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Abstract This work proposes high-order beam (1D) and plate (2D) finite element models for the large5

strain analysis of compressible and incompressible transversely isotropic hyperelastic media, defined6

within the Carrera Unified Formulation (CUF) framework. The strain energy density function adopted7

in fiber-reinforced hyperelastic materials modeling is presented and expressed in terms of invariants8

and pseudo-invariants of the right Cauchy-Green strain tensor. The explicit expression of the tangent9

elasticity tensor is derived through the assumption of coupled formulation of strain energy functions.10

Refined fully nonlinear beam and plate models are defined in a total Lagrangian formulation, deriving11

the governing equations of the nonlinear static analysis through the Principle of Virtual Displacements12

in terms of fundamental nuclei, in resulting expressions of internal and external forces vectors, and13

tangent stiffness matrix independent of kinematic models and approximation theories adopted. The14

iterative Newton-Raphson linearization scheme coupled with the arc-length constraint is adopted to15

obtain actual numerical solutions. Different benchmark analyses in hyperelasticity are performed to16

assess the capabilities of our proposed model, analyzing the three-dimensional stress field for moderate17

to large strain states and comparing actual numerical results with exact closed-form solutions or results18

available in the literature, demonstrating the capabilities and reliability of CUF models in the analysis19

of fiber-reinforced soft materials and structures.20

21

Keywords Hyperelasticity; Fiber-reinforced hyperelastic materials; Soft structures; Unified Formula-22

tion; Compressible hyperelastic models; Path-following methods.23

24

1 Introduction25

Bio-inspired material, soft rubber-like cross-ply, or multilayered biological tissues have been subjected26

to intense studies in the last decades. Of particular relevance, the numerical simulation of mechanical27

behavior of soft tissue is an actual challenging field in computational mechanics and fluid dynamics28

since it allows a wide range of investigations to better understand the real nature of biological tis-29

sues. In this framework, materials involved in muscular and cardiac tissue modeling deal with strong30

anisotropy. Typically these are multilayered materials, and each sub-layer exhibits direction-dependent31

mechanical properties and typical of fiber-reinforced materials, such as collagen fibers, muscular tissue,32
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and blood vessels. For such materials, the mechanical behavior is described by transversely isotropic33

hyperelastic constitutive law, for which direction-dependent mechanical properties are taken into ac-34

count.35

The enhanced elastic properties given by the hyperelastic behavior and the microstructural fiber-36

reinforcement are the key properties of biological tissue. Fok et al. [1] analyzed multilayered arterial37

cross-section by morpho-elasticity arguments. Holzapfel et al. [2] presented one of the most accurate38

hyperelastic models in biological tissue modeling, the HGO (Holzapfel-Gasser-Ogden) model, consider-39

ing transversely isotropic and orthotropic hyperelasticity, presenting a novel constitutive law for arterial40

tissue modeling. A mathematical treatment of pseudoelastic stress-strain relations in hyperelasticity41

has been presented by Fung et al. [3]. Some of the most remarkable hyperelastic models for rubber42

and biological tissues have been validated by Ogden [4] and Gent [5], the last one later analyzed also43

by Puglisi et al. [6].44

In a general scenario, constitutive equations for anisotropic hyperelastic materials are well-established45

transversely isotropic and orthotropic hyperelastic constitutive models are defined including large dis-46

placements and strains formulation and a nonlinear stress-strain relation, both embedded in the classi-47

cal strain energy function approach to hyperelastic material modeling. The availability of mathematical48

models of hyperelastic materials allows the implementation of numerical procedures for simulations of49

biological tissues. Due to the strongly nonlinear behavior of mathematical models, analytical solutions50

are few and limited to very simple cases; for this reason, numerical procedures based on Finite Element51

Method are one of the most common approaches. Arbind et al. [7] presented a general higher-order52

shell theory for compressible hyperelastic materials. Amabili et al. [8] presented a finite element53

model based on higher-order shell theories for the analysis of biological materials. Also Amabili et54

al. [9] presented some experimental and numerical results on the characterization of human aortas.55

Thin fiber-reinforced hyperelastic shells based on Reissner-Mindlin kinematics have been analyzed by56

Balzani et al. [10]. Fiber-reinforced elastomers and their characterization by classical tension test have57

been studied in a finite element scenario by Brown et al. [11]. Canales et al. [12] presented a nonlin-58

ear optimization algorithm in the characterization of mechanical properties possessed by anisotropic59

hyperelastic behavior modeled with the HGO model. Beheshti et al. [13] presented a general high-60

order shell model for the analysis of compressible transversely isotropic materials. Zdunek et al. [14]61

proposed a hybrid finite element formulation for transversely isotropic hyperelasticity.62

In this work, we propose a new general finite element formulation for the analysis of transversely63

isotropic (or continuous fiber-reinforced) hyperelastic materials based on Carrera Unified Formulation64

(CUF). In this framework, the three-dimensional displacement field is expressed in terms of a recursive65

index notation coupling kinematic models and approximation theories along the cross-section (1D66

beam models) or thickness (2D plate/shell models), allowing the definition of matrix-form physical67

quantities appearing in nonlinear governing equations in terms of fundamental nuclei independent68

of the polynomial approximation employed in the definition of the finite element. The theoretical69

framework of CUF and the definition oh higher-order structural theories is presented in Carrera et al.70

[15]. The accuracy of CUF models in the computation of accurate three-dimensional stress distributions71

is established in many works as [16, 17, 18]. Higher-order CUF models have been extended more72

recently to the geometrical nonlinear analysis of isotropic and composite structures [19, 20, 21] but73

more recently the material nonlinearities of the hyperelastic constitutive law has been included in the74

fully nonlinear beam, plate and hexahedral solid models as done in [22, 23, 24].75

The present work is structured as follows (i) first, the mathematical formulations of kinematics,76

hyperelastic constitutive law written under an invariant formulation and the tangent elasticity tensor77

are presented in Section 2.1; (ii) second, unified CUF-based 1D and 2D models are discussed in Section78

3; (iii) subsequently, we exploit the nonlinear governing equations by means of the Principle of Virtual79

Displacements, defining the internal and external forces vector and tangent stiffness matrix fundamental80

nuclei, presenting also the numerical iterative scheme employed in Section 4; (iv) numerical results81

obtained by the present implementation of unified beam and plated models are presented in Section82

5, establishing the capabilities of the present models in the case of compressible and incompressible83

fiber-reinforced materials; (v) finally, we discuss about the main conclusions evinced in Section 6.84
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2 Constitutive law85

2.1 Kinematics and strain measures86

Figure 1 shows the undeformed Ω0 and deformed configuration Ω of a continuum body in space, where87

P0 = (x0, y0, z0) stands for a material point in the undeformed configuration and P the associated88

point in the actual deformed configuration. As the continuum body evolves during time, it occupies89

a continuous sequence of regions of the euclidean space. These regions occupied by the body at a90

certain time t are the configurations of the body. Starting from the reference configuration Ω0, the91

configuration of the body at the generic instant t is called the current configuration.92

e2

e3

e1

P0

Pu(P )
Ω0

Ω

Figure 1: Reference and actual configuration of a deformable body.

