist in analysing the eye-tracking data obtained with the test battery by
defining features and comparing different classifiers. This analysis could lead to insights on how
to design the tasks, and may result in an improved test battery. Evaluation will be conducted
with different metrics (accuracy, Area under the Roc curve, explained variance etc.) and, by
integrating modern machine learning methods, we aim at improving current state-of-the-art
results. Moreover, we will judge our results by their clinical utility as per hospital requirements,
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and compare evaluation metrics to similar studies on adults.
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Abstract
Preterm birth is one of the leading causes of neurodevelopmental disabilities. Many efforts have been
made to improve the well-being and quality of life of preterm infants and their families, especially during
the first months of life. Several authors investigated cognitive impairments in children, such as social
disorders or attention deficit, using various remote eye-tracking techniques. However, this tool remains
poorly used in newborn infants, particularly in the first three months old children. Therefore, we aim to
create a neuropsychological test battery using screen-based eye-tracking that can also be used on the
above-mentioned population.

The aim of this study is to analyse the feasibility of the created pilot eye-tracking test battery and
the suitability of the different stimuli used. We also investigate how the current paradigm evolved based
on observations made during data acquisition, and how it was modified to achieve an appropriate test in
terms of composition and length to keep children’s attention.

Keywords
Eye-tracking test battery, Cognitive Impairments, Feasibility Study, Premature Children

1. Introduction

Every year 15 million babies worldwide are born preterm, 7.1% of them with some degree
of impairment. The World Health Organization (WHO) considers an infant as preterm if
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birth occurs before the 37th week of gestational age (GA). Furthermore, the WHO provided
a classification of preterm infants according to the gestational time window, thereby further
dividing children into late and moderate preterm, very preterm and extremely preterm [1, 2].
As the time span of gestation decreases (lower GA), the risk of complications caused by preterm
birth significantly increases. The primary causes of long-term disabilities, such as behavioural
alterations or neurological disorders (e.g. cerebral palsy), are related to brain injury occurring
in the neonatal period in the case of premature births [3]. Furthermore, the burden of preterm
birth extends beyond the well-being and overall health of the infants themselves as it also
includes economic impact on the healthcare system, e.g. in the form of a longer stay in neonatal
intensive care units (NICU) as well as an increased overall burden on the family [1, 2].

To date, a troubling dichotomy arises: despite the great improvement of the quality of prenatal
care in recent years, which dramatically improved the survival of preterm babies, the diagnosis
of motor and cognitive impairments has not progressed at the same pace, mostly relying on
monitoring the clinical parameters. Indeed, clinicians need a more robust and timely set of
biomarkers to assess the risk of disability of preterm infants to provide early intervention to
reduce the developmental delays associated with this condition.

Many authors in the past decades relied on eye-tracking to investigate the possible connection
between cognitive deficits and gaze behaviour in response to selected stimuli, both in adults
and children. Indeed, eye-tracking has been employed in children to study social orientation [4],
attention and memory [5, 6] or pursuit of moving objects [7]. In the specific context of the term-
vs. preterm-born infants, Stand-Brodd et al. showed that premature children would appear to
have delayed eye movements in following objects in comparison with term-born children of
the same age [8]. Other works highlighted that the ability to visually follow a moving object
at 4 months of age not only has a robust predictive power for neurodevelopment at 3 years in
children born very preterm [9], but can also predict future memory and attention problems at 6
years of age [10]. Nevertheless, very few of these works are performed in the very first months
after birth.

Whithin this framework of investigation, we created a neuropsychological test battery to
study different types of cognitive processes in children born prematurely, using screen-based
eye-tracking. The underlying goal is to give a quantitative and early prediction of possible
future impairments. For the development of this prototype, we studied 23 children with an
average age of 11 months (std 6 months), including eight babies born prematurely (8 months old,
6 months old CA). The purpose of this study is to analyse the evolution of the test battery and
to pinpoint and implement any needed changes, to obtain a tool that can capture and hold the
child’s attention and at the same time ensure the correct gathering of sufficient data for analysis.
Lastly, despite the young age of the studied population, we demonstrate the data acquisition
feasibility of the proposed test battery by measuring missing values and attention for each child
of the piloting cohort.

The article is organised as follows. First, we analyse the population studied during the imple-
mentation of the test battery. In the subsequent section, we introduce the neuropsychological
test battery with a brief explanation and representation of the tasks. We explain in detail how
we optimised the testing protocol, explaining the technical aspects in the fourth section. Finally,
the last paragraph concludes the article.
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2. Subjects

During the implementation of the neuropsychological test battery, we tested 23 subjects born
at the Hospital Universitario Puerta del Mar, Cadiz (ethical committee code PIEBA 0672-N-22,
register number 44.22), of whom 8 were premature. Table 1 summarises the subject data during
the implementation of the neuropsychological test battery.

Table 1
Summary of the performed tests with the different setups, including information about the involved
subjects. Total test times and inattention of the children during the test are also reported.

Prototype
(test length) Setup Sex Preterm

Age
[CA]

(months)
Calibration Test

time (min)
Inattention
time (min)

Missing
values (%)

#1 (10 min)

All-in-one room,
24-inch monitor

F No 12 Completed 04:42 02:29 57%

Partitioned room,
24-inch monitor,

Artificial light

M No 12 Completed 02:53 00:30 17%
F No 6 Completed 02:32 00:29 20%
M Yes 5 [3] Completed 03:10 00:57 27%

#2 (3 min)

Partitioned Room,
27-inch Monitor,
Artificial Light,
Covered Table

M No 9 Failed
M No 7 Completed 03:00 01:33 52%
M No 24 Completed 03:00 00:31 17%
M No 12 Completed 03:00 00:52 29%
F No 18 Failed
F No 6 Completed 03:00 00:16 9%

Partitioned Room,
24-inch Monitor,
Artificial Light,

Covered Lateral Table

M No 9 Completed 03:00 01:21 45%
F No 18 Completed 03:00 00:23 13%
M Yes 15 [12] Completed 02:17 00:45 35%
F Yes 8 [6] Completed 03:00 00:16 9%

#3 (4 min)

Partitioned Room,
24-inch Monitor,
Artificial Light,

Covered Lateral Table

M Yes 23 [20] Completed 04:00 00:48 20%
F No 4 Completed 04:00 00:58 24%
M Yes 12 [10] Completed 04:00 00:34 14%
M Yes 6 [5] Completed 04:00 00:02 1%
M No 18 Completed 02:26 00:15 19%
F Yes 6 [3] Completed 04:00 00:26 11%

Partitioned Room,
18-inch Monitor,
Artificial Light,

Covered Lateral Table

M No 15 Completed 04:00 01:00 25%
F Yes 6 [3] Completed *Test aborted due to child crying.
F No 3 Completed 04:00 02:02 51%

There were 10 females and 13 males, and their ages ranged from 3 to 24 months. The
premature babies ranged from 3 months CA to 20 months CA. Only three of the children did not
want to take the test (two of these completed the calibration). We also noticed that it is useful
to help the children perform the instrument calibration. During the actual test, however, the
children were mostly well-engaged. In fact, only in few cases the parents had to call the child’s
attention to the screen. The initial prototype was updated with minor changes as described
later, mostly regarding test design and not task design. The first child differed the most from the
other children in terms of the test setup. As a matter of fact, we noticed that there was a need
for separation between the examination area, where the child was tested, and the examiners’
space. In fact, the child was very distracted as witnessed by the percentage of missing values in
Table 1. As can be seen from the table, some differences in the length of the test emerge between
the prototypes. Specifically, with prototypes #1 and #2, where the tasks were consecutive, we
could get a maximum of three minutes of testing. Instead, with the last prototype, where task
repetitions were alternated, we were able to get up to four minutes of testing. The maximum
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distraction was approximately 25 seconds which corresponds to the length of one task. In
conclusion, we also noticed that although it is not evident from the data, from 15-18 months
of age it was more challenging to keep the children’s attention and therefore, there is likely a
need to develop a different test for that age group (and older).

3. The neuropsychological test battery

The test is composed of four different types of tasks (smooth pursuit task, attention task,
memory task and social orienting task), taken from the literature and adapted to test the
children’s cognitive development. Each task is consecutively repeated four times, obtaining
the total test battery duration of four minutes. As described in the subsequent paragraph, the
procedure proved able to engage the subjects for meaningful periods of time. The calibration
process was also largely successful.

3.1. Smooth pursuit task

In the smooth pursuit task, the child has to follow with the gaze a smiling face moving hori-
zontally with sinusoidal movements at a frequency of 0.4 Hz. This task is widely used for the
detection of possible cognitive deficits in adults [11]. An illustration of the task is shown in
Figure 1. The specific parameters which we plan to sample and analyse are related to how the
child follows the moving smiling face: examples include e.g. the quantitative assessment of the
anticipation of the movement of the dot, the delay in following the object and the latency in
starting the smooth pursuit movement.

Figure 1: A graphical representation of the smooth pursuit task.

3.2. Attention task

The attention task was created to analyse the differences in the children’s response to specific
variations of the stimulus, inspired by the IOWA test [12, 13]. In detail, the test first presents a
white cross for a fraction of a second (a visual cue) along with a warning sound to keep the
child’s attention. Subsequently, a black screen is shown briefly, followed by a target image
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located either at the same location or at the opposite position of the initial white cross. In
one version of the task, the white cross is shown on both sides of the screen. Furthermore, an
additional baseline test instead consists of only the auditory stimulus prior to the appearance of
the target, without the appearance of the cross. The task is visually summarised in Figure 2.

Figure 2: A schematic visualisation of the attention task.

3.3. Memory task

The memory task is inspired by [14] and it checks the predisposition of children to fixate on
novel stimuli. Initially, two identical pictures are shown to the child. The screen is subsequently
blanked, and then the pictures are presented again, with one of them substituted by a new,
unseen image. This test is performed using three types of differences in image content to
measure what the child is able to identify, namely differences in colour, shape, and faces. A
summarising picture can be found in Figure 3.

Figure 3: A schematic visualisation of the memory task. The face image dataset was taken from [15].
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3.4. Social orienting task

The goal of the social orienting task is to measure if the children display responses to stimuli
with social content, and it is inspired by the work of [4, 16]. The child is presented with two
pictures, one depicting a person and the other depicting an inanimate object. The test measures
the duration of the child’s focus on the human picture. This task can be visualised in Figure 4.

Figure 4: An illustration of the social orienting task. The face image dataset was taken from [15] and
the house image dataset was extracted from [17].

4. Optimisation of the testing protocol: operational and
technical aspects

4.1. Duration of the testing procedure and repetitions

The first prototype we developed was composed of the four above-mentioned tasks with 10
repetitions per task, leading to a total test length of around 8 minutes. During the initial tests
involving children under 12 months of age, we noticed how none of them successfully finished
the test as they started to get fussy, or were otherwise easily distracted. This allowed us to
estimate the maximum attention span of the tested children to at most 3 minutes. Hence,
subsequent tests consisted of a reduced testing protocol with only three repetitions of each task.
In most of the cases, the length of this updated test was adequate, but a few infants were still
unable to finish the test as they were too active or too nervous. These aspects were hard to
control in the experimental setting and, since the tasks were always administered in the same
order, this lead to an imbalance in the collected data for different tasks. We thus decided to
present the tasks in batches of one task of each type and we repeated the batches for three or
four times depending on the prototype. This ensured the availability of experimental data for
each individual task.

4.2. Child activity level and distracting elements

In the initial testing configuration, the child was seated on their parent’s lap at a distance of 60
cm from the 24-inch computer screen. For collecting the data on the child’s eye-movements, we
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used a Tobii 4C eye-tracker (Tobii AB, Danderyd, Sweden) mounted to the computer screen.
The test operators and the other parent were located behind the computer screen, inside the
child’s field of view. This condition led to the loss of concentration of the children as they were
distracted by the people around the testing area. Thus, in the subsequent testing setup, we
decided to use a white separator screen (a curtain as seen in Figure 5) to divide the testing area
from the operator space. In this way, the children could not see the operators except for the
parent who was holding them in their lap. We also decided to increase the room lighting after
introducing the separator screen. Lastly, we covered the table in the testing area with a white
blanket as the light in the room gave rise to the reflections on the table surface that distracted
the child.

4.3. Technical aspects

We noticed that bigger screen sizes increased the occurrence of distractions in the children,
especially in the case of the attention task. Therefore, we fixed the computer screen size to
18 inches. We also noticed that the calibration procedure initially did not catch the children’s
attention as the crosses on the screen were too small in size. Hence, we made the calibration
more attractive in subsequent examinations by visualising larger crosses. Also, the presented
stimuli during the tests were increased in size to better keep the attention of the children. Lastly,
we noticed how the currently used testing protocol was only suitable for children of ages up
to 15-18 months since older children are less compliant to the testing procedure and are more
easily distracted (e.g. by wanting to touch the screen or wandering around the examination
room). The operators repeatedly made this observation during the examinations.

4.4. Room setup

The room setup comprises two separate parts: an examination room and an operator space
divided by a white separator screen. The child is inside the examination room and is seated
at a distance of 60 cm from the computer screen on his parent’s lap. All parents inside the
examination room wear sunglasses so their gaze is not interfering with the test. The eye-tracker
is held on a 24-inch monitor using magnets (not visible to the child). In this space, the child can
only see the parent and not the operators, which stay behind the white separator screen. The
lighting in the examination room is artificial and from the side, while there is no light in the
operator space. There is a table inside the examination room to the left of the child reflecting
the artificial light, and we covered it with a white blanket. The setup is shown in Figure 5.

5. Discussion and Conclusion

In this work, we briefly described our test battery exploiting screen-based eye-tracking for the
early detection of neuropsychological impairments in preterm babies. We explained how the
test battery evolved since the deployment of the first prototype giving the reasons behind the
changes. During the development of the test battery, we managed to increase the attention span
of the tested children to up to four minutes, with a progressive improvement in the amount of
missing values. Also, based on our findings, the current version of the test battery allows for a
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Figure 5: A representation of the final testing setup.

successful calibration of the test in more than 90% of the runs. Furthermore, we highlighted
some of the shortcomings and crucial aspects which emerged during the study, such as the
physical location of the examiners and operators in the room during the tests, or the need to
switch between the different tasks to keep the children’s concentration longer. We ultimately
demonstrated the feasibility of the current test battery and how it can be successfully applied
starting from the first three months of life up to a likely maximum of two years. Lastly, in
contrast to our previous belief, we saw that with children older than two years, we necessarily
need to change the design of the test to make it dynamic and interactive, using e.g. cartoons to
spark and maintain the child’s interest.

Our findings described herein pave the way for the refinement and deployment of an optimised
test battery suitable for the collection of eye-tracking data in preterm children, with the ultimate
goal of early detection of possible developmental impairments.
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Abstract
Ultrasound is widely used as a clinical routine tool for neonates’ brain assessment, especially for preterm
neonates. This population is at high risk of developing serious complications leading to neurocognitive
and motor impairments. However, the analysis of Cranial Ultrasound requires experienced personnel to
perform a time-consuming visual assessment, which is nontrivial due to the low quality and artifacts in
the images. For this analysis to be more objective, fast, and accurate, many automatic methods have
been proposed. Such methods usually rely on segmenting brain structures or regions of interest for
the extraction of subsequent clinically useful measurements. Deep Learning methods are being more
adopted recently as they proved to have a huge potential in many medical image analysis tasks.

In this review article, we present and discuss the Deep Learning-based methods developed for the
automatic segmentation of preterm neonatal ultrasound images, more specifically the methods developed
for segmenting the Cerebral Ventricle System. The performance and evaluation results of these methods
are compared, and their major contributions are outlined. Furthermore, we discuss the main challenges
of neonatal ultrasound automatic segmentation and possible ways to address these challenges. Finally,
we discuss the future directions in this very specific context.

Keywords
Cranial Ultrasound analysis, Deep Learning, Medical image segmentation, Preterm neonates, Cerebral
Ventricle System segmentation,

1. Introduction

Ultrasound (US) imaging has been widely used in clinical practice as the first screening and
diagnostic tool in many medical domains, including fetal and neonatal care. In neonatal care,
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Cranial US is extensively used for routine brain assessment of newborn infants and more
specifically preterm infants. This widespread use of US is due to its several advantages over
other imaging modalities, such as the low cost, non-invasive nature, non-ionizing radiation,
real-time display, operator comfort, portability, and accessibility [1, 2, 3, 4].

Cranial US can only be used in the newborn period during which the anterior fontanelle is
still open (usually until 18 months of age), but it is mostly used during the first 5-6 months of
age when the best US images can be obtained. After that age brain structures will start to be
less visible due to the processes of brain membranes thickening and fontanelle closure [5, 6].

Cranial US allows the detection of most neonatal hemorrhagic and ischemic lesions in addition
to the main congenital and maturational anomalies [7]. However, the use of US entitles some
challenges. For instance, US has low imaging quality and suffers from noise and artifacts.
Moreover, it requires trained and experienced operators to acquire good images and perform
a tedious visual assessment, which leads to high inter- and intra-observer variability across
different institutes and US systems manufacturers [1, 7].

Since the standard clinical practice is based on visual assessment and some 2D linear mea-
surements, much research has been conducted to propose the use of better quantitative analysis
over the visual assessment and to prove the usefulness of other measurements than the 2D
linear ones, such as volumetric measurements. This has the potential to improve the diagnosis
and prognosis of neurodevelopmental disorders in preterm neonates. However, this could not
be adopted in clinics yet because it requires manually segmenting anatomical structures of
interest in the brain, which is time-consuming and prone to inter- and intra-observer variability
[7].

Developing automatic methods for the analysis of Cranial US images can alleviate these
challenges by making such analysis more objective, accurate, and fast. Automatic methods
include segmentation as an important preliminary step for the extraction of clinical parameters
that neonatologists need in order to perform an assessment and diagnosis based on quantitative
measurements [8].

One of the important structures to be segmented in Cranial US images of preterm neonates
is the Cerebral Ventricle System (CVS). CVS can be affected by some serious complications
such as germinal matrix-intraventricular hemorrhage leading to posthemorrhagic ventricular
dilatation (PHVD). This happens because of preterm birth and causes neurocognitive and motor
impairments.

Currently, the clinical standard is to perform 2D measurements manually on 2D US images
to estimate the CVS volume. This practice, apart from being time-consuming and subjective, is
imprecise due to the unavailability of 3D information [2, 7]. Therefore, developing automatic
segmentation methods and quantitative analysis methods based on 3D US can help clinicians to
perform timely medical interventions and improve the outcome of those infants [9, 10]. However,
the task of automatically segmenting anatomical structures from Cranial US is very challenging
due to several reasons, such as the variable image quality, presence of noise and shading artifacts,
unclear and incomplete boundaries, similar intensities among different structures, variable
size and anatomical shape of the ventricles for neonates with abnormalities. Moreover, the
differences in shape, size, and texture characteristics caused by the change in blood pressure
[11].

Recently, there has been an increasing trend in the use of Deep Learning (DL) algorithms
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to segment CVS from neonatal Cranial US images. This is due to the success that DL methods
have been achieving in the field of medical image analysis in the last years.

There are several reviews focused on neonatal neuroimage segmentation, but most of them
focused on MRI [12, 13]. Although few reviews have been conducted on US segmentation
methods based on DL [1, 14], they were generic and included studies on different medical
domains (i.e. not focused on neonatal US segmentation). To this date, and to the best of our
knowledge, no reviews have been written on segmentation methods of neonatal US images
specifically.

Therefore, we conducted a literature search for all studies published in this field from 2018
until 2022 July 1st, by specifying keywords such as (preterm neonatal AND cerebral ventricles
AND ultrasound AND segmentation AND deep learning) in Google Scholar database. Abstracts
of papers resulting from this search were screened and only (8) relevant papers were chosen.

In this review we present a systematic overview of DL methods in segmenting Cranial US
images of preterm neonates, more specifically, segmenting the CVS. In Section 2 we briefly
mention the evolution of segmentation methods in this specific context and review several DL
methods developed for preterm neonatal ventricles segmentation from US images. In Section 3
we discuss the challenges of US image segmentation and the possible ways to address these
challenges in the future. Finally, in Section 4 we present our conclusions.

2. Cranial Ultrasound Image Segmentation

2.1. Non-DL Based Image Segmentation

Many studies have been conducted for automating US image analysis of different organs but
very few studies have focused on US neuroimaging [15, 16]. Most segmentation methods were
initially based on well-established image processing techniques. In those methods, images
are first pre-processed for denoising using image filtering. Then segmentation is carried out
using intensity thresholding or edge detection filters. Finally, image analysis of binary images
is carried out using morphological operations. For instance, Gontard et al. [17] used median
filtering followed by a global intensity threshold calculated automatically from the 3D volume
for segmenting cerebrospinal fluid (CSF).

Nevertheless, boundary incompleteness in US images raises great challenges to automatic
segmentation. Therefore, most methods were semi-automatic where some input from the user
is required. Additionally, shape prior can provide strong guidance in estimating the missing
boundary. Qiu et al. [18] proposed a semi-automatic convex segmentation algorithm for
ventricle segmentation in 3D US images. In [19] a geometric-based method using a 3D ellipsoid
estimation technique was proposed for ventricle segmentation. However, traditional shape
models often suffer from being reliable on hand-crafted descriptors and losing local information
in the fitting procedure, hence, such methods had poor generalization.

A semi-automatic approach was proposed in [20] for ventricle segmentation. In this study, the
image is denoised using complex wavelets and then 3 seed points are required to be manually
selected in order to perform an active contour segmentation where the contour is parametrized
implicitly using a level-set function. The most advanced non-DL-based segmentation method
for segmenting ventricles was developed by Qiu et al [21]. This method made use of a phase
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congruency map, multi- atlas initialization technique, atlas selection strategy, and a multiphase
geodesic level-sets evolution combined with a spatial shape prior derived from multiple pre-
segmented atlases. Nevertheless, the method proposed required 54 min to segment one volume,
which is too long to be used in clinical routine.

In addition to the previously mentioned methods, Machine Learning based methods have also
been proposed for US image segmentation. Tabrizi et al. [22] proposed an automatic method for
ventricle segmentation in 2D US images based on a hybrid approach consisting of fuzzy c-means,
adaptive thresholding, template matching, phase congruency, and active contour algorithms.

2.2. Deep Learning for Image Segmentation

Nowadays, DL methods represent the state-of-the-art methods for image analysis and have
outperformed any other conventional methods in both performance and speed in terms of the
specific task.

Two main methodologies are currently used to address boundary detection-segmentation in
US:
1) A top-down manner that takes advantage of prior shape information to guide segmentation.
For example, Yang et al. [23] formulated boundary completeness as a sequential problem and
a model of the shape in a dynamic manner using Recurrent Neural Networks. Authors in
[24] modified Convolutional Neural Network (CNN) architectures like the Hough-CNN which
include explicitly transforms for edge detection.
2) A bottom-up manner that classifies each pixel into foreground (object) or background in a
supervised manner. Most studies apply this approach by classifying each pixel in an image in
an end-to-end and fully supervised learning manner employing CNNs with encoder-decoder
architectures.

The first widely recognized encoder-decoder network was Seg-Net [25]. Later, UNet [26]
brought a major breakthrough in medical image segmentation, and became the backbone of
almost all the leading methods recently, such as UNet++, UNet3+, 3D UNet, V-Net, Res-UNet,
and Dense-UNet. In these extensions of UNet, the contribution was either in skip connections,
using better convolutional layer connections, or in applications. For instance, UNet++ [27], [28]
utilizes nested and dense skip connections for further reduction of the semantic gap between the
encoder and decoder feature maps. In UNet3+ [29], skip connections between different scales
are used. 3D UNet [30] and V-Net [31] are extensions of UNet for volumetric segmentation of
3D medical images. In Res-UNet [32] the encoder and decoder convolutional blocks consist of
residual connections [33], while in Dense-UNet [34], they consisted of dense blocks [35].

Due to the difficulty of 3D DL, the DL methods that are currently applied in medical US
analysis mostly use 2D images as inputs, although these 2D images might be taken from available
3D volumes. In fact, 3D DL is still a challenging task, due to the following limitations:
1) Training a deep network on a large volume might be too computationally expensive for real
clinical application (i.e. with a significantly increased memory and computational requirement).
2) A deep network with a 3D volume as input requires more training samples since a 3D
network contains parameters that are orders of magnitude higher than a 2D network. This may
dramatically increase the risk of overfitting, given the limited training samples. Alternatively,
there are authors that formulate the problem of optimizing 3D image segmentation as a patch-
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level classification task, as was proposed in [36].
In fact, there are not so many DL methods proposed for neonatal US segmentation, and in

this review (Section 2.3) we are reviewing the DL methods for CVS segmentation specifically.

2.3. Deep Learning for CVS segmentation from Cranial US images

In this subsection, we review 8 papers that were selected after a literature search for studies
published on the use of DL for segmenting lateral ventricles or the whole CVS from Cranial US.
The search included papers that were published from 2018 until 2022 July 1st. Those 8 papers
were the only studies found that utilize DL for this task and they are summarized in Table 1.

Architecture
(2D/3D) Dataset

2D/3D
segmentation

Augmentation Loss function Evaluation
Inference
time (s)

Martin et al.
(2018) [10]

UNet
(2D)

15 volumes
(private) 3D - Soft Dice

DSC = 0.816
HD = 13.6

MAD = 0.62
5 s

Wang et al.
(2018) [37]

UNet and
SegNet

combination
(2D)

687 slices
(private) 2D

horizontal flip,
random crop

MAE
DSC = 0.908
IoU = 84.84%

Pix. Acc. = 92.14%
0.022 s

Valanarasu et al.
(2020) [38]

CBAS
(2D)

1629
(private) 2D

horizontal and
vertical flips,
random crop

confidence
guided

DSC = 0.8901
IoU = 81.03% 0.01 s

Tabrizi et al.
(2020) [39]

UNet like
(2D)

1253 slices
(private) 2D

vertical flip,
affine

transformation

probabilistic
atlas-based

DSC = 0.86
HD = 0.3 mm 17.4 s

Gontard et al.
(2021) [40]

pretrained
SegNet

(2D)

152 volumes
(private) 3D

translation,
rotation,

scale, shear
weighted BCE DSC = 0.8 < 60 s

Martin et al.
(2021) [41]

V-Net/ UNet
with CPPN
(2D and 3D)

25 volumes
(private) 2D and 3D -

BCE then
soft Dice

(for V-Net)
DSC = 0.822

MAD = 0.5 mm
𝛿 Va = 0.35 cm3

𝛿 Vr = 11.1%

3.5 s
(for 2D)

Valanarasu et al.
(2022) [42]

KiUNet
(2D)

1629 slices
(private) 2D - BCE DSC = 0.8943 -

Szentimrey et al.
2022 [43]

UNet
ensemble

(3D)

190 volumes
(private) 3D translation

combined BCE
and Dice loss
(with MSE for
the 3rd model)

DSC = 0.72
VD = 3.7 cm3

MAD = 1.14 mm
5 s

Table 1: Comparison of DL based methods for automatic CVS segmentation from Cranial US
images. Loss Functions: MAE is Mean Absolute Error loss, BCE is Binary Cross Entropy loss,
and MSE is Mean Squared Error loss. Evaluation Metrics: DSC is Dice Similarity Coefficient,
HD is Hausdorff Distance, MAD is Mean Absolute Distance, IoU is Intersection over Union, Pix.
Acc. is Pixel Accuracy, 𝛿 Va is Absolute volume difference, 𝛿 Vr is Relative volume difference,
and VD is Absolute Volumetric Difference

It is worth mentioning that to get an estimation of the CVS volume, clinicians usually obtain
various linear measurements manually from 2D images. However, this practice is imprecise
(since 3D information is missing), time-consuming, and operator dependent. Therefore, the
studies reviewed here mainly aimined to improve the accuracy and reduce the time required
to perform manual segmentation by automating this task and therefore paving the way for
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obtaining clinical measurements automatically. Some of the reviewed studies were also aiming
to improve the performance of automatic segmentation by utilizing 3D information, which may
result in more accurate and representative volumetric clinical measurements.

