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Abstract: Text-to-image synthesis is one of the most critical and challenging problems of generative
modeling. It is of substantial importance in the area of automatic learning, especially for image
creation, modification, analysis and optimization. A number of works have been proposed in the
past to achieve this goal; however, current methods still lack scene understanding, especially when
it comes to synthesizing coherent structures in complex scenes. In this work, we propose a model
called CapGAN, to synthesize images from a given single text statement to resolve the problem
of global coherent structures in complex scenes. For this purpose, skip-thought vectors are used
to encode the given text into vector representation. This encoded vector is used as an input for
image synthesis using an adversarial process, in which two models are trained simultaneously,
namely: generator (G) and discriminator (D). The model G generates fake images, while the model D
tries to predict what the sample is from training data rather than generated by G. The conceptual
novelty of this work lies in the integrating capsules at the discriminator level to make the model
understand the orientational and relative spatial relationship between different entities of an object
in an image. The inception score (IS) along with the Fréchet inception distance (FID) are used as
quantitative evaluation metrics for CapGAN. IS recorded for images generated using CapGAN is
4.05 ± 0.050, which is around 34% higher than images synthesized using traditional GANs, whereas
the FID score calculated for synthesized images using CapGAN is 44.38, which is ab almost 9%
improvement from the previous state-of-the-art models. The experimental results clearly demonstrate
the effectiveness of the proposed CapGAN model, which is exceptionally proficient in generating
images with complex scenes.

Keywords: image generation; generative adversarial network (GAN); capsule network; deep learning;
convolutional neural network (CNN); skip-thought vectors; inception score (IS); Fréchet inception
distance (FID)

1. Introduction
Text-to-image synthesis is the translation of a single sentence directly into pixels [1].

Automatically generating images from a single sentence is a primary problem in computer-
aided design (CAD), automatic art generation (AAG) and various other applications. The
difficulty of synthesizing images or illustrating visual information from text has gained
interest in the research community, but it is far from being solved, in particular for complex
scenes. In complex scenes, objects are composed of multiple entities in which the color(s)
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and basic shape of each entity can be fully determined separately. Image synthesis from
text can facilitate the automatic learning process in the following ways:
1. Once the images are synthesized, any modification in a scene or an image can be im-

plemented by means of text as an input instead of using advanced photo editing tools.
2. Text-to-image synthesis can improve the predictions of object classification problems,

as the synthesis model is generating images from scratch, thus, it has good judgment
about object features.

3. It will smooth the automatic learning process and art generation of, for example,
animated images, clips, movies, etc.

4. The images synthesized using text can also be helpful to generate labeled data for
further research.
The problem of generating images from text description is highly multimodal. This

means that there can be multiple correct answers for a single input sentence. In terms of
image synthesis from text, multimodality suggests that there can be several reasonable
and possible configurations of pixels that can correctly, as well as acceptably, exemplify the
same text description. For instance, a sentence, “This flower has petals that are white and
has a green tip” or “A bird with yellow beak sitting on a tree” can have multiple possible
solutions. An illustration of such cases is shown in Table 1, which presents multiple images
generated for a given input text.

Table 1. Examples of multiple images generated from a single text statement.

Text Generated Images
This flower has long red petals

with black center.
A water flower with light yellow petals

and yellow pistils in the center.
This flower has purple petals

and a long stigma.
This flower has rounded white petals
which form a bright yellow shape in

the center.
This bird is dark grey in color and has a long wings

and a black downward curved beak.
The bird is a royal blue

with black accents on the wings, tail and beak.

White smiling dog.

The past research on solving multimodal problems in text-to-image synthesis has
focused on various machine-learning-based algorithms, particularly generative adversarial
networks (GANs) [2]. Many researchers have made attempts to synthesize images using
text for single objects [1,3–5] by plugging conventional convolutional and deconvolutional
layers in GANs. However, none of them succeeded in generating coherent images, and
the proposed models failed to take into account the spatial and orientational association
among diverse entities of an object in an image.

The models based on convolutional layers, e.g., convolutional neural networks (CNN),
have provided massive success for several deep learning applications; nonetheless, they
have some limitations and drawbacks. For instance, large amounts of data are required
for training CNN. In addition, the internal data representation of CNN does not take into
account important spatial associations among objects. In order to clarify this, we present an
example of a flower object in Figures 1 and 2. For CNN, both Figures 1 and 2 are flowers as
CNN does not take into account the spatial and orientational association among different
entities of an object. The spatial and orientational association dictates that for an object to



Information 2023, 14, 552 3 of 20

be a flower, the petals should be aligned around the center, the leaves should be connected
to the stem and all entities (petals, stem, leaves and stamen) should be connected.

For CNN, both Figures 1 and 2 are flowers, as the mere presence of the entities (petals,
stem, leaves and stamen) indicates object existence. However, for a capsule network,
Figure 1 is a flower, whereas Figure 2 is not considered to be a flower.

Figure 1. Complete flower.

Figure 2. Disoriented flower.

On the other hand, capsule networks [6] are based on the concept of inverse rendering.
In computer graphics, objects are constructed though rendering, which requires some
geometric information that specifies where to draw an object, its scale, its angle, along with
other spatial information. Capsules in capsule networks are designed to represent vectors
or multi-dimensional information, whereas neurons in convolutional neural networks
(CNNs) typically operate on scalar values or single-channel data. Therefore, unlike neurons
in CNN, the capsules extract the geometric information of an object in an image in the
form of vectors and use it for inverse rendering. Therefore, in contrast to CNN, a capsule
network easily identifies Figure 1 as a flower, and Figure 2 to be a non-flower object; as in
Figure 2, the spatial association between different entities of flowers is not satisfied.