The current position of the generic material point is described by the deformation function, that93

maps material point in the actual configuration to the related position in the reference configuration94

P = f(P0) = xe1 + ye2 + ze3 = f1(x
0, y0, z0)e1 + f2(x

0, y0, z0)e2 + f3(x
0, y0, z0)e3 (1)

thereafter, the classical strain measures commonly adopted in continuum mechanics, namely the defor-95

mation gradient F = ∂P/∂P0 and the right Cauchy-Green strain tensor C = FTF, are automatically96

defined. Typically, isotropic hyperelastic mathematical models are defined starting from the invari-97

ants of the right Cauchy-Green strain tensor, to satisfy objectivity arguments and independence with98

respect to the reference frame, referring then to99

I1 = tr(C) (2)

100

I2 =
1

2
((tr(C))2 − tr(C2)) = tr(cof(C)) (3)

101

I3 = det(C) = det(FTF) = J2 (4)

where tr(·) and det(·) are the trace and the determinant operators, and cof(·) is the matrix of the co-102

factors. Hyperelastic anisotropy is studied by analyzing the mechanical behavior of the material when103

direction-dependent constitutive laws are provided. In this work, fiber-reinforced materials (trans-104

versely isotropic materials) will be considered. For such materials, supposing that a0 = (ax, ay, az)
T is105

the single fiber-reinforcement direction, the dependence on the preferential direction of the mechanical106

response is embedded in the model considering two additional pseudo-invariants [25]107

I4 = a0 ·Ca0 (5)

108

I5 = a0 ·C2a0 (6)

One can note that I4 and I5 are invariants only under a rotation with the respect of fiber axis.109
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2.2 Hyperelastic constitutive law in terms of invariants110

The mechanical behavior of continuously fiber-reinforced soft materials is modeled in the classical111

hyperelastic framework based on strain energy functions. Considering a transversely isotropic hy-112

perelastic material, the classical strain energy function Ψ for isotropic materials (depending on the113

invariants (I1, I2, I3) of right Cauchy-Green tensor C) is extended embedding the dependence on the114

preferential direction is embedded in the definition. If, in a Cartesian reference frame, the vector of115

the fiber direction is a0 = (ax, ay, az)
T , the strain energy function is now expressed as a function of116

two tensorial quantities117

Ψ = Ψ(C,a0 ⊗ a0) (7)

where (·)⊗ (·) stands for the dyadic product (tensor product) operator. The dependence on the special118

direction of the continuous fiber-reinforcement is expressed, in the three-dimensional space, by the119

structural tensor a0 ⊗ a0 that modifies the constitutive equation. Due to the independence of the120

strain energy function with respect to the reference frame (objectivity argument), Ψ is expressed as a121

function of the three classical principal invariants of C and two additional pseudo-invariants, in which122

the dependence of the fiber-reinforcement direction is incorporated and objectivity is still verified123

Ψ = Ψ(I1(C), I2(C), I3(C), I4(C,a0), I5(C,a0)) (8)

In nearly-incompressible hyperelastic materials, the volume ratio coefficient defined as J = det(F) is124

approaching the unity, thus also I3.125

In literature, commonly adopted models refer to the decoupled formulation of strain energy functions,126

namely Ψ is written as the sum of a purely volumetric component, a purely isochoric component, and127

an additional anisotropic one128

Ψ = Ψvol(J) + Ψ̄iso(Ī1, Ī2) + Ψ̄aniso(Ī1, Ī2, Ī4, Ī5) (9)

where Ψ̄iso and Ψ̄aniso depend on the rescaled isotropic invariants, namely invariants (Ī1, Ī2, Ī3) of129

C̄ = J−2/3C and anisotropic rescaled invariants Ī4 = J−2/3I4 and Ī5 = J−4/3I5. For a more detailed130

description of the model see Holzapfel [25].131

132

In our model, to simulate materials modeled with any possible strain energy function models, the133

expression of Ψ Eq.(8) is assumed. The constitutive law for transversely isotropic material is carried134

out by classical hyperelastic arguments. Once assigned the strain energy function, the stress-strain135

relation adopted is136

S = 2
∂Ψ(C)

∂C
(10)

where S is the PK2 (Piola-Kirchoff-2) stress tensor. Applying now the chain rule, the derivative of Ψ137

with respect to C can be explicitly expressed as138

∂Ψ(C)

∂C
=

∂Ψ(C)

∂I1

∂I1
∂C

+
∂Ψ(C)

∂I2

∂I2
∂C

+
∂Ψ(C)

∂I3

∂I3
∂C

+
∂Ψ(C)

∂I4

∂I4
∂C

+
∂Ψ(C)

∂I5

∂I5
∂C

(11)

In this manner, the analytic expression of PK2 stress tensor is obtained by computing derivatives of Ψ139

with respect to invariants of the deformation process, since the derivatives of the invariant with respect140

to C are easily computed starting from their definitions141

∂I1
∂C

=
∂trC

∂C
=

∂(IC)

∂C
= I (12)

142

∂I2
∂C

=
1

2

(
trC I− ∂trC2

∂C

)
= I1I−C (13)

143

∂I3
∂C

= I3C
−1 (14)
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144

∂I4
∂C

= a0 ⊗ a0 (15)

145

∂I5
∂C

= a0 ⊗Ca0 + a0C⊗ a0 (16)

Substituting above expressions into Eq.(11), the most general expression of PK2 stress tensor depending146

of the strain energy function is derived147

S = 2

[(
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I− ∂Ψ

∂I2
C+ I3

∂Ψ

∂I3
C−1 +

∂Ψ

∂I4
a0 ⊗ a0 +

∂Ψ

∂I5
(a0 ⊗Ca0 + a0C⊗ a0)

]
(17)

In Eq.(17) the explicit dependence of the constitutive law with respect to the preferential direction of148

the material is included by the additional terms referred to the derivatives with respect to I4 and I5.149