In 2018 Martin et al. [10] extended CVS volume estimation to 3D. They used a 2D UNet to first
segment 2D angular image sequence. Then they propose an algorithm for 3D reconstruction to
reconstruct 3D segmentation. This method can significantly reduce the extensive computation
cost and memory requirement of 3D processing. A limitation of this study is the small dataset,
which affects the ability of the model to generalize.

Wang et al. [37] proposed a CNN that combines the advantages of both UNet and SegNet
architectures to segment lateral ventricles from 2D US. The proposed network consists of two
components: a pre-trained DenseNet as the encoder to extract deep features, and a multi-
scale decoder that first applys pooling of the feature maps (resulted from the encoder) into
four different sizes and then applies a series of transposed convolutions to transform lower
dimensional feature maps into higher ones in steps. Moreover, the output of each transposed
convolution is concatenated with existing feature maps of the same size and then fed into the
next transposed convolution.

Since the resolution of small features is gradually lost along the deeper layers of a CNN, the
resulting coarse features can miss the details of small structures. This leads to poor performance
of traditional CNN architectures in segmenting small anatomical structures (as in the case
of normal ventricles for example). To address that, Valanarasu et al. [38] propose a network
(Confidence-guided Brain Anatomy Segmentation-CBAS), where segmentation and correspond-
ing confidence maps are estimated at different scales. Aleatoric uncertainty is computed as the
confidence scores to indicate how confident the CBAS network is about the segmentation output.
This allows CBAS to learn how to differentiate regions with higher error (low confidence score)
and therefore focus more on those regions in subsequent layers and block the propagation of
error while computing the segmentation output.

Tabrizi et al. [39] proposed a method to segment lateral ventricles from 2D US images. The
proposed method integrates anatomical information into a CNN by defining a new weighted
loss function and an image-specific adaption. First, a deep CNN was used to detect the cranium
and brain interhemispheric fissure to estimate the anatomical position of ventricles and correct
the cranium rotation. Then, lateral ventricles were segmented using a CNN with a similar
structure to that of a 2D UNet. The CNN learning was integrated with a prior model of the
lateral ventricles through a probabilistic atlas-based weighted loss function and an image-
specific adaption. Moreover, the authors performed posthemorrhagic hydrocephalus (PHH)
outcome prediction (necessity of intervention) using a support vector machine classifier that
was trained on ventricular morphology and clinical parameters. The segmentation performance
was affected by the unclear boundaries caused by the build-up of hemorrhage pressure, but
this is a challenge that experts also experience when doing manual segmentation. Regarding
PHH output prediction, although the prediction performance was good, the features used were
hand-crafted and based on 2D measurements. We believe that 3D features learned by the DL
model may improve the PHH output prediction accuracy.

Gontard et al. [40] utilized a pre-trained SegNet model based on VGG16 to obtain 3D ven-
tricular segmentation from 2D thickened sagittal slices (i.e. 3 consecutive slices). After that 3D
ventricular volumes were estimated using the segmented 2D slices.

54



Martin et al. [41] utilized both V-Net and UNet (for both 2D and 3D images) to estimate
CVS volume in a dataset including both normal and dilated ventricles. Moreover, the use of a
Compositional Pattern Producing Network (CPPN) was proposed to enable the CNNs to learn
spatial information about the CVS location. Their results showed a comparative performance
for both V-Net and UNet, with V-Net being slightly better (especially in segmenting normal
ventricles). They also reported that CPPN increased the accuracy of the CNNs when having
fewer layers. It would be interesting to investigate the benefits of the CPPN for multi-structural
brain segmentation. Results reported in this study show that a 3D architecture is overall more
accurate for this task. Nevertheless, a 2D architecture was as accurate as a 3D architecture for
segmenting dilated ventricles. Moreover, it was shown that a 2D architecture enables to perform
the segmentations in clinical time with hardware that requires fewer memory resources and
therefore may be preferable to a 3D architecture in a clinical context.

To address the issue of poor segmentation of smaller structures and boundary regions in
medical image segmentation in general, Valanarasu et al. [42] proposed an architecture (KiUNet)
that consists of two branches. The first branch is an overcomplete convolutional network (Kite-
Net) which learns to capture fine details and accurate edges of the input by projecting the input
image into a higher dimension such that the receptive field is being constrained from increasing
in the deep layers of the network. The second part is a UNet which learns high-level features. A
cross-residual fusion strategy was proposed to combine the features across the two branches.
Moreover, the architecture was proposed in both 2D and 3D settings, and a Res-KiUNet and a
Dense-KiUNet architectures where also proposed for improving the learning of the network,
where residual connections and dense blocks are utilized. Finally, the proposed method was
tested on 5 different datasets of different medical image applications and modalities, including
lateral ventricles from US, and was proved to generalize well to different modalities.

Nevertheless, only one metric was used for evaluation in [42], that is the Dice Similarity
Coefficient (DSC), which might not be very indicative of the improvement in segmentation
unless the segmented structure is small. For instance, dice values for US ventricular segmentation
dataset were not significantly improved compared to other methods reported in this study, which
is expected since dilated ventricles are not very small structures (compared to tumors datasets
for example where improvement was reported to be clearer). Therefore, other metrics might also
be more useful for showing the improvement in segmenting ventricle boundaries. Also, it would
be interesting to test this method on 3D ventricles segmentation and use volumetric metrics to
evaluate the performance, since volumetric measurements might be more susceptible to slight
improvements in segmenting the surface or boundaries. Another contribution of this work
is that the network’s memory requirements are less while maintaining decent performance.
However, it would be interesting to compare with a deeper KiUNet that is as deep as the UNet
they compared with.

To address the limitations of 2D US, Szentimrey et al. [43] developed a method to segment
lateral ventricles from 3D US images using a 3D UNet ensemble model composed of three UNet
variants. Each variant highlights various aspects of the segmentation task such as the shape
and boundary of the ventricles. The ensemble is made of a UNet++, attention UNet, and UNet
with a DL-based shape prior combined using a mean voting strategy. The UNet++ has more
skip connections compared to the basic UNet, to allow for a more flexible fusion of feature
maps at the decoder pathway and make the semantic maps between the encoder and decoder
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more similar which is believed to make the learning task easier for the optimizer and either
improve the speed and/or performance of the model. The attention UNet incorporates attention
gates to improve the ventricle surface segmentation boundary (which is challenging in US
images) by improving the sensitivity to foreground voxels while adding minimal complexity to
the model. The UNet with a DL-based shape prior utilizes a shape prior loss function to add
surface regularization by conforming the predicted ventricle shape to that of the ground truth
segmentation.

Even though incorporating shape prior resulted in improving the segmentation of ventricles
according to [43], it might not be the case if an unseen test image has a unique ventricle shape
not captured in the training data, which is likely to happen because ventricles might have
several deformations. Another limitation is that the ensemble model is computationally heavy,
especially due to the UNet++ model. Therefore, GPU resources are required even during test
time, which might not always be available at healthcare points. Moreover, the ventricles were
manually annotated on the sagittal plane every 1mm such that slices between each manual
contour required interpolation, leading to possible inaccuracies of the ground truth volume.
On the other hand, they utilized bigger data compared to previous studies, and they included
scans with varying degrees of intraventricular hemorrhage and scans with only one ventricle
being visible due to the limited field of view. Several metrics were used for evaluating the
proposed method’s performance, including metrics that are clinically useful, especially absolute
volumetric difference (VD), which has been used for patients with PHVD to determine those
who need intervention [44].

All methods reviewed in this section seem to have good performance according to the
reported results (both in terms of accuracy and speed). Each method had its contributions and
limitations. However, it is worth mentioning that the comparability of methods, in this case,
is not straightforward since each method was developed using a different private dataset that
varies in the number of cases, image quality...etc. Moreover, in most cases, small datasets were
used, and it was not mentioned about the number of data resulting from Augmentation. This
becomes more of a problem in the case of training on 3D volumes. Therefore, we believe that
efforts are still needed to form large open datasets that will allow researchers to develop new
methods and compare them with others.

Another area that we believe needs to be further investigated is whether segmenting 3D
data would improve the performance. One would expect that incorporating 3D information
using 3D architectures would increase the accuracy of segmentation. Authors in [41] reported
comparative performance of both 2D and 3D architectures for segmenting dilated ventricles,
however, they used a small dataset.

Regarding the applicability of the proposed methods in clinical settings, memory, and com-
putational requirements are also important (besides the accuracy and speed). Even though
inference time was reported in most of these studies, it was not always mentioned whether the
developed methods can be used in machines with lower memory and computational resources,
or if they need special requirements. We believe that most of the proposed methods were
computationally heavy and therefore novel methods are still needed to tackle this issue.
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3. Challenges in US segmentation and Possible solutions

3.1. Limited availability of annotated data and Image Synthesis

One of the major problems in medical image analysis is the limited number of annotated data.
This is due to the difficulty of sharing patient data publicly and the difficulty of obtaining clinical
annotations since it is expensive and time-consuming.

However, most advanced research on automation of US analysis is based on supervised
learning which is strongly dependent on the access to open and considerable amounts of data,
acquired on different populations and with different operating conditions (and with different
US scanners). This leads to a lack of generalization and validation of the AI models. Moreover,
not having access to open large data makes it difficult to reproduce and compare the proposed
methods.

In this context, federated learning or data augmentation strategies are important for de-
veloping better algorithms. Moreover, novel image synthesis methods are proposed in the
literature to synthesize high-quality data that could be added to the training dataset. Generative
Adversarial Networks (GANs) [45] and their variants are powerful architectures capable of
generating synthetic images to be used for training other networks, for example, UNet-based
networks. In addition, GANs are favored over traditional methods for handling data imbalance
[46] by synthesizing realistic-looking minority class samples, thereby balancing the class distri-
bution, and avoiding overfitting. GANs are being applied for generating 3D medical imaging
data [47], however, generating realistic-looking data samples in US neuroimaging is an open
research problem [48] and further research is required to improve and validate the quality of
the synthezised samples. Another challenge is that while using GANs in medical imaging to
synthesize new images solves the issue of limited available data, the problem of annotations
still exists in this setup. Therefore, novel methods are needed to synthesize annotations as
well. To tackle this issue, Valanarasu et al. [38] proposed a method for image synthesis using
multi-scale self-attention generator where 2D Cranial US images are synthesized directly from
manipulated segmentation masks (ventricle and septum pellucidi masks). Thus, there is no need
for annotation of the synthesized data.

Alternatively, data can be generated through the simulation of US images [49]. This is a field
largely unexplored in the context of neuroimaging. For example, we suggest that 3D models
of neonatal brain gyrification might be generated as in [50] and then used for simulating US
images using computing simulation toolboxes like MUST [51] or FIELD II [52].

3.2. Segmentation of other brain structures

MRI is used in neonatology to segment not only the lateral ventricles and external CSF but
also white matter, cortical gray matter, cerebellum, or brain stem [53]. US neuroimaging might
complement better MRI neuroimages if US data could provide information on other brain
structures. For example, most studies with US report measurements related only to ventricular
dilation but it would be more interesting to assess those measurements relative to the total
brain volume [19]. With appropriate data labeling US might also be used for the detection and
quantification of white matter injuries. Finally, the folding dynamics of the brain, occurring
mostly before normal-term birth, are vastly unknown. US might help to better understand this

57



process by looking into the development of cortical sulci in infants. For instance, longitudinal
studies of the central brain sulcus could in principle be carried out with 3D US like it is done
with MRI [54].

3.3. Inherent US image limitations and Image preprocessing

US acquisition introduces noise in the signal, which corrupts the resulting image and affects
further processing steps, e.g., segmentation and quantitative analysis. US segmentation can
clearly benefit from the application of preprocessing methods for improving image quality
(denoising, deblurring, increasing resolution). DL is being applied to improve the resolution
and contrast-to-noise ratio of the reconstruction algorithms of the signal acquired with the
US sensors [55, 56]. And DL will certainly be very promising for US image enhancement and
denoising using super-resolution methods [57, 58].

3.4. Novel AI architectures

The aforementioned encoder-decoder CNN architectures achieved state-of-the-art performance
in medical imaging segmentation. UNet, has become the de-facto standard and achieved
tremendous success. However, due to the intrinsic locality of convolution operations, UNet
generally demonstrates limitations in explicitly modeling long-range dependency (i.e., they
lack focus in extracting low-level features) since the networks are built to be deeper and hence
more high-level features get extracted. As a result, they fail in providing a good segmentation
of small structures with blurred boundaries, which is the case with US image segmentation.
This implies the need for novel architectures or variants.

GANs for example are explored for image segmentation using image transfer methods
[45]. And Transformers, designed for sequence-to-sequence prediction, with innate global
self-attention mechanisms, have emerged strongly as alternative architectures [59] to Encoder-
Decoder architectures for medical image segmentation. To name some recent examples, Tran-
sUNet [60] merits both Transformers and UNet CNNs, UNetFormer [61] increases the effi-
ciency of conventional UNet architectures, and MedFormer can generalize to different medical
domains[62].

4. Conclusions

DL has meant a change of paradigm in medical imaging analysis, and new techniques and
architectures are in continuous development which will certainly impact US imaging and
analysis. Synthetic data generation, transformers, and super-resolution methods can help to
overcome some limitations of US image analysis with respect to MRI.

Automatic methods that yield reliable 3D measurements of the ventricles are expected
to provide a more accurate assessment of preterm neonates’ ventricles and other cerebral
structures, which can improve the monitoring and treatment decisions of preterm born infants.
Overall, the studies reviewed in this review demonstrate the possibility of achieving an accurate
segmentation of preterm neonates’ CVS in a clinical time in 3D US images and therefore pave
the way to prove the clinical benefits of 3D US in monitoring cerebral structures of preterm
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neonates, not only for CVS dilation but also for brain growth, sulci formation or detection of
white matter injuries.

In the future, studies that compare volumetric measurements obtained from both US and
MRI are needed, to show whether the measurements obtained from 3D US can be competitive
with those obtained from MRI. Moreover, models utilizing both US and MRI can be developed
to study whether both modalities contain complementary information that could help improve
the accuracy.

Another important future direction is automatic outcome prediction based on automatic
ventricular segmentation and measurements, this can include predicting the progression of PHH
which offers an opportunity for early interventions to improve outcome [39]. Developing AI
tools that combine measurements of other cerebral structures, like those related to White Matter
damage or Sulci malformation, can also be used to predict the long-term outcome of preterm
infants and the probability of them developing neurodevelopmental impairments. To the best
of our knowledge, this has not been achieved yet, but with the continuous developments of
methods in this field, this can be achieved in the following few years.
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Abstract
Cerebral Palsy (CP) is the most common developmental disorder in preterm infants with spastic CP as the
most prevalent motor type. Several aspects of visual perception and visuomotor control remain unsolved
in children with spastic unilateral Cerebral Palsy (uCP). This is remarkable since CP is recognized as
the leading cause of childhood motor disability, and comorbidities, such as visual problems, are well
recognized in this condition. The co-occurrence of visual and motor impairments is related to the fact
that the lesions to motor pathways are anatomically close to visual pathways in children with uCP.
Previous studies attempted to define the relationship between visual disorders and brain damage in
uCP, finding no specific correlation between the type and timing of the lesions and visual functions.
Furthermore, research investigating which brain regions and tracts are responsible for specific visual
functions and deficits is limited. The present review, therefore, aims to describe neurological correlates
(i.e., structural MRI and diffusion MRI) of visuomotor deficits in children with uCP to identify the gaps
in the current literature which could be addressed in future studies.

Keywords
Cerebral Palsy, Visual perception, Visuomotor control, Neuroimaging, Diffusion MRI

1. Introduction

Preterm birth, defined as birth before 37 completed weeks of gestation [1], can result in long
term developmental impairments due to brain immaturity or damage occurring during the
prenatal or perinatal period. The main disorders associated with prematurity are intellectual
disability, hearing loss, visual impairment, and cerebral palsy [2].
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Visual impairments refer to any degree of impairment to a person’s ability to see, that
affects his or her daily life [3]. For years, retinopathy of prematurity (ROP) was considered the
most common cause of visual loss in infants with low birth weight [4]. ROP is an eye disorder
caused by abnormal blood vessel growth in the light-sensitive part of the retina. However,
recent studies [5] have shown that cerebral visual impairment (CVI) has replaced ROP as
the main cause of visual disability in ex-preterm children [6]. CVI refers to a heterogeneous
group of visual dysfunctions which “cannot be attributed to disorders of the anterior visual
pathways or any potentially co-occurring ocular impairment” [7]. It includes disorders of basic
visual functions such as acuity and stereopsis, but also higher visual dysfunctions of visual
attention, depth and motion perception, object recognition and spatial cognition [8, 9]. A ges-
tational age of less than 26 weeks is the most important factor associated with CVI (5.21%) [10, 2].

Cerebral Palsy (CP) is the most common developmental disorder in preterm infants.
According to the literature, over 50% of children with CP are born preterm [11]. The prevalence
of CP increases with decreasing gestational age at delivery [12]. In a meta-analysis, the pooled
prevalence of CP in preterm infants is estimated to be 6.8% [13]. However, in extremely preterm
born children (i.e. born before 28 weeks of gestation), the prevalence of CP increases up to 10%.
CP is defined as a non-progressive permanent disorder of movement and posture due to
disturbances in the developing fetal and infant brain [14]. In addition to impairments of gross
and fine motor function (i.e., muscle tone, posture, and movement), CP manifests with deficits
in sensory modalities such as visual function [14]. CVI in particular is reported in over half of
children with CP [15, 16]. The presence of such impairments can have an important impact on
planning and performing movements, due to a lack of information about the position of the
hands as well as the target [17, 18]. As a consequence, visuo-motor integration and motor co-
ordination skills might be hampered in children with CP not only due to their motor impairment.

CP also is a heterogeneous disorder and can be classified by its motor type and distri-
bution. According to the Surveillance of Cerebral Palsy in Europe (SCPE) the motor type
can be described as spastic, dyskinetic, ataxic, or mixed pattern [19], and the distribution of
limb involvement as unilateral or bilateral. Spastic CP, characterized by pyramidal signs (i.e.,
spasticity, weakness), increased muscle tone, and joint stiffness, is the prevailing type [20], and
the most common one in preterm infants or those with low birth weight [2]. Spastic CP can be
further classified into unilateral CP (uCP), if only one side of the body is affected, and bilateral
CP, if both sides are involved [21]. Children with uCP, who make up 30% of the total cases
of CP [22], are often physically less impaired than those with bilateral CP, showing a higher
degree of impairment in the upper limb in comparison to the lower limbs. Such impairments
result from an injury predominantly lateralized to one brain hemisphere [23] which leads to a
lower degree of deficits when compared to bilateral CP. Up to now, the majority of studies on
children with uCP have been focusing on motor control [24] describing an irregular movement
pattern of the impaired arm and difficulties with performing bimanual tasks [25]. On the
contrary, visual impairments, also common in uCP [26, 15], have been less well investigated
despite their impact on guiding and planning motor actions. As a result, several aspects of
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visual perception and visuomotor control remain unsolved in children with uCP.

The present review, therefore, aims to summarize the current knowledge about visuo-
motor deficits in children with uCP and identify the gaps in the current literature to be
addressed in future studies. In Section 2, we describe the anatomy and functions of the
visuomotor system and the related impairments in children with uCP. Section 3 highlights
the findings on structural and diffusion neuroimaging in children with CP, focusing first
on those related to motor function and secondly on those related to visual and visuomotor
function. Lastly, Section 4 provides a summary of the findings described in previous sections,
highlighting the need of future research to address the link between neuroimaging and visual
and visuomotor function in children with uCP.

2. Visuomotor network in children with uCP

2.1. Anatomy and functions

The visual network is highly complex with 40% of the brain serving visual functions [27].
Visual information from the retina reaches the posterior visual pathways through the optic
nerves and the optic chiasm (i.e., optic tracts). The optic tracts are the first structures of the
posterior visual pathways which transfer information together with the lateral geniculate
nucleus (LGN), the pulvinar, the superior colliculus and the optic radiations to the primary
visual cortex (V1) located in the occipital lobe [28]. Damage to the optic tract, LGN, or optic
radiations leads to visual field defects, which can vary depending on the site of the lesion [28].
Extension of the damage to V1 results in acuity loss [28]. From V1, visual information is sent to
the higher visual areas located in the parietal and temporal lobes, where higher order visual
processing takes place [28].

Historically, CVI has been explained within the framework of two distinct and inter-
acting systems, the dorsal and the ventral stream [29]. The former is responsible for motion
and object’s spatial location and damage to the dorsal stream results in impairments in visual
guidance of movement and simultaneous perception [27]. The latter is involved in object
identification and damage to the ventral stream results in difficulties with object and face
recognition and orientation in the environment [30]. In the last decades, a growing body of
evidence [31, 32] has proposed more refined functional and anatomical circuits for visuo-motor
processing. According to Pisella et al. [32], in the visuomotor system we can identify three
different streams:
(1) a dorso-dorsal pathway, including the dorsal part of the parietal and pre-motor cortices, for
immediate visuo-motor control [33, 34]. Damage to the dorso-dorsal pathway can result in
optic ataxia, a deficit of visuo-manual guidance.
(2) a ventral prefrontal pathway with connections from the ventral visual stream to pre-frontal
areas for spatial or temporal control of action. Damage to the ventral prefrontal pathway
results in visual agnosia, a deficit of visual recognition.
(3) a ventro-dorsal pathway, including the ventral part of the parietal lobe and the pre-motor and
pre-frontal areas, for complex planning and programming with a more bilateral organisation
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and a hemispheric lateralization. Damage to the ventro-dorsal pathway results in mirror
apraxia, characterized by misreaching errors when the controlesional hand is guided to a visual
goal through a mirror. Another common deficit is limb apraxia, a brain disease affecting the
performance of skilled and learned object-related movements [35]. Moreover, spatial neglect, a
syndrome affecting the left space in the domains of perception, representation and action can
also occur when this pathway is damaged.
An illustration of the visual network is provided in Figure 1.

Figure 1: The visual network in humans. Dorso-dorsal pathway (d-d pathway) is shown in blue,
ventrodorsal pathway (v-d pathway) in green, and the ventral pathway in red. In addition, the visual
pathway from the retina to the primary visual cortex (V1) is highlighted in yellow. Lateral geniculate
nucleus (LGN); secondary, tertiary, quaternary, and senary visual cortices (V2, 3, 4, and 6); accessory
visual cortex (V3a, V3); quinary visual cortex/middle temporal area (V5/MT); medial superior temporal
area (MST); inferior parietal lobule (IPL,); superior parietal lobule (SPL); inferior temporal cortex (IT).
Figure adapted and modified from [36] with Open Access distributed under the Creative Commons
Attribution License.

Overall, visual problems can be classified as peripheral or ocular (e.g., strabismus, refractive
error, decreased acuity) if the damage occurs anterior to the optic chiasm and retrochiasmatic
or cerebral when the damage occurs after the level of the optic chiasm [15]. Cerebral visual
problems include visual perception (VP) and visuomotor integration impairments [30]. A full
overview of visual functions is provided in Table 1 [37, 38, 15, 39].
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Table 1
Overview of visual functions with the division in oculomotor [38], geniculostriate functions [37, 28],
visual perceptual functions and visuomotor integration [15, 39].

Category Name of function Definition

Oculomotor
functions

Fixations
Maintenance of the gaze on a single
location or area

Smooth Pursuit
Slower tracking movements of the eyes
designed to keep a moving stimulus on the fovea

Saccades
Rapid, ballistic movements of the eyes that
abruptly change the point of fixation

Geniculostriate
functions

Visual acuity
Ability of the eye to distinguish shapes and the
details of objects at a given distance

Visual field
Total area in which objects can be seen in
the side (peripheral) vision as eyes are focused
on a central point

Contrast sensitivity
Ability to distinguish an object against its
background

Stereopsis
Perception of depth and three-dimensional
structure through binocular vision

Visual perceptual (VP)
functions

Visual discrimination
and matching

Ability to detect features for processing the
differences and similarities among visual stimuli

Object recognition or
visual closure

Ability to recognize an object when shown
under an incomplete representation (i.e., noise
on top of an image or missing parts)

Visual spatial
perception

Ability to determine spatial relations within
and between objects, perceive depth, topographic
orientation, and wayfinding

Figure-ground
perception

Ability to differentiate relevant object information
from distracting background information

Motion perception
Ability to understand a constantly changing visual
environment

Visual memory
Ability to integrate visual information with
previous experience

Visuomotor
integration

Visually guided
motor activity

Reaching, locomotion

Eye-hand coordination
Ability to coordinate the information received
through the eyes to control the hands in the
accomplishment of a given task

2.2. Visual and visuomotor impairments in children with unilateral cerebral
palsy (uCP)

In children with CP, the prevalence of visual problems, including both ocular and cerebral
impairments, varies between 40% and 50% while the prevalence of only CVI increases up to 70%
[15, 16]. Several studies have attempted to describe high-level visual dysfunctions, however,
these studies showed mixed results. Kozeis et al. [40] investigated visual perception in 105
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children with spastic CP (aged 6–15 years), finding a reduced near visual acuity and abnormal
or absent stereopsis. In addition, the scores on the Motor Free Visual Perception Test [41] used
to assess visual discrimination, figure-ground perception, visual memory, visual closure, and
visual spatial perception, were less than or equal to that of 6-year-old typically developing
children. In a study of Fazzi et al. [15], different types of CP were found to be associated with
different patterns of visual impairments. Furthermore, VP impairments seem to occur more
frequently in children with spastic CP compared to other types of CP, in whom visuo-motor
integration is more impaired than non-motor visual–perceptual skills [26, 42].

In the present paragraph, we specifically focus on results in children with uCP, start-
ing with findings on oculomotor and geniculostriate functions, followed by higher-order visual
deficits. A summary of the main studies on visual and visuomotor impairments in children
with CP is reported in Table 2. According to the study of Fazzi et al. [42], children with uCP
showed oculomotor impairment (e.g., altered smooth pursuit and saccades), a slight reduction
in visual acuity and visual field, and altered stereopsis. With regard to higher-order visual
functions, the systematic review of Auld [43] identified three assessments (i.e., Motor-Free
Visual Perception Test [41]; Test of Visual Perceptual Skills [44, 45]; Developmental Test of
Visual Perception [46]) for measuring high-level visual perception in children with uCP which
showed good psychometric properties. Results from Burtner et al. [47] showed that children
with uCP have significantly lower scores on the Motor-Free Visual Perceptual Test-Revised
and on the Developmental Test of Visual Perception when compared to typically developing
children. Specifically, only children with left hemiplegia scored significantly lower than
typically developing children on the Motor-Free Visual Perceptual Test-Revised. These findings
are in line with the recent study of Berelowitz and Franzsen [48], which investigated specific VP
impairments in children aged 4-18 in South Africa, finding that left spastic uCP demonstrated
consistently lower scores on all of the subtests of the Test of Visual Perceptual Skills and
composite scores than those with right spastic uCP.

Additional studies [49, 50] report that children with uCP have deficits in sensorimotor
integration and visuo-perceptual modalities, leading to difficulties in the execution of motor
actions. Also, visual perceptual ability assessed by the Test of Visual Perceptual Skills, and
unimanual capacity of the dominant upper limb evaluated by the Jebsen–Taylor Test of Hand
Function, were found to be associated with activities of daily living process skills which were
measured by Assessment of Motor and Process Skills) in children with uCP [51]. In addition,
during object manipulation and reaching, children with uCP closely monitor the actions of
the affected hand [52] by increasing the visual attention towards the impaired limb [53]. The
increased attention could be explained as a compensation strategy for underlying visuomotor
deficits [54] such as visual exploration and eye-hand coordination. Lastly, in the study of
Surkar et al. [54], children with uCP showed impaired anticipatory visual control and eye-hand
coordination which affects the planning of goal-directed actions. Hence, impairments in action
execution are closely related to the ones in visuomotor coordination, suggesting important
implications to take into account for diagnosis and rehabilitation of children with uCP.
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Table 2
Studies on visual and visuomotor impairments in children with cerebral palsy.

