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Analysis of transversely isotropic compressible and
nearly-incompressible soft material structures
by high order unified finite elements

P. Chiaia®* A. Pagani®! M. Cinefra’*, E. Carrera®

@ Mul? Lab, Department of Mechanical and Aerospace Engineering
Politecnico di Torino, 10129 Turin, Italy
b Department of Mechanics, Mathematics and Management, Politecnico di Bari
Via Edoardo Orabona, 4, 70126 Bari, Italy

Abstract This work proposes high-order beam (1D) and plate (2D) finite element models for the large
strain analysis of compressible and incompressible transversely isotropic hyperelastic media, defined
within the Carrera Unified Formulation (CUF) framework. The strain energy density function adopted
i fiber-reinforced hyperelastic materials modeling is presented and expressed in terms of invariants
and pseudo-invariants of the right Cauchy-Green strain tensor. The explicit expression of the tangent
elasticity tensor is derived through the assumption of coupled formulation of strain energy functions.
Refined fully nonlinear beam and plate models are defined in a total Lagrangian formulation, deriving
the governing equations of the nonlinear static analysis through the Principle of Virtual Displacements
i terms of fundamental nuclei, in resulting expressions of internal and external forces vectors, and
tangent stiffness matriz independent of kinematic models and approrimation theories adopted. The
iterative Newton-Raphson linearization scheme coupled with the arc-length constraint is adopted to
obtain actual numerical solutions. Different benchmark analyses in hyperelasticity are performed to
assess the capabilities of our proposed model, analyzing the three-dimensional stress field for moderate
to large strain states and comparing actual numerical results with exact closed-form solutions or results
available in the literature, demonstrating the capabilities and reliability of CUF models in the analysis
of fiber-reinforced soft materials and structures.

Keywords Hyperelasticity; Fiber-reinforced hyperelastic materials; Soft structures; Unified Formula-
tion; Compressible hyperelastic models; Path-following methods.

1 Introduction

Bio-inspired material, soft rubber-like cross-ply, or multilayered biological tissues have been subjected
to intense studies in the last decades. Of particular relevance, the numerical simulation of mechanical
behavior of soft tissue is an actual challenging field in computational mechanics and fluid dynamics
since it allows a wide range of investigations to better understand the real nature of biological tis-
sues. In this framework, materials involved in muscular and cardiac tissue modeling deal with strong
anisotropy. Typically these are multilayered materials, and each sub-layer exhibits direction-dependent
mechanical properties and typical of fiber-reinforced materials, such as collagen fibers, muscular tissue,

*PhD student. E-mail piero.chiaia@polito.it

fAssociate Professor. E-mail alfonso.pagani@polito.it

Associate Professor. E-mail maria.cinefra@poliba.it

$Professor of Aerospace Structures and Aeroelasticity. E-mail erasmo.carrera@polito.it



and blood vessels. For such materials, the mechanical behavior is described by transversely isotropic
hyperelastic constitutive law, for which direction-dependent mechanical properties are taken into ac-
count.

The enhanced elastic properties given by the hyperelastic behavior and the microstructural fiber-
reinforcement are the key properties of biological tissue. Fok et al. [1] analyzed multilayered arterial
cross-section by morpho-elasticity arguments. Holzapfel et al. [2] presented one of the most accurate
hyperelastic models in biological tissue modeling, the HGO (Holzapfel-Gasser-Ogden) model, consider-
ing transversely isotropic and orthotropic hyperelasticity, presenting a novel constitutive law for arterial
tissue modeling. A mathematical treatment of pseudoelastic stress-strain relations in hyperelasticity
has been presented by Fung et al. [3]. Some of the most remarkable hyperelastic models for rubber
and biological tissues have been validated by Ogden [4] and Gent [5], the last one later analyzed also
by Puglisi et al. [6].