2.3 Incremental formulation and tangent elasticity tensor150

In a total Lagrangian formulation of geometrical and material nonlinear problems, incremental formu-151

lations are required. According to Holzapfel [25], the constitutive equation (17) can be rewritten in an152

incremental form153

∆S = C
1

2
∆C (18)

where C is the well-known material Jacobian tensor or tangent elasticity tensor. In the linearized154

version of governing equation155

C = 2
∂S(C)

∂C
=

∂S(E)

∂E
= 4

∂2Ψ

∂C∂C
(19)

Thereafter, by exploiting the derivatives of the strain energy function, one can obtain the analytic156

closed-form expression of the tangent elasticity tensor here presented157

C = 4

(
∂2Ψ

∂I21
+ 2I1

∂2Ψ

∂I1∂I2
+

∂Ψ

∂I2
+ I21

∂2Ψ

∂I22

)
I⊗ I+ 4

(
∂2Ψ

∂I1∂I2
+ I1

∂2Ψ

∂I22

)
(I⊗C+C⊗ I) +

+ 4

(
I3

∂2Ψ

∂I1∂I3
+ I1I3

∂2Ψ

∂I2∂I3

)
(I⊗C−1 +C−1 ⊗ I) + 4

∂2Ψ

∂I22
C⊗C+

− 4I3
∂2Ψ

∂I2∂I3
(C⊗C−1 +C−1 ⊗C) + 4

(
I3

∂Ψ

∂I3
+ I23

∂2Ψ

∂I23

)
C−1 ⊗C−1 +

− 4I3
∂Ψ

∂I3
C−1 ⊙C−1 − 4

∂Ψ

∂I2
S + 4

(
∂2Ψ

∂I1∂I4
+ I1

∂2Ψ

∂I2∂I4

)
(I⊗ a0 ⊗ a0 + a0 ⊗ a0 ⊗ I) +

− 4
∂2Ψ

∂I2∂I4
(C⊗ a0 + a0 ⊗ a0 ⊗C) + 4

∂2Ψ

∂I24
a0 ⊗ a0 ⊗ a0 ⊗ a0 +

+ 4

(
∂2Ψ

∂I1∂I5
+ I1

∂2Ψ

∂I2∂I5

)(
I⊗ ∂I5

∂C
+

∂I5
∂C

⊗ I

)
− 4

∂2Ψ

∂I2∂I5

(
C⊗ ∂I5

∂C
+

∂I5
∂C

⊗C

)
+

+ 4
∂2Ψ

∂I25

(
∂I5
∂C

⊗ ∂I5
∂C

)
+ 4

∂2Ψ

∂I4∂I5

(
a0 ⊗ a0 ⊗

∂I5
∂C

+
∂I5
∂C

⊗ a0 ⊗ a0

)
+

+ 4
∂Ψ

∂I5

∂2Ψ

∂C∂C
+ 4I3

∂2Ψ

∂I3∂I4
(a0 ⊗ a0 ⊗C−1 +C−1 ⊗ a0 ⊗ a0) +

+ 4I3
∂2Ψ

∂I3∂I5
(a0 ⊗Ca0 ⊗C−1 + a0C⊗ a0 ⊗C−1 +C−1 ⊗ a0 ⊗Ca0 +C−1 ⊗ a0C⊗ a0)(20)

The full expressions of the terms C−1 ⊙C−1 and the fourth-order tensor S = (I + Ī)/2 can be easily158

found in reference textbooks.159
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3 Higher-order beam and plate CUF finite element160

The Unified Formulation for isotropic hyperelastic materials has been already presented by Pagani161

et al. [22], in which the formulation of hyperelastic beam finite elements in CUF (Carrera Unified162

Formulation) framework is established. Lately, Augello et al. [23] presented the 2D-CUF plate models163

analyzing different benchmark problems in nearly-incompressible hyperelasticity. In this work, both164

refined beam (1D) models and plate (2D) models defined in the CUF framework are employed to study165

fiber-reinforced soft materials structures.166

In general, the three-dimensional displacement field is expressed as a polynomial expansion of the167

generalized nodal displacements, coupling approximation expansion theories along the plate thickness168

or beam cross-section with kinematic models along the mid-surface or beam axis. This expansion169

technique allows the implementation of higher-order modes, exploited by means of a recursive in-170

dex notation. In the classical orthonormal {x, y, z} Cartesian reference frame, the three-dimensional171

displacement field for a beam and plate model is then expressed as172

Beam 1D models: u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, ...,M (21)

Plate 2D models: u(x, y, z) = Fτ (z)uτ (x, y) τ = 1, ...,M (22)

where M is the dimension of the polynomial expansion basis, related to the polynomial order expansion173

theory along the plate thickness or beam cross-section, and Fτ are the theory expansion functions174

that characterize the CUF model adopted, and finally uτ is the vector of generalized displacement175

components along the reference direction.176

x

z

y
L4TEN L9 L16

B2 B3 B4

N  (y)i

F  (x,z)τ

(a) 1D Beam models

x

z

y

F  (z)τ

N  (x,y)i

Q4 Q9 Q16

LE2TE-N LE3 LE4

(b) 2D Plate models

Figure 2: High order 1D and 2D CUF models.

Einstein’s notation for repeated indices summation is considered in the definition of the displace-177

ment field in Eq. (22). This enables the implementation of higher-order structural theories by selecting178

the expansion basis function Fτ (x, z), which fully describes the model. In the present work, two dis-179

tinct sets of expansion functions are considered for the cross-section expansion or thickness expansion180

the TE (Taylor Expansion) class and the LE (Lagrange Expansion) class. TE models utilize 1D or181

2D MacLaurin polynomials, depending on the model, as basis functions for expanding the generalized182

reference displacement field (beam axis displacements or mid-surface plate displacements). Based on183

the chosen expansion order, higher-order theories are automatically defined in a hierarchical manner.184

As examples, we present the TE-1 linear expansion model, either for the 1D or 2D CUF models, which185

are186

1D:


ux(x, y, z) = ux1(y) + xux2(y) + zux3(y)

uy(x, y, z) = uy1(y) + xuy2(y) + zuy3(y)

uz(x, y, z) = uz1(y) + xuz2(y) + zuz3(y)

2D:


ux(x, y, z) = ux0(x, y) + ux1(x, y)

uy(x, y, z) = uy0(x, y) + uy1(x, y)

uz(x, y, z) = uz0(x, y) + uz1(x, y)

(23)

where uxi , uyi and uzi , in each definition, is the generalized displacement variable, unknown of the187

6



problem, by which the whole three-dimensional displacement field is reconstructed by the expansion188

on Fτ expansion functions.189

(a) 1D TE-class models (b) 2D TE-class models

Figure 3: TE-class models, graphical representation of the mathematical model.