Authors N CP and age CP Main findings in visual and
visuomotor functions

Kozeis et al.,
2007 [40]

105
(range 6–15 yrs)

Spastic
CP

Impairment in:
· Visual acuity
· Stereopsis
· Visual discrimination
· Figure-ground perception
· Visual memory
· Visual closure
· Visual spatial perception

Fazzi et al.,
2004 [42]

20
(range 5 – 8 yrs)

Spastic
CP

Impairment in:
· Visual acuity
· Visual field
· Stereopsis
· Smooth pursuit
· Saccades

Fazzi et al.,
2012 [15]

17
(age not reported)

uCP

· Refractive errors
· Strabismus
Impairment in:
· Visual field
· Oculomotor behaviour

Burtner et al.,
2006 [47]

20
(range 4-10 yrs)

uCP

· Impaired visual perception
(i.e., Developmental Test of Visual Perception,
Motor-Free Visual Perceptual, Test-Revised
and School Function Assessment)
· Left uCP lower scores on motor-free visual tests

Berelowitz
and Franzsen.,
2021 [48]

20
(range 5-18 yrs)

uCP
· Left uCP low scores on the test of Visual
Perceptual Skills

Verrel et al.,
2008 [52]

6
(range 14–19 yrs)

uCP · Increased visual monitoring of impaired limb

Steenbergen
et al.,1996 [53]

14
(range 15-20 yrs)

uCP · Increased attention to impaired limb

Surkar et al.,
2018 [54]

13
(mean age 6.8
+ 2.9 yrs)

uCP
Impairment in:
· Anticipatory visual control
· Eye-hand coordination

CP, cerebral palsy; uCP, unilateral CP
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3. Brain lesion in children with uCP

Visuomotor impairments result from brain damage that is highly heterogeneous in children
with uCP.
Neuroimaging techniques allow the study of lesion extension and location which is needed
to better understand and inform about the integrity of the different pathways responsible
for visuomotor function. Among neuroimaging techniques, brain structural MRI (sMRI) and
diffusion-weighted MRI (DWI) can provide high-resolution images of anatomy and white matter
architecture of the cerebral structures of children with uCP [55].

3.1. Neuroimaging techniques

3.1.1. Structural MRI (sMRI)

Conventional MRI is used in hospital environments for the diagnosis and characterization of
perinatal brain injury in pathologies such as CP and CVI [56, 57, 58]. With respect to CP, MRI
sheds light on the location (e.g., lobe, hemisphere, structures), timing and extent of brain damage
(i.e., cerebral hemispheres uni- or bilaterally). In the last decades, several classifications of MRI
findings in CP have been proposed [31, 59, 60]. Below, we describe examples of qualitative and
semi-quantitative interpretation of MRI data in children with CP.

Qualitative methods The MRI classification system (MRICS), developed by the Surveillance
of Cerebral Palsy in Europe, SCPE [19, 59], defines the predominant neuroimaging pattern
which most likely is the cause of the CP. MRICS is primarily a qualitative system including
some simple quantitative aspects (e.g. uni- vs bilaterality, severity of a pattern such as
basal ganglia/thalamus lesions). This classification has been found to be reliable based on
the Reference and Training Manual and annual exchange and discussions among SCPE
registered partners (i.e., clinicians dealing with CP, epidemiologists, and experts who work
with CP registers from 18 countries). In the manual, which is available online with open
access (https://eu-rd-platform.jrc.ec.europa.eu/scpe/reference-and-training-manual_en), brain
abnormalities are classified into three major groups and subgroups. For a complete overview of
the classification, see Table 3.

In a recent systematic review, Franki et al. [61] described the type of the underlying
brain lesions in children with uCP. Taken together, approximately 5% of children with uCP had
brain malformations. White matter lesions were the most common lesion type (57.8%) finding
periventricular leukomalacia (PVL) in the majority of cases, followed by intraventricular
haemorrhage (IVH) and the combination of PVL and IVH. Grey matter lesions were found in
14.8% of children with uCP while in 5% of these children, no visible lesions were found on sMRI.
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Table 3
The harmonized classification of MRI, based on pathogenic patterns (MRI classification system) proposed
by the SCPE network. Table adapted from [59].

Classification Subclassification Subtypes and/or examples

A Maldevelopments
A1

Disorders of
cortical formation

Disorders of proliferation
Disorders of migration
Disorders of organization

A2 Other maldevelopments

Holoprosencephaly,
Dandy Walker malformation,
Corpus callosus agenesis,
Cerebellar hypoplasia, etc.

B White matter lesions
B1 Periventricular leukomalacia (PVL)

B2

Sequelae of intra-ventricular
hemorrhage (IVH)
or periventricular hemorrhagic
infarction

B3
Combination of PVL and
IVH sequelae

C Gray matter lesions
C1 Basal ganglia / thalamus lesions

Mild
Moderate
Severe

C2 Cortico-subcortical lesions

C3
Arterial infarctions
(middle cerebral artery or others)

D Miscellaneous

Cerebellar atrophy,
cerebral atrophy,
delayed myelination,
ventriculomegaly not
covered under B,
hemorrhage not
covered under B,
brainstem lesions,
calcifications, etc.

E Normal

Semi-Quantitative scale In the last years, a semi-quantitative scale (SQS) has been
developed to describe the extent and location of lesions in MRI data of children with CP aged
above 3 years old [62]. The SQS is structured in three main sections: (1) information on the
technical characteristics of the scan and the type of lesion based on previous classification; (2)
the graphical template for the brain hemispheres; (3) the scoring system for the hemispheres,
subcortical structures (basal ganglia, thalamus, and brainstem), corpus callosum, and cerebellum.
In section (2) of the SQS, lesions are traced onto a graphical black and white reproduction of six
axial slices selected from the Montreal Neurological Institute (MNI) template. The scale makes
a distinction between the cortical outline, the subcortical line separating the grey from the
white matter, and a periventricular line bordering the periventricular white matter. Based on
this subdivision, the brain template is made of three layers, namely a periventricular layer, a
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middle white matter layer, and a cortico/subcortical layer. In section (3), hemispheric subscores
include the number of affected slices; the number of affected lobes, the sum of the lobar scores
for periventricular layer, the middle layer, and the cortico/subcortical layer. Right, left, and total
scores are marked separately. Summary scores are calculated for the hemispheres, the basal
ganglia and brainstem as total, right, and left scores, while for the corpus callosum and the
cerebellum, scores are calculated as total scores only. The summary scores give a global score
on the extent of a lesion, ranging from 0 to 40, with higher scores indicating more extensive
lesions while information on topography is provided when subscores are considered. A detailed
description of the methodology can be found in the study of Fiori et al. [62].

The reliability of the semi-quantitative scale was investigated in a study with 34 chil-
dren with CP, among which 17 had uCP [62]. High interrater and intra-rater reliability of the
total score was found with indices above 0.87 (kappa (k); intraclass correlation coefficients
(ICC)). Nevertheless, a possible limitation of the semi-quantitative scale is that it uses the
Montreal Neurological Institute template which is the international standard template for
adults [63]. Indeed, to objectively analyse an MRI scan, it is necessary to compare the patient’s
MRI with an atlas built from the mean anatomical and physiological metrics as a function of
disease and age [63]. Consequently, the use of age-specific brain atlases, built from averaging
brain images of children in a specific age-range, is recommended [64]. Furthermore, the SQS
scale [62] requires time investment in manual segmentation and anatomical knowledge of
the examiner, which leads to its suboptimal application in population-based studies and in
clinical practice. In the last decades, novel tools such as the use of automated volumetric
segmentation, where the boundaries of a specific brain segment are measured automatically by
a software program, have been developed. Pagnozzi et al. [65] developed an automated lesion
segmentation pipeline for both white matter (WM) and grey matter (GM) lesions validated in
107 children with uCP. This tool showed positive correlations between lesions and clinical
performance such as the Assisting Hand Assessment (AHA) which assesses the contribution of
the impaired hand to bimanual activities [66] and the Test of Visual Perception Skills. Although
the use of automated volumetric segmentation is not fully established in routine practice, such
results highlight the important application of artificial intelligence techniques to optimize
clinical research.

3.1.2. Diffusion MRI (dMRI)

Diffusion MRI (dMRI) provides insight into the microstructural development of the brain by
measuring the random motion of water molecules [67]. In fibrous tissue, such as in the brain
white matter (WM), water molecules tend to diffuse along the fibers, enabling the study of
the orientation of the underlying structures. Different methods are used for measuring WM
orientation, among which the most common are diffusion tensor imaging (DTI) and constrained
spherical deconvolution (CSD) [68, 69].
DTI measures the three-dimensional diffusion of water as a function of spatial location [67]. In
white matter, the presence of axons and bundles running in parallel constrains the free motion
of water molecules, a condition known as diffusion anisotropy. This feature can be exploited to
calculate different scalar measures namely fractional anisotropy (FA), mean diffusivity (MD),
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radial diffusivity (RD), and axial diffusivity (AD) [67]. FA measures the degree of uniformity of
water diffusion for a specific orientation [70]. Higher values are found in tissues with oriented
structures organized in a common direction, such as white-matter tracts while lower values
are found in damaged tissues due to the loss of coherence in the main diffusion direction. AD
describes the diffusivity of water molecules parallel to fibers bundles while RD refers to the
diffusivity of water molecules which is perpendicular to fibers bundles. Decreased AD but
unchanged RD is typically assumed to indicate white matter damage. MD is a measure of the
average diffusion in a certain time [71] and it is higher in damaged tissues as a result of increased
free diffusion. The accuracy of the DTI model is limited in brain regions with crossing fibers
where many voxels contain contributions from different oriented fiber populations and make it
challenging to interpret metrics such as FA [72, 73]. To overcome this problem, one alternative
method is constrained spherical deconvolution [68] which models the diffusion signal in each
voxel as a function of all fiber orientations within the voxel (i.e., fiber orientation distribution
- fOD). FOD can be used to calculate quantitative measures of microscopic and macroscopic
white matter morphology (i.e., fiber density, fiber-bundle cross-section, fiber density and cross-
section) and also to perform tractography [74, 68, 75, 76]. From both DTI and CSD metrics, it is
possible to infer long-range connectivity patterns between distant brain regions namely Fibre
Tractography (FT) [77, 78]. Fiber tractography is computed through algorithms that can be
classified into deterministic [79] and probabilistic [80]. The former reconstructs the most likely
trajectory from a given point (i.e., region of interest; ROI), the latter produces a distribution of
trajectories, reflecting the degree of uncertainty of the trajectories.
As described above, dMRI has the potential application to describe the anatomic connections
between different parts of the brain on an individual basis. This allows the possibility to
investigate white matter tracts in a non-invasive way in clinical populations such as uCP.

3.2. Findings related to motor function

Diffusion MRI (dMRI) can provide a precise measures of structural connections of the brain.
Over the past years, several studies applied dMRI to investigate structure-function relationships
in children with uCP. The systematic review of Mailleux et al. [81] showed that in uCP, con-
sistent relationships were found between white matter integrity of the corticospinal tract and
somatosensory pathways (e.g., thalamocortical projections, medial lemniscus) with upper limb
sensorimotor function. In addition, in uCP white matter abnormalities were widespread across
the brain including non-motor areas. In additional studies, lower FA (i.e., loss of coherence in
the main diffusion direction due to tissue damage) and higher MD (i.e., increased free diffusion
due to tissue damage) were found in the posterior limb of internal capsule (PLIC) and along the
affected corticospinal tract (CST) [82, 83, 84], in thalamocortical projections, and fronto-parietal
association pathways [84] of children with uCP when compared to the less affected hemisphere
or the brain of typically developing children. Furthermore, tractography studies showed de-
creased white matter integrity in the CST, projections traversing the PLIC, thalamocortical
projections, the medial lemniscus, the corpus callosum, and the corticopontocerebellar tracts
of the lesioned hemisphere in children with uCP compared to the dominant hemisphere of
typically developing children [85, 86, 87, 88, 83]. A summary of the main neuroimaging studies
in children with uCP is provided in Table 4.
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Table 4
Studies on neuroimaging in children with unilateral cerebral palsy (uCP).

Authors N CP MRI Main findings
Pagnozzi et al.,
2016 [65]

107 (mean age
10.9 yrs)

sMRI
· Lesion segmentation correlation to
clinical outcomes

Mackey et al.,
2014 [82]

20 (mean age
15 ± 3 yrs)

dMRI
· Lower FA, higher MD in the PLIC
and in the affected CST

Weinstein et al.,
2014 [83]

14 (mean age
10.6 ± 2.7 yrs)

dMRI
· Lower FA, higher MD in the PLIC
and in the affected CST

Pannek et al.,
2014 [84]

50 (range 5-17 yrs) dMRI
· Low FA in CST, thalamocortical projections,
and fronto-parietal association pathways

Fiori et al.,
2015 [85]

36 (mean age
12.61 ± 3.2)

dMRI
· Disruption of structural cerebrocerebellar
connectivitylinked to impaired hand function
in bimanual skills

Hodge et al.,
2017 [86]

28 (range 6-18 yrs) dMRI
· Lower FA and RD associated with decreased
size of CST and AHA and MA assessments

Kim et al.,
2015 [87]

36 (mean age
5.6 ± 3.2 months)

dMRI
· Lower FA in CST associated with Functional
Level of Hemiplegia scale

Kuczynski et al.,
2017 [88]

29 (range 6-19 yrs) dMRI

· Lower FA and higher MD, RD, and AD
compared with the non-dominant hemisphere
of controls
· Impairments in proprioception correlated
with lesioned hemisphere DCML tract

Kuczynski et al.,
2018 [89]

33 (range 6-19 yrs) dMRI
· FA, MD, RD, AD of lesioned CST correlated
with visually guided reaching task performance

Weinstein et al.,
2014 [83]

14 (mean age
10.6 ± 2.7 yrs)

dMRI
· Reduced WM integrity in CC, affected CST
and affected PLIC related to hand function

CP, cerebral palsy; sMRI, structural MRI, dMRI, diffusion MRI; FA, fractional anisotropy; MD, mean
diffusivity; RD, radial diffusivity; AD, axial diffusivity; PLIC, posterior limb of the internal capsule; CST,
corticospinal tract; CC, corpus callosum; DCML, dorsal column-medial lemniscus; WM, white matter;
AHA, assisting hand assessment; MA, Melbourne assessment

As highlighted in previous findings [81], most of the studies investigated the relationship
between white matter integrity and motor function in children with uCP. Nevertheless, in
children born very preterms dMRI findings (i.e., thalamic radiations, inferior longitudinal
fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus) also suggest the
presence of white matter damage in brain regions not only involved in motor but also visual
functions [90].

3.3. Findings related to visual and visuomotor function

Previous studies [91, 92, 93] have attempted to define a relationship between visual disorders
and brain damage in children with CP. Results showed that PVL is the most common causative
lesion in children with spastic CP and also frequently affects the visual pathways [94, 95, 96].
With regard to grey matter structures, damage to the thalamus has been associated with severe
visual impairment [97, 98, 99, 100]; lesions to occipital-parietal areas with impairments in visual
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crowding [101, 102], and reduction of the thickness of the primary visual cortex with motion
perception in children with PVL [103]. The study of Tinelli et al. [96] explored the relationship
between type and severity of brain lesion on sMRI and visual function in children with bilateral
CP and PVL. Brain damage scores (i.e., global structural, hemispheric, and subcortical) were
calculated with the semi-quantitative template of Fiori et al [62]. Visual functions were assessed
with age-specific tests for fixation, smooth pursuit, saccades, nystagmus, visual acuity, visual
field, stereopsis, and colour perception. For each test they provided a score of 0 if it was not
compromised or 1 when there was an impairment. A visual total score was obtained from the
sum of all of the items, ranging from 0 to 8. Results showed that brain lesion severity strongly
correlated with visual function total score. Specifically, visual acuity, visual field, stereopsis,
and colour were compromised when cortical damage was present, while fixation and saccades
were affected in the presence of subcortical brain damage. Similarly, a study of Sakki et al. [9]
investigated the association of brain lesions with visual function (i.e., visual acuity, visual fields,
contrast sensitivity, stereopsis, visual perception, visuomotor integration) in children with VP
impairments with and without CP. Results showed that approximately half of the participants
had abnormalities in the frontal, temporal, or striatum areas, and approximately three quarters
in the occipital or parietal areas. Cerebellar or brainstem abnormalities were present in less
than a fifth of the participants. Nevertheless, no clear associations were found between regions
or number of brain lesions and degree of visual acuity and contrast sensitivity. As reported by
the authors, this result differs from the findings of Tinelli et al. [96] who showed that cortical
and subcortical lesions strongly correlated with visual function total score. One possible
explanation is that Tinelli et al. [96] used a single category of “visual dysfunction” including
fixation, saccades, nystagmus, acuity, visual field, stereopsis, colour perception, whereas Sakki
et al. [9] investigated acuity and contrast sensitivity separately from visuoperceptual functions.
Furthermore, a previous study [92] showed that visual field defects were not always related
to damage in the optic radiations or the visual cortex and the review of Philip et al. [30]
reported a low correlation between MRI and different patterns of visuoperceptual deficits.
Indeed, it is important to mention, that not all damage of the brain leading to visual deficits
is visible on sMRI. For example, Guzzetta et al. [104] studied 26 school-aged preterm born
children, among which only 13 had PVL with significant visible brain damage on structural
MRI. However, all 26 children showed significantly lower perception of pure global motion
relative to full-term controls, irrespective of the presence of brain damage visible on MRI [104].
The lack of association between visual skills and observed anatomical brain anomalies can be
explained by the fact that conventional MRI techniques do not reveal all structural injuries
within the visual pathways [99, 8]. For example, premature infants frequently suffer from
diffuse white matter injury not easily detectable on anatomical images [105]. Therefore, the
application of more advanced neuroimaging techniques such as dMRI can further enhance the
understanding of the visuomotor system in children with uCP .

Changes in the structural and functional integrity of white matter pathways such as
the optic radiations, detected by dMRI, were found to be associated with reduced visual acuity
and visual perceptual dysfunctions [106, 107, 102, 108]. More specifically, abnormalities in
the inferior longitudinal fasciculus have been implicated in object recognition difficulties in
children with CVI [102], while abnormal white matter connections of the visual cortex to the
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temporal lobe was found in individuals previously diagnosed with CVI (mean age = 17.36
years ± 3.03 SD) [108]. Furthermore, recent findings from Chandwani et al. [90] showed
that CSD metrics in several white matter tracts of the visual pathways (i.e., the splenium of
the corpus callosum, bilateral representations of the inferior longitudinal fasciculus, inferior
fronto-occipital fasciculus, superior longitudinal fasciculus, and posterior thalamic radiations)
were significantly associated with abnormal visual attention scores in very preterm infants at
3–4 months corrected age. Such results start to clarify that already at a young age the link
between visual-behavioral scores and brain structures can be demonstrated. Hence, follow up
of visual-behavioural outcome is crucial for determining possible biomarkers. A summary of
the main studies linking neuroimaging to visual and visuomotor outcomes is provided in Table
5. Although these studies bring important insights in the relation between brain damage and
visual function, this has not been specifically investigated in children with uCP.
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Table 5
Studies linking neuroimaging to visual and visuomotor outcomes.

Authors N CP Diagnosis MRI Main findings

Fazzi et al.,
2009 [91]

22 (range
6–15 yrs)

Preterm,
PVL,
spastic
diplegia

sMRI

· Deficit in visual functions
not related to parietal and

temporal WM, or GM of area
of visual associative functions

Van den Hout
et al., 2004 [93]

7 (mean
age 5 yrs)

Preterm,
PVL

sMRI

· Lower peritrigonal WM
volume
· Gliosis and cortical damage
associated with poorer
visuo-perceptual skill

Lanzi et al.,
1998 [95]

38 (range 20 m
to 5 yrs)

Preterm,
PVL

sMRI
· Lesions in optic radiations
and calcarinecortex related to
lower visual acuity

Tinelli et al.,
2020 [96]

72 (mean age
3.2–14.4 yrs)

Bilateral CP
and PVL

sMRI

· Impaired visual acuity, visual
field, stereopsis and colour
associated with cortical damage
· Impaired fixation and saccades
associated with subcortical
brain damage

Cioni et al.,
1996 [97]

80 (age
not reported)

Neonatal
encepha-

lopathy
sMRI

· Visual acuity related to damage
to visual cortex and optic radiations

Ortibus et al.,
2009 [99]

70 (range
4 –20 yrs)

Preterm, CP sMRI
· Perceptual visual impairment
related to dorsal stream impairments

Ricci et al.,
2006 [100]

12 (mean
age 1 yr)

PVL sMRI
· Thalami atrophy and abnormal
optic radiations related to visual functions

Bhat et al.,
2021 [103]

13 (mean age
11.2 ± 4.5 yrs)

Preterm,
PVL
spastic
diplegia

sMRI
· V1 cortical thickness negatively
correlated with motion
coherence sensitivity

Sakki et al.,
2022 [9]

28 (range
5 –15 yrs)

CVI
sMRI

· Main damage in the
postgeniculate visual pathways
and visual cortex
· No relation between brain
scores (i.e., Fiori scale) and
acuity and contrast sensitivity

Guzzetta
et al.,2009 [104]

26 (range
8.2–12.9 yrs)

Preterm,
PVL

sMRI
· Low score on motion
perception compared to controls
· Ventral stream-related functions
related to the presence of PVL

Bauer et al.,
2014 [106]

2 (range
16 – 22 yrs)

CVI dMRI
· Lower density of WM in inferior
frontal-occipital fasciculus and superior
and inferior longitudinal fasciculi

Ortibus et al.,
2012 [102]

11 (range
3y5mo–13 yrs)

CVI dMRI
· Lower FA in the inferior
longitudinal fasciculus related to
impaired object recognition

Pamir et al.,
2021 [108]

12 (range
14 –24 yrs)

CVI dMRI
· Higher RD within cortico-cortical but
not thalamo-hMT+ connections

Chandwani
et al., 2022 [90]

191 (3–4 m
corrected age)

Very
preterm

sMRI
dMRI

· FDC of the left posterior thalamic
radiations, left inferior longitudinal
fasciculus, right superior longitudinal
fasciculus, and left inferior fronto
occipital fasciculus associated
with visual attention scores

CP, cerebral palsy; PVL, periventricular leukomalacia; CVI, cerebral visual impairment; sMRI, structural
MRI, dMRI, diffusion MRI; FA, fractional anisotropy; RD, radial diffusivity; FDC, fibre density and bundle
cross-section; hMT+, human middle temporal complex; WM, white matter; GW, grey matter
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4. Conclusion and gaps

In sum, children with uCP are not only affected by their motor impairment, but they also
present with heterogeneous visual dysfunctions, that potentially further impact their already
compromised manual function.
Whereas the motor part of the clinical picture of children with uCP has been extensively studied,
the visual deficits have not been systematically mapped and certainly, the relation between
brain damage and visual dysfunction and the interplay with visuomotor function remains to be
elucidated.
Previous findings showed that children with uCP have impairments in oculomotor, geniculos-
triate functions, visual perceptual, and visuomotor functions. Neuroimaging findings revealed
that PVL is the most common structural brain lesion in children with uCP. With regard to
dMRI, findings are mainly focused on children with CVI, showing lesions in the optic radiations
and inferior longitudinal fasciculus and on very preterm infants conditions. Hence, research
investigating which brain regions and tracts are implicated in specific visual functions and
deficits in children with uCP is limited.
To our knowledge, no previous work has systematically and comprehensively mapped the neu-
rological correlates (i.e., sMRI and dMRI) of the visual and visuomotor dysfunction in children
with CP. Since little is known about the relevance of non-motor pathways, further studies are
needed to investigate the contribution of visual pathway to visuomotor function in children
with uCP.
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Abstract
Cell cultures suspended in bioreactors in a fluid environment are the basis for cell expansion and important
medical products manufacturing. Assessing local cell distribution within bioreactors may provide
information to increase cell production efficiency. Hydrodynamics characterizations of bioreactors are
typically performed via Particle Image Velocimetry (PIV) with fluorescent polystyrene microspheres
or Computational Fluid Dynamics (CFD), while local cell distribution is monitored through expensive
sensors or direct sampling. However, PIV and CFD analysis lack of cell behaviour representativity, while
direct sampling give average and local information and may impact cell culture conditions. In this study a
novel non-invasive method, focusing on the optical investigation of suspended fluorescent nanoparticles
(NPs) -labelled Chinese hamster ovary (CHO) cells distribution within SUSPENCE® bioreactor through
PIV image processing, is presented. Our investigation showcases the favourable effect of an innovative
NPs internalisation approach in terms of cellular uptake efficiency and fluorescence brightness. Moreover,
NPs-labelled CHO cells (NP-CHO) PIV image processing and analysis robustness is validated by cell
sampling and sample processing. Furthermore, the turbulent kinetic energy distribution to gain insight
of the impact of hydrodynamic conditions on cell culture is evaluated.
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1. Introduction

Bioreactors have become fundamental devices in the biomedical industry since they are em-
ployed in different fields such as tissue engineering and cell-based therapies [1]. The use of
bioreactor for suspension cells culture gives many potential advantages over the static cell
culture, including homogeneity of cell conditions, possibility of sampling, automated systems
for controlling parameters such as pH, temperature and dissolved oxygen concentration, thus
allowing to obtain very high cell densities [2].
Assessing cell and nutrients distribution and fluid flow field is important to evaluate bioreactors
performances. In this regard, in the current study turbulent kinetic energy (TKE), a fluid dy-
namic parameter, and cell concentration distribution have been determined. A homogeneous
distribution of all components inside bioreactors, including cells, is a key property to promote
nutrients exchange and to avoid cell deposition and local cell accumulation, thus increasing cell
growth [3]. On the other hand, TKE is a fluid parameter often employed to evaluate bioreactors
mixing mechanisms [4]. As regards to evaluate fluid flow field inside bioreactors, Particle
Image Velocimetry (PIV) is a technique used to investigate fluid parameter such as flow pattern
information, velocity field and local energy dissipation rates. PIV experimentations are usually
conducted using a fluid model composed by water and specific fluorescent tracking particles.
Also, through PIV it is possible to study the fluid dynamic characteristics inside bioreactors for
cell culture [4]. However, even though tracking particles may possess the same size and density
of living cells they not have the same biological properties, so they are unable to mimic the cell
behaviour inside cell culture chambers.
Premature new-born children strongly risk to develop health problems in childhood and ado-
lescence, early diagnostics are fundamental to prevent and ensure the welfare of the child
[5]. Different cell types can be analysed in newborns, for instance studies have shown the
role of nasal epithelial cells in neonates with asthma and allergic rhinitis and so their impact
on respiratory disease in adulthood [6]. Another example is represented by peripheral blood
mononuclear cells from umbilical cord blood of premature born babies, that can be cultured in
bioreactors for suspended cell culture and that can be employed to investigate inflammatory
processes that are a cornerstone of pathophysiology in the developing organs of preterm born
children [7][8]. As it is reported in the mentioned studies, the improvement in cell culture
through the employment of bioreactors will lead to obtain a higher number of cells and a
higher amount of biomolecules production compared to static cell culture, thus facilitating the
downstream early diagnosis processes for preterm new-borns. In the current study, CHO cells
were tested with the possibility of extending the same analysis to other cell types.
In this study a novel non-invasive method has been developed, focusing on the optical investiga-
tion of suspended fluorescent nanoparticles (NPs) -labelled Chinese hamster ovary (CHO) cells
distribution within SUSPENCE® bioreactor, through PIV image processing. PMMA-FluoRed-
COOH NPs were internalized by CHO cells and the experiments were conducted using cell
culture medium as the liquid phase. Moreover, NPs-labelled CHO cells (NP-CHO) distribution
analysis robustness was confirmed by comparing it to direct cell sampling measurements.
The current work is structured as follows. Section 2.1 describes how cell culture was performed,
both in static and in dynamic conditions. In section 2.2 cell label techniques and NPs inter-
nalisation inside cells methods are presented (results reported in Section 3.1). In section 2.3
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the experimental setup used for PIV images acquisition of NP-CHO, including bioreactor set
up and PIV system description, are reported. Section 2.4 describes the techniques used for
PIV-images post processing: firstly the algorithm used for background noise reduction and then
the methods employed for cell and TKE distribution estimation (results reported in Section 3.2).