We utilize the capsule network for image synthesis from a given text statement to
overcome the problem of global coherent structures in complex scenes. In this work, we
suggest an innovative model, named CapGAN, to synthesize images from a given single
text statement using GANs. Our model takes as input a single text statement and utilizes
skip-thought vectors as text encoders that can produce highly generic fixed length sentence
representations [7]. As the synthesis of images from extracted features is highly multimodal,
this makes GAN an ideal candidate for image synthesis problems. We feed these fixed
length representations to GANs for image synthesis using an adversarial process, in which
two models are trained at the same time, namely: generator (G) and discriminator (D).
The model G generates fake images, while the model D tries to predict what the sample
is from training data rather than generated by G. The conceptual novelty of this work
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lies in integrating capsules at the discriminator level to make the model understand the
orientational and relative spatial relationship among various diverse entities of an object
in an image. CapGAN is trained and evaluated on the Oxford-102 dataset [8] for flowers,
Caltech-UCSD 200 [9] for birds and ImageNet [10] for images of dogs. Our model is evalu-
ated using the most widely used inception score (IS) and Fréchet inception distance (FID)
measures for the image synthesis problems. The bench-marked results affirm the usefulness
of capsule networks to capture and regenerate orientation, as well as spatial connection,
among several entities of an object. The rest of the paper is organized as follows: the second
section briefly explores various studies associated with the problem of synthesizing images
based on text. The implementation details are described in detail in Section 3. Section 4
highlights the key results of this research, followed by discussion in Section 5. Finally, the
paper is concluded in Section 6, along with some future recommendations.

2. Background
Text-to-image synthesis is highly multimodal. Shared representation across modalities

and data prediction via retrieval or synthesis are two major challenges for multimodal
problems [1]. Zhu et al. [11] have exploited the capabilities of artificial intelligence (AI) and
machine learning (ML) to generate images provided with the basic results. However, with
the introduction of generative modeling, image generation from given text has improved
drastically. Generative modeling is well suited for synthesis problems such as text-to-image
synthesis [1,3,4,12,13], image to image translation [14–17], prediction of next frame in
video [18], super resolution [19], etc.

Reed et al. [1] demonstrated a GAN-based architecture for translating a single text
into pixels. A single deep convolutional generative adversarial network (DC-GAN) is
trained conditioned on text features stored by a convolutional recurrent neural network
(CRNN) in text-to-picture synthesis utilizing GANs. Feed forward inference is performed
by both generators (G) and discriminators (D) based on the text feature. Both generators
(G) and discriminators (D) perform feed forward inference conditioned on the text feature.
Text-to-image generation using a single GAN was a huge success; however, there are some
limitations as well. First, the images generated are of very low resolution and blurred.
Second, less text is used for training. Finally, it was reported in their study that upon
closer inspection, generated scenes are usually not coherent, which means that when the
model was tested for the MS COCO [20] dataset for complex scene generation, images
synthesized for composite objects were not distinguishable, and the spatial relationship
between multiple objects was not fulfilled.

Another study [3] proposed a text-conditioned auxiliary classifier generative adversar-
ial network (TAC-GAN) to improve the resolution of images synthesized from a given text.
The generated images are of resolution 128 ⇥ 128, and the objects are more distinguishable
compared to the previous text-to-image synthesizer. The Caltech UCSD birds dataset [9]
is used for training. The images generated by TAC-GAN are of a high resolution, and
objects are more distinguishable; however, TAC-GAN was only tested for datasets having
single objects.

StackGAN [4] advocated employing many GANs layered on top of each other to create
photo-realistic image synthesis. StackGAN++ [21] is a variant of StackGAN that proposes
a multi-stage GAN architecture for both conditional and unconditional generative tasks.
Multiple generators and discriminators are grouped in a tree-like structure in StackGAN++.
Various branches of the tree produce images of the same scene with different resolutions.
StackGAN++ generates images for single items successfully but fails to make photo realistic
images for complex settings, as do other systems.

The attentional generative adversarial network (AttnGAN) [22] proposes picture
synthesis using attention driven refinement. By paying attention to appropriate words in
the text description, AttnGAN synthesizes fine-grain features at multiple sub-regions. For
producing different sub-regions of the image, each attention model automatically retrieves
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the most relevant word vectors. However, for complex situations, AttnGAN was unable to
capture a global coherent structure.

Capsule networks have gained significant attention and success in computer vision
tasks. However, their application to the domain of generating images from textual de-
scriptions remains largely unexplored and is a promising avenue. It’s interesting to note
that capsule networks have primarily been utilized for detection and classification tasks in
computer vision [23–25]. However, their application in text-to-image synthesis is relatively
unexplored. A few authors [26–28] have explored the use of capsules with GANs; however,
their models have not reported any result for text-to-image synthesis. While traditional con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs) have been the
stalwarts in this field, their inherent limitations, such as handling variations in viewpoints
and object relationships, call for innovative solutions. Capsule networks, on the other hand,
with their ability to capture hierarchical features and model spatial relationships, hold the
potential to revolutionize text-to-image synthesis.