The TE-class models are generally referred to as ESLMs (Equivalent Single Layer Models), in190

which the displacement field of the structures is seen as an homogenized quantity combining each191

cross-section sub-components or a single layer of multilayered plates/shells in an equivalent but unique192

representative structure, taking into account the features of each sub-components.193

In the case of LE-models instead, cross-section or thickness elements are defined starting from the194

set of Lagrange’s polynomials adopted and the total number of finite nodes involved. The resulting195

model, in both cases, is a pure displacement-based model along the cross-section or thickness of the196

beam, by exploiting the isoparametric formulation. In the present work, linear, parabolic, and cubic197

expansion models will be adopted. From now on, 1D-CUF LE expansion models will be referred to as198

four-node linear L4, nine-node parabolic L9, and quadratic six-node cubic L16 cross-section expansion199

models, instead 2D-CUF expansion models will be addressed as linear LE2, parabolic LE3, and cubic200

LE4. As examples, we report the displacement field of a 1D-L9 and 2D-LE2 parabolic expansion model,201

expressed as202

u
τ1

u
τ2

u
τ3

u
τ4

(1)

(2)

(1) (1)

(1)

(1)

u
τ1

u
τ2

u
τ3

u
τ4

(2) (2)

(2)

(2)

(a) 1D LE-class models

u
τ1

(1)

u
τ2

(1)

u
τ3

(1)

u
τ1

(2)

u
τ2

(2)

u
τ3

(2)

u
τ1

(3)

u
τ2

(3)

u
τ3

(3)

u
τ3

(4)

u
τ2

(4)

u
τ1

(4)

(b) 2D LE-class models

Figure 4: LE-class models, graphical representation of the mathematical model.

1D:


ux(x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y) + F3(x, z)ux3 + ... + F9(x, z)ux9(y)

uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y) + F3(x, z)uy3 + ... + F9(x, z)uy9(y)

uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y) + F3(x, z)uz3 + ... + F9(x, z)uz9(y)

(24)

203

2D:


ux(x, y, z) = F1(z)ux1(x, y) + F2(z)ux2(x, y) + F3(z)ux3(x, y)

uy(x, y, z) = F1(z)uy1(x, y) + F2(z)uy2(x, y) + F3(z)uy3(x, y)

uz(x, y, z) = F1(z)uz1(x, y) + F2(z)uz2(x, y) + F3(z)uz3(x, y)

(25)
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where the polynomial expansion basis considered is the set of 1D and 2D Lagrange parabolic poly-204

nomials. One key feature of LE expansion models is the independent local modeling of cross-section205

sub-components or multilayered plates/shells, by imposing displacements continuity of purely displace-206

ment components. A more detailed derivation of LE-class models and basis function adopted can be207

found in [26]. The capabilities of higher-order TE expansion models and LE models to deal with208

component-wise modeling of mechanical and aeronautical structures, the nonlinear static analysis, and209

pre-stressed vibration analysis are demonstrated in [27, 28, 29].210

Independently of the expansion model adopted in the definition of a refined theory, the generalized211

displacement field components of the 1D CUF beam axis domain or 2D plate mid-surface domain are212

further discretized by adopting the classical FE approach213

Beam 1D models: uτ (y) = Ni(y)uτi i = 1, ..., Nn (26)

Plate 2D models: uτ (x, y) = Ni(x, y)uτi i = 1, ..., Nn (27)

where the beam axis or plate mid-surface displacement components are formulated as a general linear214

combination adopting the Ni shape functions of the discrete nodal displacements uτi, unknowns of the215

model. In Eq. (27), the index i refers to the summation along the finite nodes per element adopted216

in the discretization of 1D beam axis or 2D plate mid-surface, and Nn refers to the expansion order217

governed by the total number of finite nodes involved. The final expression of the 3-D displacement218

field in the CUF domain is then a coupled expansion of structural theories, modeled with the expansion219

functions, and finite element approximation,220

Beam 1D models: u(x, y, z) = Fτ (x, z)uτ (y) = Fτ (x, z)Ni(y)uτi (28)

Plate 2D models: u(x, y, z) = Fτ (z)uτ (x, y) = Fτ (z)Ni(x, y)uτi (29)

In our proposed model, the finite element approximation of the beam axis will be addressed as linear B2,221

parabolic B3, and cubic B4 finite elements, instead, the finite element approximation along the plate222

mid-surface will be referred to as linear Q4, parabolic Q9 and cubic Q16, indicating the total number223

of finite nodes adopted in the single element definition. Equation (29) is the most general expression224

of displacement field that immediately the definition of higher-order and refined finite element models225

for beam and plate structures in a hierarchical manner since it is independent of the polynomial basis226

adopted in the kinematics of the beam axis or plate mid surface and expansion theories considered.227

The difference between these models from a finite element and assembling procedures point of view228

are shown in Fig. 5. The finite element matrices are combined differently depending on the expansion229

model chosen, by imposing the superposition of mechanical and stiffness properties in the TE-class230

case or imposing displacement continuity at interfaces in the LE-class case, in resulting finite element231

assembling procedures defined straightforwardly.232

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

Equivalent-Single-Layer
TE models

TE-1 TE-2 TE-3

Layer-wise
LE models

LE-1 LE-2

1D-CUF
cross section exp.

2D-CUF
thickness exp.

Figure 5: Unified models: Equivalent-Single-Layer and Layer-Wise models.
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4 Nonlinear governing equations in matrix form233

4.1 Internal and external force vector234

In this work, governing equation in weak form are derived by means of the PVD (Principle of Virtual235

Displacements). Considering a static nonlinear problem, supposing negligible body forces, PVD states236

δLint = δLext (30)

where Lint is the internal work, Lext is the external work and δ denotes the virtual variation. Analyt-237

ically, these terms can be expressed as238

(a) δLint =

∫
Ω
δETSdV (b) δLext =

∫
Ω
δuT fdV (31)

where S is the PK2 stress tensor, E is the Green-Lagrange strain tensor and f is the vector of external239

loads applied. The virtual quantities are introduced adopting the same index notation and polynomial240

expansion but with independent indices, adopting the j index for virtual measures along the axis nodes241

and the s index for the CUF expansion model, to obtain independent quantities with respect to real242

ones. Since both 1D beam models and 2D plate models are considered, variable dependency will be243

neglected from now on without loss of generality, since the derivation procedure is independent of the244

model adopted. The generic virtual displacement is then defined as245

δu(x, y, z) = Fsus = FsNjδusj j = 1, 2, .., Nn, s = 1, ...,M (32)