2. Materials and Methods

2.1. Cell culture

In recent years, NPs have gained increasing interest in various research fields, especially in the
biotechnological and biomedical fields [9]. Moreover, fluorescent NPs can be internalised by
living cells, and their uptake can be assessed via fluorescence microscopy, at the same light
wavelength emitted by tracer particles used for PIV analysis [10] [9]. Methods to obtain NPs
internalisation within CHO cells growth in adherence can be easily found in literature [11]. For
these reasons, and since the aim of this work was to study cell distribution within a bioreactor
for cell growth in suspension via PIV, we choose to use NPs to label CHO cells, firstly starting
from CHOs growth in adherence and subsequently with CHOs growth in suspension.

2.1.1. Adherence cell culture

CHO cells (American Type Culture Collection) were grown in Corning® TC-Treated Multiple
Well Plates using Ham’s F-12K (Kaighn’s) medium supplemented with 10 % heat-inactivated
fetal bovine serum (FBS, Euroclone), 2 mM L-glutamine (Sigma), 1.0 unit ml1 penicillin (Sigma),
and 1.0 mg-1 streptomycin (Sigma). The cell line was cultured on a plastic Petri dish at 37°C in
a humidified incubator containing 5% CO2.

2.1.2. Suspension cell culture

The content of one vial from the cryopreserved CHO cell bank was thawed and suspended
in 80 mL pre-warmed CD FORTI CHO medium (Thermo Fisher) supplemented with 4 mM
L-glutamine (Biowest, France) and 1% Penicillin/Streptomycin (GE Healthcare Bio-Sciences,
Sweden). The CHO suspension was grown in ventilate Erlenmeyer flask and kept in a shaker
incubator (80-85 RPM) at 37°C and with 5-7% CO2 for 96 hours.

2.2. Cell labelling and nanoparticles internalisation inside cells

2.2.1. Fluorescent nanoparticles cell internalisation

Red-fluorescent monodisperse polymethylmethacrylate carboxylated particles (microParticles
Gmbh, Germany) with a mean diameter of 286 nm (PMMA-FluoRed-COOH, SD = 7nm, abs/em
= 530/607 nm, COOH >30 µmol/g) were used to stain cells. The internalisation of NPs in CHO
cells grown in adherence was performed as follow: firstly, cells were seeded in a Corning®
TC-Treated Multiple Well Plates, where each well contained 3mL of suspended cells at a cell
concentration of 8,33 · 105 cells/mL. A 0,0025 g/mL NPs starting solution was obtained by
diluting PMMA-FluoRed-COOH stock solution at room temperature with cell culture medium.
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0,1 mL of starting solution were added to each well to obtain a NPs concentration of 68000
NPs/cell, expressed also as 1,7 · 1012 NPs/mL and 83,3 µg/mL, the latter comparable to NPs
concentration values for cell internalisation found in literature [12]. Cells were incubated
for different time periods (1 hour, 3 hour and overnight) under growth conditions in order to
identify proper incubation periods to maximize the number of internalised NPs. Then, cell
medium containing residual NPs was discarded and cells were washed thrice with Dulbecco’s
phosphate buffered saline (DPBS). DNA staining was performed by using Hoechst dye (Thermo
Scientific™ Solution Hoechst 33342) 20 nM. Cells were harvested with 0.05% trypsin/EDTA 1 ×
and via centrifugation (980 RPM, 5 minutes) and suspended in fresh cell culture medium. Finally,
NPs-labelled cells (NPs-CHO) were examined using a fluorescence microscope (Olympus IX51,
RT Slider SPOT—Diagnostic Instruments, Sterling Heights, MI, USA), equipped with a 20 ×
objective and with a cooled CCD camera (Spot RT Slider, full frame; Diagnostic Instruments).
Moreover, the effect of fluorescence microscope exposition time (10, 100 and 1000 ms) on images
quality, intended as the easiness for the user to recognise NPs inside cells, was qualitatively
evaluated.
Regarding suspended CHO cells, a different method was developed and used to ensure NPs
internalisation. Firstly, PMMA-FluoRed-COOH NPs working solution at the same concentration
used for adherent cells internalisation (as mentioned above: 68000 NPs/cell; 1,7 · 1012 NPs/mL
NPs/mL; 83,3 µg/mL) was obtained by diluting PMMA-FluoRed-COOH NPs stock solution in
fresh cell culture medium. CHO cells were seeded and expanded in suspension cell growth
conditions, and when the required cell number was reached, they were harvested via centrifuga-
tion (700 RPM - 6 minutes) and re-suspended in PMMA-FluoRed-COOH NPs working solution,
transferred into a T175 Corning® cell culture flasks (Falcon) and incubated at different time
periods in static condition. Then, cells were washed thrice via centrifugation (700 RPM - 6
minutes) and re-suspended in fresh cell culture medium. Images of fluorescent nanoparticles
labelled – suspended CHO cells (NPs-SCHO) were collected using a fluorescence microscope
(Nikon Eclipse E400) with B-2A filter (Ex=450-490, DM=500, BA=515).
In order to compare the effect of NPs encapsulation in terms of fluorescence intensity to different
cell staining procedures, NPs-SCHO fluorescence intensity was compared to the one of CHO
cells stained with CellTracker®Orange probe (Invitrogen, UK), a largely used cell dye [13] [14].

2.2.2. CellTracker® staining

Cell staining was performed, according to manufacturer’s protocols, by using CellTracker®
Orange probe (Invitrogen, UK). 10 mM CellTracker® Orange (Invitrogen, UK) stock solution
was prepared by dissolving CellTracker® in high-quality, anhydrous dimethylsulfoxide (DMSO).
25µM staining solution was obtained diluting stock solution to CD FORTI CHO medium. The
working solution was added to suspended cells after harvesting them via centrifugation (700
RPM, 6 minutes), and cells were incubated for 45 minutes under growth conditions. Then,
the working solution was replaced with fresh media and the cells were examined using two
fluorescence microscope, depending on the laboratory availability: (i) Nikon Eclipse E400 with
B-2A filter (Ex=450-490, DM=500, BA=515) and (ii) Olympus IX51, RT Slider SPOT equipped
with a 20 × objective and with a cooled CCD camera Spot RT Slider, full frame, Diagnostic
Instruments USA).
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2.3. Experimental set up for PIV images acquisition

2.3.1. Bioreactor set up

Suspence® (Cellex, Italy) was the bioreactor used in this work: it consists of a device in which
cell culture fluids are continuously pumped in its semi-transparent vessel from the bottom and
exit from an outlet in the upper part. Cell suspension in CD FORTI CHO medium (Thermo
Fisher) supplemented with 4 mM L-glutamine (Biowest, France) and 1% Penicillin/Streptomycin
(GE Healthcare Bio-Sciences, Sweden) was inoculated in the bioreactor with a starting volume of
1500 mL, at a starting density of 5·105 cells/mL, where the 5% of the total were NPs-SCHO cells.
Medium perfusion was guaranteed by using a peristaltic pump (MASTERFLEX® L/S® 07522-20)
setting a flow of 80 mL/min. Figure 1 illustrates the inner geometry of Suspence® vessel. Cell
samples were withdrawn at different time points after the cell seeding (30, 180 and 300 minutes)
in three different areas inside the bioreactor: the "Bottom" area, located approximately near the
bottom inner surface of the vessel, the "Centre" area, at approximately 70 mm from the bottom,
and the "Top", located near the liquid free surface.

Figure 1: 3D rendering of the inner geometry of the vessel of Suspence® bioreactor. Cells are seeded
inside the vessel and they move from the bottom part to the top.

2.3.2. PIV acquisition system

Suspence® bioreactor was positioned inside a parallelepipedal glass tank filled with distilled
water, to reduce errors caused by refractive and diffractive light phenomena on the cylindrical
surface of the bioreactor. PIV analysis were carried out by employing planar PIV system (Dantec
Dynamics, Denmark) with a green laser (Dantec Dynamics, Denmark) providing a light beam
of 532 nm and a Flow Sense USB camera (Dantec Dynamics, Denmark). The camera was
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positioned perpendicularly to the laser beam. Figure 2 illustrates the PIV acquisition system
and the bioreactor configuration for PIV images acquisition employed during this work.

Figure 2: PIV system and the bioreactor configuration for images acquisition employed during this
work. The Suspence® bioreactor was positioned inside a glass tank filled with distilled water to reduce
refractive and diffractive light phenomena. A green laser and a camera (Dantec Dynamics, Denmark),
positioned perpendicularly to the laser beam, were also used.

Planar images for cell distribution were acquired at nine different levels of frontal plane
of the bioreactor, with the first level located at the zone in direct contact with the bottom
surface of the bioreactor and the last level covering the sections next to the free surface of
the cell suspension and the bioreactor outlet. A Cartesian coordinate system was used, with
the vertical and horizontal coordinates indicated respectively by y and x. The system origin
was located at the left end of the bioreactor bottom inner surface. The laser was oriented to
acquire the horizontal and vertical direction of cells’ speed. Figure 3 illustrates the spatial
distribution of the nine investigated sections. Images length along the y-axis was approximately
6 mm, while images width along the x-axis ranged from 45,7 to 49,1 mm, corresponding to the
laser-illuminated area dimensions. Laser beam thickness was approximately 1 mm.

93



Figure 3: Spatial distribution of the nine planar sections investigated via PIV. These sections were
analysed in order to evaluate cell distribution and flow speed along all the vessel height. Section vertical
length is approximately 6 mm, while horizontal width ranges from 45,7 to 49,1 mm. Dimension on the
right are expressed in millimeters.

2.4. PIV images post processing

2.4.1. PIV images background noise removal

A Dantec Dynamic PIV system was used to acquire the images in the vertical plane; nine sections,
as shown in Figure 3, were recorded and at different time points. For each condition 100 images,
subsequentially used for TKE distribution estimation, were taken and imported into Python to
estimate the percentage of cells in suspension. Two images for each section were analysed at a
time. Background noise removal is fundamental for biomedical image processing [15]. During
the PIV images post processing the background noise, caused by the presence of refractive
and diffractive light phenomena, was reduced by using a Python script. In our application the
MedianBlur value, obtained computing the median of all pixels under the kernel window and
the central pixel, represented the background noise, since noise corresponded with a diffuse
background halo. Different kernel size, consisting in the product between the filter mask width
and height in pixels, were used (7x7, 11x11, 15x15, 21x21) [16]. Thus, the background value was
subtracted from the starting images. The subtraction was performed because the significant
content of PIV images was assumed to be the single pixel value, that represented the absence

94



or the presence of single or aggregate cells. The threshold binary function was also used to
separate even more the objects (NPs-SCHO) considered as a foreground from its background.
In brief, the images were modified by this function so that all pixel intensity values higher than
the threshold were assigned the maximum value (white), or the minimum value (black). More
specifically, when pixel values were greater or equal than the set threshold value (50 or 100),
they were set to 255, in the other case they were set to 0 (black) [17]. Basic Python libraries
have been used, such as “cv2” to read images, “numpy” for scientific computing and “matplotlib”
to plot images.

2.4.2. Cell distribution estimation

For each of the nine sections, the number of nonzero pixels of the two images was determined,
and the result of the mean between these numbers gave an estimation of the amount of cells
in suspension. PIV image processing and analysis robustness was assessed by comparing it to
cell distribution analysis carried out via cell sampling and sample processing. Since three cell
sampling points were used, three mean areas close to the point where cells were withdrawn
were investigated. These three areas, which account for cell distribution in the bottom, centre
and upper part of the bioreactor, were named “Bottom”, “Centre” and “Top” and represented
respectively the mean between values measured in section (1, 2, 3), (4, 5) and (6, 7, 8, 9). For
each area, values were normalised to the total value, equal to the sum of the total values of
the tree areas, calculated at time 0 (cell seeding into the bioreactor). The results were shown
as bar graphs and compared with values obtained from the 3 cell samples. Total cell counts
were determined by hemocytometer, as Bürker chamber, using a fluorescence microscope. The
cell samples and the images acquired by the PIV system and post-processed with the above-
mentioned Python Script were taken at different time points after bioreactor seeding (30, 180
and 300 minutes).

2.4.3. Ensemble-averaged turbulent kinetic energy distribution analysis

TKE is an index that can be employed to understand mass transfer and cell viability within
bioreactors [18] [19] [20]. TKE distribution was obtained by re-adapting a previous PIV data
processing method developed by Odeleye et. al. [10]. Measurements were carried out with
a bioreactor fill volume of 1500 mL and at a flow rate of 80 mL/min. For each frontal plane
section of the bioreactor, 100 image pairs were collected to obtain 100 instantaneous NPs-SCHOs
velocity components (along the x and y axis) vector maps. The two components along the x
and y axis of NPs-SCHOs velocity from the PIV measurements were calculated employing the
adaptive PIV processing algorithm provided within Dynamic Studio software (Dantec Dynamics,
Denmark). Interrogation areas were set from 16x16 to 32x32 pixels, while a universal outlier
detection in neighbourhoods of 5x5 pixels was used for validating vectors. For velocity gradient
adaptivity, the absolute value of each component of the velocity gradient was limited to 0.1 while
the total magnitude of the gradients (square root of the sum of the squares) was limited to 0.2.
Spatial resolution obtained within vector maps ranged between 0.4 x 0.4 and 0.48 x 0.48 mm. The
mean value between vector maps was calculated in order to obtain vector maps representing the
“Bottom”, “Centre” and “Top” areas respectively between velocity values calculated in section (1,
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2 ,3), (4, 5) and (6, 7 ,8, 9). These were post-processed by using a second Python script to obtain
the ensemble-averaged turbulent kinetic energy through equations presented by Odeleye et.
al. [10]. Since in the latter work kinetic energy was divided to the square of spinner tip speed
and Suspence® bioreactor does not have an impeller, in this work turbulent kinetic energy has
been divided to the square of the input fluid speed. For simplicity, turbulent kinetic energy
distribution was normalised to the maximum value found in all the investigated frontal plane
levels.
Figure 4 illustrates the steps, from the acquisition one to those executed in the post processing
phase, performed in this work.

Figure 4: Schematics of PIV images acquisition and post processing steps performed in this work.

3. Results and discussion

3.1. Fluorescent cell labelling

PMMA-FluoRed-COOH NPs uptake in CHO was monitored via fluorescence microscope (Figure
5). Images show that, at each investigated incubation time, NPs appear to be localised around cell
nuclei, and this may reveal that NPs were able to accumulate within cells. Also, Figure 5 shows
that the number of red spots around cell nuclei tend to increase over incubation time, to such
an extent that after incubating cells overnight, red fluorescence light appears to be predominant
(Figure 5c). In this case, NPs can be considered internalised since some nuclei appear to be
purple due to light overlap. For these reasons, NPs incubation time was subsequently set at 10
hours. These findings may suggest that the internalised NPs number increase over incubation
time. This result is in line with findings shown by dos Santos et. al. [12]. Further studies are
needed to fully understand the internalisation mechanisms.

Figure 6 shows PMMA-FluoRed-COOH NPs uptake in CHO cells at three different exposure
times. As can be recognised from these images, an exposure time of about 100 ms was considered
suitable to assess NPs internalisation.
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Figure 5: Internalisation evaluation of PMMA-FluoRed-COOH NPs inside CHO cells (NPs-CHO) via
fluorescence microscope at different incubation times under cell culture conditions: (A) 1 hour, (B) 3
hours and (C) overnight. Cells nuclei were stained in blue while NPs are visualised in red. Exposition
time: 1000ms. Scale bar = 100 𝜇𝑚.

Figure 6: Internalisation of PMMA-FluoRed-COOH NPs inside CHO cells (NPs-CHO) evaluation
performed via fluorescence microscope at different exposition times: (A) 10 ms, (B) 100 ms and (C) 1s.
Cell nuclei were stained in blue while NPs are visualized in red. Scale bar = 100 µm.

Figure 7A illustrates CHO cells stained with cell tracker CellTracker®. In this case, few cells,
shown as red spots, can be distinguished (e.g in the upper-right corner of the image). Figure 7B
shows PMMA-FluoRed-COOH NPs uptake in CHO cells. In order to compare the results, the
incubation time for NPs encapsulation was set to 1 hour (similar to the incubation time set for
CellTraker dye, 45 min). From these images the difference in the obtained fluorescence intensity
between the two used methods is appreciable, with the NPs-CHO cells fluorescence being more
intense than CellTracker® one. Further quantitative fluorescence intensity analysis are needed
to confirm this result.
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Figure 7: Comparison of the fluorescence intensity obtained via CellTracker® cell dye staining and via
NPs internalisation. (A) CHO cells stained with CellTracker® (Incubation Time: 45 minutes), cells are
visualized as red spots and (B) PMMA-FluoRed-COOH NPs inside CHO cells (NPs-CHO), cells nuclei
were stained in blue while NPs are visualized in red (Incubation time: 1 hour). Images were acquired via
fluorescence microscope. Exposition time: 100 ms. Scale bar = 100 µm.

3.1.1. Fluorescent nanoparticles internalisation in cells growth in suspension

The effectiveness of the new method developed to ensure NPs internalisation within CHO cells
growth in suspension was demonstrated by comparing fluorescence intensity of CHO cells
growth in adhesion stained with CellTracker® (Figure 8A) to the one emitted by NPs-SCHO
(Figure 8B). These images provide evidence that cells can be clearly distinguished with both
methods. Also, fluorescence intensity of NPs-SCHO appears to be comparable to CellTracker®
one. Further quantitative fluorescence intensity analysis is needed to confirm this result.

Figure 8: Evaluation of the NPs internalisation within CHO cells growth in suspension in terms of
fluorescence intensity. Fluorescence microscope images: (A) CHO cells growth in adhesion stained with
CellTracker®: cells are visualized in green and (B) PMMA-FluoRed-COOH NPs inside CHO cells growth
in suspension (NPs-SCHO), NPs are visualized in green too. Incubation time: overnight. Exposition time:
69 ms. Scale bar = 50 µm.
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3.2. PIV images post processing

3.2.1. PIV images background noise removal

Section three of one of the nine sections acquired using the PIV system was used to evaluate the
performance of the developed Python filter and is shown in Figure 9. In this case, the kernel size
was set to 21, while the value of the Threshold Binary function was set to 50. Figure 9A, 9B and
9C represent respectively the non-filtered image, the image containing only the background
noise, and the filtered image obtained via the employed Python script processing. As can be
seen from these figures, the reduction of noise is clearly distinguished on the filtered image
(Figure 9C) single fluorescent dot, that can be associated with single cells or cell aggregates, can
be distinguished.

Figure 9: Effect of the background noise removal filter on PIV images of NPs-SCHO within SUSPENCE®.
(A) Non filtered PIV image (B) PIV image containing only the background noise and (C) Filtered PIV
image using Python script. Analysed section number: 3. Scale bar = 5mm.

3.2.2. Cell distribution estimation

Figure 10 shows cell distribution results obtained via PIV images post processing and via
cell sampling. The results of the two different used methods may be considered comparable,
especially in the first two time points considered. In addition, a homogeneous distribution
of the cell distribution inside the vessel is highlighted, indeed values found in different areas
(Bottom, Centre and Top) appear to be similar. After 30 minutes from seeding the percentage
of the cell concentration is about 33%, instead after 180 minutes about 34%, in both systems
described. This highlights how cell suspension is maintained over time. Anyway, a difference
between the two methods can be seen in the last time point considered (300 minutes). In both
systems the percentage of cell concentration in the Top area is about 40%. While the Bottom
area is about 28% and 32% and the Centre area is about 33% and 27%, in the PIV system and cell
samples respectively. This difference may be due to human errors occurring during PIV image
acquisition procedures. In the latter case, the measurements obtained from the cell samples
are considered more truthful, showing a non homogeneity of the cell concentration inside the
vessel.
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Figure 10: Bar graphs showing cell distribution results obtained via PIV images acquisition and Python
script postprocessing (PIV) compared to the one obtained via cell sampling and cell counting (Sampling),
at different time points.

3.2.3. Ensemble-averaged turbulent kinetic energy distribution analysis

Figure 11 shows the ensemble averaged turbulent kinetic energy (TKE) distribution of NPs-
SCHO in the tree investigated bioreactors areas. A high normalized TKE area can be found in
the central region of the Bottom area, corresponding to the region close to the bioreactor inlet.
In this area the value of TKE appears to gradually decrease when moving away from the central
zone, and this may suggest that the considered area is well mixed, since TKE is considered the
portion of kinetic energy that provides a mixing mechanism due to turbulent dispersion [4].
Mixing is fundamental to obtain homogeneity of nutrients and oxygen and to reduce gradients
induced by addition of cell culture media and acid/base tirants and to increase mass transfer.
However, an increase in turbulent energy may be related to an increase in hydrodynamic stresses
that can hinder cell viability [18][19][20]. Another high normalized TKE area is found along
the length of the top area, corresponding to the region close to the bioreactor outlet. Differently
from the TKE distribution of the bottom area, TKE appears to be high also in the peripheral
zones. Moreover, TKE distribution in the Centre zone appears to be similar to the one observed
in the bottom zone but with a lower intensity. TKE intensity in this area appears to be higher
than the one observed by Odeleye et. al.[10], and this can be associated to a higher mixing
mechanism in the central area of the bioreactor and also to the presence of an inlet and an outlet
in the Suspence® bioreactor, which are absent in the bioreactor tested in the above-mentioned
study.
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Figure 11: Ensemble-averaged turbulent kinetic energy (TKE) distribution of NPs-SCHO normalized
to the maximum TKE value found the investigated bioreactors areas (Top, Centre, Bottom). TKE is
considered the portion of kinetic energy that provides a mixing mechanism, fundamental to obtain
homogeneity of nutrients and oxygen. High normalised TKE regions can be seen near the inlet and the
outlet of the bioreactor, where flow speed is higher than the rest of the considered volume.

4. Conclusions

In this work we have demonstrated the effectiveness of the new method developed to ensure
NPs internalisation within CHO cells growth in suspension and we have exploited NPs-SCHO
to study cell and kinetic energy distribution within SUSPENCE® bioreactor via PIV analysis and
data processing. Fluorescent particles are typically employed for fluid dynamic characterization
of bioreactors and are monitored in different conditions and under various stimuli (e.g. chemico-
physical). The ability to internalise fluorescent nanoparticles inside CHO cells allowed the use
of the PIV system as a non-invasive image acquisition tool for bioreactors for cell culture in
suspension. To the extent of our knowledge, in this work for the first time living cells with
encapsuled fluorescent NPs have been employed, instead of tracer particles alone, for PIV
analysis. The quantification of cell distribution and hydrodynamic parameters, in the same
condition in which the cells are used to grow, within a bioreactor using PIV may allow a complete
and strict study upon local cell culture conditions. Regarding PIV images post processing, firstly
images background noise was successfully filtered by using our Python Script. Then, a second
script was used to calculate cell distribution within the bioreactors. Cell distribution values
appeared to be comparable, especially in the first two time points investigated, to the one
obtained via cell sampling. The ensemble averaged turbulent kinetic energy (TKE) distribution
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of NPs-SCHO was obtained in the three investigated bioreactors areas. High normalised TKE
regions were found near the inlet and the outlet of the bioreactor, where flow speed is higher
than the rest of the considered volume. Also, in the central area of Suspence® TKE intensity
appeared to be higher than the one observed in the same area of other bioreactors. In these
regions, mixing of nutrients and oxygen is promoted, but also high levels of TKE may hinder cell
viability. Future development would be employing PIV cell distribution and TKE distribution
analysis on different types of cells to predict cell distribution and behaviour within bioreactors
during longer-lasting cell culture. In conclusion, PIV cell distribution and TKE distribution
analysis inside bioreactors may represent two new methods to optimize culture conditions
for cells (e.g. Peripheral Blood Mononuclear Cells) used for preterm new-borns diagnosis and
therapy.
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Abstract
Neurodevelopmental disorders (NDD) including cognitive impairments, motor disabilities, and psychoso-
cial disorders are common among infants that are born prematurely, but the molecular mechanisms
behind them are still not clear. Nevertheless, recent studies have shown that there are some shared
molecular pathways driving NDDs and neurodegenerative diseases with sncRNAs having a significant
role in their manifestation. It is important to study and reveal the mechanism behind the development of
these disorders to predict them as soon as possible, using biomarkers and allowing medical doctors to
intervene early on, while neuroplasticity in newborns still allows for recovery to some extent. In this
work, we examine the role of sncRNAs and some of the shared pathways in NDDs, but most importantly,
we present some of the existing computational tools and databases for predicting target interactions, and
tools to perform network analysis and visualization.

Keywords
Bioinformatics, Computational tools, Biological Databases, sncRNA, molecular pathways

1. Introduction

Preterm babies are considered those who have been born before the 37th week of gesta-
tion, while births given before the 32nd week, are considered very preterm [1, 2]. Premature
deliveries have an average rate of more than 10% of total labors with an upward tendency
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worldwide [3]. From the clinical point of view, preterm infants with low birth weight have
higher chances of experiencing short- or long-term neurodevelopmental disorders (NDDs) and
related comorbidities [4]. Common NDDs are related to motor deficits such as cerebral palsy
(CP), cognitive and speech delays, visual and hearing impairments, and some psychosocial
and behavioral disorders such as Autism Spectrum Disorder (ASD) and Schizophrenia. The
most common methods of assessment of the developing brains in infants are using magnetic
resonance imaging (MRI), ultra-sound wave imaging, and Neuropsychological battery tests [5].
But this is a way of seeing the phenotype itself or predicting the outcome rather than finding
the source of the problem. Previous works have shown that genetic factors such as copy number
variations (CNVs) - which are repeated segments of DNA with higher (duplications) or lower
(deletions) abundance than the reference genome - are linked to both intellectual disabilities
[6] and motor impairments [7], and have a statistically significant relationship with NDDs and
psychiatric comorbidities [4, 8, 9].

It is well known that even though most of the human genome (>76%) can be transcribed
into RNA products, only a small fraction (∼3%) of it encodes for proteins [10]. These RNA
molecules that do not follow the central dogma of molecular biology [11], are called non-coding
RNAs (ncRNAs) and for many years were considered byproducts with low biological meaning.
This perspective started to change, and scientists began to unravel the ncRNA mystery over
the last decades with the help of advancements in sequencing methods and computational
tools. Projects such as The Human Genome Project and The Encyclopedia of DNA Elements
(ENCODE) [12], promoted the discovery of novel genes and shed light on functional elements
encoded in the human genome, especially in non-coding areas, expanding our knowledge of
their importance and their regulatory mechanisms. Studies and computational predictions
suggest that even though NDDs and neuropsychiatric diseases are highly heterogenous, there
are common enriched pathways and genetic factors between some of them [13, 14, 15]. As an
example, ASD, Tourette syndrome (TS), and Schizophrenia share some genetic modifications
that may lead to dysregulation of gene expression related to micro RNAs (miRNAs); a specific
regulatory group of short non-coding RNA molecules [10].

According to their average size, ncRNAs can be categorized into two general groups: long
non-coding (lncRNA) and small or short non-coding (sncRNA). LncRNAs extend to over 200
nucleotides (nt) and usually have a similar size to messenger RNAs which is more than 1000nt
[16], while sncRNAs typically have a length below 200nt and they are separated into two
groups based on their role in the cell; Housekeeping and Regulatory [10]. Except for other
important functional roles in the cell, lncRNAs such as pseudogenes and circular RNAs can
interact with some classes of sncRNAs, lowering their abundance in the free form through
complementarity sequences. Housekeeping sncRNAs were discovered relatively early and are
well studied, due to their abundance and their fundamental roles in the function of the cell. For
example, their roles can be the amino acid transfer (tRNAs) at protein synthesis or being involved
in RNA processing and splicing in the nucleus (snRNAs). Regulatory sncRNAs have drawn
the attention of scientists only in the last decades when technological advancements allowed
for it. Since then, their important role started to unravel and it was found that they actively
interact and interfere with other molecules, regulate gene expression, and involve in important
molecular pathways [17, 18, 19, 20, 21]. This control over the gene expression of the regulatory
sncRNAs is important because, in many diseases dysregulation of sncRNAs sequentially causes
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dysregulation of functional elements that then lead to pathological phenotypes [22, 23]. Because
of the great importance of these molecules, bioinformatics tools and dedicated databases have
been developed in the last decades to explore their role as biomarkers and their potential in
medicine. A visual taxonomy of the classification of RNA molecules can be seen in figure 1.

Figure 1: Classification of RNAs. The first split is based on the transcript product (coding/non-coding),
followed by a discrimination on the general role of the non-coding RNAs and further on the size of these
molecules. This is a modified version of the Figure 1 in the work of Gomes et al. (2020) [24].