3. Methodology
For automatic text-to-image synthesis, we use the concept of capsule networks in an

adversarial process to better model the hierarchical relationships among the entities of an
object. A simple yet effective model, CapGAN is proposed to synthesize images from a
given text, in which the last CNN layer at the discriminator is replaced by a state-of-the-
art capsule layer to incorporate the relative spatial and orientational relationship among
the various entities of an object. Photo-realistic visuals are synthesized from a given text
utilizing the following four main phases in the suggested model: (1) input sentence, (2) text
encoding, (3) image production and (4) image discrimination are all steps in the process.
Figure 3 depicts the overall pipeline of the proposed approach. The following sections go
over each stage in greater depth:

This flower has 
white petals with 

yellow center.

Text 
Embeddings1

1

Up Sampling
Down sampling

CNN
Real Images

Generated 
 Image

Real/
Fake?

Noise

2
3 4

CNN + Capsule Network

Dataset

Input

Fine Tuning

Generator (G) Discriminator 
(D)

Figure 3. An illustration of the proposed CapGAN architecture for text-to-image synthesis.

3.1. Input Sentence
The input of the CapGAN architecture is a single English sentence for which an image

needs to be synthesized. An example input sentence is shown in Figure 3, i.e., “The flower
has white petals with yellow center”. The input sentence in the next phase is encoded into
a vector representation so that it can be fed to the model.

3.2. Text Encoding
The raw data from the previous step are encoded into numbers before we can use

them to fit our model. For this purpose, we first use skip-thought vectors [29] for creating
text embedding. Skip-thought vectors are well known neural network models that learn
fixed length representations of sentences in any natural language. Figure 4 shows how
skip-thought vectors transform text into image-ready vectors. The model has three parts:
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Text

Si-1: this flower has petals that are white and
has yellow patches

Si: the flower petals are white as snow and are
round shaped

Si+1: this flower has small white petals with a
bright yellow center

Si-1: this flower has petals that are white and
has yellow patches

Si+1:this flower has small white petals with a
bright yellow center

Zi

En
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de
r

Pr
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D
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N
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Figure 4. Skip-Thought Vector Generation: Transforming Text into Image-Ready Vectors.

1. Encoder Network: The model takes sentence i and generates a fixed length represen-
tation z using a recurrent neural network (RNN).

2. Previous Decoder Network: The model takes embedding z and tries to generate
sentence i � 1 using RNN.

3. Next Decoder Network: The model takes embedding z and tries to generate sentence
i + 1 using RNN.

Decoders are trained to minimize reconstruction error, which are further backpropa-
gated to encoders for the training. Additionally, noise is added before generating the fixed
length representations. The reason for corrupting, or adding noise, to the text embedding’s
learning process is to generate a more robust embedding space. Once trained, this trained
encoder is used for generating a vector of fixed length representation, as shown in step 2 of
Figure 3. This fixed length representation enables our model to replace any sentence with
an equivalent vector of numbers. This caption vector is used as input for CapGAN.

3.3. Image Generation
In this section, we first give a short background of the adversarial process for automatic

image synthesis and then explain the generator step of the CapGAN architecture.

3.3.1. Generative Adversarial Networks
Ian Good Fellow introduced a paradigm for estimating generative models using an

adversarial process in 2014 [2], in which two models, the generator G and discriminator D,
are trained. G generates fresh data, whereas D verifies that the data generated by G are
genuine[30].

For text-to-image synthesis, GAN takes the following steps:
• G receives text as an input and synthesizes an image.
• D accepts a generated image, as well as sample images from the actual dataset, and

returns the probability that the image is real, with 1 indicating a real image and 0
indicating a false image.
The core principle of GAN is depicted in Figure 5. G generates a sample of data from

a random input z from P(z), where z is a sample from the probability distribution P(z). D
receives the created data. D takes an input from either real data x ⇠ Pdata(x) or fake data
G and attempts to predict whether the data are real or fake. D uses a sigmoid function to
solve a binary classification problem of real or false images and returns a value in the range
of 0 to 1 [31].
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Generator
G(Z)

3

1 2

3 4
3

Z ~ Pz(Z)

Discriminator
D(x)

x ~ Pdata(x)

Real Data

Generated Data

Binary Output

Figure 5. GAN: Idea of Generator Neural Network and Discriminator Neural Network.

GAN training takes the form of a duel between G and D. Mathematically, this can be
expressed as:

min
G

max
D

V(D, G) (1)

where
V(D, G) = Ex⇠Pdata(x)[logD(x)] + Ez⇠Pz(z)[log(1 � D(G(z)))] (2)

GANs are trained on a minimax game rather than an optimization problem. The first
term in function V(D,G) is the entropy, which states that the sample from real data is fed to
D (best case scenario). D tries to maximize this to 1. The second term in function V(D,G) is
the entropy when a sample from random distribution is fed to D (worst case scenario). D
tries to minimize this to 0. Overall, D is trying to maximize function V. On the contrary, G
is trying to minimize function V so that D cannot differentiate between real and fake. This
method of training, which GAN adversarially calls the minimax game, is taken from game
theory.

As the synthesis of images from extracted features is highly multimodal, the issue is
not solved using deep learning. For a single input text, GANs can generate several photo
realistic images. This multimodality makes GANs an ideal candidate for image synthesis
problems. In consistency with this idea, the generator model of CapGAN is trained to
synthesize images with basic shape and color.