Referring to the internal energy contribution, the full Green-Lagrange strain tensor can be rewritten246

in terms of nodal displacement unknowns and expansion functions with the same index notation.247

Introducing now Voigt’s notation for the representation of physical symmetric quantities, stress, and248

deformation tensors are rewritten in vector form as249

S = {Sxx, Syy, Szz, Sxz, Syz, Sxy}T (33)
250

E = {Exx, Eyy, Ezz, Exz, Eyz, Exy}T (34)

Under the hypothesis of the fully nonlinear displacement-strain relation, the Green-Lagrange tensor251

can be rewritten as done in Pagani et al. [19]252

E = (bl + bnl) u = (bl + bnl) FτNiuτi = (Bl
τi +Bnl

τi)uτi (35)

Applying the formal matrices of derivatives operator bl and bnl to CUF expansion of the displacement253

field, the algebraic matrices Bl
τi and Bnl

τi are obtained, and their explicit forms can be found in254

[19, 20]. The virtual variation of the strain measure is written in compact form including the previously255

introduced discretization of virtual displacement Eq.(32)256

δE = δ((Bl
τi +Bnl

τi)uτi) = (Bl
sj + 2Bnl

sj)δusj (36)

Substituting now Eq.(36) into Eq.(31)(a)257

δLint =

∫
Ω
δuT

sj(Bl
sj + 2Bnl

sj)TSdV = δuT
sjF

sj
int (37)

where Fsj
int the 3x1 FN (Fundamental Nucleus) of the internal forces vector258

Fsj
int =

∫
Ω
(Bl

sj + 2Bnl
sj)TSdV (38)

Referring to the external load contribution in the variational principle, the FN of the external load259

vector is exploited by means of the same derivation procedure described for the internal energy con-260

tribution. If f is the vector of conservative loads applied to the structure, one has261

δLext =

∫
Ω
δuT fdV =

∫
Ω
δuT

sjFsNjf dV = δuT
sjF

sj
ext (39)

9



where Fsj
ext the 3x1 FN of the external forces vector262

Fsj
ext =

∫
Ω
FsNjf dV (40)

The main advantage in the adoption of CUF-based finite element models is herein noticeable by263

Eq.(38) and Eq.(39) the FNs of physical quantities are defined regardless of the specific kinematic264

model adopted in the discretization of finite nodes and approximation theory along the cross-section or265

thickness of the structure, therefore independent expressions of physical quantities for any arbitrarily266

polynomial expansion are found. The unique expressions of internal forces and external forces for267

specific combinations of models adopted are exploited by assigning the finite element shape functions268

Ni, Nj and theory of structure approximation Fτ and Fs of any order, and exploiting the summation269

over the recursive indices expansion (namely the summation over indices i and j, τ , and s). Finally,270

the PVD is written in compact notation as follow271

δusj : Fsj
int − Fsj

ext = 0 (41)

Considering the summation over indices s and j, the global internal forces vector Fint and external272

load vector Fint can be computed, following the CUF assembling procedure [15].273

274

In a finite element scenario for hyperelasticity, both large displacements and rotations (geometrical275

nonlinearities) and nonlinear constitutive law (material nonlinearities) must be taken into account for276

these reasons, equilibrium equations turn out to be strongly nonlinear, and common solution techniques277

are based on numerical iterative solvers.278

4.2 Linearization of governing equations279

The expanded nonlinear problem Eq.(41) is written as an equivalent optimization problem in the form280

of minimization of residual function [30]. Defining the unbalanced nodal forces vector as281

ϕres = Fint − Fext (42)

the solution of the nonlinear equilibrium problem is equivalent to finding the root of Eq.42 since,282

at equilibrium, due to balance the residual nodal forces vector is null (ϕres = 0). In our formula-283

tion, a Newton-Raphson iterative scheme is employed, thus expanding Eq.(42) by considering Taylor’s284

expansion around a known condition (u0,F0
ext) truncated at the first order285

ϕres(u
0 +∆u,Fext +∆Fext) = ϕres(u

0,F0
ext) +

∂ϕres

∂u
∆u+

∂ϕres

∂Fext
∆λ · Frif

ext = 0 (43)

where the finite variation of the nodal load vector can be rearranged under the hypothesis of conserva-286

tive external load, in mathematical terms ∆Fext = ∆(λFref
ext ) = ∆λFref

ext . Defining the tangent stiffness287

matrix as ∂ϕres

∂u = KT and recognizing that ∂ϕres

∂Fext
= −I, Eq.(43) is written as288

KT (u
0)∆u = ∆λFref

ext − ϕres(u
0,F0

ext) (44)

Considering the loading scale parameter λ as an additional variable of the problem, Eq.(44) must be289

coupled with a general constraint equation, to close algebraically the problem, thus290 {
KT (u

0)∆u = ∆λFref
ext − ϕres(u

0,F0
ext)

c(∆u,∆λ) = 0
(45)

The constraint equation characterizes the numerical scheme adopted, one can implement displacement291

control, load control, and path-following methods by adopting a different constraint. In the present292

work, the path-following method proposed by Crisfield [31] is employed, and the implementation of293

such arc-length iterative solver in a CUF-based finite element scenario is described in detail in [19].294
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4.3 Tangent stiffness matrix295

The analytic expression of the tangent stiffness matrix is here described in detail and exploited by296

linearization of equilibrium equation Eq.(42). Through the assumption of conservative loads only the297

virtual variation of the internal work has to be linearized, since the second variation of external loads298

will be identically null, therefore the finite variation of the internal strain energy contribution of the299

variational principle is300

∆(δLint) =

∫
Ω
∆(δETS)dV =

∫
Ω
δET∆SdV +

∫
Ω
∆(δET )SdV (46)

The two integral terms appearing in Eq.(46) are now analyzed separately.301

The first term represent the linearization of constitutive equation. Adopting Holzapfel formulation,302

Eq.(18) is rewritten in matrix form303

∆S = C
1

2
∆C = C∆E = C(Bl

sj + 2Bnl
sj)∆usj (47)

Thus, the linearization of the constitutive equation can be written as304 ∫
Ω
δET∆SdV =

∫
Ω
δuT

sj(Bl
sj + 2Bnl

sj)TC(Bl
τi +Bnl

τi)∆uτi dV =

= δuT
sjK

τsij
ll ∆uτi + δuT

sjK
τsij
lnl ∆uτi + δuT

sjK
τsij
nll ∆uτi + δuT

sjK
τsij
nlnl∆uτi =

= δuT
sjK

τsij
ll ∆uτi + δuT

sjK
τsij
T1

∆uτi (48)

where Kτsij
T1

= Kτsij
lnl + Kτsij

nll + Kτsij
nlnl is the non linear contribution to the tangent stiffness matrix305

coming from the linearization of the constitutive equation and Kτsij
ll is the linear contribution.306