In a general scenario, constitutive equations for anisotropic hyperelastic materials are well-established
transversely isotropic and orthotropic hyperelastic constitutive models are defined including large dis-
placements and strains formulation and a nonlinear stress-strain relation, both embedded in the classi-
cal strain energy function approach to hyperelastic material modeling. The availability of mathematical
models of hyperelastic materials allows the implementation of numerical procedures for simulations of
biological tissues. Due to the strongly nonlinear behavior of mathematical models, analytical solutions
are few and limited to very simple cases; for this reason, numerical procedures based on Finite Element
Method are one of the most common approaches. Arbind et al. [7] presented a general higher-order
shell theory for compressible hyperelastic materials. Amabili et al. [8] presented a finite element
model based on higher-order shell theories for the analysis of biological materials. Also Amabili et
al. [9] presented some experimental and numerical results on the characterization of human aortas.
Thin fiber-reinforced hyperelastic shells based on Reissner-Mindlin kinematics have been analyzed by
Balzani et al. [10]. Fiber-reinforced elastomers and their characterization by classical tension test have
been studied in a finite element scenario by Brown et al. [11]. Canales et al. [12] presented a nonlin-
ear optimization algorithm in the characterization of mechanical properties possessed by anisotropic
hyperelastic behavior modeled with the HGO model. Beheshti et al. [13] presented a general high-
order shell model for the analysis of compressible transversely isotropic materials. Zdunek et al. [14]
proposed a hybrid finite element formulation for transversely isotropic hyperelasticity.

In this work, we propose a new general finite element formulation for the analysis of transversely
isotropic (or continuous fiber-reinforced) hyperelastic materials based on Carrera Unified Formulation
(CUF). In this framework, the three-dimensional displacement field is expressed in terms of a recursive
index notation coupling kinematic models and approximation theories along the cross-section (1D
beam models) or thickness (2D plate/shell models), allowing the definition of matrix-form physical
quantities appearing in nonlinear governing equations in terms of fundamental nuclei independent
of the polynomial approximation employed in the definition of the finite element. The theoretical
framework of CUF and the definition oh higher-order structural theories is presented in Carrera et al.
[15]. The accuracy of CUF models in the computation of accurate three-dimensional stress distributions
is established in many works as [16, 17, 18]. Higher-order CUF models have been extended more
recently to the geometrical nonlinear analysis of isotropic and composite structures [19, 20, 21] but
more recently the material nonlinearities of the hyperelastic constitutive law has been included in the
fully nonlinear beam, plate and hexahedral solid models as done in [22, 23, 24].

The present work is structured as follows (i) first, the mathematical formulations of kinematics,
hyperelastic constitutive law written under an invariant formulation and the tangent elasticity tensor
are presented in Section 2.1; (ii) second, unified CUF-based 1D and 2D models are discussed in Section
3; (iii) subsequently, we exploit the nonlinear governing equations by means of the Principle of Virtual
Displacements, defining the internal and external forces vector and tangent stiffness matrix fundamental
nuclei, presenting also the numerical iterative scheme employed in Section 4; (iv) numerical results
obtained by the present implementation of unified beam and plated models are presented in Section
5, establishing the capabilities of the present models in the case of compressible and incompressible
fiber-reinforced materials; (v) finally, we discuss about the main conclusions evinced in Section 6.
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2 Constitutive law

2.1 Kinematics and strain measures

Figure 1 shows the undeformed € and deformed configuration €2 of a continuum body in space, where
Py = (29,70, 20) stands for a material point in the undeformed configuration and P the associated
point in the actual deformed configuration. As the continuum body evolves during time, it occupies
a continuous sequence of regions of the euclidean space. These regions occupied by the body at a
certain time ¢ are the configurations of the body. Starting from the reference configuration €2g, the
configuration of the body at the generic instant ¢ is called the current configuration.

Figure 1: Reference and actual configuration of a deformable body.