3.3.2. Generator (G)
The output of the text encoding step, i.e., a caption vector, is the input of the generator

network, as shown in step 3 of Figure 3. In the generator network, the caption vector
of length 2400 obtained from skip-thought vectors is first compressed to acquire the text
embedding of dimension 256, as shown in Figure 6. This is performed by passing the
caption vector through fully connected layers, followed by LeakyReLU. The resulting text
embedding is concatenated with noise, projected and reshaped into a tensor of dimension
4 ⇥ 4 ⇥ 1024. This tensor is passed though the series of deconvolutions for upsampling,
and as a result, a tensor of dimension 64 ⇥ 64 ⇥ 3 is obtained. This tensor is a generated
image from the given text, and it is fed to the discriminator for further training.

Caption Vector
Length: 2400

   Compression

Text Embedding:
256

Noise: 100

Concatenate
Noise & Text
Embedding

4 x 4 x 1024 8 x 8 x 512 16 x 16 x 256 32 x 32 x 128 64 x 64  x 3

Project and 
    Reshape

Deconv 1 Deconv 2 Deconv 3 Deconv 4

Figure 6. The generator architecture used in the proposed CapGAN model for automatic text-to-
image synthesis.
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3.4. Image Discrimination
3.4.1. Capsule Network

In convolution-based deep learning models such as CNN, the rotation and translation
information among different pixel groups are not captured; therefore, using only convolu-
tion layers in GANs has limitations for precise image synthesis. Capsule networks [6,32,33]
have recently been proposed to address this limitation of CNN. Capsules are locally invari-
ant groups of neurons that learn to recognize the presence of visual entities in an image by
encoding their properties into vector outputs [34]. In CNN, higher level features combine
with low level features as a weighted sum. Nowhere in this process is there is a pose
(translational and rotational) relationship between features that makes up higher level
features. In a capsule network, there is a capsule corresponding to each entity in an image,
which gives:
1. Probability that the entity exists.
2. Instantiation parameters of that entity.

Instantiation parameters are the properties of that entity in an image such as position,
size, hue, etc. As opposed to a neuron’s scalar output, a capsule outputs a vector that
enables it to encapsulate all important information about the state of the feature.

Table 2 highlights the important differences between capsules and neurons. Neurons
receive scalar input from low level neurons, whereas a capsule receives vector input either
from low level input or from other neurons. Both the neuron and capsule perform various
operations, which include transformation, weighting, summation and activation. The final
output produced by the neurons at each layer is a scalar quantity, while capsules produce
a vector output. The input and output vectors of capsules enable them to capture the
relationship among entities of an object and make them an ideal choice for models aimed
at precise image synthesis.

Table 2. Capsule vs. Neuron.

Capsule Neuron

Input vector(ui) scalar(xi)

Operations

Linear/Affine Transformation ûji = Wijui + Bj aji = wijxi + bj

Weighting/Summation sj = Âi cijûji zj = Â3
=11.aji

Activation Function vj = squash(sj) hw,b(x) = f(zj)

Output vector(vj) scalar(h)

3.4.2. Discriminator (D)
The discriminator of a GAN intended for text-to-image synthesis can receive two types

of input:
1. Real images with real text.
2. Synthesized/ fake images with random text.

For the proposed CapGAN model, the two types of input are shown in step 4 of
Figure 3. In the CapGAN discriminator, a capsule layer is used, along with CNN layers, so
that more information is retained by the vectors, thus, capturing the relationship among
different entities of an object in the input image. Figure 7 shows the overall architecture of
the discriminator used for the CapGAN model. Four CNN layers of stride 2 convolutions,
each followed by LeakyReLU, are applied on the input image to perform downsampling.
Additionally, the caption vectors of size 2400 are also transformed to text embeddings
of size 256. This resultant vector, along with the output of the 4th convolutional layer,
is then passed through a capsule layer, followed by the LeakyReLU and the squashing
function [35]. Then, for further downsampling, the max pooling operation is applied
at the output of the activation function. In the end, the discriminator resolves a binary
classification problem of real or fake images using a sigmoid function and giving an output
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between 0 to 1. The detailed architecture utilized for the CapGAN model is shown in
Table 3.

4 x 4 x 51232 x 32 x 6464 x 64  x 3

Conv 1 Conv 2 Conv 3 Conv 4

16 x 16 x 128 8 x 8 x 256 1 x 1

Caption Vector
Length: 2400

Text
Embedding:

256

Expand
Dimensions

1 x 1 x 256

Capsule Layer
  [4,1]

4 x 4 x 512 x 4 x 1

Reshape 
& Max Pooling

Figure 7. The discriminator architecture used in the proposed CapGAN model for automatic text-to-
image synthesis.

Table 3. Details of discriminator level layers in the proposed CapGAN model for automatic text-to-
image synthesis.