The second term of Eq.(46) is the linearization of geometrical relations. Exploiting the same derivation307

procedure described before, one can find the fundamental nucleus of the geometrical stiffness matrix308

Kτsij
σ , the derivation will be not reported here but can be found explicitly in [19, 20].309 ∫

Ω
∆(δE)TSdV = δuT

sjK
τsij
σ ∆uτi (49)

Substituting finally the expression of the contribution coming from the linearization of the constitutive310

equation Eq.(48) and the one coming from linearization of the geometrical relations Eq.(49), the311

fundamental nucleus of the tangent stiffness matrix is defined as312

∆(δLint) =

∫
Ω
δET∆SdV +

∫
Ω
∆(δE)TSdV =

= δuT
sjK

τsij
ll ∆uτi + δuT

sjK
ij
T1
∆uτi + δuT

sjK
τsij
σ ∆uτi =

= δuT
sjK

τsij
T ∆uτi (50)

As stressed in the previous theoretical derivation of the model, the FNs of sub-matrices of the tangent313

stiffness matrix are defined for any arbitrary polynomial expansion chosen. The unique expression of314

tangent stiffness matrix in the single CUF finite element is achieved by exploiting the summation over315

indices i and j, τ and s, thus on shape functions Ni, Ni and theory of structure approximation Fτ and316

Fs, but the resulting definition of FN is completely independent of the chosen kinematic models and317

approximation theory.318
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5 Numerical results319

In this section, numerical results obtained via the present implementation of higher-order 1D beam320

dn 2D plate CUF models for transversely isotropic hyperelastic materials are presented and validated321

adopting as reference results popular benchmark problems available in literature or simple cases in322

which closed-form solutions are known. We present different models and we investigate the capabilities323

of our models when different strain energy functions are considered, more complex geometries are324

involved, and in particular when different preferential directions of the fibers are chosen, analyzing325

standard problems involving Cartesian or curvilinear geometries.326

5.1 Shear test of an incompressible block327

The first problem is a simple shear test of a fiber-reinforced incompressible cubic block. This classical328

benchmark problem in hyperelasticity is a special case for which closed-form solutions are known.329

Geometry and boundary conditions are depicted in Fig. 6.330

z = h, uz = 0

z = 0, uz = 0
y

z

x

(a) Geometry and boundary conditions

y

z

x

(b) Deformed configuration

Figure 6: Simple shear tension test, description of the problem.

Material is modeled adopting a refined version of the classical HGO (Holzapfel-Gasser-Ogden)331

model for fiber-reinforced materials [2] and presented in Mendez at al. [32], in which the authors332

proposed this refined strain energy function to investigate the physical meaning of I5 invariant333

Ψ = Ψvol(I3) + Ψiso(I1, I2, I3) + Ψani(I3, I4, I5) (51)
334

Ψvol(I3) =
k

2
(J − 1)2 =

k

2
(
√
I3 − 1)2 (52)

335

Ψiso(I1, I2, I3) =
c1
2
(Ī1 − 1) =

c1
2
(I1I

−1/3
3 − 1) (53)

336

Ψaniso(I3, I4, I5) =
c2
2c3

(ec3(Ī4−1)2 − 1) +
c4
2c5

(ec5(Ī5−Ī4
2
)2 − 1) =

=
c2
2c3

(eC3(I4I
−1/3
3 −1)2 − 1) +

c4
2c5

(ec5(I5I
−2/3
3 −I24 I

−2/3
3 )2 − 1) (54)

Material parameters adopted numerical constants considered are described in Table 1.337

We now derive the explicit analytic expression of deformation gradient components, thus the analytic338

expression of the non-null terms of PK2 stress tensor. If {x0, y0, z0} are the coordinates of the generic339

material point of the cube in the reference configuration and {x, y, z} are the coordinate in the de-340

formed configuration, as previously shown in Fig. 1, the deformation field components for the shear341

problem in the y− z plane shown in Fig.6 are known, thus also the deformation gradient and the right342

Cauchy-Green strain tensor343

344

(x, y, z) = f(x0, y0, z0)


x = x0

y = y0 + γz0

z = z0
→ F =

1 0 0
0 1 γ
0 0 1

 → C = FTF =

1 0 0
0 1 γ
0 γ 1 + γ2


12



where γ is a strictly positive real number. Supposing again that a0 = (ax, ay, az)
T , invariants and345

pseudo-invariants required for the computation of physical quantities are346 
I1 = 3 + γ2

I2 = −3− 2γ2

I3 = 1

{
I4 = a2x + ay(ay + azγ) + az(ayγ + az(1 + γ2))

I5 = a2x + ay(ay + azγ
2) + az(ayγ

2 + az(1 + γ2)2)

One can note that J = detF = 1, so the mathematical enforcement of incompressibility is obtained347

by imposing the deformation gradient components. Computing then the derivatives of strain energy348

function Eq.(51), and computing the analytic expression of the stress tensor S by Eq.(17), finally the349

analytic expression of Cauchy’s ”true” stress tensor function of the shear parameter γ is obtained350

σ =
1

J
FSFT (55)

Due to the analytic complexity, here extended expression of PK2 stress components are not reported but351

they can be computed easily. In this study case, the capabilities of the present implementation of CUF-352

based models are investigated by analyzing the mechanical behavior when different fiber directions are353

considered. To validate the present implementation of hyperelastic 1D and 2D CUF models, the cubic354

specimen is analyzed by two independent models in the first case, the mathematical model adopted355

makes use of 1D beam elements, with one L4 linear element adopted for the cross-section discretization356

and one B2 linear element along the axis; in the case of 2D plate CUF models, only one Q4 linear357

element is adopted in the discretization of the mid-surface and one LE2 linear element is adopted for358

the thickness expansion theory. In particular, the mechanical response of the cube is analyzed in six359

different study cases, for each discretization adopted, in which different fiber vectors are considered.360

k [kPa] c1 [kPa] c2 [kPa] c3 [ - ] c4 [kPa] c5 [ - ]

1 · 108 50 831.4 4.241 350.96 6.18

Table 1: Simple shear problem material properties

Figure 7(a), Fig. 7(b) and Fig. 7(c) depict, for each unitary versor a0 considered, the geometrical361

model of the fiber-reinforcement considered and the 1D CUF finite element adopted, instead Fig.362