After the systematic studies of sncRNAs, biologists clustered them by similarity and function
with the most common ones being: microRNAs (miRNA) and small interfering RNA (siRNA)
which regulate gene expression, small nuclear (snRNAs) that involve in RNA splicing, and
piwi-interacting RNA (piRNA) that mainly interfere with transposable elements (or transposons)
[10]. It is well established that sncRNAs hold a significant role also in many diseases in humans,
and they can be used as biomarkers for diagnosis or prognosis, as drug targets, and as potential
therapeutic methods [25]. Special attention has been given to miRNAs due to their high
theoretical and experimental total number, the number of their interactions, and the role they
have in both defending the homeostasis in the cell, but also related to diseases like cancer if
they are dysregulated [26].

Because of the numerous interactions of sncRNAs and other molecules in the manifestation of
diseases, a common approach is to handle this complexity with the use of interaction networks.
Since our understanding of the underlying mechanisms is still unclear for the majority of these
diseases, studying individual relationships is not enough to unravel and understand the dynamic
of these pathologies. Rather than this, a more holistic view is needed with the help of multi-layer
networks integrating instances belonging to different levels of complexity and domains (RNAs,
proteins, diseases, functions, etc.) [27]. In this context, computational modeling can help in
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reconciling the advancements in high throughput technologies with studies under the scope of
systems and also explore the pathogenesis of diseases by understanding the molecular relations
driving them, promoting treatments, drug discoveries, and precision medicine [28].

There are multiple tools nowadays that have been developed to predict the interactions
of sncRNAs and especially miRNAs. Computational methods try to predict targets of these
molecules [29, 30], pathways, and mechanisms involved in multiple diseases and disorders. Due
to their interesting nature, ncRNAs have been systematically studied and there are multiple
databases available where one can find experimental and computational information about
them, based on their categorization. Most of these databases are open-access and publicly
available. This makes the contained information accessible to everyone, helping scientists to
build predictive models for diseases, discover potential biomarkers, and even design potential
therapeutic targets.

Relevant studies were identified in PubMed, Scopus, ScienceDirect, and IEEE Xplore with no
language restrictions. The first search from these databases was performed by the first author
of this review and double-checked by the other corresponding authors. The following keywords
were used: (sncRNAs OR miRNA OR siRNA OR piRNA OR RNAi), (neurodevelopmental co-
morbidities OR co-occurrence of neurodevelopmental disorders ), non-coding RNA Databases,
(bioinformatics tools AND target prediction of sncRNA). We included only papers from January
2000 up to August 2022. Older papers were excluded, with the exception of papers explaining
concepts or statistical and mathematical techniques

In this article, we review some of the most widely used molecular biology-related databases
for the characterization and functionality of sncRNAs, and the state-of-the-art of computational
tools for the analysis of these RNA molecules in various comorbidities, such as NDDs observed
in some preterm infants [31, 32]. The main objective is to comprehensively collect in one article
information on the effectiveness and usability of biological databases and databanks, as well as
some computational tools for different types of bioinformatics analysis that are considered or
could be considered in the future for research in the field of neurodevelopmental disorders, also
considering preterm infants.

2. Features of sncRNAs

Regulatory sncRNAs can derive usually from individual genes or introns of other genes, but
it is known that by the procedure of alternative splicing they may also contain some exon
sequences. The most studied categories are miRNAs and siRNAs which have been found to
involve in many pathologies [33] and the developmental processes [34]. The biogenesis of
miRNAs has five main steps: transcription into a primary (pri-miRNA) form of a stem-loop,
cleavage into a shorter stem-loop precursor (pre-miRNA) known as hairpin, transportation
of the hairpin out of the nucleus, and a second cleavage followed by the unstranding of the
two counterparts to produce the mature miRNA. These molecules are typically 20-24nt long
[20, 35] and bind to their targets through partial complementarity -not necessarily perfect- of
their seed (nucleotides 2-8), and their mRNA target sequences in the 3’ untranslated region
(3’UTR) which are called miRNA response elements (MREs). This leads to degradation of the
mRNA molecule, or the disruption of translation by preventing the binding of ribosomes on
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the mRNA. In both cases, translational inhibition results in the silencing of the target gene, a
process also called RNA interference (RNAi). MREs can be found also in other types of RNAs
like in lncRNAs and pseudogenes, which increases the number of targets for miRNAs since
they are not strictly target-specific. This lower specificity gave rise to the idea of competitive
endogenous RNAs (ceRNA). In the ceRNA field, miRNAs become the target of other competing
molecules which based on their concentration, affinity, and the number of MREs regulate the
abundance of available miRNAs resulting in an indirect regulation of their own expression.

Similarly, siRNAs regulate the gene expression of their target. These molecules by structure,
are almost identical to miRNAs, but with the difference of having very high specificity to their
target since they usually have perfect complementarity of base pairing with them [36]. The
function of siRNAs lies in the interference with gene expression by degrading their transcript-
targets which are far fewer targets than those of miRNAs. piRNAs on the other hand, follow
a different biogenesis process which remains unclear to some extent, and also have different
mechanisms of action. They are produced by a process related to the P-element induced wimpy
testis or PIWI subfamily members, and recently they have been associated with cancer biology.
The structure of piRNAs is single-stranded molecules of length range 26-31nt and they are
known for epigenetic regulation through histone modification, but mostly for interfering with
transposable elements or “genomic parasites”, protecting the genome of the host [37].

The biogenesis and the mechanism of interaction of regulatory sncRNAs are important
since this knowledge is also implemented in the computational tools that predict their targets.
Common features on which the majority of target prediction tools are based are: the seed match,
conservation sequences, free energy, and site accessibility [38].

2.1. sncRNAs in neurological disorders

sncRNAs are crucial in the maintenance of homeostasis since they coordinate the expression
of genes through the RNAi process. It has been reported by many studies that sncRNAs
have a linked role in neurodegenerative diseases, various types of cancers [26, 37] where the
expression of sncRNAs is heavily dysregulated due to mutations, and neurodevelopmental
disorders [20, 39, 40]. Specifically, sncRNAs have been found to be part of enriched molecular
pathways in numerous neurodevelopmental disorders and comorbidities like Rett syndrome,
ASD, Down syndrome, and others [7, 10, 39, 40]. In fact, a known commonly altered pathway in
neurodevelopmental and psychiatric disorders is the mTOR pathway [41, 42]. This may indicate
that there are similar mechanisms between these disorders that lead to higher probabilities of
comorbidity. The role of sncRNAs in pathologies makes these molecules perfect candidates
for biomarkers for early detection of diseases and mechanisms of diagnosis [43], as they
are also highly ranked as therapeutic targets and in drug discovery research [44, 45]. From
what is known, although there are some sncRNAs that have been identified to have different
expression levels and to involve in the manifestation of NDDs, they do not show specific
characteristics or significant features compared to other sncRNAs. However, mutations in
the genes of the regulatory ncRNAs may be responsible for the occurrence of specific NDDs [46].
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3. Computational tools to investigate molecular mechanisms
and characteristics of sncRNAs

With the emergence of clinical and biological databases, as well as with the new technologies
in sequencing (micro-arrays, next generation sequencing (NGS), tiling arrays, etc.), new oppor-
tunities arose for computational biology and the exploration of microscopic and macroscopic
processes. Methods and tools started developing to tackle the challenges of massive amounts
of data and the complication of biological systems. Results of multiple focused experiments
started gathering and the findings were made easily accessible for further analysis. Addition-
ally, databases started implementing online tools for processing information, predicting, and
storing multiple-level entities because of the interoperability between different databases [47].
The ever-increasing number of databases along with the availability of data due to the new
technologies of high throughput techniques led to the development of new tools, methods, and
pipelines for handling the amount of available data and the extraction of new knowledge.

3.1. Biological Databases

The need for databases comes from the scattered information in literature. Having a com-
prehensive dataset helps researchers -especially in the clinical industry- to use the obtained
knowledge from multiple and different experiments easily and find associations between in-
stances leading to a better understanding of some conditions and processes. Biological databases
can be manually or automatically curated, which means that they are constantly updated with
new knowledge coming either from experiments or computational predictions. Additional to
databases of linked information, there are databanks where raw data from experiments are
stored. This, except for being a source of information for the databases, allows for meta-analysis
of the data and merging of experiments to increase the amount of data in individual studies.

In the last decades, many efforts have been done to summarize the information about
ncRNAs, as it is a game-changer in the study of cellular processes and gene regulation. Two
commonly used sources of raw data are the Gene Expression Omnibus (GEO) [48] and the
Sequence Read Archive (SRA) [49]. Both are from the National Institutes of Health (NIH),
a part of the United States Department of Health and Human Services. In GEO, one can
find collections of genomic data grouped by studies for multiple instances, and information
about the protocols followed in the conducted studies. Genome browsers such as Ensembl,
UCSC, and NCBI, provide interactive and comprehensive annotations of the genes on the
human genome, as well as multiple tools for further bioinformatics analysis such as variant
predictors and sequence comparison tools. The sequences they contain for ncRNAs are usually
imported from other sources that have been created for storing information. GeneCards and
HUGO Gene Nomenclature Committee (HGNC) are examples of generic databases containing
information about both coding and non-coding genes. Location, aliases, description, and links
to other databases can be found here, but still they only host the information contained in
the sncRNA-specific databases. There are also multiple browser-based available tools for the
analysis of the datasets such as gene identification tools for differential expression analysis on
two or more groups. SRA is a repository of high throughput sequencing data, containing the
raw sequences and alignment information, promoting reproducibility and new discoveries
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through data analysis. Similar to GEO and still from the NIH is the database of Genotypes and
Phenotypes (dbGaP), which provides also a controlled access space, meaning that some of the
datasets stored needs authorization to get access. Finally, ArrayExpress [50] supported by the
European Bioinformatics Institute (EMBL-EBI), stores high-throughput data from functional
genomics experiments. The difference with the previous databanks is that ArrayExpress
contains both the processed data and the raw sequences as well as links to the European
Nucleotide Archive (ENA). All of these repositories contain both coding and non-coding
sequences which are the building blocks for the biological databases holding information about
the structure, attributes, and interactions of molecules.

General Biological Databases
A large number of biological databases for sncRNAs have been created through the years

with diverse purposes such as annotation, structural information, function, interactions,
location, sequence, and others. There is a large part of overlapping and redundant results
contained in the databases, because of the interoperability and the information exchange
between different providers. For many years now, there have been efforts to map and annotate
all genes and transcripts, especially in the ever-increasing field of non-coding RNAs. The
reason for non-coding-specific databases is that knowing the sequence of these molecules is the
most crucial information for finding their interactions and developing computational tools for
their analysis.

sncRNA sources
miRBase. The miRBase founded in 2003 [51] is among the most significant databases for

miRNA sequences storage and annotation, with the latest version v22.1 (2019) containing 1917
hairpin instances and 2500 mature miRNAs for the human species alone. miRbase integrated
multiple tools for sequence annotation, target prediction, and new sequence registration [52].
Additionally, it includes both experimentally verified and computationally predicted active
sites and targets, and it is one of the main sources of miRNA information for other databases.
Currently, there is an effort to synchronize the miRbase with Rfam; a collection of RNA families
including sncRNAs with additional information about secondary structures. Both of these
databases contain classifications for microRNA families but so far obtained with different
methods and have a consensus of only 28% between them.

miRTarBase is a biological database that mainly provides generally validated experimentally
miRNA-Target Interactions (MTI) collected in a manual way [53]. miRTarBase contains more
than 4.4M interactions of about 3000 miRNAs for humans and has search filters based on specific
miRNA names, their targets, and diseases.

miRCarta [54] implements the information of precursor and mature miRNAs coming from
miRBase as well as predicted ones resulted from the online pipeline miRMaster [55]. The
import of these predicted miRNAs which are based on the sequence of the sample data, results
in a huge number of miRNAs in the database which is around 25k mature miRNAs and 15k
precursors for the human species alone.

An interesting and recently published comprehensive database for circulating sncRNAs is
EVAtlas [56]. It contains information for multiple families of non-coding RNAs from disease
and control datasets originated from different tissues and sources. Data collection for EVAtlas is
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made from 57 GEO and SRA manually reviewed registries, making it a great tool for circulating
biomarker studies.

Interactions and Targets databases
miRNet [57] visualization of miRNA and other molecule interactions, can be used for

multilayer network construction and ceRNA networks. It links miRNAs to coding and
non-coding molecules, transcription factors, and diseases. These features make miRNet a great
tool for multi-layer network reconstruction.

Pathways and enrichment analysis databases
Other than databases with structural details and interactions for ncRNAs, there are databases

containing information on the involvement of ncRNAs in molecular pathways and processes,
linking them in a functional role beyond their immediate first-degree interactions. The Kyoto
Encyclopedia of Genes and Genome (KEGG) is among the most used databases for pathways,
storing genomic and pathway information, and providing manually drawn maps of interactions,
regulations, and signal cascading. Despite the fact that it is so well organized, KEGG has
a limited amount of information about sncRNAs, and most of them are related to cancers.
Reactome, is another generic human curated biological pathway database, that cross-references
its information with NCBI, Ensebml, KEGG and others [58]. It implements online tools for
analyzing and interpreting interactions and visualization of networks, but it also has relatively
limited information about ncRNAs. For this reason, miRPathDB [59] has been created to
indirectly link the regulatory information of miRNAs to the molecular pathways. Although
miRPathDB [59] does not calculate the interactions, it uses context mining techniques to
gather information from different enrichment analysis and pathway generic sources (KEGG,
GO), linking them to information of ncRNA databases as miRBase or miRCarta.
RISE is a repository for RNA-RNA interactions coming mainly from transcriptome-wide

studies [60]. Although RISE contains information about interactions between sncRNAs and
other RNA molecules, it mostly focuses on lncRNA interactions. Thus, the use in sncRNA
studies can be used in a validation step of a ceRNA network. NPinter [61] contains interactions
between ncRNAs (except tRNAs and rRNAs) and biomolecules (proteins, RNAs, and DNAs)
with the additional feature of visualizing the network of first-degree interactions between the
query and the target. The drawback of this database is the limitation to interactions.

Lastly, a broader open-source RNA interaction database is starBase or ENCORI [62] which
integrates information for 23 species from which it has more than 4.1 million miRNA-ncRNA
interactions and 2.9 million miRNA-mRNA interactions. The data for ENCORI comes from
the analysis of high throughput datasets, gene co-expression analysis, and signaling pathways
sources [62]. ENCORI offers the option of searching for interactions based on the type of
interaction (miRNA-Target, RNA-RNA) as well as ceRNA-Network and pathways based on
KEGG terms.

3.2. Bioinformatics Tools

Bioinformatics tools are used to make the analysis of complex biological systems possible,
fast and reliable. Once the sequence of sncRNAs is known through experiments and/or
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prediction techniques (e.g. miRMaster), and the information of interactions is available in
databases, the analysis usually proceeds with the creation of networks. Networks of single or
multiple-level instances such as molecules, diseases, and pathways coexist and interact in one
graph. In the case of novel transcripts, where there is no experimental evidence or previous
knowledge of the targets of ncRNAs, computational tools try to predict the most probable
interactions of these molecules in various ways. A list of the databases and tools discussed in
this work can be found in Table 1

Target prediction tools
Binding site prediction for sncRNAs is usually referred to miRNAs and siRNA targets

which are calculated based on thermodynamic criteria, anti-correlation of target genes, and
miRNA/siRNA expression, but most significantly by nucleotide sequences in the target’s
3’UTR MREs. Many tools developed in the last decades for this difficult task, with the most
popular one being the TargetScan. An online computational tool for target prediction of
miRNAs, based on the complementarity between the query gene transcript and the seed of the
miRNA along with other multiple features related to the nucleotide sequence of the targets
[63]. DIANA is a set of tools with the microT algorithm predicting miRNA targets in canonical
(3’UTR) regions and the microT-CDS [64] algorithm for the non-canonical (coding) regions.
DIANA implements also the LncBase and TarBase [65] databases for experimentally verified
miRNA-target interactions with non-coding and coding transcripts respectively, and mirPath
tool for identifying potential altered pathways based on miRNA expression profiles. There is a
plethora of other tools and databases related to target prediction such as miRecords [66] or
miR2Disease [67] which contains information about miRNAs related to specific diseases, but
they are not as comprehensive or updated as the previously mentioned ones even though they
are holding valuable information and are sources for databases.

Network reconstruction and visualization
The use of networks in molecular interactions is crucial to depict and tackle the complexity

of biological systems. One of the uses of biological networks is the visualization of interactions,
which in small networks is easy to interpret but when there are hundreds or thousands of nodes
and edges it gets overwhelming for a human to handle. So, a more useful application for these
systems is the analysis based on the graph theory. Metrics of centrality and affinity can be
used to evaluate significant nodes and pathways, leading to important conclusions such as
potential therapeutic targets [68]. Moreover, instances belonging to different categories (e.g.
genes, variations, and phenotypes) can be integrated into an interactive network and help to
draw conclusions about difficult problems. Tools that are used in bioinformatics for visualization
of networks and analysis derive from generic network-reconstruction tools that are based on
maths and the graph-theory. Functionality related to the field of biology was added through
the years, mostly in the form of add-on modules that extend the basic metrics and enrich them
with biological information through the available databases.

Pajek [69] is a generic, more than 20 years old, Microsoft Windows-based network visualiza-
tion tool, initially implemented for social network analysis. It is also considered an immensely
powerful application for analysis and visualization of massive networks because it can easily
visualize a million nodes with billion connections in an average computer. For Pajek there
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are available implementations that are optimized to handle faster and with a lower need for
memory larger structures (Pajek-XXL or Pajek-3XL). It also implements numerous features such
as Graph layout, node merging, neighborhood detection, identification of strongly connected
components, clustering, and many other network analysis metrics and tools. This feature makes
it a great tool for massive networks but with lower quality visualization potential.

Gephi [70] is a free offline open-source, leading visualization and exploration software and
runs on all main operating systems. It is not designed specifically for biological networks,
rather it is a general-purpose tool for exploratory data analysis, social networks, and biological
network analysis. In Gephi there are multiple plugin modules designed for clustering of nodes
and statistical analysis. It is user-friendly, allowing for customization in the visualization and
due to its flexible multi-task architecture is very fast even for large datasets.

Cytoscape [71] is probably the most popular open-source desktop application for 2D network
visualization in biology and health sciences. It supports all kinds of networks (e.g. weighted,
unweighted, bipartite, directed, undirected, and multi-edged) and comes with an enormous
library of plugins with more than 250 modules. It was initially designed for research related to
biology, as its first aim was to analyze molecular interaction networks and biological pathways,
integrating them with other state data such as gene expression profiles. It can handle big
networks, but it requires more memory and time for clustering and layout routines than other
tools which makes it less scalable, and it is recommended to run such processes in the command
line and then load the results as node/edge attributes. It is a good compromise between analysis
and visualization, and it comes with a great plethora of layout, clustering, and topological
network analysis algorithms, such as AutoSOME, Eisen’s hierarchical and k-Means clustering
(in the ClusterMaker plugin), and the basic network metrics of average connectivity betweenness
centrality and others. Finally, plugins for the connection of biological databases of functional
enrichment, GO annotations, data retrieval, and others have been developed making it very
convenient to work with.

Other solutions for network analysis may include market products or whole pipelines of
processing. These solutions are usually less customizable but require less knowledge of the
underlying methods and fewer resources of computational power from the user. One such
example is InSyBio’s suite, which implements multiple tools from the level of RNA-sequence
analysis up to the network analysis by InSyBio BioNets [72] for identifying important nodes
and potential biomarkers using machine learning approaches.

4. Conclusion

Since their discovery, the importance of non-coding transcripts has become clear, and they
stop being considered as “Junk” DNA regions. With the advancements in technology allowing
for the detection of these molecules and especially sncRNAs, a huge number of ncRNAs were
discovered and got annotated. Even though some of their mechanisms of action have been
decoded, their full functionality still remains to be discovered. Despite what is unknown, the
focus on regulatory sncRNAs, led to significant improvements in our understanding of the
molecular mechanisms driving certain diseases, and the prognosis of pathologies. It is not
known if there are specific characteristics and features of the sncRNAs that are involved in
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Name URL

B
io

D
at
ab
as
es

Genome Browsers
Ensembl http://www.ensembl.org/index.html
NCBI https://www.ncbi.nlm.nih.gov/genome/51
UCSC https://genome.ucsc.edu/
Non-codingRNA related
miRBase https://www.mirbase.org
miRTarBase https://mirtarbase.cuhk.edu.cn
miRCarta https://mircarta.cs.uni-saarland.de
EVAtlas http://bioinfo.life.hust.edu.cn/EVAtlas
miRNet https://www.mirnet.ca
Molecular Pathways
KEGG https://www.genome.jp/kegg
REACTOM https://reactome.org
miRPathDB https://mpd.bioinf.uni-sb.de
RISE http://rise.life.tsinghua.edu.cn
NPinter http://bigdata.ibp.ac.cn/npinter4
ENCORI https://starbase.sysu.edu.cn

B
io
in
fo
rm

at
ic
s
To
ol
s

Target prediction
miRMaster https://ccb-compute.cs.uni-saarland.de/mirmaster2
TargetScan https://www.targetscan.org/vert_80
DIANA https://diana.e-ce.uth.gr/home
miRecords http://c1.accurascience.com/miRecords
miR2Disease http://www.mir2disease.org
Network Visualization
Pejek http://mrvar.fdv.uni-lj.si/pajek
Gephi https://gephi.org
Cytoscape https://cytoscape.org

Table 1
List of databases and tools discussed in the present work and the uniform resource locator (URL) for
each of these sources

NDDs, so further studies are needed to understand and unravel the sources of these disorders.
Computer science and Bioinformatics have a tremendous impact on systems biology, with the
ever-improving development of tools helping scientists draw important conclusions from the
massive amounts of available data. And this is why it is so important to have comprehensive,
curated, open-source, and well-organized databases as the ones presented in this work.

The availability of datasets stored in databanks along with the interoperability and the
organization of information in databases has dramatically shifted the nature of biological studies
from small- to large-scale and gave rise to data-driven methods. This alternation of viewing
multiple interactions and functions brought the use of multi-layer networks into the foreground
as an important tool. This allowed for broader and more holistic computational approaches,
which model much better the real biological systems.

To date, none of the presented tools is specific to neurodevelopmental disorders. In fact, these
tools are of general use, but there is an interesting potential for application in various fields,
including neurological and neurodevelopmental disorders. This derives from the fact that RNA
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molecules and specifically sncRNAs have simple structures, with no particular biochemical
features. Thus, the individual tools that analyse these molecules are general. Despite that, their
combination -depending on the question every time- can lead to pathology-specific methods
which are related to the emerged properties of more complex structures such as tissues, organs,
diseases etc. The purpose of this paper is to collect the most well-known and important tools
and to give an insight into their functionality and effectiveness. This is an important step
towards understanding their potential in specific fields such as neurodevelopmental disorders.

Of course, except for the presented tools and databases in the current work, there are numerous
others online and offline tools that could not be included because of their high number and
redundancy of information. In bioinformatics, there is a continuous need for new tools and
additional functionality which makes the review of new tools a hard task. As one can see,
information is shared between platforms, databases, and databanks in the spirit of scientific
collaboration and the pursuit of new knowledge.

In this review, we introduced tools that are needed for starting an analysis of genomic
data from a high level (disease or phenotype), ending with the reconstruction of networks
of interactions for ncRNAs and specifically short non-coding molecules. We did not get into
methodologies of analysis of the data which is a whole field of study alone and needs special
focus. The presented tools, even though not oriented only in NDDs, can be used to identify the
common molecular pathways in these disorders and the comorbidity that is often present in
preterm babies with NDDs.

A. Abbreviations

• NDD : neurodevelopmental disorder
• CP : ceribral palsy
• MRI : magnetic resonance imaging
• 3’UTR : 3’ (prime) untranslated region
• ADS : autism disorder spectrum
• NGS : next generation sequencing
• PIWI : P-element induced wimpy testis
• mRNA : messenger RNA
• ncRNA : non-coding RNA
• sncRNA : short/small non-coding RNA
• miRNA : micro RNA
• siRNA : small interference RNA
• piRNA : P-element-induced wimpy testis-interacting RNA (piwi RNA)
• RNAi : RNA interference
• ceRNA : competitive endogenous RNA
• MRE : miRNA response element
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Abstract
An early detection of brain injuries in preterm infants’ development fosters early therapies and treatments
that could significantly improve the health of babies. Recent research confirm that the use of audio and
video as non-contact data sources could enable the diagnosis of a possible brain damage of a neonate
through the use of AI, but advances in this area are still very much in its infancy. This paper introduces
an approach for the design and validation of a non-contact monitoring system to be used in a Neonatal
Intensive Care Unit (NICU) that would help to the early detection of neonates affected by brain injury.
The research focuses on the identification of neurological injury markers through the development
of AI-based techniques based on video and audio data, exploiting the different features related to the
movements, crying and sounds, and vital signs data of healthy neonates and of those affected by a brain
injury. The paper presents the methodology and focuses on the first stage (System deployment) where it
is described a software platform designed to collect, record and label data from different video and audio
sources in a NICU, including the physiological parameters of the neonates.

Keywords
methodology, monitoring device, preterm infants, audio and video technologies, artificial intelligence,
video and data gathering

1. Introduction

Early diagnosis of problems that can lead to neurodevelopmental disorders in preterm neonates
are considered one of the main concerns of the medical community [1]. These patients have
some vital functions immature and they need special care in Neonatal Intensive Care Units
(NICUs) where their physiological parameters (heart rate, respiration rate and oxygen saturation)
are constantly monitored with wired sensors attached to the skin of the baby. These sensors
are connected to a monitor screen, which is reviewed by medical staff. Although this technique
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is appropriate, use of non-invasive techniques are emerging in recent years as a solid and viable
alternative [2, 3].

Clinical monitoring of preterm infants including by direct observation of motor activity, facial
expression, skin color, or cry can also be used to detect potential problems in the neurodevelop-
ment of the baby. However, not all newborns can get benefit from this clinical follow-up as it
requires medical staff with especial training that it is not always available and if present they
have to share their time among many babies in a NICU [4].
The collection and analysis of audio and video of the neonates has proven to be a feasible

solution with advantages for their monitoring, since it offers the gathering of clinical data
without the need to use invasive methods (sensors glued to the skin) that may lead to discomfort
and stress periods for the preterm. These techniques are currently being widely used in other
biomedical applications [4].
In this paper we present a draft of an approach for the early detection of brain injuries

in neonates using audio and video and supported by different computing technologies and
paradigms: artificial intelligence (AI), internet of things (IoT), edge computing and computer
vision (CV). The goal of the proposal is the use of non-invasive technologies to gather information
related to the neonate through audio and video recordings, and process this data sources
along with physiological information through the implementation of novel AI and CV-based
algorithms/models to detect related symptoms of brain injuries in early stages of the baby’s
development.

The paper introduces the approach showing the different 5 stages that compose it, and focuses
in the first two, which described 1) an edge computing-based device developed and deployed
to gather audio/video information in NICUs and 2) the description of the Neonate Recording
Platform, or NRP, A recording software platform used to collect data from different sources:
video cameras, microphones and also from the monitors that are used in NICU for visualizing
the physiological parameters of the babies.
The paper has 4 sections and it is organized as follows. In section 2 we present a detailed

literature review. Section 3 illustrates the proposed methodology, with the different stages of
this approach and the Section 4 provides conclusion of the study.

2. Related work

The recording of video and audio enables a non-invasive way to collect relevant medical
information of the patients and it is being applied in many biomedical domains [4]. Next, we
review recent developments for the non-contact monitorization of preterm neonates.