Layer
Number

Layer
Type

Input
Size

Filter
Size

Kernal
Size Strides Activation

Function Output

1 Convolutional Layer 64 ⇥ 64 ⇥ 3 64 [5, 5] [2, 2] LeakyReLU 32 ⇥ 32 ⇥ 64

2 Convolutional Layer 32 ⇥ 32 ⇥ 64 128 [5, 5] [2, 2] LeakyReLU 16 ⇥ 16 ⇥ 128

3 Convolutional Layer 16 ⇥ 16 ⇥ 128 256 [5, 5] [2, 2] LeakyReLU 8 ⇥ 8 ⇥ 256

4 Convolutional Layer 8 ⇥ 8 ⇥ 256 512 [5, 5] [2, 2] LeakyReLU 4 ⇥ 4 ⇥ 512

5 Capsule Layer 4 ⇥ 4 ⇥ 768 512 [1, 1] [1, 1]
LeakyReLU +

Squashing
Function

4 ⇥ 4 ⇥ 512 ⇥ 4 ⇥ 1

For real images, the discriminator just has to decide if an image is real. For fake
images, the discriminator should distinguish two forms of errors: (1) a fake image with
any text caption and (2) a real image with a mismatching text caption. In view of this, the
discriminator (D) has to deal with the following three cases:

The first scenario is presented in Equation (3), which shows that the first real image
x from the dataset, along with real text k, is given as input to D, while D computes and
returns a value in the range 0 and 1, named as srr, in response to this input.

srr = D(x, k) (3)

Similarly, the second scenario is depicted in Equation (4), in which D is given a real
image as input x, along with a fake text k̂, while D computes and returns a sigmoid value,
named srw, in response to this input.

srw = D(x, k̂) (4)

Likewise, the third scenario is presented in Equation (5), in which D is called with a
fake image x̂ and real text k, while D computes and returns the sigmoid value, named sfr,
in response to this input.

s f r = D(x̂, k) (5)

The three values received from Equations (3)–(5) are used to calculate the overall loss
of D, named LD, as shown in Equation (6).

LD = log(srr) + (log(1 � srw) + log(1 � s f r))/2 (6)
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The first term in Equation (6) is entropy, which is calculated when an image from
the real data along with the real text is fed to D. D tries to maximize the output to 1. The
second and third terms, on the other hand, show that a real image with incorrect text and
a fake image with correct text are provided to D, respectively. D strives to keep this to a
minimum. As a result, D is attempting to maximize function LD, i.e., it is attempting to
maximize the difference between its output on real and false images.

4. Results
The CapGAN architecture utilizes a capsule network for image synthesis from a given

text statement to overcome the problem of global coherent structures in complex scenes.
We conducted comprehensive experimentation using standardized datasets to evaluate the
proposed model’s performance. In the next subsections, we detail our experimental setup
and also benchmark our key results.

4.1. Experimental Setup
The CapGAN model is evaluated on the Oxford-102 dataset [8], consisting of flower

images, Caltech-UCSD Birds 200 [9] for bird images and ImageNet [10] for images of
dogs. The detail of each dataset utilized for training and testing of CapGAN are presented
in Table 4. We conducted the experiments in a ten fold cross validation setting, i.e., we
conducted a total of 10 experimental rounds by performing random splits of the dataset at
each round.

Table 4. Details for each dataset utilized for training and testing of CapGAN.

Dataset Total Number
of Images

Total
Categories

Number of
Captions per Image

Oxford-102—Flower [8] 8189 102 10
Caltech-UCSD Birds 200 [9] 6033 200 5
ImageNet Dogs [10] 4002 25 1

For each round, our CapGAN model operates using a fixed number of parameters.
Table 5 lists the most important parameters, along with their values, that are used during
the execution of the CapGAN model. For training, Adam [36] is used as an optimizer,
and sigmoid cross entropy given logits are utilized for calculating the generator and
discriminator loss. Because they are used to assess the probabilistic error in discrete
classification problems where each class is independent and not mutually exclusive, we
picked sigmoid cross entropy given logits. For the optimal performance, after several trials,
the model is optimized for a batch size of 32, with a learning rate of 0.0002, while we run
it for 100 epochs. The complete list of hyperparameters and their values can be seen in
Table 5. The proposed model is trained and tested on a Tesla K40c GPU by utilizing the
OpenCV, Tensorflow, Keras and CuDNN libraries.

4.2. Evaluation Metric
Evaluation metrics for supervised learning tasks are straightforward, as the problem

at hand will always have a clearly defined ground truth that is always available. However,
for text-to-image synthesis problems, the conventional evaluation metrics are not feasible,
due to the illusive nature of the expected output, i.e., the results are highly multimodal,
and no ground truth is available. Therefore, for our problem, we chose the most widely
used inception score (IS) and Fréchet inception distance evaluation metrics. The details of
these two metrics are given as follows:
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Table 5. Hyperparameters utilized in CapGAN model.

Parameters Value

Batch Size 32

Epochs 100

Input Image Size 64 ⇥ 64 ⇥ 3

Generated Image Size 64 ⇥ 64 ⇥ 3

Horizontal Resolution 96 dpi

Vertical Resolution 96 dpi

Bit Depth 24

Noise 100

Text Embedding 256

Caption Vector 2400

Learning Rate 0.0002

Momentum for Adam Update 0.5

Capsule Vector [4, 1]

Generator Loss Sigmoid Cross Entropy Given Logits

Discriminator Loss Sigmoid Cross Entropy Given Logits

4.2.1. Inception Score
The inception score is an evaluation metric for generative models that measures “on

average how different is the score distribution of synthesized images from the overall class
balance” [37]. The inception score uses two criteria for measuring GAN performance:
• Saliency: Saliency indicates that objects in an image should be recognizable. Given x

as an input, the predicted output y should have a high probability. In terms of image
generation, given an image, an object should be recognized easily. Thus, conditional
probability p(y|x) should be high, and as a result, the entropy is low.