The current position of the generic material point is described by the deformation function, that
maps material point in the actual configuration to the related position in the reference configuration

P = f(Po) = ze1 + yez + zez = f1(2%, 4%, 2% e1 + fo(2%, 4%, 2%)e2 + f3(2°, 1%, 2%)es (1)

thereafter, the classical strain measures commonly adopted in continuum mechanics, namely the defor-
mation gradient F = 9P /0Pq and the right Cauchy-Green strain tensor C = FTF, are automatically
defined. Typically, isotropic hyperelastic mathematical models are defined starting from the invari-
ants of the right Cauchy-Green strain tensor, to satisfy objectivity arguments and independence with
respect to the reference frame, referring then to

I = tr(C) (2)
Iy = %((tr(C))2 — tr(C?)) = tr(cof(C)) (3)
I3 = det(C) = det(FTF) = J? (4)

where tr(-) and det(-) are the trace and the determinant operators, and cof(-) is the matrix of the co-
factors. Hyperelastic anisotropy is studied by analyzing the mechanical behavior of the material when
direction-dependent constitutive laws are provided. In this work, fiber-reinforced materials (trans-
versely isotropic materials) will be considered. For such materials, supposing that ag = (az, ay, a.)? is
the single fiber-reinforcement direction, the dependence on the preferential direction of the mechanical
response is embedded in the model considering two additional pseudo-invariants [25]

I4 =agQ - Cao (5)

I5 =agQ - C2a0 (6)

One can note that I, and I5 are invariants only under a rotation with the respect of fiber axis.



2.2 Hyperelastic constitutive law in terms of invariants

The mechanical behavior of continuously fiber-reinforced soft materials is modeled in the classical
hyperelastic framework based on strain energy functions. Considering a transversely isotropic hy-
perelastic material, the classical strain energy function ¥ for isotropic materials (depending on the
invariants ([, I, I3) of right Cauchy-Green tensor C) is extended embedding the dependence on the
preferential direction is embedded in the definition. If, in a Cartesian reference frame, the vector of
the fiber direction is ag = (ay, ay, a,)T, the strain energy function is now expressed as a function of
two tensorial quantities

U =U(C,ag ® ao) (7)

where (-) ® (+) stands for the dyadic product (tensor product) operator. The dependence on the special
direction of the continuous fiber-reinforcement is expressed, in the three-dimensional space, by the
structural tensor ag ® ag that modifies the constitutive equation. Due to the independence of the
strain energy function with respect to the reference frame (objectivity argument), ¥ is expressed as a
function of the three classical principal invariants of C and two additional pseudo-invariants, in which
the dependence of the fiber-reinforcement direction is incorporated and objectivity is still verified

U = \I/(Il<C), IQ(C), I3<C), I4<C, ao), I5<C, ao)) (8)

In nearly-incompressible hyperelastic materials, the volume ratio coefficient defined as J = det(F) is
approaching the unity, thus also I3.

In literature, commonly adopted models refer to the decoupled formulation of strain energy functions,
namely W is written as the sum of a purely volumetric component, a purely isochoric component, and
an additional anisotropic one

v = \Ilvol(J) + \I/iso(fla I_2) + qjaniso(f17f27[_47j_5> (9)

where W;,, and VU,,;s depend on the rescaled isotropic invariants, namely invariants (1:1,1:2,I_3) of
C = J2/3C and anisotropic rescaled invariants Iy = J~2/3I, and Iy = J~%/3I5. For a more detailed
description of the model see Holzapfel [25].

In our model, to simulate materials modeled with any possible strain energy function models, the
expression of ¥ Eq.(8) is assumed. The constitutive law for transversely isotropic material is carried
out by classical hyperelastic arguments. Once assigned the strain energy function, the stress-strain
relation adopted is
0¥ (C)

oC

where S is the PK2 (Piola-Kirchoff-2) stress tensor. Applying now the chain rule, the derivative of ¥
with respect to C can be explicitly expressed as

S=2 (10)

gU(C) 9U(C)dL  9¥(C)dL 9¥(C)dl;  9U(C)dL  d¥(C)dl; "
oC oI, oC ' 0L, oC ' a3 oC ' oI, oC ' 9l OC

In this manner, the analytic expression of PK2 stress tensor is obtained by computing derivatives of ¥
with respect to invariants of the deformation process, since the derivatives of the invariant with respect
to C are easily computed starting from their definitions

oI,  owC _ 9(IC)

ac = ac ~ oc ! (12)

2
gg_;(mm—agg)_m—c (13)
% =I;C! (14)
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% =ag ® ag (15)

0I5

aC

Substituting above expressions into Eq.(11), the most general expression of PK2 stress tensor depending
of the strain energy function is derived

=ag® Cao + a()C ® ag (16)

oUW\, U oV o ow

In Eq.(17) the explicit dependence of the constitutive law with respect to the preferential direction of
the material is included by the additional terms referred to the derivatives with respect to I4 and I5.