Video

In the case of NICUs, the research presented in [5] measures with video physiological variables
and automatically detect bradycardia in infants. Other authors [6, 7] have developed and
improved algorithms to control oxygen saturation, showing that it is safe and effective for
carrying out measurements of vital parameters in preterm infants with assisted mechanical
ventilation. Other studies have proposed the use of computer vision for the identification of
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sleep stages, combining information from eye movements, body movements, facial expressions,
sound made by babies and breathing patterns [8, 9].
A trendy line of research in this area is the automatic analysis of video using artificial

intelligence techniques with the aim to provide an early diagnosis of neurological disorders
[10, 11, 12]. AI-based models are used to detect the baby’s pose and group them (set of sequences)
to check if it is a normal behavior or abnormal. For instance, it has been applied to detect signs
of cerebral palsy in babies [13, 14]. Much research focuses on the investigation in babies with a
gestational age of 36 weeks, in order to correlate the amount of movement of the body with
pain [12]. In the same category, in the project presented in [15] the authors propose to analyse
spontaneous movements in order to diagnose neurodevelopmental disorders. Although this
area is of great interest also for neonates, most of the research related to study the sequences of
movements of the baby is carried out with a population of children who already walk.

Audio

Regarding to the use of audio as data source, the investigations in paediatrics mostly relied
on cry analysis. In the 2000s, the analysis of signals began to be automated thanks to the AI
techniques [4]. There are research that addressed the classification of cry signal through the
use of AI algorithms in order to determine when babies are hungry, sleepy, need attention, are
uncomfortable or need a diaper change [16, 17]. Analysis of cries was also developed in other
contexts, for instead, [18] shows that deep learning systems are a powerful machines that can
be used for distinguishing between healthy and pathological infant cry records. The authors of
these works state that the crying of the baby is a field that has not yet been widely explored
since it is not a language that can be easily understood, despite the fact that it is the main means
of communication for this population.
In [16, 18] the authors made used of the short-time Fourier transform (STFT) to analyze

audio signals. They also apply techniques originally designed and used in automatic speech
recognition to detect and recognize the features of the baby’s cry, and compression sampling to
analyze and classify these signals. In addition, other research apply tools that were developed
for analysing the crying signal. We can mentioned the study of [17, 19]. The authors apply
the BioVoice software tool, developed specifically for the acoustic analysis of a newborn audio
signal, in order to address their work in the crying field.

Furthermore, another topic in the use of audio for neonates is the measurement and analysis
of environmental noise in the NICU. Probably [20] is the current state of art in this topic,
where the authors develop the automatic detection of acoustic alarms in a noisy environment
by applying filtering in the frequency space.

It is important to notice that joint audio and video processing has not been widely addressed
so far. Concerning to our knowledge, only one study that integrates audio and video processing
was published in [21] with Digi-New B project, where non-invasive strategies are proposed for
the early diagnosis of neonatal sepsis.

In this paper we present an approach that joints the use of audio and video for a non-invansive
detection of brain injury in neonates in early stages. The rest of the paper presents the different
stages of the approach and focus in the technology and main contributions developed to collect
audio and video data.
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3. The proposed approach

This section introduces the draft of the proposed approach, which consist in a methodology com-
posed by five stages and different AI-based techniques, developed computer vision algorithms,
etc. The five stages of the methodology are depicted in Figure 1 and each stage is described
shortly thereafter.

Figure 1: Proposed approach

Stage 1: System deployment

As first stage of the methodology, we need to set up the hardware-software system that must
be used to record video as well as audio. Several commercials recording devices are available,
however, we define a set of requirements that must accomplished by the devices, according to
our expected outcomes once the approach completely implemented. The device required in our
approach should meet, at least, the following features:

• High quality recording video device. In order to process in the best possible way the
different frames captured of the neonate, we envise the use of a high quality recording
camera.

• Depth sensor supports in video recording. The video captured will be used by AI-based
techniques, so it is also desired to have a camera that also records or calculate depth in
the recording raw video.

• Physiological parameters collection. So far, this approach does not address the automatic
detection of some physiological parameters of the neonate such as heart rate, respiration
rate, oxygen saturation, etc. In this way, our recording device will also have an additional
camera to record the device where these neonate’s parameters are shown, that is, the
medical device located near to the neonate where are the wired sensors are connected.
The software of these medical devices is not open source and the medical staff do not
have the possibility of exporting the physiological parameters values.

• Multiple audio recording. At least, our approach must cover the recording audio about the
sounds of the neonate but also the environment. However, could be interesting support
an unknown number of recording audio devices in order to add as many data sources of
audio as needed.
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• Data connectivity. Although the recording of audio and video can be stored anywhere
locally, could be interested have a device that can store the recordings but also send all
the data (or part of it) to an external data warehouse.

• Additional external storage. Most of devices currently has an embedded internal storage
or a free slot to insert a microSD card. Sometimes, especially if we record many hours,
this storage capacity is not enough, so it is desired also that the devices has an extension
to add additional storage devices like hard drives disks.

• Comfortably and handy devices. This recording device will be used probably by a medical
staff or a research, that is, by a single user. So, the device must be easy to set up and easy
to use.

With this restrictions about our needs in our approach, and after a concise search, we have
not found an available commercial device that meets these requirements.

Figure 2: Prototype Support Equipment

In this first stage we have design, assembled and set up a hardware system with commercial
components for the gathering of audio and video data from neonates, through the use of cameras
and microphones. The system will record color videos with a camera focused on the baby, for
gathering the body movements and facial expressions [22]. There will be a second camera that
will be focused on recording the screen of the monitors that show the physiological parameters
(heart rate, breathing, oxygen saturation) of the baby and that are placed next to the incubators.
In addition the system will have 3 microphones, one omnidirectional to record environmental
noise, and one directional to gather sounds made by the baby, and one additional from the
physiological camera.
We have developed the system prototype (see Figure 2), that is composed of an OAK-D-

CM4 (color camera), a Raspberry Pi where the operating system runs, an external hard drive,
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the camera to register physiological parameters (web camera) and, in the first term, three
microphones (aforementioned). One of the main features of the OAK is that it runs any
AI model, even custom architecture/built ones. We are going to need this characteristic for
future development of the recording platform, to offer a diagnosis on the possible presence of
neurological problems signs in a preterm infants (Stage 4 of this approach).
In addition, for the right placement of the recording prototype, we have to place it where

does not disturb the work of the clinicians, and easy-to-handle for them. The 3D housing is
held near the incubator with a tripod and an angled arm. The second camera is also attached to
the tripod with a second flexible arm. The housing includes a touch screen for the execution of
the NRP.
This prototype is fully hardware, so the software is still required. Although the prototype

could be used in many different areas, this first version has been developed aligned to the goals
of this approach. In this way, a customized software to use the prototype as well as satisfy the
requirements is required.
We have developed a customized software called Neonates Recording Platform (NRP). The

main view of NRP is illustrated in Figure 3.

Figure 3: Neonate Recording Platform

The NRP (see Figure 3) supports the following different functionalities:

1. the recording of audio signals of different inputs/microphones. As many microphones as
required can be added.

2. permanent recording of the neonate inside the incubator and the NICU (video).
3. video recording of the monitor that displays the neonate’s physiological parameter.
4. automatic extraction and parsing of physiological parameters besides the entire video of

the physiological parameters, a labeling system that automatically detects (using OCR
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+ Machine learning neural network) from the video source 3) and parse the neonate’s
parameters.

5. The software will enable healthcare professionals enabling to the addition of adding
timestamps and comments

6. a trial-oriented structure to enable the exportation of the data in interoperable formats
(XML, CSV, JSON) and enabling the exchange of trials between healthcare professionals

7. in order to ensure reliability, the recording interface supports the sampling of video and
audio, recording content according to slots defined by end-user.

Stage 2: Data gathering

First of all, we need to calibrate the previous developed system in a real environment. For this
purpose we are going to install the prototype in the NICU of the Puerta del Mar University
Hospital located in Cadiz. The clinicians are going to choose one preterm infant and place him
in an incubator with the same environmental conditions of the rest of the future recordings.
Secondly, we aim to be able to distinguish a healthy baby and a baby with brain injury. In

order to achieve this goal, we need to analyse the different features of the behaviors of this 2
groups (crying, body movement and facial expressions), as well as the possible external triggers
of the state changes. For this purpose, we propose to measure the following variables showed
in the Table 1, that we have classified as external or internal variables depending on whether or
not they are the baby’s own.:

Table 1. Variables
Variable/Source Audio Video Other
Internal Crying Movements Heart frequency,

Oxygen satura-
tion, breathing
frequency, clinical
data

External Environmental Au-
dio

Presence/Absence
of the baby

Comments and La-
beling

The videos and audios will be recorded with the platform developed in the aforementioned
Stage 1. At 36 weeks of post-menstrual age, the baby will be video-recorded for a period of
6 hours, 4hours before, and 2hours after the baby feeding. Around feeding time the baby is
usually awake and we can gather his/her movements and crying. In addition, during this time
controls are not usually carried out and the baby is not usually moved, so we can gather their
movements and spontaneous crying without an external agent stimulating them.
The population under study will be made up of 2 groups of preterm infants, one of healthy

babies and the other of babies with some neurological injury, who are admitted to the NICU of
the University Hospital Puerta del Mar (Cadiz, Spain).

In order not to affect the possible movements of the baby, we propose to follow the protocol
used for the authors [23, 24, 25] based on the Prechtl method [26] where it is proposed to carry
out the recordings following the aspects:
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• The child must remain in a supine position in the incubator
• Cosy incubator at a neutral temperature
• Free to move their body and all limbs, including fingers and toes
• Only wearing a diaper, no blankets or clothes
• Free disturbing environment

Stage 3: Database generation for AI models

Once all the data has been gathered, the pre-processing methods will be applied to provide the
database for the training and later validation stage of the AI models.

The databases will save the different features that allow us to find the final correlation between
variables in order to identify when a preterm present behaviors/state related to a possible brain
injury. We could mention the following features:

• Audio: cry length, values of fundamental frequency (F0) and the first three resonant
frequencies of the vocal tract (F1, F2 and F3), the decibels of environmental noise.

• Movements/Motor activity: value (angle and speed between adjacent joints) of the coordi-
nates of 12 joints (left and right) shoulders, elbows, wrists, hips, knees and ankles.

• Vital signs: oxygen saturation value, breathing rate and heart rate.

Stage 4: AI models training

Through AI models, we aim to detect common data for each study groups that allow us to find
behavioral features to differentiate a healthy baby from a baby with a possible neurological
injury. In addition, classification methods will be applied in order to identify noise levels, high
or stable.
On the other hand, through the application of the suitable AI model and using the data

gathered previously, the different behaviors of the preterm infant will be classified, and finally
identifying a neonate with brain damage from a healthy one.
At the end, we would like to develop a second platform (based on NRP platform) that will

integrate IoT connectivity technologies, the visualization functionalities of the NRP platform,
and a software system to support functionalities based on the use of artificial intelligence
techniques, real-time notifications, etc. with the aim to support healthcare professionals in the
behavioral understanding of preterm infants and diagnosis of possible signs of neurological
injuries at real time.

Stage 5: Validation for early diagnosis

The goal is to get a software-hardware platform with TRL5 (Level 5 of Technology Readiness
Level) [27], tested in a real environment by healthcare professionals. We will integrate a system
with basic functionality that can record and process the audio-video stream, and offer a possible
diagnosis of neurological injury sings.
Then we are planning to use the monitoring system in the NICU of the Puerta del Mar

University Hospital located in Cadiz, and later to apply a survey (based on TAM-Technology
Acceptance Model) [28] to the clinicians and nurses that allows us to know their opinions about
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this contacless and non-invasive monitoring system, and if it has helped them when diagnosing
the medical condition of a preterm infant.

4. Conclusions and Further Work

Brain injury is a frequent complication in preterms that need to be diagnosed as early as possible
by medical staff in NICUs. At present, monitoring of the baby at NICUs is carried out 24/7
through empirical observation of nurses or medical staff along with the use of physiological
parameters, gathered through wired-connected devices to the skin of the baby. As preterms
cannot talk, clinical care include also intensive visual observation of the motor activity and
aspect of the neonate with the aim to assess their health status.
There is much research through the use of audio and video data and AI-based techniques

to support a non-contact monitoring of neonates with the goal of helping doctors in the early
detection of brain damage, and improving the comfort of the babies in the incubators.

This paper presents an approach based on the use of cutting-edge technologies (AI, IoT, CV),
the use of audio/video data sources and novel AI-based techniques to provides a support solution
for medical staff to detect brain injuries in neonates at early stages of health development. The
approach contains a methodology composed by five stages.

The paper describes the five stages but focus on the first stage (System deployment), presenting
the first recording system prototype and NRP, a recording platform to gather information from
different video and audio sources, providing also a labeling system and automatic recognition
of physiological parameters.
As application example of this first, we described shortly the second stage, that is, the

installation of the system in the NICU of University Hospital Puerta del Mar located in Cadiz,
in order to gather the audio and video data. Likewise, we are going to keep progress on the
research development in order to achieve the final goal.
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Abstract
The early birth of children can be associated with neurodevelopmental disease onset. In such cases, the
lack of early diagnosis and early medical treatment negatively affects the rest of the child’s life. In this
context, recent developments in artificial intelligence (AI) in the medical field suggest a possible key role
also in the cases of preterm birth through the integration of various sources of neurodiagnostic data
in order to extract clinical information. In this manuscript, we have addressed the importance of the
development of intelligent systems merging with the Internet of Medical Things (IoMT) for the analysis of
the baby’s movement. More in detail, we here consider a general prototype of an incubator for neonatal
intensive care unit (NICU) and related tools capable of detecting/measuring vital signs and patient
characteristics for newborns with particular attention to preterm infants. In this context, we will also
provide a brief explanation of available datasets, such as BabyPose Dataset, MINI-RGBD, and MIA dataset.
Furthermore, we will explore data mining techniques and the role of IoMT in the context of preterm
infants and children. Finally, emphasis will be placed on technology communication, combination, and
multidisciplinary research pursuing more accurate and improved self-guided techniques and systems.

Keywords
Preterm birth, Incubator system, Intensive care unit, Data mining, Baby motion analysis, Internet of
medical things

1. Introduction

According to World Health Organization (WHO) observations, the first month of life is a very
dangerous period for child survival, with 2.4 million newborns dying in 2020 [1, 2]. The highest
neonatal mortality rate was recorded in sub-Saharan Africa and Central and South Asia, with
about 25 deaths per 1000 births [3, 4].

The main causes of death from preterm birth are lack of breathing at birth, low birth weight,
illness, and other infection factors. In general, preterm birth is divided into three categories
according to the gestational age of delivery: moderate preterm (MP: 32-37 weeks), very preterm
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(VP - 28-32 weeks), and extremely preterm (EP - less than 28 weeks) [5].
The normal and stable duration of delivery is considered completed when the pregnancy

cycle exceeds 37 weeks of gestation. The earlier the birth, the higher the risk of death, and the
need to monitor the preterm infant in the neonatal intensive care unit (NICU) for a long-time
increase. Because of this critical condition, artificial intelligence systems for example coupled
with incubator sensor systems can play an important role in overcoming the preterm mortality
rate and improving the quality of care.

In recent years, many researchers have been working on the development of intelligence
systems to improve the performance of neonatal behavior monitoring and analysis. In this area,
contact and noncontact clinical data sources are being used to design automated intelligent
systems. In addition, computer systems that were previously inadequate at the home of tradi-
tional and handcrafted features are now performing very well mainly due to the integration of
machine learning and deep learning algorithms. In this regard, a general software architecture
for neonatal sensing and monitoring is shown in Figure 1, which includes various IoMT-related
concepts and technologies such as artificial intelligence, devices, sensors, big data, mobile
devices, and what is considered for the design of state-of-the-art NICU incubators.

Figure 1: The general flow of an automated system to monitor neonatal behaviour.

As said, monitoring neonatal behaviors is a key clinical activity for early diagnosis of possible
abnormalities or diseases. In this context, the AI and computer vision fields have given a lot of
attention to the automated identification and classification of newborn behaviors [6, 7, 8]. The
manual process to monitor the behaviour of newborn babies was complex and too much costly.
Moreover, it is dangerous for neonatals to survive in low-resource environments. Therefore,
an automated AI system with the implementation of hardware can be useful for neurologists
and domain experts to monitor the baby’s condition in a single incubator in a NICU. For the
development of AI systems, the researchers believe that such applications will be helpful for
doctors to analyze the behaviour of preterm birth.

Based on the above-mentioned premises in the present review work we will discuss issues
related to the role of AI systems and IoT that may help in designing automated systems to obtain
accurate results and reduce the complexity rate in the field of NICU incubator implementation.
More specifically, the article focuses on issues concerning: i) the knowledge base on the
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Neonatal Intensive Care Unit and related conditions; ii) data collection issues and publicly
available reference datasets; iii) the role of data mining techniques for monitoring neurological
disorders; iv) the role of IoT in the medical environment and the potential of the mentioned
technologies in the field of incubator design and development.

2. General features of NICU Incubators

An incubator is a device used to monitor clinical parameters and maintain environmental
conditions suitable for the life of a newborn baby. It is generally used in preterm birth or in
cases of specific pathologies at birth. The device is equipped with sensors that are capable
of monitoring/supporting the patient’s condition through the detection of behavioural and
physiological parameters (e.g. blood pressure, oxygenation, temperature, cardiac function, etc.)
of newborns that help doctors to prevent any morbidity leading to the critical phase [9, 10]. The
real-time analysis gives the advantage of early detection of any type of complication, which can
help protect the infant and increase its survival rate [11, 12]. The single incubator in the NICU
is a separate, self-contained area for each individual infant under the supervision of an expert. A
NICU incubator usually requires multidisciplinary skills and highly qualified specialists, being
built for those environments that manage the critical phase of preterm infants [13].

2.1. Main pathological conditions requiring the use of NICU incubators

In the following list, the main conditions requiring the use of incubators are detailed:
• Intraventricular hemorrhage (IVH)
Intraventricular hemorrhage (IVHs) causes the illness or disease and death of newborn infants.
Infants whose birth weight is about 1500g usually develop an IVH. Mostly it occurs during the
third day of birth and in some cases, it occurred before delivery. Important risk factors for IVHs
are: increase atrial blood pressure, pneumothorax, and birth asphyxia [14, 15]. The potential of
ML techniques to improve early detection of IVH has been highlighted in recent literature.
• Periventricular leukomalacia (PVL)
In this disease, the white matter near the cerebral ventricles dies. PVL is usually developed
by premature infants, whose birthweight 1500g or 3lb 5oz. PVL affects infants (birth week <
25) when they are suffering from the deprivation of oxygen during delivery and at the time of
birth [16]. The variation of oxygen and CO2 in the blood cause PVL while the surgeons predict
this disease by applying standard psychological parameters to infants [17]. In the aspect of
intelligent system development, many researchers have proposed several techniques to predict
the PVL disease in neonates [18, 19].
• Nosocomial Infection
Infections are the most common cause of mortality and illness for infants [20]. Around 45%
of infants born before 25-28 weeks of gestation and kept alive in NICU incubators face critical
infections. This infection, mainly caused by pathogens present in the hospital, is difficult
to be identified at an early stage given that symptoms appear at the advanced pathological
stage. Clinical checkups are mainly responsible for the infection spread [21]. Few examples of
intelligent system for recognition of the above-mentioned neonatal infection are reported in
literature [22, 23].
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• Pneumothorax
Pneumothorax occurs when air or gas accumulated in the process of inhaling and exhaling.
In the body, the pleural cavity is a fluid-filled space that surrounds the lungs. Usually, 1-2% of
infants face gas and air in their pleural cavities. There are two layers that surround the lungs.
One is attached to the chest wall and the other is attached to the lungs. These layers move when
we inhale or exhale, and in this process, fluid is emitted from the membrane for the lubrication
of the lung’s smooth movement [14]. In pneumothorax, researchers have also used machine
learning techniques to improve the detection as details are presented in [24, 25].

2.2. Principles for design and implementation of NICU incubators

The implementation of a single intensive care unit is divided into two main types: real and
simulated prototypes, where real prototype means the testing phase in a real environment while
simulated prototypes are just computer-implemented and analyzed systems. In this regard,
Figure 2 has shown the general prototype of the neonatal incubator.

Figure 2: General prototype of neonatal Single intensive care unit [11].

There are several tools and systems which are usually connected with an incubator to monitor
the condition of the baby at every moment. Due to these components, surgeons can easily
analyze a number of vital signs and features like the warming system (body temperature, heart
beat rate (HBR), and SpO2) and body behaviour systems (cameras). All these features of the
neonatal are basically displayed on the incubator’s LCD. Moreover, the power supply systems are
also connected to the incubator to manage the battery system. In any condition, the behaviour,
oxygen level, or temperature is sensed as a bad outcome by the machine, it generates an alert
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buzzer which means the patient is in a critical stage. There are several parameters related to
incubators that interact with IoT and further explanations are shown in table 1.

A. F. Symon et. al. [26] developed a system that detects the movement and crying sound of a
newborn baby. The objective of this study was to analyze the contactless data modality to find
the state of babies and also monitor their physical behaviour. It was suggested that previous
systems were just controlling the temperature and humidity of the incubator without controlling
the sound pollution which they found that it is a very mandatory parameter that can provide
a comfortable environment to the baby. In another research [27], they designed a hardware
system in combination with IoT’s based model to monitor the preterm incubator environment.
The hardware components used microcontroller along with the other body temperature sensors.
The performance of the proposed system was better as compared to the other related measuring
systems. In this way, N. A. Zakaria et. al. [28] addressed another device to detect the infant
body temperature in an incubator system. The device was a wearable sensor that measures the
vital signs of baby and also sends the information to their parents through a wireless network.
Furthermore, the portable device is utilized to visualize the information and any alert related to
the baby health.

All the above-mentioned studies have shown contactless systems in detail but are not physi-
cally installed in any hospital. In recent research implemented at the John Radcliffe Hospital
in Oxford [22]. This work has been designed similarly to previously discussed methods. They
have adapted the video-based technique to monitor neonatals’ respiratory rate, heart rate, and
oxygen saturation. By using these features, they have developed an algorithm that efficiently
detects bradycardia events in the early stages.

Table 1
Incubator parameters interacting with IoT

References PARAMETERS SYSTEMMONITORINGWITH THE PARAMETERS

[11] Neonatal body temperature This is a monitoring and risk management system,
through cloud services, for neonates and it manages
the critical stage alarm to domain experts for personal
assistance.

[29] Incubator heat This parameter maintains the incubator heat which is
sufficient for the development of the preterm baby.

[30] Incubator Humidity This parameter controls the humidity level in the in-
cubator and it helps in maintaining the temperature
of the incubator.

[29, 31] Neonatal body weight By the help of this measure, surgeons came to know
about the weight of neonate. In this way, they can
analyze the growth of neonate based on his/her weight.
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3. Information Technology in biomedicine and potential for data
collection and treatment at NICU

IT has cardinal importance in every aspect of our lives [32, 33, 34]. It has also proved itself
as an important part of the medical field as well. Health IT is processing the information of
different kinds of diseases using computer knowledge and its advancements. The capability
of decision-making in health IT is a lot more than that of an individual human. As we know,
computers can work more efficiently than humans. Health IT can assist all over the world’s
medical community in diagnosing different diseases. Due to advancements in IT, the medical
field is also considering IT as an important part of it. The most tremendous thing in this IT
domain is the amount of required data, that is available on the internet and anyone can access
that information at any time [35].

However, this is not always the case with clinical data. Although there is a huge amount of
clinical data that is collected by each hospital, this collection is usually very irregular and rough,
both from one field to another but also in the same field in different countries and even in the
same country from hospital to hospital. In fact, even today in many hospitals, data collection is
done by hand by doctors or with the help of computer tools but often in a disorganized manner.
This creates a huge problem in the pre- and post-processing of clinical data whose sets are often
unusable. Added to this are the various problems of ethics and data privacy, which often require
lengthy approval processes for their use. The case of the study of neurodevelopmental disorders
presents a further degree of difficulty, given a large number of patients, which is certainly much
smaller than in studies of cardiac diseases.

In this context, it is therefore crucial to develop systems that are able to automatically collect
data in a standardized manner, but also to pre- and post-process collected data in order to boost
the ability to extract useful clinical information from them. This is the context for all the IT
technologies, IoMT that have been introduced above and that have the potential to drastically
increase the quantity and quality of clinical data that could be available to data mining and
ML-driven knowledge extraction algorithms. In this vision, a single NICU incubator becomes
also a data collector for infant disease investigation based on real-world data. Nevertheless,
some data for the analysis of the preterm‘s behaviour have already been collected and made
available to the community. Those datasets are listed in Table 2.

3.1. Internet of medical things (IoMT) and potential for neonatal data sharing

Internet of Things (IoT) is an emerging technology that is increasing the data in various sectors
daily. Big data analysis is a technique used to handle and evaluate enormous amounts of
data using various methods. The IoT is a general paradigm. It changes its shape according to
the environment, when we deal with the medical environment it is known as the IoMT. The
objective of IoTs is to provide remote access to different physical devices and machines on
service providers that cover location-based services, smart cities, smart streets, and homes. The
IoT applications use invariably cloud storage combined with fog computing. Ubiquitous systems
are increasing day by day and it reaches 50 billion in 2020 [31]. Nowadays, researchers have
included many components in IoMT which have started to make the medical staff’s life very
easy like web portals, WSN (Wireless Sensor Nodes), RFID (Radio Frequency Identification),
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Table 2
The publicly available dataset of infants, newborns, and toddlers

Dataset Modalities Short Description

Baby-Pose[36] videos The dataset contains 16 videos of 640 x 480 per frame size with
8–16-bit depth including 12 newborn cases with landmarks

MINI-RGBD[37] videos The dataset contains 12 videos having 640 x 480 per frame size
with RGB Channels. This dataset is labeled on 25 infant babies

3D-AD[38] videos The dataset contains 100 videos with 512 x 424 frame size. In this
dataset, the behaviour of toddlers is labeled

InfantsData[39] videos The dataset contains 85 videos with variant frame size and RGB
channels. The dataset is labeled on 18 infant cases’ landmarks

SyRIP[40] images The dataset contains the RGB channel images of 17 infant patients

SSBD[41] videos 75 Youtube video, (m x n) frame size of RGB channels with bench-
mark dataset of behaviours of the preterm babies.

LCDs, detection sensors, etc [21, 42, 43]. In this scenario, L. Nachabe et. al. [44] designed a
Distributed Neonatal Incubator Monitoring System (DNIMS) for neonates in which distributed
software agents were used to connect different end-users like medical staff, parents, etc. This
kind of system is the need of the current time because it is not just generating and storing the
data in the servers but also in parallel, reformatting the data for the medical staff and caretakers
[45].

3.2. Big Data Management tools and their potential application for future big
data collection by novel generation of incubators

In the near future, we hope to have a massive amount of data coming from the next generation
of incubators in NICUs. Several technologies for managing big data have already been developed
and successfully employed in other medical fields. In this context, it is worth mentioning that
five main strategies are recognized as successful in big data management: (1) create structured
big data, (2) data sharing culture to develop information, (3) training to use big data analytics,
(4) big data analytics with the combination of cloud computing, and (5) using big data analytics
techniques to generate new business ideas. The need of analytics is linked with improvement in
patient-centric services, detection of disease before it spreads, and -monitoring of the quality of
services and methods of treatment. Some tools like Apache Hadoop is highly scalable storage
platform. It provides cost-effective storage for large data. Apache Spark [46] is an open-source,
in-memory processing machine. Its performance is much faster than Hadoop [47]. Another
renowned platform namely MapReduce is used for interactive data mining. There are other
large numbers of big data analytics tools/platforms which are publicly available and can be
found at [48].
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3.3. Data Mining techniques for extracting knowledge from collected data

Modern IT has radically amplified the capacity and power of data mining and information ex-
traction from data. Classical or ML/DL driven data mining concern the analysis of observational
datasets to extract knowledge from them unraveled unknown relationships and rationalize data
in useful ways for the end-user. In the context of data coming from NICU incubators, Figure 3
can be helpful in the development of an efficient automated health care system.

Following the flow described in Figure 3, we may identify the main techniques/steps charac-
terizing data mining technology. Those are general steps that can be specified depending on
the chosen application. For example, preprocessing applied to data concerning studies in Table
3 will be principally used to upgrade the nature of an image with diminishing varieties. This is
done to eradicate any infringements that cause entanglements in the preparing stage which
cause broad utilization of reality assets [49]. Several key destinations can be accomplished with
preprocessing which incorporates commotion evacuation, differentiate improvement, brighten-
ing, and recoloring revision. For evacuation, channels are broadly utilized, for example, mean
and middle channels, Gaussian low-pass sifting, etc. Morphological strategies are additionally
utilized for image sharpness upgrade purposes [50]. For differentiating improvement, differ-
entiate extending strategies and histogram adjustment procedures have been generally used
to enhance the contrast in the images. For brightening adjustment and recoloring varieties,
shading standardization procedures have been mostly utilized [51].