• Diversity: Diversity indicates the variety of details in an image. This means, given a
predicted output y, the marginal probability p(y), should be high. This implies that
for diverse images, the data distribution of y should be uniform, thus, resulting in
high entropy.
For computing the inception score, Kullback–Leibler (KL) divergence DKL is used

by plugging both probabilities, i.e., the conditional probability p(y|x) and the marginal
probability p(y), as shown in Equation (8).

IS ⇡ exp(
1
N

N

Â
i=1

DKL(p(y|x(i))||p(y)) (7)

where N indicates the number of images generated. The intuition behind calculating the
inception score is that the model should generate diverse but meaningful images. A higher
value of inception score depicts that the generated images are diverse and the objects in
images are highly predictable.

4.2.2. Fréchet Inception Distance
Heusel [38] proposed the Fréchet inception distance (FID), which is a variation of IS.

FID is a technique for capturing the similarity between generated and real-world images.
The IS calculates the quality of the synthetic images by combining the confidence of each
synthesized image’s conditional predictions with the marginal probability of the predicted
class. Real photos are never matched with generated images in this method. The goal of
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the FID score is to compare the statistics of a collection of synthetic images to the statistics
of a collection of real photos in order to evaluate the synthetic images.

In order to calculate FID, the generated samples are embedded into a feature space of
the inception network. The mean and covariance are estimated for both the generated data
and the real data by analyzing the embedding layer as a continuous multivariate Gaussian.
The Fréchet distance between these two Gaussians is then used to quantify the quality of
generated samples using the following equation:

To calculate FID, the produced samples are embedded into an inception network
feature space. By analyzing the embedding layer as a continuous multivariate Gaussian,
the mean and covariance are computed for both the produced and real data [39]. Using the
following equation, the Fréchet distance between these two Gaussians is used to measure
the quality of the generated samples:

FID(r,g) = ||µr � µg||22 + Tr(Â r + Â g � 2(Â r Â g)
1/2) (8)

The estimated mean and covariance of the real and produced data are represented
by µr, Â r and µg, Â g, respectively. This means that the lower the FID, the more realistic
the resulting images are. The positive linear association between the FID score and the
distorted/poorly synthesized images is depicted in Figure 8, indicating that FID is sensitive
to any disruption in a created image.
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Figure 8. Rise in FID score observed as disturbance in images increases. (a) Salt and Pepper Noise.
(b) Gaussian Noise.

4.3. Statistical Results
The original proposal for the inception score recommended applying the estimator (of

Equation (8)) 10 times with N = 5000 (the number of target images). The mean and standard
deviation of the obtained scores are then calculated [37]. The inception score calculated
for 5000 generated images from given random captions using the CapGAN model after
the 100th epoch of training remained 2.28 ± 0.627, while the inception score on the entire
Oxford-102 flowers dataset [8], after the 10-fold cross validation remained 4.05 ± 0.050.
The epoch-wise training results for 5000 generated images can be seen in Figure 9. The most
remarkable result to emerge from these data is that as the model improves with training, the
inception score raises significantly, while the standard deviation of scores initially increased
and then started to decline. This indicates that the diversity of generated images and their
predictability increases considerably with more training. We stopped our model training
at the 100th epoch as the model was tending towards overfitting after this iteration. The
calculated IS and FID for various complete datasets using CapGAN are listed in Table 6.
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Table 5. IS and FID score calculated using CapGAN

Dataset IS FID

Oxford-102 - Flower 4.05 ± 0.050 47.38
Caltech-UCSD Birds 200 4.61 ± 0.1 14.98
ImageNet Dogs 13.11 ± 0.407 38.18
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Figure 9. The inception score plotted against epochs during training.

score. Figure 11 shows losses for G and D calculated for GAN and CapGAN, while training. After 100th epoch when the
model is fully trained, the model learns the coherent structure details described in the input sentence, as can be seen in the
second row of the first caption output in Table 6. Similarly, the same ability of the model can be observed for all other captions
reported in Table 6. Moreover samples of various dog images generated by CapGAN model trained with 100 epochs are listed
in Figure 10. These results offer compelling evidence about the ability of the CapGAN model to learn the spatial relationships
among different entities of an object in an image.

Figure 10. Sample of dog images generated by CapGAN model trained on ImageNet dataset.

Comparative Results
CapGAN is compared to earlier state-of-the-art models for text to image synthesis to further highlight the usefulness of the
proposed model. Our model is compared against GAN1, StackGAN4, StackGAN++21 and TAC-GAN3 architectures. All
these methods utilize GANs architecture as the backbone for translating single sentence directly into pixels. A single Deep
Convolutional Generative Adversarial Network (DC-GAN) is trained conditioned on text features encoded by a Convolutional
Recurrent Neural Networks (CRNN) in text to image synthesis utilising GANs . Feed forward inference is performed by
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Figure 9. The inception score plotted against epochs during training.

Table 6. IS and FID score calculated using CapGAN.