7(d), Fig. 7(e) and Fig. 7(f) show the comparison between the analytic stress-stretch curve and the363

numerical results obtained by discretizing the specimen with 1LE2-1B2 beam CUF element, plotting364

the stress distribution versus the shear parameter γ in all cases, a perfect superposition of the numerical365

results is achieved. The same analysis is performed adopting the indicated 2D plate discretization of366

the cubic specimen, but for the sake of brevity, results are not reported here since actual numerical367

results perfectly match the one already presented. As another example, following the proposed study368

cases in Mendez et al. [32], the mechanical response of the cubic specimen is analyzed in the case of369

a preferential direction of the fibers laying in the y − z plane, inclined of an angle θ with respect to370

the y-axis. Three different inclination conditions are proposed θ = 30◦, θ = 45◦ and θ = 60◦. Figure371

7(g), Fig. 7(h) and 7(i) shows the comparison between analytic and numeric stress-stretch curves in372

the case of 1Q4-1B2 results are perfectly matching the analytic solution in all the cases.373
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Figure 7: Shear tension test comparison between analytic and 1D beam CUF numerical solution
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5.2 Circular plate under uniform transversal pressure374

As a second numerical example, the bending of a circular plate presented by Beheshti et al. [13]375

is considered a benchmark case study. A circular plate of radius R = 50 mm and thickness h = 5376

mm clamped at the lateral surface is subjected to a vertical transversal pressure qz. The geometrical377

features and boundary conditions are depicted in Fig. 8(a).378

u = 0  (clamped)

x y

z

h

R 

q
z

(a) Geometry and boundary conditions.

TE-N / LE-N

Q9

(b) Mathematical model description.

Figure 8: Circular plate configuration of the case study.

The mechanical response of the plate is investigated for different material conditions in the first379

case, an isotropic hyperelastic plate is analyzed, and thereafter a fiber-reinforced hyperelastic one in380

the same geometrical and load conditions. In the anisotropic case, two different fiber distributions are381

considered separately, a radial reinforcement and then a tangential reinforcement thanks to the numer-382

ical integration technique, the unitary vector a0 required for the computation of physical quantities is383

defined locally by the Gauss integration point in each element of the discretization.384

x

y

r,GPe

a0

(a) Radial reinforcement.

x

y

r,GPe
a0

(b) Angular reinforcement.

Figure 9: Circular plate, anisotropic case, fiber distribution in the definition of principal fiber direction, by
taking advantage of the numerical integration scheme employed in stiffness matrices computation,
the vector a0 is defined starting from the physical coordinates of the Gauss integration point, in this
way a globally accurate distribution of fibers can be easily obtained.

Material is modeled with an isotropic Neo-Hookean model coupled with the standard reinforcement385

model for fiber-reinforced hyperelastic material and a stabilized volumetric logarithmic-power model386

Ψ(C) =
µ

2
(I1 − 3) +

λ

2
(J − 1)2 − µ log J + γ(I4 − 1)2 (56)

where the infinitesimal shear modulus is set to µ = 1 MPa, the Lame constant is set to λ = 4 MPa387

and the reinforcing model constant is γ = 0.375 MPa. In the case of an isotropic plate, the constant388

γ is set equal to zero.389
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As a preliminary investigation, a convergence analysis is carried out considering 2D plate CUF390

models, analyzing the influence of different kinematic models adopted in the discretization of plate391

mid-surface and the influence of the theory approximation along the thickness thus a convergence392

analysis for an increasing number of Q9 parabolic elements along the mid surface of the plate will393

be considered, instead the influence of the mathematical model in the expansion along the thickness394

will be investigated considering linear, quadratic, and cubic Taylor Expansion model and Lagrange395

Expansion model, that will be addressed as TEN (where N is the polynomial order), LE2 (Lagrange396

parabolic model) and LE3 (Lagrange cubic model). Actual numerical results obtained adopting 2D397

plate CUF elements are compared with the reference results, analyzing the structure in the specific398

configuration of transversely isotropic hyperelastic material with radial fiber distribution.399

Figure 10(a) shows the equilibrium paths of the clamped plate in the radial fiber distribution400

condition analyzing the influence of the total number of finite elements adopted in the discretization on401

the numerical solution, instead of Fig. 10(b) shows the influence of the mathematical model adopted402

in the thickness expansion, plotting the vertical transversal displacement of the center of the plate403

(measured at the mid surface) versus the modulus of applied pressure. In all the cases, a perfect404

superposition of the numerical results is evidenced, and accurate predictions are obtained.405

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  5  10  15  20

q
 [

M
P
a
]

- uz [mm]

Ref. radial

80Q9-1LE2, 3033 DOFs

132Q9-1LE2, 4977 DOFs

156Q9-1LE2, 5841 DOFs

180Q9-1LE2, 6705 DOFs

(a) Convergence analysis

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  5  10  15  20

q
 [

M
P
a
]

-uz [mm]

Ref. radial

LE2 - 6705 DOFs

LE3 - 8940 DOFs

TE1 - 4470 DOFs 

TE2 - 6705 DOFs 

TE3 - 8940 DOFs 

TE4 - 11175 DOFs 

(b) Effect of theory expansion model

Figure 10: Circular plate equilibrium curve of the plate in the radial fiber distribution configuration.

In the following, the nonlinear static analysis of clamped plate in each described material con-406

figuration is carried out the isotropic and fiber-reinforced cases are studied adopting the convergent407

mathematical model previously described, employing 180 Q9 parabolic elements in the discretization408

of the plate mid-surface and a single LE3 element along the thickness. Figure 11 shows the equilibrium409

path for all material configurations, comparing the transversal displacement of the center of the plate410

(measured on the mid-surface) obtained by 2D CUF models with reference results. Actual numerical411

solutions are in perfect agreement with the reference solution. In particular, a stiffer behavior of the412

plate can be observed when a radial distribution of fibers is considered, instead in the case of tangen-413

tial/angular distribution the mechanical behavior is similar to the isotropic one. In the case of radial414

fiber distribution, Fig. 12(a) shows the transversal displacement distribution along the plate thickness415

(measured at the center), instead Fig. 12(b) shows the longitudinal displacement distribution along the416

diameter of the plate, measured at the mid surface. Again, the linear TE1 model, which corresponds417

to the first-order shear deformation theory, is not able to capture the correct transversal behavior due418

to the theoretical model assumptions. Figure 13 shows the deformed configurations of the anisotropic419

radial reinforced plate in different load conditions.420

421
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Figure 11: Circular plate equilibrium path for different fiber configurations.
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Figure 12: Circular plate displacement distribution along the thickness and the diameter of the plate, for
various expansion theories, radial fiber distribution case.
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(a) q = 0.008 MPa, uz = −7.38829 mm
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(b) q = 0.024 MPa, uz = −12.0195 mm
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(c) q = 0.048 MPa, uz = −15.9218 mm
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(d) q = 0.08 MPa, uz = −19.5227 mm