Classification, data rationalization, knowledge extraction, and statistical formulation usually
follow the preprocessing and can be combined or not. There are a high number of application
examples of data mining techniques applied to the medical field. In Table 3 we report the most
important application related to neonatal behavioral investigation. Again, all these approaches
can be considered for further application in concert with the novel generation of NICU incubators
for data analysis and knowledge extraction to support clinical decisions and precision medicine.

Figure 3: The block diagram of the data mining techniques for intelligent system development.

140



Table 3
Preprocessing and data mining research work

Study Environment Data detail Technique Objectives

[52] Hospital 3D images Key points recognition Overall behaviour analy-
sis

[53] NICU 3D images Convolutional neural
networks (CNN’s)

Overall behaviour analy-
sis

[54] Hospital Multidimensional Logistic regression algo-
rithm

Classify normal/abnor-
mal

[55] Hospital RGB images supervised machine
learning and handcraft-
ing algorithm

Detect the Writhing
movement

[56] N/A Synthetic Convolutional neural
network (CNN)

Classify abnormal In-
fant Movements

[57] Hospital RGB Images Gaussian mixture model Classify 4 type of move-
ments

[58] Hospital RGB Images Motion features, Deci-
sion Tree algorithm

Analysis CP risk

[59] Hospital RGB Images Neural network Detect the nervous con-
dition of baby

[60] Home/Hospital RGB Images Pre-trained CNN +
LSTN

Detect Fidgety Move-
ment

4. Conclusion

In the context of neonatal care, software architectures for storing data, to be then analyzed
by data mining techniques, should consider innovative tools for heterogeneous (structured
and unstructured) data collection as data that may be collected through hardware diagnostic
devices, custom sensors, and software solutions installed in a NICU incubator (or a set of NICU
incubators). Those data either the raw data or the processed data – should thus be handled
as sensitive data, considering the appropriate ethical and privacy procedures, amongst which
compliance to the General Data Protection Regulation (GDPR). Examples of data sources are (a)
clinical data and Electronic health records (EHRs); (b) imaging data; (c) IoT device data streams.
It is worth noticing that developing data collectors and management systems for neonatal care
may take advantage of existent tools already applied to manage data in other fields of medicine
and explicitly developed to manage patient health data with all the protection systems that
need to be used for this type of sensitive data.
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Abstract 

The survival of patients with single ventricle circulation undergoing Fontan operation has significantly improved in 
the last decades. However, the neurodevelopmental outcome of this patients is still not satisfying and far below the 
healthy controls. The aetiology of neurodevelopment disability and mental health disorders is multifactorial and has 
a cumulative and synergic trend over the years. Genetic factors, abnormal fetal circulation, peri and intra-operative 
care, multiple hospitalizations and socioeconomic status play a crucial role in this process. Due to the heterogeneity 
of anatomies and different treatment possibilities there is a need for a personalized, multidisciplinary and 
translational approach focused on the patient. The introduction of new technologies driven by artificial intelligence 
and the continuous integration of in vivo data and biomedical simulations into medicine promises significant 
improvements in pathologies diagnosis and treatment thus enhancing the quality of life of patients and their 
families. 
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1. Introduction


The Fontan procedure is the final stage of three operations performed to palliate children born with 
single ventricle physiology. In these patients, due to the complex heart anatomy is impossible to repair the 
heart re-creating the physiologic biventricular circulation. The original operation was described in 1968 by 
Francis Fontan in patients with tricuspid atresia [1]. Various modifications have been developed in the 
following decades and the extracardiac total cavo-pulmonary connection (TCPC), is now the most widely 
used [2]. In this operation, the systemic venous blood coming from the inferior vena cava (IVC) is diverted 
through an extracardiac conduit connecting to the pulmonary arteries (PAs), completing the previous 
performed Glenn connection of the superior vena cava (SVC) to the PAs. In recent years, the survival of 
patients with single ventricle circulation has significantly improved due to the advancements in fetal 
diagnosis, perioperative management and medical care [3,4]. Therefore, all the efforts are focused on 
reducing the long-term morbidity and improving quality of life and neuropsychological outcomes [5,6,7,8]. 
The literature regarding the neurodevelopmental outcomes in children with single ventricle physiology is 
redundant and often controversial and no large randomized trials have been conducted. For this reason, we 
aim to provide a state-of-the-art review of the neurodevelopment and mental health outcomes of children 
with single ventricle physiology undergoing Fontan operation in the modern era and to give insight into 
future directions and tools for neurodevelopment impairment prediction, including artificial intelligence 
(AI).
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2. Material and methods


Relevant studies were identified by PubMed, Embase and Cochrane. No language restrictions were used. 
The first search from PubMed, Embase and Cochrane was performed by the first author of this review and 
double-checked by the other corresponding authors. The following keywords were used: 
(neurodevelopment outcome OR mental health OR neurodevelopment disability OR artificial intelligence 
OR computational models) AND (congenital heart disease OR single ventricle OR hypoplastic left heart 
syndrome OR Fontan circulation). We included only papers from January 2000 up to August 2022. Older 
papers were excluded, with the exceptions of papers explaining concepts, surgical techniques or to compare 
the neurodevelopment outcome early after the introduction of the Fontan operation.


3. Etiology and risk factors of neurodevelopmental disability 


The aetiology of neurodevelopmental disability in patients with single ventricle physiology is 
multifactorial and has a cumulative and synergic trend over the years. In many patients with congenital 
heart disease (CHD) there is a predisposition to extracardiac and brain congenital anomalies [9]. Indeed, an 
exome sequencing of 1213 CHD parent-offspring trios identified shared genetic contributions to CHD and 
neurodevelopmental disabilities [10]. Moreover, the abnormal fetal circulation typical of univentricular 
physiologies is often related to brain dismaturation. Fetuses with hypoplastic left heart syndrome (HLHS) 
have altered cerebral perfusion and oxygenation due to intracardiac mixing and the retrograde brain 
perfusion through the ductus arteriosus and the hypoplastic aorta. This abnormal perfusion has a dramatic 
effect on brain growth and maturation. In fact, even term infants with HLHS have smaller and less mature 
brains than controls [11]. Fetal brain magnetic resonance imaging (MRI) of patients with CHD at 25–35 
weeks of gestation demonstrated significantly lower maturation scores compared to healthy controls. In 
particular germinal matrix, myelination and superior temporal sulcus scores were significantly delayed in 
this population [12]. Moreover, a comprehensive neuropathologic evaluation of 11 electively aborted HLHS 
fetuses revealed chronic diffuse white matter injury (WMI) [13]. This brain dysmaturity represents the 
substrate for further brain injuries during and after surgery. Stegeman et al. described the pre- and post-
operative spectrum of brain MRI of patients with critical CHD, including patients with HLHS. Interestingly, 
348 MRI scans confirmed that the most affected area involved before and after surgery is the white matter 
in 25% and 30% of infants, respectively. They also noted that 6% of these patients presented with arterial 
ischemic stroke even before surgery. Finally, not only thrombotic lesions were reported but also 
hemorrhagic injuries especially intraparenchymal cerebral haemorrhage, cerebellar haemorrhage, 
intraventricular haemorrhage and subdural haemorrhage [14]. Interestingly, this punctate WMI typical of 
patients with CHD, share a similar injury pattern to preterm infants [15]. Guo et al. analysed 216 term-born 
CHD neonates and WMI was identified in 86 of them [16]. The comparison between WMI and preterm 
neonates highlighted that WMI in patients with CHD has a specific topology with a preference for anterior 
and posterior lesions. Indeed, the central areas are less vulnerable in comparison to the preterm neonates, 
reflecting the expected maturation of pre-oligodendrocytes [16]. Despite the improvements in surgical 
techniques and post-operative intensive care, deep hypothermic circulatory arrest (DHCA) negatively 
impacts on the neurologic outcome. In many centers, regional low-flow cerebral perfusion (RLFP) is used 
instead of DHCA to reduce the time of cerebral ischemia. A recent study comparing brain MRI before and 
after Norwood operation highlighted the presence of new or worsened ischemic lesions in 73% of infants, 
especially periventricular leukomalacia and focal ischemic lesions [17]. Furthermore, a randomized, 
controlled trial comparing new cerebral injuries on MRI after surgery using DHCA or antegrade cerebral 
perfusion in neonates with complex aortic arch obstructions including HLHS showed no significant 
difference between these techniques [18]. When analyzing early neurodevelopmental outcomes after 
cardiac surgery, these operative factors may be even less important than pre- and post-operative factors 
such as longer postoperative stay in intensive care, which are associated with lower psychomotor and 
mental development index [19]. Also socioeconomic status (SES) should be accounted for, because it 
emerged that children with single ventricle physiology and lower SES have reduced functional status and 
fine motor, problem-solving, adaptive behaviour and communication skills at the age of 6 years in 
comparison to patients with higher SES [20]. Finally, these children usually experience multiple 
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hospitalizations, catheterization and eventually further surgeries. Every additional procedure increases the 
risk of brain injuries due to anaesthesia, cardiac bypass and cardiac thromboembolism. These patients are 
naturally predisposed to thromboembolic events and stroke due to liver dysfunction or protein-losing 
enteropathy, which plays a role in the coagulation-fibrinolysis balance [21]. The common findings of high 
haematocrit and pro-inflammatory status also increase the thromboembolic risk. Finally, the blood mix and 
direct venous-arterial connection through interatrial communication, single ventricle and Fontan 
fenestration in the different stages raise the risk of stroke [22].


4. Neurodevelopmental outcomes in Childhood 


In the last decades, the neurodevelopmental outcome of children with single ventricle physiology has 
improved. However, despite substantial progress in care, this population still presents with cognitive, motor, 
social and psychological  deficits. In the late '80s around 64% of patients with HLHS presented major 
developmental disabilities at some point in their stage-palliation [23]. More recent studies and reviews 
bring different and controversial results [24]. Goldberg et al. assessed the neurodevelopmental outcome of 
51 preschool children with HLHS and other single ventricle physiologies palliated with the Fontan 
procedure, reporting no significant difference in Wechsler Intelligence scale from the healthy population 
[25]. On the contrary, a recent nationwide Finnish prospective study of 23 patients with HLHS, 13 with other 
univentricular physiology, and 40 healthy controls followed until 5 years old demonstrated a significantly 
lower median full-scale IQ at preschool age, in the first two groups in comparison to the healthy controls. 
This study also confirmed a high rate of brain MRI abnormalities, mainly ischemic in 82% of the patients 
with HLHS and in 56% of children with other single ventricle anatomies [26]. When a broad range of 
neuropsychological outcome variables was extended from children to young adults with single ventricle 
physiology, they scored significantly lower compared to the general population. Indeed, they obtained 
lower intelligence test scores, decreased motor function, impaired visuospatial abilities and more marked 
behavioral disorders [27]. Promising data are coming from the recent introduction of hybrid approaches for 
initial palliation of HLHS, that has shown more favourable neurodevelopment outcomes and quality of life 
at 2–3 years of age, with cognitive, language and motor composite scores on the Bayley-III not significantly 
different from healthy peers [28].  


Interestingly, when compared to preschool children with CHD undergoing biventricular repair, patients 
with single ventricle following the Fontan pathway presented with similar neurodevelopmental outcomes 
and full-scale IQ. However, the Fontan group performed worse in terms of processing speed, attention, and 
impulsivity [29]. Even more controversial is the sub-analysis of the HLSH group versus other functional 
single ventricle anatomies. According to Goldberg et al. the HLHS group had significantly lower Wechsler 
Intelligence scores than the non-HLHS group but no significant difference in the behavioural scores [25], 
while Gaynor et al. found no significant difference in the neurodevelopmental outcomes among the two 
groups [29].


Finally, a studies focusing on specific neurocognitive aspects,, analysing the deficits in visual-perceptive 
skills and executive function highlighted that the Fontan group didn't differ significantly from the control 
group for the Test of Visual-Perceptual Skills summary but had worse results on all scales of both the copy 
and immediate recall trials of the Rey–Osterrieth Complex Figure [30,31]. Regarding the executive function, 
patients with single ventricle physiology displayed deficits in flexibility and problem-solving [31].


5. Mental health and psychiatric disorders 


Children and adolescents with CHD have a higher risk of developing mental health disorders due to 
multiple hospitalizations and interventions, stressful life events, social and cultural factors [32-34]. A recent 
large comparative cross-sectional study from the Texas Children’s Hospital including 1164 patients with CHD 
from 4 to 17 years old highlighted that 18.2% of this population had a diagnosis or medication for anxiety or 
depression, significantly higher than healthy peers. In particular children with complex single ventricle 
hearts had around 7 times higher odds of developing anxiety and/or depression [35]. DeMaso et al. from 
Boston Children’s Hospital confirmed that adolescents with single ventricle CHD who underwent the Fontan 
procedure have higher odds to receive a psychiatric diagnosis compared with healthy peers (65% vs. 22%). 
Specifically, they presented with increased risk of anxiety disorders and Attention deficit hyperactivity 
disorder (ADHD) [36]. The same group also highlighted that early-term-born adolescents with single 
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ventricle anatomy (born between 37 and 38 weeks gestation) were more likely to develop ADHD during 
their life when compared to full-term birth peers with the same physiology [37]. Depressive symptoms are 
also common in patients with single ventricle physiology, as shown by Pike et al. who correlated this 
condition to signs of chronic injury at MRI in specific brain areas controlling cognition, anxiety, and 
depression [38].


However, despite all the neurodevelopmental and psychiatric issues and the multiple operations and 
interventions, the quality of life (QoL) of these patients is self-perceived normal, even when compared to 
healthy controls [39,40]. Similar conclusions come from a more recent study highlighting that a higher level 
of education and full-time occupation positively influences patients' quality of life [41].


6. Biomedical technologies and future directions 


Considering the anatomical inter-variability and the plethora of possible treatment strategies for patients 
with single ventricle physiology, the way forward to obtain better outcomes and longer life expectancy is a 
multidisciplinary and integrated approach tailored on the single patient: personalised surgical approach as 
well as ad-hoc peri and post-operative care, combined with affordable short and long-term prediction tools 
is the future challenge. A translational approach, combining biomedical engineering methodologies and 
advanced imaging technologies may address this topic, improving the surgical results and the 
neurodevelopmental outcomes. In this regard,  Computational Fluid Dynamics (CFD) to simulate the 
hemodynamics in patients with single ventricle physiology models has been already applied successfully 
e.g. to predict the best surgical solution in the different palliation stages [42-46]. More in detail, CFD was 
largely adopted to assess the flow efficiency of the systemic-pulmonary shunt, at the ventricular and neo-
aortic level and in the Fontan circulation quantifying energy losses and how the latter correlate with the 
clinical outcome. The capability of exploring different hemodynamic scenarios adopting patient-specific 
computational models where virtual surgical connections can be pre-operatively tested can be extremely 
useful for surgical and clinical decision-making. The availability of in silico but also in vitro models of 
possible surgical options supports the identification of the best surgical pathway, stressing the differences in 
the local hemodynamics, e.g. analyzing the impact that competitive flows might have in terms of energetics 
of the system. For instance, in Norwood I operation, a model-based approach may support the patient-
specific selection between the two most commonly used shunts: the Blalock-Taussig shunt and the Sano 
shunt. In fact, different variables contribute to the performance of these shunts, e.g. their size, length and 
positions, affecting the fine balance between systemic and pulmonary blood flow [47,48]. This is an 
important issue among surgeons and paediatric cardiologists as there is still debate about performing one 
or the other shunt considering that the transplantation-free survival at 12 months is significantly better with 
the Sano shunt but there is no significant difference after one year between the two groups [49,50].


Moreover, biomedical simulations may predict the possibility of thrombus formation in the Fontan 
circulation eventually responsible for stroke in case of conduit fenestration [51]. The analysis of the 
different flow conditions, flow stagnation and graft size may anticipate the need for more strict 
anticoagulation to avoid cerebral accidents. The advantage of these technologies is not only in terms of 
optimization and personalization of treatment for these patients but will also allow a better resource 
distribution that can be invested in other aspects of their complex care.


On the other side, a strict follow-up of these patients would guarantee the prompt recognition of 
neurocognitive impairment and mental health disorders, allowing the early start of the 
neurodevelopmental interventions and psychological and educational support [52]. Numerous tools to 
improve executive function have been proposed for patients with ADHD and children with learning 
disabilities,  with promising results [53,54]. Nevertheless, there is insufficient experience in the field of CHD. 
A preliminary experience with the Cogged intervention, consisting of home-based 45-minutes training 
sessions for 5-8 weeks, demonstrated to improve the self-regulatory control abilities of adolescents with 
CHD, but with no effects on other executive functions or behavioral outcomes [55]. 


Finally, AI  is expanding in the medical field, and in CHD as well. From the viewpoint of the clinician, 
artificial intelligence can be seen as a diagnostic and therapeutic technology that enabling the analysis of 
very large pools of data, allows the discovery of patterns not immediately obvious [56]. Among the AI 
applications of specific interest here we mention its integration with fetal echocardiography for the 
extraction of undiscovered image features, a promising approach which can markedly improve image 
acquisition and optimization, automated measurements, classification of diagnoses etc [57]. This is  of 
relevance because prenatal diagnosis of CHD is crucial in parents' decision-making regarding the 

150



continuation of pregnancy, based on the consolidated knowledge that neonates with postnatally diagnosed 
CHD have increased mortality and worse neurodevelopment outcomes before and after surgery [58-60]. 
Within AI, machine learning models can be as important in predicting the adverse outcomes for congenital 
heart surgery as in improving social interaction and supportive education in patients with worse 
neurodevelopmental outcome after surgery [61,62].


7. Conclusion 


More than 50 years after the introduction of the Fontan procedure, surgical and perioperative care 
developments have improved medium and long-term survival of patients with single ventricle physiology. 
Nevertheless, the neurodevelopmental and mental health outcome is still not satisfying, despite a clear 
understanding of potential risk factors. The way forward is a personalized, multidisciplinary and 
translational approach with the integration of imaging technologies with biomedical simulations (such as 
the already employed CFD models)  and AI (applied e.g. for image segmentation, geometry sampling and 
even generation of synthetic data). It is expected that such a multidisciplinary framework will lead to a 
significant improvement in the objective quality of life of these patients and their families.
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Abstract
Cardiovascular and neurological diseases including their interactions are getting the attention of re-
searchers and physicians. Both diseases often share common biomarkers, risk factors, and biological
pathways. By now, researchers have confirmed that problems related to cardiovascular lead to neurolog-
ical bad outcomes and vice versa. In addition, researchers have started to use machine/deep learning
algorithms for better diagnosis. By now, few examples are published on little datasets consisting of com-
puted tomography images, electrocardiograms, electroencephalograms, and so on, but most of the work
is not done by artificial intelligence (AI). In this work, we reviewed a number of studies that have either
used AI or manual computation with conventional techniques on different imaging modalities. From all
studies, it is found that imaging modalities can support physicians in better diagnosis of neurological
outcomes following cardiac events and/or diseases and vice versa. Moreover, AI driven technologies, like
machine learning and deep learning, could be useful to delineate accurate models of diseases related to
neuro-cardiac pathologies for predictions of consequent bad outcomes related to the different stages.

Keywords
Cardiovascular and neurological diseases, Biomarkers, Computed tomography images, Electrocardio-
grams, Electroencephalograms, Machine learning and deep learning

1. Introduction

In 1956, John McCarthy coined the name Artificial Intelligence (AI) for the first time at the
Dartmouth conference [1]. This idea was then elaborated by Kaplan and Haenlein as “the ability
to process external data systematically and learn from it to achieve specific goals and tasks”
[2]. With the advancement in AI, new computer science-related studies came into life namely
intelligent machines, natural language processing, machine learning (ML), pattern recognition,
expert systems, and image recognition [3]. These new domains have helped the researchers to
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solve complex problems by taking into account different steps such as planning, reasoning, and
learning [4].

In addition, in 1959, Arthur Samuel is the researcher who conveyed the concept of “machine
learning” (ML) for the first time in the life cycle of AI. He directed the category of algorithms
and classifiers in ML’s concept [5]. These constructions of the algorithms started to learn the
input data’s distribution automatically and predicted new data accurately [6]. Similarly, due
to the machine learning concept, different other promising breakthroughs came such as the
backpropagation algorithm [7] and then neural networks [8].

After the concept of AI, in the early 1970s, a new concept came that empowered the medical-
related areas by intending to improve the efficiency of the diagnosis and also the treatment
against the found pathology [9]. Peleg and Combi et. al. [10] have elaborated different cycles of
artificial intelligence in the history of medical-related areas such as 1) Infancy stage: Decision
tree algorithm came into life; 2) Adolescence stage: Expert systems theory was proposed; 3)
Coming-of-age stage: Deep learning’s concept was being surfaced with machine learning; 4)
the most important stage named as Maturation period: technologies related to these fields are
comparably advanced and different applications of deep learning has started to prevail.

On the other hand, the advancement in medical equipment has also enhanced people’s
health [11]. This advancement has not just improved the survival rate but also has brought
improvements in the diagnosis of disease or injury [12]. With these advancements, researchers
have started their work for medical healthcare services as they came to know that it is a crucial
step toward the effectiveness of clinical engineers to investigate in a better way and to ensure
the patients’ safety [13, 14, 15].

On the combined advancements in AI and types of equipment of the medical world, Inter-
national Business Machines (IBM) has estimated that an average of 1 million gigabytes are
produced from a person in his lifetime [16]. To get intuitions about medical problems, clinicians
are trying to collaborate with artificial intelligence experts to use the chunks from the big data
and forecast about the healthcare solutions to improve the quality of the diagnosis and cure
[17, 18]. In this way, deep learning is playing a very crucial role to enhance equipment’s output
to support the clinicians in their decision. With this, Convolutional neural networks (CNNs)
started to become popular because they learn the importance of features by themselves from
the whole raw data space which saves the data scientist’s time to become a domain expert
in this algorithm [19, 20]. On this topic, these studies [21, 22] have compared the diagnosing
capabilities of AI systems against physicians’ diagnostic abilities. Results clearly highlighted
that AI may support and complement physicians’ diagnostic capabilities by adding a knowledge
base inferred by data. In the current era of medical AI, there are several medical problems
which are not yet been solved successfully and are the main focus of clinicians and medical
researchers such as cardiovascular diseases (CVDs) [23], neurology [24, 25], neuro-cardiac
hidden interactions [26, 27, 28, 29, 30] , cancer [31], aids [32], and so forth.

In this work, we are focusing on a detailed study of neuro-cardiac pathologies and their
interrelations with the help of different imaging modalities using AI. In this essence, several
researchers have proven that neuro-cardiac has a very strong relation among them. A disease,
dysfunctioning, irregularity, or even surgery of cardiac can cause to other diseases or abnormal-
ities to neuro [24, 33, 34, 35, 36], and same in vice versa like hypertension [37, 38], brain injury
[39, 40], hypoxic-ischemic [41], brain tumor [42], neurogenic stress [43], and so on.

156



In the investigation of interrelation between Neuro-Cardiac Pathologies (NCPs), biologists
have found several useful biomarkers to diagnose the influence of NCPs issues such as hs-
TroponinT, hs-cTn, CK-MB and NTproBNP, galectin-3, lysophosphatidylcholine, copeptin, sST2,
S100B, myeloperoxidase and GDF-15, and others [43, 44, 45]. Gopinath et. al. [43] have described
that understanding the interaction between brain and heart is a very complex task and vital
to keep maintaining the normal functioning of the cardiovascular system. Even sometimes,
there is no cardiac disease but due to neuronal disease or injury, many cardiac diseases can be
induced. The important thing is, there are different brain areas namely anterior cingulate gyrus,
insular cortex, and amygdala controlling the automatic nervous system. If one of these gets
damaged then many cardiac issues, interlinked with the damaged brain region, may elevate.

In the better diagnosis of the disease, nowadays radiologists and physicians are taking the
support of new imaging modalities [46]. These new techniques have introduced so much
improvement in revealing information with very high accuracy [47]. There are several different
imaging modalities which are being used to identify the region of interest such as Perfusion
Magnetic Resonance Imaging (MRI) [48], Diffusion weighted Imaging [49], Diffusion Tensor
Imaging [49, 50], Proton MR Spectroscopy [51], Susceptibility-weighted Imaging [52], Cere-
brospinal Fluid Flow MRI [53], etc. for neuro pathologies and Cardiac MRI with T1 and T2
Mapping [54, 55], and Dual Energy Cardiac Imaging [56] for cardiac pathologies.

In the next section, a number of states of art methodologies related to different findings about
neuro-cardiac hidden interactions are being discussed in detail while the conclusion section is
ending this work with final remarks.

2. State of the art methodologies related to neuro-cardiac
interactions and complications

In this section, a selection of literature studies concerning methodologies employed in the
field of neuro-cardiac interactions and complications will be considered. The selected studies
have shown potential applications of imaging and signal analysis to unravel and investigate
hidden relationships and complications between neuro-cardiac interactions. In literature, some
of previous studies reported examples of imaging techniques mainly based on operator’s work
(clinicians’ expert opinion) whereas others have taken advantage of statistical algorithms or
artificial intelligence. In this review, the literature selection criteria took into account for two
main factors 1) how different imaging approaches may be helpful in investigating distinctive
neuro-cardiac interactions and 2) how expert opinion, statistical algorithms, and machine
learning are beneficial in finding the interlinked markers. It is worth noting that, to date,
only very few studies employed ML or DL to investigate neuro-cardiac relationships being
medical-imaging aided investigations in the field mostly focused either on neurological or on
cardiac diseases. Thus, the lack of attention indicates that this specific field of research has not
yet been overburdened by studies concerning AI applications. Our comparative review may
then stimulate the use of AI in this field to overcome main issues of more classical approaches
in the field of neuro-cardiac pathologies.

The section is divided into four main sub-sections as also mentioned in Table 1, each referred to
specific applied methodologies in the field concerning heart and brain interactions in pathology.
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A first subsection concerns image analysis for heart and brain interactions, a second subsection
deals with physicians’ expert limitation to understand the complex neuro-cardiac interactions,
a third considers signal analysis toward early diagnosis of heart and brain pathological events,
and, a final subsection considers ML driven early-stage detection of heart and brain disease to
support decision making. For each subsection, selected studies will be comparatively described
in terms of purpose of the work, datasets, results, and then conclusive remarks at the end.

2.1. Image based analysis for heart and brain interactions in pathology

In this section, we are presenting two imaging-based clinical investigations [26, 27] employing
physicians’ expert opinions on CT and MRI images used to investigate neuro-cardiac pathologies
through time-based checkups. More in detail, researchers have applied a conventional medical
checkup approach. They gathered data from patients at first diagnosis and then at the follow-
up. From this set of medical data, they tried to infer possible neuro-cardiac interactions by
highlighting clinical parameter variations.

In the first study [26], authors have shown a detailed elaboration of heart and brain interac-
tions with the pathophysiology of neuro-cardiac disorders. Mental and neurological disorders
(MND) and cardiovascular diseases (CVD) are the two most prevalent disorders that lead to
a large number of deaths in the world. They started their study with stress cardiomyopathy
syndrome (SCS), a benign disease, in which roughly 290 patients went under observation. Dif-
ferent parameters like predisposing conditions/risk, physical, emotional, biological, and clinical
factors were taken into account to analyze the predictions. They predicted the diagnostic score
higher in females as compared to males. In addition, emotional and physical triggers, absence
of ST segment depression, psychiatric and neuro disorders, and QTc prolongation were found
in patients with a mortality rate of 25%.