2.3 Incremental formulation and tangent elasticity tensor

In a total Lagrangian formulation of geometrical and material nonlinear problems, incremental formu-
lations are required. According to Holzapfel [25], the constitutive equation (17) can be rewritten in an
incremental form

1
AS = C;AC (18)

where C is the well-known material Jacobian tensor or tangent elasticity tensor. In the linearized
version of governing equation

_,98(C) _98(B) _, &*¥ (19)

¢ 0C OE 0CoC

Thereafter, by exploiting the derivatives of the strain energy function, one can obtain the analytic
closed-form expression of the tangent elasticity tensor here presented

% 92V o 92w 92w 520
= 4\ 3z t2geg Tan g TR I I I
C (8112 T enen Ton T 18[22> @I+ (8[18[2+ 16[22>( ®C+CI) +
0*v 92U 52
M Isre + Tl |A©C 4+ C @) +47,CwC
(3811813+ ! 38[28[3>( ®CT+C D+ apCeCt

0% ov 0%
— 4L———(CeCl'+C ') +4| — +I2— |C e C!
3812813( ® + ®C) + (3813+ 38[§> ® +

ov ow 92w 02w
— A43—C! 14— 85+4 I I I
38[30 ©C 8I2S+ <81181.4+ 181281.4)( ®ag®@ag+apg®@ag®I)+
0% 0%
812814(C®a0+a0®a0®C)+4—8IZag®a0®ao®a0+
0w 0% 0I5 0I5 0w 0Is 0I5
4 I I 2+ -—2@I)|-4——(C®-2+-—21C
+ <011015+ 18[28]5>< ®ac+ac®> 812615< “actac® )*

827\11 %@3% 4762\11 ag ®a ®%+%®a ®ag | +
812 \ aC ~ aC LI\~ 7O 0= 50

aC = oC
ov 9% RV

a1 0coC T “Barnar,
2

92U
+ A5 (a0® Cag @ C'+a)CRa®C'+C ' ®ag®Cag+C™' ®agC ®ag)20)
3U1L5

- 4

+ 4

+ (ag®ag®C 1 +C ' ®ag®ag) +

The full expressions of the terms C~! ©® C~! and the fourth-order tensor S = (I +1)/2 can be easily
found in reference textbooks.
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3 Higher-order beam and plate CUF finite element

The Unified Formulation for isotropic hyperelastic materials has been already presented by Pagani
et al. [22], in which the formulation of hyperelastic beam finite elements in CUF (Carrera Unified
Formulation) framework is established. Lately, Augello et al. [23] presented the 2D-CUF plate models
analyzing different benchmark problems in nearly-incompressible hyperelasticity. In this work, both
refined beam (1D) models and plate (2D) models defined in the CUF framework are employed to study
fiber-reinforced soft materials structures.

In general, the three-dimensional displacement field is expressed as a polynomial expansion of the
generalized nodal displacements, coupling approximation expansion theories along the plate thickness
or beam cross-section with kinematic models along the mid-surface or beam axis. This expansion
technique allows the implementation of higher-order modes, exploited by means of a recursive in-
dex notation. In the classical orthonormal {z,y, 2} Cartesian reference frame, the three-dimensional
displacement field for a beam and plate model is then expressed as

Beam 1D models: u(z,y,2) = Fr(z,2)u-(y) 7=1,... M (21)
Plate 2D models: u(z,y,2) = Fr(z)ur(z,y) 7=1,.... M (22)

where M is the dimension of the polynomial expansion basis, related to the polynomial order expansion
theory along the plate thickness or beam cross-section, and F. are the theory expansion functions
that characterize the CUF model adopted, and finally u, is the vector of generalized displacement
components along the reference direction.