Figure 13: Circular plate deformed configurations for different value of applied pressure, 180Q9-1LE3
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Furthermore, the influence of expansion approximation theory on the description of stresses is422

investigated. The clamped plate is considered now in the isotropic material condition, employing the423

previously convergent mesh made by 180 Q9 parabolic elements and different expansion models to424

analyze the through-the-thickness stress distributions. Figure 14 shows the distributions of PK2 stress425

components along the z direction, measured at the point A positioned at coordinates (−3/4R, 0) mm on426

the plate mid-surface, when a transversal pressure qz = 0.1 MPa is applied. In all the cases, differences427

are evidenced between models, which can be addressed to the higher accuracy of the deformation428

gradient and invariants computation thanks to higher-order expansions of the displacement field, which429

lead to more accurate predictions of the stress field components.430
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Figure 14: Circular plate effects of theory expansion on through-the-thickness stresses distribution, Piola-
Kirchoff 2 stresses for the isotropic case and load condition qz = 0.1 MPa.
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The same comparison is considered to investigate Cauchy’s stress, measured again at the same point431

and considering the same load configuration. Cauchy’s stresses are computed thanks to the deformation432

gradient and the already available PK2 by Eq. (55). The through-the-thickness distribution of Cauchy’s433

stresses obtained adopting the same expansion approximation theories is shown in Fig. 14. Again, the434

same considerations previously made are experienced in this last comparison.435
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Figure 15: Circular plate effects of theory expansion on through-the-thickness stresses distribution, Cauchy’s
stresses for the isotropic case and load condition qz = 0.1 MPa.
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5.3 Cantilever square plate under traction pressure436

In this third case study, the large strains analysis of a cantilever square plate, presented by Beheshti et437

al. [13], is carried out. A square plate of lateral length a = 20 mm and thickness t = 1 mm is subjected438

to a tensile pressure load at the free end of the plate. The geometrical features and boundary conditions439

are depicted in Fig. 16(a).440

a
t

a
0

p

x

y

z

A

B

(a) Geometry and boundary conditions

20 L9

15 B4

(b) Discretization

Figure 16: Clamped square plate configuration of the case study

The square plate is made by a transversely isotropic hyperelastic material with a singe-fiber pre-441

ferred direction, defined as the unitary vector a0 in the plane y− z inclined of an angle θ with respect442

to y-axis, thus a0 = (0, cos θ, sin θ) the same plate is studied in different fiber configurations, with443

inclination angle varying from 0◦ to 90◦. Material is modeled adopting the same strain energy function444

model Eq.(56) of the previous case study, with the same material constants as done in the reference445

case [13].446

447

The structure is discretized adopting 1D CUF models, employing 20 L9 parabolic elements along448

the clamped side of the plate and 15 B4 cubic elements along the longitudinal side of the beam in the449

y direction as shown in Fig. 16(b), for a total number of degrees of freedom equal to 16974.450

The effects of anisotropy and the presence of a preferential direction are investigated by analyzing451

the horizontal displacement of points A and B, located at the tip free-end of the plate, for increasing452

the value of the tensile traction load applied. Figure 17(a) shows the load-displacement curve for fiber453

inclination angle θ = 0◦ and θ = 30◦ in this case, for θ = 0◦ the horizontal displacement of the two-point454

are exactly coincident and, since the fiber direction is aligned with the load direction, the plate is much455

stiffer, instead in the case of θ = 30◦ there is a transversal component of the preferential direction that456

affects the deformation process, and the final configuration results unsymmetric. Figure 17(b) shows457

instead the equilibrium path curve for fiber inclination angle θ = 60◦ and θ = 90◦. Differently with458

respect to the previously considered cases, since the preferential direction is more inclined, the plate459

is much less stiff; large displacement and strains of the plate are obtained with much lower values of460

applied pressure. Again, when θ = 90◦ there is no component along the direction of the load thus the461

deformed structure is symmetric.462
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Figure 17: Clamped square plate equilibrium curve for various fiber inclination

Figure 18 shows the deformed configuration for different fiber inclination configurations when the463

horizontal displacement of the point B is around 19 mm it can be clearly noted the strong influence464

of the mechanical behavior of the material with respect to anisotropy preferential direction.465
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(a) Fiber angle θ = 0◦
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(b) Fiber angle θ = 30◦
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(c) Fiber angle θ = 60◦
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(d) Fiber angle θ = 90◦

Figure 18: Clamped square plate deformed configuration representation
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6 Conclusions466

In this paper, we proposed the unified beam (1D) and plate (2D) CUF models for the large strain467

analysis of materials and structures in the hyperelastic compressible and incompressible regimes. In468

the domain of CUF, governing equations for the nonlinear static analysis of transversely isotropic469

hyperelastic materials are expressed in a compact notation starting from a generalized expansion470

of the 3D displacement unknowns coupling kinematic models and expansion theories, in a resulting471

expression of physical quantities (internal and external forces vector, tangent stiffness matrix) in matrix472

form, defining our fundamental nuclei independent of the polynomial expansion adopted. Numerical473

solutions are obtained by solving an algebraic system of equations with a Newton-Raphson linearized474

scheme. Our proposed results prove the capabilities of the present implementation of CUF 1D and475

2D models to deal with large strains of fiber-reinforced hyperelastic structures, providing accurate476

results in terms of displacement and stress distributions, thanks to the higher-order three-dimensional477

description of the stress field guaranteed by the Unified formulation with adequate computational costs478

required for convergent solutions. The generalization of the constitutive law from isotropic hyperelastic479

to transversely isotropic hyperelastic materials is straightforward thanks to the Unified Formulation480

of tangent stiffness matrix in which the material Jacobian tensor is employed instead of the classical481

elasticity tensor, allowing us to rewrite the formulation of fully nonlinear finite element CUF models482

in the same framework without loss of generalities. Future works will deal with the extension of CUF483

hyperelastic models to shell structures, multilayered hyperelastic composites involved in biological484

tissue modeling (for which a suitable model for anisotropic behavior is required), the generalization of485

constitutive law adopted for orthotropic hyperelastic models in which the influence of two principal486

fiber directions are included, the stress analysis of multilayered composites made of linear elastic and487

hyperelastic layers, and finally the implementation of stabilization method for locking prevention, such488

as the hybrid formulation, in which the hydrostatic pressure (directly linked to the volumetric strains)489

is interpolated with an independent polynomial expansion.490
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