Further, the first study has discussed another disease namely peripartum cardiomy- opathy
(PPCM) which is a left ventricle (LV) systolic dysfunction. It generally affects 1 out of 1000
pregnancies but it also depends on ethnic background and most of these patients are generally
diagnosed after their delivery. In the PPCM study, 740 patients were observed with different
details like ethnicity, maternal age, lifestyle, history of cardiac disorders, and others. They
resulted in a number of complications that appear after 6 months with mortality rate of 7% in
women and mortality the rate of 6% in neonates. In the end, the first work conducted another
experiment on patients with atrial fibrillation (AF) and cognitive decline diseases. AF is a very
prevalent disease in aging people. For this study, 2400 patients were taken into account and all
patients underwent magnetic resonance imaging (MRI) at the time of first checking, and after
2 years with cognitive tests. It was found that silent brain lesions have prevailed in the brain.
Due to these detected lesions in MRI, patients started to face a reduction in cognition.

In the second study [27], they evaluated the prognostic performance of ventricular charac-
teristics on brain computed tomography (CT) in cardiac arrest survivors based on the cerebral
performance categories (CPC) score scheme. They enrolled a total of 320 survivors who faced
cardiac arrest event/s (age > 18 years) and accordingly tried to calculate the score where CPC-1
is a good performance and CPC-5 is brain death or death. For each patient, they considered
several features such as: age, sex, comorbidities, blood and circulation parameters, and brain CT
findings to predict the neurological outcome. In addition to these features, few clinical features
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such as ventricular areas (lateral, third, and fourth ventricle), distance between both anterior
horns and both posterior horns of the lateral ventricle (LV), the Hounsfield units (HUs) of the
putamen and corpus callosum and Grey-to-white matter ratio (GWR) were calculated.

Unfavorable outcomes were found after 6 months of cardiac arrest activity in 180 patients
with the rate of 68%. Patients with favorable neurologic outcomes were younger, had a lower
incidence of comorbidities (hypertension and diabetes), and had a shorter time to ROSC. They
also showed significantly higher GWR, smaller LV and third ventricle areas, a significantly
shorter distance between both the anterior horn of the LVs and the posterior horn of the LV,
and a lower relative LV area.

At the end, ventricular characteristics were significantly different between favorable and
unfavorable neurological outcomes at 6 months after cardiac arrest activity. In this regard, CT
findings could be directly used to delineate accurate neurological predictions about the patients
after their cardiac event.

From above-described literature studies, it emerges how neuro-cardiac interactions in pathol-
ogy are investigated through physicians’ opinions and score-based techniques on time-based
diagnostics. Although some evidence was found, a lack of confidence characterizes results in
terms of features importance related to neuro-cardiac interaction analysis. Other drawbacks
are related to the choice of follow-up end point for evaluation and limitations in early diagnosis
of neurological diseases and correlated to cardiac events.

2.2. Physians’ opinion limitation for diagnosing neuro-cardiac pathological
events using imaging modalities

This section elaborates on a study [29], based on ECGs, which has shown the physicians’ opinion
limitation towards understanding and predicting the complex neuro-cardiac pathological event.
In the ECG work, they evaluated the cardiac alterations caused by central nervous system
disorders by the observation of abnormalities on electrocardiogram (ECG) patterns. They mainly
focused on different patterns namely ST segment, QT segment, QT interval prolongation, T
wave, and QRS complex. The data collection was made on 161 patients as 12-lead ECGs including
age of ranging from 10 to 60 years. These ECGs were having different diseases such as brain
tumor (66 cases), stroke (44 cases), subarachnoid hemorrhage (11 cases), subdural hemorrhage
(8 cases), brain aneurysm (25 cases), and head injury (7 cases).

The selected ECGs were then analyzed and corrected with the help of Bazett’s formula. After
correction, all ECGs were shown to experts, who were blinded to all data and predicted the
outcomes based on different ECG components. The expert predictions showed that they put
their whole attention on ST-segment’s elevation or depression, inverse T-wave, non-specific
ST-T abnormalities, and QT prolongation. According to them, these are the main features that
are causing tumor, subarachnoid hemorrhage, or subdural hemorrhage.

This study’s results are very interesting in this way that the total dataset contains different
neurological diseases. In adverse, doctors’ expert opinions’ predictions have shown just 35.4%.
It means the markers related to neuro-cardiac interactions are not observable by the naked
eye. To predict the complex interactions between neuro-cardiac, it is necessary to introduce
promising tools in this domain to achieve some delineate models.
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2.3. Statistical analysis: signal analysis toward early diagnosis of heart and
brain pathological event

This section has focused on signaling based statistical techniques that have used ECGs abnor-
malities to diagnose heart and brain related pathologies. In the related study [28], they have
evaluated the relationship between ECGs and the outcome with mortality of 3 months after
an acute stroke. On start, a total of 1070 ECGs (12-leads) were taken into account which were
having three abnormalities namely acute cerebral infarction (ACI) (692 patients), intracerebral
haemorrhage (ICH) (155 patients), and transient ischaemic attack (TIA) (223 patients). On these
ECGs, different features were computed based on clinical parameters and CT-scans. To evaluate
these features, a logistic regression classifier based on Scandinavian Stroke Scale (SSS) score,
using SPSS software, has been used. After the computation of score, outcome was then rescaled
on the modified Ranking Scale (mRS) algorithm for better understanding.

In results, ECG-abnormalities were predicted as 416 ECGs were containing ACI, 77 ECGs
were having ICH, and 98 patients were facing TIA complications. In this multivariate analysis,
they predicted that ACI strokes were detected through atrial fibrillation, atrio-ventricular block,
ST-elevation, ST-depression, and inverted T-waves on ECGs. The important thing about ACI is,
it is totally independent of stroke severity and age. Then, ICH was predicted by analyzing sinus
tachycardia, ST-depression, and inverted T-waves. At the end, none of the ECG changes had
prognostic significance in patients with TIA. In the whole experiment, they noticed that the
patients with severe cerebral infarction faced high rate of heart beat for the first 12 hours. With
this, at every increase in heart rate of 10/min gave another indication to the physicians that this
kind of trend is directly associated to mortality at 3 months.

From the whole experiment, physicians have predicted that stroke severity SSS score decides
the amount of augmentation in the frequency of ECG components. Some ECG abnormalities
and increasing heart rate predict poor outcome and 3 months of mortality after an acute stroke.
However, this study showed a low accuracy (only 55% of the entire dataset was correctly
predicted). The reason probably lies in the ECGs feature space, which does not contain enough
information to diagnose and understand this type of interaction.

2.4. ML driven early-stage detection of heart and brain disease and support to
clinical decision

In this section, we have included machine learning based methodology [30] in which they have
used several machine learning algorithms on cardiac arrest patients’ data. At the end, they used
artificial intelligence (AI) explainability and predicted the important features. In the selected
ML study, researchers designed a multi-modal machine learning system to predict the survival
rate of cardiac arrest patients who received cardiopulmonary resuscitation (CPR) without going
to the hospital. In a greater detail, a ML model was developed to predict neurological outcome
based on the scale of cerebral performance category (CPC) scores in which CPC-1 and CPC-2
were declared good neurological outcomes and CPC-3 to CPC-5 as bad outcomes.

Data to train and test the ML algorithm were taken from the Korean Cardiac Arrest Research
Consortium (KoCARC) dataset [57] which is publicly available with committee approval. This
dataset contains data from roughly 6000 patients who faced the return of spontaneous circulation
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(ROSC). It is worth noticing that this database is highly unbalanced given that only a hundred
patients had bad neurological outcomes among all the available patient data. For each patient,
around 20 independent features per patient were available such as: age, sex, ECG rhythms, CPR
values, defibrillation and pre-hospital intervals, etc.

Before going to ML techniques, missing value issue was faced by multiple imputation by
chained equation (MICE) algorithm. MICE is basically an iterative model which imputes values
step by step in all variables. Then four renowned classifiers were trained namely voting classifier
(VC), XGBoost (XGB), random forest (RF), and regularized logistic regression (RLR) classifier.
A five-fold cross-validation technique was applied for the training of the multimodal system.
Grid search technique which helped in predicting the optimized parameters. To compute the
robustness of this model, different renowned measures were used namely Brier score, log loss,
area under the curve (AUC), F1-score, negative predictive value, and positive predictive value.
With the help of these measures, it was found that XGB, VC, and RLR performed very well with
greater than 90% AUC while RF had less than 90% AUC.

Table 1
Comparsion of different analysis techniques related to neuro-cardiac pathologies

Analysis type Study Data Size Features Results Drawbacks

Imaging Modalities

[26] 3430 ECG, MRI, and
so on

Mortality rate
of 28% and Cog-
nitive decline Time taking and

disease detection
at appearance

[27] 320 Age, sex, brain
CT findings, and
so forth

68% bad neuro-
logical outcome

Physicians’ opinion [29] 160 Age, Gender,
and ECG com-
ponents

Predicted: 35% Physicians’
opinion is lim-
ited by using
imaging modali-
ties

Statistical analysis [28] 1100 Age, 12 lead
ECG, hyperten-
sion history and
so on

Predicted: 55% Features are not
having promis-
ing information

Machine learning [30] 110 Age, pre-
hospital ECG
rhythm, hospi-
tal ECG rhythm,
and so forth

90% AUC More samples to
improve more
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In contrast to best performances, it was found that XGB algorithm focused on predicting
the true-positive and false negative samples while RLR focused on the true positive and false
negative samples. In regard to predicting the poor neurological outcomes, these model were not
able to predict bad neurological outcomes in a good way even though 68 patients were existed in
the test set. Due to this drawback, the authors selected voting classifiers (VC) which has shown
good performance in the prediction of neurological outcomes. On VC, authors applied further
explainable AI technique to take out, from the whole feature space, the six most important
variables for the prediction of the neurological outcome. In other words, those clinical feature,
e.g., age, ECG rhythm, cardiac arrest event, and others, are mainly responsible for high scores
in VC driven classification and prediction of neurological outcomes.

3. Conclusions

Advancements in imaging and signal analysis have made physicians and researchers more able
to infer the structural and functional properties of the brain and heart. Continuous improvement
in computational power, algorithms and finally the raise of ML and DL-driven technologies
have allowed scientists to start to deepen their knowledge on hidden neuro-cardiac interactions.
However, this intriguing research field is only at the beginning. In this review paper, we
have collected and compared some relevant examples of research applications in the field with
particular attention to neuro-cardiac imaging and signal analysis techniques aided by expert
opinions (physicians), statistical algorithms, and machine learning. It is found that there are
not a high number of studies reporting examples of AI techniques applied to the field. As
most researchers are employing heart imaging-based models to diagnose heart diseases and
brain imaging-based models for brain diseases but not in inter-related interactions. In this
domain, most reported studies are based on more classical approaches, which are usually limited
in quantifying feature importance and clinical variable connections given by the complexity
of the investigated system. On the other side, artificial intelligence (AI) techniques has the
well-known ability to surface up more hidden interactions and interlinked complications to
support clinicians’ decisions. In the near future, it is likely that ML/DL-driven technologies
already effectively developed in other medicine areas (e.g., cancer, Cardiovascular risk, etc..)
will be tailored to empower our knowledge on hidden relationships characterizing heart-brain
connections.
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Abstract
Preterm birth is the primary cause of infant death and is associated with later neurodevelopmental
impairments. Neuroimaging is a powerful tool to analyse neuroanatomy abnormalities in preterm infants.
It allows analysing of different brain structures, such as the thalamus and their alterations. Thalamus
is a crucial hub for regulating cortical connectivity. Moreover, white matter (WM) injury in preterm
infants can impact thalamic growth and maturation in long-term periods. Therefore, the study of the
thalamus morphology during the neonatal period using magnetic resonance imaging (MRI) can help to
identify those features that predict neurodevelopmental outcomes in these vulnerable population. In
this study, we automatically segmented the thalamus structure from 3D MRI scans and extracted the
thalamic features from these segmentations. The gestational age at birth and post-menstrual age at the
scan time is also taken into account in our study. The K-means clustering, an unsupervised machine
learning algorithm, was employed to explore the hidden pattern related to thalamus features from early
and term-equivalent scans. Finally, we studied the association of these features to a scoring system used
in clinical settings to assess MRI scans in very preterm infants at term-equivalent age. The main results
highlight that 77 percent of preterm-born infants with abnormal MRI scores share the same cluster.

Keywords
Thalamus, K-means clustering, Atlas-based segmentation, Preterm infants

1. Introduction

Preterm birth, before 37 weeks of gestation, affects fifteen million children each year in the world
[1]. It remains the main cause of infant death [1]. The severity of long-term neurodevelopmental
impairments increases with decreasing gestational age [2]. In particular, early exposure to
extrauterine life is closely associated with deficits in cognitive, motor, visual, socio-emotional,
sleep, and language domains [3]. The thalamus is a meaningful hub that shapes brain connec-
tivity during prenatal and postnatal life. It is commonly affected in preterm infants by white
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matter (WM) injuries, either directly or through maturational disruption [4, 5]. Preterm birth
influences the growth of thalamocortical connectivity and the steps in the sensory organisation
and functional specialisation of the cerebral cortex [6, 7]. Thalamo-cortical connectivity is
regionally altered for preterm infants, and the thalamic volume is related to both the cortical
volume and the WM tracts [8]. There is also some evidence that alterations in fronto-temporal
and parieto-occipital cortical areas are related to the thalamic structural connectivity, and the
volumetric measurements obtained from the thalamic region [9]. Thalamocortical connectivity
abnormalities identified after preterm birth can be correlated with the future neurodevelopmen-
tal impairments [10, 11, 12].
In this study, we develop a protocol to evaluate the importance of thalamic features of preterm
infants. Our hypothesis aims to relate the morphological characteristics of the thalamus to
the Kidokoro score [13]. Firstly, we use an automatic method to segment Magnetic Resonance
Images (MRIs) from a preterm infant cohort [14]. Then, we extract morphological features from
the region of interest (ROI), i.e. the segmented thalamus area. After an exploratory analysis
of the extracted features, an unsupervised machine learning algorithm is used to cluster the
features. Finally, we show that it is possible to cluster the abnormal MRIs through thalamus
measurements using term-equivalent scans. In addition, the results show the extracted fea-
tures are sufficient to differentiate between healthy term-born infants and preterm infants at
term-equivalent age.

2. Method

2.1. Atlas correction and automatic thalamus segmentation

Melbourne Children’s Regional Infant Brain (M-CRIB 2.0) atlas [15] is used to segment thalamus
structure from the MRI images of our cohort. In particular, the atlas contains ten scans from
healthy term-born infants [15].
Preliminary visualization of the M-CRIB 2.0 atlas showed an overestimation of thalamic seg-
mentation, including the nuclei and the hippocampal gyrus. Therefore, an expert in our group
reviewed and corrected thalamic segmentation manually. We automatically segmented the
thalamus from the MRI images according to the neonatal pipeline proposed by Makropoulos et
al. [14, 16]. In principle, the pipeline registers the image to a neonatal atlas image at a similar
gestational age [16] to separate non-cortical grey matter from the WM, grey matter and the
cerebrospinal fluid (CSF). Then, the image is registered to the M-CRIB 2.0 atlas. Finally, local
atlas weighting and DrawEM [16] are used to separate the thalamus from the other brain struc-
tures. This pipeline is widely used and supported by the literature studies [17, 18]. According
to the changes made in the atlas, we adapted the pipeline [14] for thalamus segmentation. The
clinical experts in the group have verified the quality of the automatic segmentation.
Figure 1(a)-1(c) shows an example of the original scan from the atlas, a corrected scan with
a redundant part, and one of the segmentation provided by the pipeline after the correction,
respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Atlas correction and the segmentation results. a) A slice from the coronal plane of the original
atlas T2. b) A slice from the coronal plane of the correction in the atlas. c) A slice from the coronal
plane of the corrected thalamus segmentation in the atlas. d) A slice from the coronal T1 plane of the
preterm infant at term-equivalent age. e) A slice from the coronal plane of the automated segmentation
in preterm infants at term-equivalent age. f) A slice from the coronal plane of segmented thalamus in
preterm infants at term-equivalent age. The green colour indicates thalamus structure, and the purple
colour refers to the corrections made by an expert on the atlas.

2.2. Thalamic feature extraction

We extracted ten features from the segmented thalamus (Table 2). All the volumetric mea-
surements have been standardised by the Total Brain Volume (TBV). We prioritise TBV over
Intra-Cranial Volume (ICV) as ICV includes extra-axial CSF. A physiological increase in extra-
axial CSF in preterm infants may facilitate suboptimal brain growth in the neonatal period.
Therefore, it is crucial to prioritise the TBV over the ICV to ensure measuring real brain tissue.
The other measurements, like area, have been standardised by the maximum brain area at
the axial plane, where the thalamus has the largest area. The following thalamus features are
summarised in Figure 2 and Table 1: post-menstrual age (PMA) at the scan time, the TBV, the
Standardised Left Thalamus 3D Surface (SLTS) and the Standardised Right Thalamus 3D Surface
(SRTS). Furthermore, the other extracted variables are reported in Table 2. Notably, the 3D
surface of the thalamus is standardised by the largest area of the brain in the axial plane. In
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this way, we obtain an indirect measurement regarding the relationship between the thalamus
and general brain maturation. The distributions of the four variables are shown in the diagonal
boxes of Figure 2 and in Table 1. Moreover, Figure 2 shows the two-way relationships between
these variables. For example, the last row of Figure 2 reveals that the volume brain increases
with increasing PMA, but the standardised 3D surface of the thalamus decreases with increasing
PMA. Since the brain regions grow considerably during this period, this behaviour is seen in
this figure [19], and their proportion to the thalamus changes. Therefore, it affects the data
standardisation and a value decrease does not concur with a natural reduction. It is relative to
the growing trend of the TBV.
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Figure 2: Distribution of Total Brain Volume in cm3 (TBV), Standardised Left Thalamus 3D Surface
(SLTS) and Standardised Right Thalamus 3D Surface (SRTS), post-menstrual age in weeks (PMA) in the
diagonal boxes and the two-way relationships in the other boxes
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Table 1
Statistical description of Total Brain Volume (TBV), Standardised Left Thalamus 3D Surface (SLTS) and
Standardised Right Thalamus 3D Surface (SRTS), post-menstrual age (PMA)

TBV (cm³) SLTS SRTS PMA (weeks)

Mean 402.37 0.041 0.042 36.494
S.D. 156.47 0.018 0.019 5.462
Min 153.60 0.016 0.016 26.715
25% 244.80 0.029 0.030 30.571
50% 448.93 0.036 0.037 39.715
75% 527.14 0.055 0.056 40.857
Max 830.73 0.086 0.092 44.571

2.3. MRI Score

MRI scans were acquired using a 1.5 Tesla scanner (Magneton Symphony, Siemens Health
Care, Erlangen, Germany) located in the radiology unit in the University Hospital of Puerta
del Mar (HUPM), Cadiz, Spain. The acquisition parameters are as follows: spacing in x, y and
z direction : 0.8, 0.8, 0.8; echo time = 3.67 ms; flip angle = 15°and repetition time = 1910.0 ms.
T1 weighted spin echo imaged sequences were used to collect our data. Potential risks caused
by the physical properties of the MRI equipment were evaluated and minimised following the
recommendations provided for preterm infants [20] and our previous experiences [21, 22]. The
images obtained from the scans were evaluated through the clinicians’ observation using a
scoring system developed by Kidokoro et al. [13]. It provides a comprehensive and objective
characterisation of the regional and global brain lesions and brain growth. In particular, it is
used to confirm the clustering results and check whether patients with an abnormal score are
clustered into the same group (For more details, see section 4.2). The scoring system suggested
by Kidokoro et al. [13] groups the global score into four categories: (normal, mild, moderate,
and severe). We then binarised the variable by considering normal versus abnormal MRI (the
latter including mild, moderate and severe) as we wanted to see if the thalamic features could
be associated with any degree of MRI abnormality.

2.4. K-means clustering

Given a set of observations having 𝐷 dimensions, the k-means clustering as an unsupervised
machine learning algorithm aims to partition the observations into 𝑘 different groups by
minimising within cluster sum of the squared error without having access to the outcomes.
We set K to three in our analysis because our dataset has three main groups (see section 3).
It should be noted that clustering is only carried out based on the thalamic features. Table 2
shows the included attributes for K-means clustering. The K-means clustering is also performed
using morphological features extracted from the atlas images. Moreover, the score proposed in
Kidokoro et al. [13] was used to validate the K-means algorithm. In conclusion, according to the
preliminary statistical analysis, the plots of each feature vs others (Figure 4), and other algorithms
comparison, we conclude that K-means clustering as a simple algorithm can efficiently cluster
our dataset (table 4).
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Table 2
List of dataset variables included in the clustering. Total Brain Volume (TBV), Standardised Left Thalamus
3D Surface (SLTS), Standardised Right Thalamus 3D Surface (SRTS), post-menstrual age (PMA)

Variable Clustering

TBV (cm3) included
Left Thalamus Volume (cm3) included
SLTS included
Left Thalamus perimeter (cm) included
Left Thalamus Angle (degrees) included
Right Thalamus Volume (cm3) included
SRTS included
Right Thalamus perimeter (cm) included
Right Thalamus Angle (degrees) included
Distance Left and Right Thalamus cm included
Angle between Left and Right Thalamus included
Left Centroid not included
Left Highest Point not included
Right Centroid not included
Right Highest Point not included
Kidokoro score not included
SEX not included
GA not included
PMA not included

3. Experimental configuration and cohort

We included 48 scans from 31 patients of a longitudinal cohort that involves preterm infants
from the preterm cohort at Hospital Puerta del Mar (HUPM), Cad́iz, Spain, with very low
weight at birth, equal or <1,500 grams, and/or gestational age (GA) at birth equal or <32 weeks.
The parents or legal guardians of these infants have signed the informed consent. Data were
recorded prospectively from these patients as they underwent MRI as part of a cohort study of
the preterm brain damage group at the Biomedical research and innovation institute of Cad́iz
(INIBICA). GA is calculated from the date of the last menstrual period and confirmed using
data from early antenatal ultrasound scans. The weeks of postnatal life (age) are added to the
weeks of GA at birth, giving the so-called post-menstrual age (PMA). Typically, two MRI scans
are taken from each infant. An early scan was performed within the first ten days of life, and
a late one was at the term-equivalent age (38–42 weeks of corrected age), according to PMA.
Following this principle, the initial 48 MRI scans are divided into two groups, i.e. 23 early scans
and 25 term-equivalent scans (17 patients have both scans).In addition, 12 patients are identified
as abnormal in agreement with Kidokoro et al. [13]. Therefore, early and term-equivalent scans,
plus abnormal/normal MRI scores, provide four different groups: early normal MRI score, early
abnormal MRI score, term-equivalent normal MRI score, and term-equivalent abnormal MRI
score. Moreover, ten scans from the M-CRIB 2.0 atlas [15] are added to the analyses. These
scans are from healthy term-born neonates and are used as the control group.
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4. Results

4.1. Analysis of extracted features

We extracted ten features from the segmented thalamus (see section 2.2). As visualizing all these
features are not easy, we rely on the dimension reduction methods such as principal component
analysis (PCA). Figure 3 shows the results of PCA on term-equivalent and M-CRIB 2.0 atlas [15]
scans. Initial results demonstrate that the first five principal components can explain more than
92% of the variabilities among features. Therefore, these components are enough to explain
our data. Table 3 shows the percentage of explained variance for each component. The first
two components explain more than 60% of the variation among thalamic features. Moreover,
Figure 3, indicates that it is possible to separate the M-CRIB 2.0 atlas scans from those of the
preterm infants in our cohort according to the first two components. One of the advantages of
PCA is its interpretability. For example, ID 23, highlighted in red, shows an anomaly in its first
component with a value less than -0.9. This result suggests that clinicians should check this
infant. In addition, according to the Kidokoro assessment score, this ID has an abnormal MRI
score.
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Figure 3: Visualising the PCA components of thalamic measurements in preterm infants at term-
equivalent age and healthy term-born ones. The horizontal axis of the figure shows the anonymised ID
of the patients, and the vertical one shows the number of principal components. The atlas scans IDs
start from 201. The box in black colour separates the atlas scans from the rest. Notice that we use 5
components for PCA analysis.

PCA components 1 2 3 4 5
Explained variance 34.7 28.1 13.6 10.5 5.7

Table 3
The percentage of variance explained in measurements of thalamic features from different components
of PCA.
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4.2. Clustering results

After clustering, the three clusters are represented by different coloured points and also compared
with MRI score [13] (abnormal = green star, normal = magenta cross) and M-CRIB 2.0 atlas [15]
(yellow cross) in Figure 4. All the images in the M-CRIB 2.0 atlas [15] are correctly classified in
the third cluster. These findings highlight the significant difference between healthy term-born
infants and preterm infants at term-equivalent age. Furthermore, Figure 4 also shows that most
premature infants with abnormal MRI scores are in the second cluster, i.e. 77%. However, the
clustering of thalamic features of the early scan group does not differentiate between abnormal
and normal term-equivalent MRI. The second cluster gets the highest probability values for
early scans, i.e. 47%. The clustering accuracy is summarized in Table 4.
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Figure 4: The plots of post-menstrual age in weeks (PMA) vs Total Brain Volume in cm3 (TBV),
Standardised Left Thalamus 3D Surface (SLTS) and Standardised Right Thalamus 3D Surface (SRTS).

Table 4
The percentage of abnormal infants in each cluster for the early and term-equivalent scans.

Cluster 1 Cluster 2 Cluster 3

Early scans 28% 47% 25%
Term-equivalent scans 23% 77% 0%
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5. Discussion

The K-means clustering correctly separated 77% of abnormal patients into the correct cluster
(Table 4) and correctly distinguished all healthy neonates from the M-CRIB 2.0 atlas images, as
our reference group (Figure 4). The separation of the third cluster seems easy as the first and
the second component of PCA results (Figure 3) indicate the difference in the thalamic features
between healthy term-born infants and preterm infants at term-equivalent age.
Nevertheless, the clustering of thalamic features of the early scans does not differentiate between
the abnormal and normal MRI (Table 4). This result could be explained by postnatal brain
maturation, as the MRI score system only applies to term-equivalent scans, so the patient’s
situation can change from one scan to the next. In particular, a patient could have a normal
early MRI scan and develop clinical complications that will lead to brain injury and an abnormal
term-equivalent MRI. After describing the thalamic features of a cohort of preterm and term-
born infants related to GA at birth and PMA at the time of scans, we show how the thalamic
features can be associated with clinical MRI scores. Furthermore, they share three clustering
patterns: the first cluster can be interpreted as patients with normal MRI score, the second
cluster can belong to the abnormal MRI score, and the third cluster can be associated with the
M-CRIB 2.0 atlas scans.
Some other groups have done previous research on this topic. For example, Ball et al. [12], Jakab
et al. [10] and Menegaux et al. [23] focused on the diffusion-weighted imaging. In contrast,
we focus on the T1-weighted images in the current study. Furthermore, our work includes a
detailed analysis of the thalamic features, while the work published by Wisnowski et al., [24]
Lao et al. [25] and Loh et al. [26] considered only one feature, i.e. thalamic volume. Interestingly,
our results align with those from Lao et al. [25], who described the standardised 3D surface as
an important thalamic feature. Our study includes a more exhaustive analysis of the thalamic
features and extensively extracted 2D parameters, including the thalamic perimeter where the
largest thalamic area was found in the axial plane, and 3D information from the thalamus [25].
Moreover, we have normalised the thalamic volume to the TBV and studied the association
between the specific morphological characteristics of the thalamus and the Kidokoro score [13]
at the term-equivalent MRI.
According to Kostović et al.[19], during the beginning of the third trimester of fetal development,
thalamocortical and cortico-cortical afferents migrate to the cortex and finally form their primary
connections. The ontogeny of this migration process suggests that these connections grow with
different starting times but from the same point. Consequently, the other brain regions grow
considerably during this period, and their proportion to the thalamus significantly changes (see
figure2). Conclusively, damage in the preterm brain affects thalamus features and their relation
with the TBV. In some extreme cases, the atlas-based segmentation includes other structures
and overestimates the thalamus and its features. Manual segmentation and the development of
advanced machine learning methods can help to solve this problem.
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6. Conclusion

In the current study, we associated the thalamic features with the MRI score assessment of
preterm infants and explored the importance of thalamic features for the clustering of the
patients. The standardised thalamic 3D surface can be suggested as a crucial morphological
feature to cluster patients. Further studies, including a bigger sample size and external validation,
are warranted to investigate the potential role of these thalamic features as a diagnostic and
predictive tool of brain injury and long-term neurodevelopmental outcomes in preterm infants.
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