LE3

(a) 1D Beam models (b) 2D Plate models

Figure 2: High order 1D and 2D CUF models.

Einstein’s notation for repeated indices summation is considered in the definition of the displace-
ment field in Eq. (22). This enables the implementation of higher-order structural theories by selecting
the expansion basis function F(z,z), which fully describes the model. In the present work, two dis-
tinct sets of expansion functions are considered for the cross-section expansion or thickness expansion
the TE (Taylor Expansion) class and the LE (Lagrange Expansion) class. TE models utilize 1D or
2D MacLaurin polynomials, depending on the model, as basis functions for expanding the generalized
reference displacement field (beam axis displacements or mid-surface plate displacements). Based on
the chosen expansion order, higher-order theories are automatically defined in a hierarchical manner.
As examples, we present the TE-1 linear expansion model, either for the 1D or 2D CUF models, which

are
U (2, Y, 2) = Uz (Y) + Ty (Y) + 20Uy (Y) Uy (T, Y, 2) = Uso (T,Y) + Uay (2, )
1D: uy(xa ya Z) = uy1 (y) + :Euyz (y) + Zuys (y) 2D uy(l‘, y7 Z) = “yo (l’, y) + uyl (x7 y) (23)
uz(x, Y, Z) = Uzy (y) + Tz, (y) + 2Usz (y) uz(x7 Y, Z) = Uz (mv y) + Uz (x7 y)

where ug,, uy, and u,, in each definition, is the generalized displacement variable, unknown of the
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problem, by which the whole three-dimensional displacement field is reconstructed by the expansion
on F, expansion functions.

4
.

(a) 1D TE-class models (b) 2D TE-class models

Figure 3: TE-class models, graphical representation of the mathematical model.

The TE-class models are generally referred to as ESLMs (Equivalent Single Layer Models), in
which the displacement field of the structures is seen as an homogenized quantity combining each
cross-section sub-components or a single layer of multilayered plates/shells in an equivalent but unique
representative structure, taking into account the features of each sub-components.

In the case of LE-models instead, cross-section or thickness elements are defined starting from the
set of Lagrange’s polynomials adopted and the total number of finite nodes involved. The resulting
model, in both cases, is a pure displacement-based model along the cross-section or thickness of the
beam, by exploiting the isoparametric formulation. In the present work, linear, parabolic, and cubic
expansion models will be adopted. From now on, 1D-CUF LE expansion models will be referred to as
four-node linear L4, nine-node parabolic L9, and quadratic six-node cubic LL16 cross-section expansion
models, instead 2D-CUF expansion models will be addressed as linear LE2, parabolic LE3, and cubic
LE4. As examples, we report the displacement field of a 1D-L9 and 2D-LE2 parabolic expansion model,
expressed as

(a) 1D LE-class models (b) 2D LE-class models

Figure 4: LE-class models, graphical representation of the mathematical model.

ux(:v,y,z) :Fl(xaz)uxl(y>+F2($7Z)u12(y)+F3(xvz)ul“3 + .. +F9(:U,z)ux9(y)
1D: uy(x,y,2) = Fi(x, 2)uy, (y) + Fo(z, 2)uy, (y) + F3(z, 2)uy, + ... + Fy(x, 2)uy, () (24)

Uz (2, Y, 2) = F1(2)ue, (2,y) + F2(2)ua,y (2, y) + F3(2)uey (2, 9)
2D: § uy(z,y,2) = Fi(2)uy, (2, y) + Fa(2)uy, (2,y) + F3(2)uy, (2,y) (25)
U’Z(x7y7 Z) - Fl(z)uzl (1’, y) + F2(Z)u22(xa y) + F3(z)u23(x7y)
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where the polynomial expansion basis considered is the set of 1D and 2D Lagrange parabolic poly-
nomials. One key feature of LE expansion models is the independent local modeling of cross-section
sub-components or multilayered plates/shells, by imposing displacements continuity of purely displace-
ment components. A more detailed derivation of LE-class models and basis function adopted can be
found in [26]. The capabilities of higher-order TE expansion models and LE models to deal with
component-wise modeling of mechanical and aeronautical structures, the nonlinear static analysis, and
pre-stressed vibration analysis are demonstrated in [27, 28, 29].