Dataset IS FID

Oxford-102—Flower 4.05 ± 0.050 47.38
Caltech-UCSD Birds 200 4.61 ± 0.1 14.98
ImageNet Dogs 13.11 ± 0.407 38.18

4.4. Visual Results
Another interesting aspect of looking at the results is through the visual inspection of

the synthesized images. For this purpose, we present the images generated using CapGAN
in Table 7. For each input caption, we report ten images of size 64 ⇥ 64 generated after
the 25th and 100th epochs using CapGAN. As an example, for the first caption, i.e., This
flower has petals that are yellow and has black stamen., the model instantly learns the trivial
details such as yellow color, as can be seen in the 25th epoch images, but the global coherent
structure, e.g., petals on the flower are not learned well at this stage. As the learning
continues, the sigmoid cross entropy given logits loss at the generator and discriminator
reduces significantly, which ultimately improves the inception score. Figure 10 shows
losses for G and D calculated for GAN and CapGAN while training. After the 100th epoch,
when the model is fully trained, the model learns the coherent structure details described
in the input sentence, as can be seen in the second row of the first caption output in Table 7.
Similarly, the same ability of the model can be observed for all other captions reported
in Table 7. Moreover, samples of the various dog images generated by CapGAN model
trained with 100 epochs are listed in Figure 11. These results offer compelling evidence
about the ability of the CapGAN model to learn the spatial relationships among different
entities of an object in an image.
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(a) CapGAN Generator (b) CapGAN Discriminator

(c) GAN Generator (d) GAN Discriminator
Figure 10. (a,b) shows losses for G and D for CapGAN, respectively. For D, the loss decreases as the
epochs increase. However, the loss of G starts increasing after the 60th epoch which indicates that D
became too strong relative to the G. Beyond this point, G finds it almost impossible to fool D. When
D loss decreases to a small value (i.e., 0.1 to 0.2) and G loss increases to a high value (i.e., 2 to 3), it
means that model is trained, as G cannot be further improved. (c,d) are losses for G and D of GAN:
To calculate the loss, all layers are kept as convolutional layers. In comparison, D loss for CapGAN is
less than GAN.

Figure 11. Sample of the dog images generated by the CapGAN model trained on the ImageNet
dataset.

4.5. Comparative Results
CapGAN is compared to the earlier state-of-the-art models for text-to-image synthesis

to further highlight the usefulness of the proposed model. Our model is compared against
GAN [1], StackGAN [4], StackGAN++ [21] and TAC-GAN [3] architectures. All these meth-
ods utilize GAN architecture as the backbone for translating a single sentence directly into
pixels. A single deep convolutional generative adversarial network (DC-GAN) is trained
and conditioned on text features encoded by a convolutional recurrent neural network
(CRNN) in text-to-image synthesis utilizing GANs . Feed forward inference is performed
by both the generator (G) and the discriminator (D) based on the text feature. Among
all these models, the text-conditioned auxiliary classifier generative adversarial network
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(TAC-GAN) is specifically designed to improve the resolution of images synthesized for
complex scenes from a given text. In TAC-GAN, the generator is a neural network made
up of a series of transposed convolutional layers, while the discriminator is a network that
takes an input image and passes it through a number of convolutional layers to determine
if the resulting image is real or fake.

Table 7. Examples of early and final stage images generated from various input texts using CapGAN.

Input Text Epoch Examples of Generated Images

This flower has petals
that are yellow and
has black stamen.

25

100

The pretty flower has
a lot of short blue petals.

25

100

The flower has petals
that are yellow with

orange spots.

25

100

This flower is pink in color,
with petals that are wavy and

bunched together.

25

100

This flower has petals
that are white with a

yellow center.

25

100

This flower is red and
tan in color, with petals

that are spotted.

25

100

A flower with light yellow
petals and yellow pistils

in the center.

25

100

Table 8 lists the ISs and FIDs calculated using different models for the Oxford-102
flowers dataset [8] Caltech-UCSD 200 [9] and ImageNet [10] for images of dogs and
evidently shows that CapGAN achieves the highest inception score and lowest Fréchet
inception distance and outperforms the previous models. In comparison to the other
models, a higher inception score indicates that CapGAN’s images are more recognized,
meaningful and have a greater diversity of information. The lower FID scores suggest that
generated images are less distorted and closer to real-world images.
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Table 8. The inception score (IS) and and the Fréchet inception score (FID) score calculated using
CapGan.

Model Dataset Oxford-102—Flower Caltech-UCSD Birds 200 ImageNet Dogs

GAN [1] IS " 2.66 ± 0.03 2.78 ± 0.1 6.81 ± 0.76
FID # 76.98 53.89 98.01

StackGAN [4] IS " 3.20 ± 0.01 3.70 ± 0.04 8.84 ± 0.08
FID # 55.28 51.89 89.21

StackGAN++ [21] IS " 3.26 ± 0.01 4.04 ± 0.5 9.55 ± 0.11
FID # 48.68 15.30 44.54

TAC-GAN [3] IS " 3.45 ± 0.05 - -
FID # - - -

CapGAN IS " 4.05 ± 0.050 4.12 ± 0.023 11.35 ± 0.11
FID # 44.38 11.89 34.36

5. Discussion
In complex scenes, objects are composed of multiple entities that are interlinked to

form a whole part; however, the color(s) and basic shape of each entity in the scene can be
fully viewed and determined separately. For complex scenes, we proposed and evaluated
a new model called CapGAN that utilizes a capsule network for image synthesis from a
given text statement to overcome the problem of global coherent structures in complex
scenes. Our model uses skip-thought vectors as text encoders to construct highly generic
fixed-length sentence representations from a single text statement as input. This encoded
vector is utilized as input for image synthesis, utilizing an adversarial approach in which
two models, generator (G) and discriminator (D), are trained simultaneously. Our model
is conceptually unique in that it integrates capsules at the discriminator level to allow it
to grasp the orientational and relative spatial relationships between different elements of
an object.

To better understand the effectiveness of using a capsule layer at the discriminator
lever, we compare the images generated using GAN (without capsules) with images synthe-
sized using the CapGAN model. Table 9 shows images generated using GAN and CapGAN.
For GAN, all layers are kept as conventional convolutional layers at the discriminator level.
However, for CapGAN, capsule layers are integrated at the discriminator level. From
Table 9, it is clear that images generated using the capsule layer at the discriminator level
are visually more appealing than the images generated using conventional layers. In a
similar vein, it is worth noting that the saliency (i.e., the probability of object presence in
the synthesized images) and the diversity (i.e., the variations in the synthesized images)
are way better in the CapGAN model than the GAN model.

5.1. Multimodality Preservance
The problem of generating images from text descriptions is highly multimodal. This

means that there can be multiple correct answers for a single input sentence. When it comes
to image synthesis from text, multimodality implies that there are numerous possible pixel
configurations that can accurately depict the same description. The CapGAN model also
preserves the multimodality. To ensure multimodality, in Table 10, the images generated
randomly from a given text using CapGAN are compared with images from the dataset.
The images in both columns are different from each other; however, it can clearly be seen
that they are all correct in the visual illustration of the given input text, i.e., the entities,
color(s) and shape of each entity mentioned in the input text is present in the generated
image. As an example, for the first sentence, i.e., “This flower has a white petal with a yellow
center.”, both the dataset and the generated image have a flower with white petals and a
yellow center. Similarly, for the text: This particular bird has a belly that is gray and white, the
model has generated a bird with a gray and white color; however, the close inspection of a
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ground truth indicates that the bird has also a yellow beak. Nevertheless, this information
was not available in text, thus, in the generated image, the bird has a white beak.

Table 9. Comparison of images generated from a given text using the GAN and CapGAN models.

Text Model Sample of Images Generated

This flower has long yellow
petals that are curved down and a

black center with black anthers on it.

GAN

CapGAN

This flower is white and
yellow in color, and has petals
that are yellow near the center.

GAN

CapGAN

This flower is pink in color,
and has petals that are oddly

shaped and vertically layered.

GAN

CapGAN

This is a bird with grey wings,
a white neck and a black beak.

GAN

CapGAN

This bird is red in color,
with black wings.

GAN

CapGAN

This particular bird has a belly
that is gray and yellow.

GAN

CapGAN

5.2. Synthesis of Global Coherent Structures
It is also of interest to see the correlation between coherent structures in complex

scenes, and the ability of CapGAN to synthesize them. For this purpose, we integrated the
capsule networks at the discriminator level in the CapGAN model. The capsule networks
extract the geometric information of an object in an image in the form of vectors and
use it for inverse rendering. Therefore, in contrast to the conventional deep networks, a
capsule network easily identifies the spatial associations among an object’s several entities
in a scene.

The power of capsule networks appears to be well-substantiated by the results pro-
duced using the CapGAN model. The images generated by CapGAN evidently show that
they are closer to the given text and have more relative spatial and orientational association
between objects, as well as group of pixels, in comparison to images generated using
conventional networks. For instance, the images generated by CapGAN using the first text
shown in Table 9, the flowers have long petals, they are more curved down and have a proper
black center compared to images generated by GAN. Moreover, the majority of the images
generated by CapGAN are close to realistic images.
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Table 10. Images generated vs. images from dataset.

Text Ground Truth Generated Images
Using CapGAN

This flower has a white petal
with a yellow center.

This flower has red petals
with white center.

This flower has a yellow petal
with orange spots.

This flower has pink petals
with a pink center.

This bird is yellow and
black in color,

with a long black beak.

This particular bird has
a belly that is gray and white.

This is a brown and beige bird
and brown on the crown

White Shih-Tzu

On the other hand, many images generated by GAN are far from reality if we compare
them with the expected output of the input text. For example, in the second text, as shown
in Table 9, white and yellow colors are merged together in images generated by GAN, but
for CapGAN, the transition from the yellow center to white leaves is much more smooth and
close to reality. Likewise, in images generated from the third text using CapGAN, the petals
are more pink, vertically layered and connected, compared to petals in images synthesized
by GAN. In many GAN images, the connection between the petals and various parts of the
flowers are missing, while they are preserved and well-synthesized using CapGAN. Thus,
all these findings correlate favorably with our argument and further support the idea that
the CapGAN model outshines in capturing the color(s), basic shape of each entity in the
scene, as well as the spatial relationships between objects in complex scenes.

6. Conclusions
We proposed and tested a model called CapGAN for generating images from a given

text statement in this paper. The proposed model is based on an adversarial process in
which two models, generator (G) and discriminator (D), are trained simultaneously. The
convolutional layers are replaced by capsule layers in CapGAN’s discriminator stage.
The capsules outperform traditional convolutional neural networks because they incorpo-
rate orientation and relative spatial interactions between various objects. The suggested
CapGAN model’s usefulness is convincingly demonstrated by the experimental findings,
which is especially important for generating images for complicated scenarios. For the
image synthesis problem, the suggested model outperforms the existing state-of-the-art
models. In future, the model developed in this research can be scaled up to generate higher
resolution images. Since the GANs capability is limited by the generator’s potential, in
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future traditional deconvolutional neural network at the generator level can be replaced by
anti-capsule networks for better results. Furthermore, many approaches have used mul-
tistage GAN architecture for increasing the image resolution, where the output obtained
in the first phase is alternatively passed to the next phase. It is believed that results from
CapGAN can be further improved from using such multistage architectures.
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