Independently of the expansion model adopted in the definition of a refined theory, the generalized
displacement field components of the 1D CUF beam axis domain or 2D plate mid-surface domain are
further discretized by adopting the classical FE approach

Beam 1D models: u-(y) = N(yuy i=1,...,N, (26)
Plate 2D models: u,(z,y) = Nij(z,y)uy; i =1,...,N, (27)

where the beam axis or plate mid-surface displacement components are formulated as a general linear
combination adopting the N; shape functions of the discrete nodal displacements u,;, unknowns of the
model. In Eq. (27), the index i refers to the summation along the finite nodes per element adopted
in the discretization of 1D beam axis or 2D plate mid-surface, and N,, refers to the expansion order
governed by the total number of finite nodes involved. The final expression of the 3-D displacement
field in the CUF domain is then a coupled expansion of structural theories, modeled with the expansion
functions, and finite element approximation,

Beam 1D models: u(z,y,2) = Fr(z,2)u (y) = F-(x, 2) Ni(y)ur (28)
Plate 2D models: u(z,y,z) = Fr(2)ur(z,y) = F-(2)Ni(z,y)ur (29)

In our proposed model, the finite element approximation of the beam axis will be addressed as linear B2,
parabolic B3, and cubic B4 finite elements, instead, the finite element approximation along the plate
mid-surface will be referred to as linear Q4, parabolic Q9 and cubic Q16, indicating the total number
of finite nodes adopted in the single element definition. Equation (29) is the most general expression
of displacement field that immediately the definition of higher-order and refined finite element models
for beam and plate structures in a hierarchical manner since it is independent of the polynomial basis
adopted in the kinematics of the beam axis or plate mid surface and expansion theories considered.

The difference between these models from a finite element and assembling procedures point of view
are shown in Fig. 5. The finite element matrices are combined differently depending on the expansion
model chosen, by imposing the superposition of mechanical and stiffness properties in the TE-class
case or imposing displacement continuity at interfaces in the LE-class case, in resulting finite element
assembling procedures defined straightforwardly.

1D-CUF 2D-CUF
cross section exp. thickness exp.

=

Equivalent-Single-Layer Layer-wise
TE models LE models

'
3
=
=2

= AJAIA]
K|
- AJATA]
K| Koy | Koz
KoKy K A ;
Zyx:yytyz TE-1 TE-2 TE-3 LE-1 LE-2

Figure 5: Unified models: Equivalent-Single-Layer and Layer-Wise models.
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4 Nonlinear governing equations in matrix form

4.1 Internal and external force vector

In this work, governing equation in weak form are derived by means of the PVD (Principle of Virtual
Displacements). Considering a static nonlinear problem, supposing negligible body forces, PVD states

5£int - 5»Ceact (30)

where L;p;: is the internal work, L¢;: is the external work and § denotes the virtual variation. Analyt-
ically, these terms can be expressed as

(a) 0Lins = / SET SV (b) 6Lexs = / sulfdv (31)
Q Q

where S is the PK2 stress tensor, E is the Green-Lagrange strain tensor and f is the vector of external
loads applied. The virtual quantities are introduced adopting the same index notation and polynomial
expansion but with independent indices, adopting the j index for virtual measures along the axis nodes
and the s index for the CUF expansion model, to obtain independent quantities with respect to real
ones. Since both 1D beam models and 2D plate models are considered, variable dependency will be
neglected from now on without loss of generality, since the derivation procedure is independent of the
model adopted. The generic virtual displacement is then defined as

du(z,y, z) = Fsus = FyNjoug; ji=1,2,..,N,, s=1,..M (32)

Referring to the internal energy contribution, the full Green-Lagrange strain tensor can be rewritten
in terms of nodal displacement unknowns and expansion functions with the same index notation.
Introducing now Voigt’s notation for the representation of physical symmetric quantities, stress, and
deformation tensors are rewritten in vector form as

S = {Szan Syyv Szz: S.Z‘Z7 Syz; Sacy}T (33)
E = {E:m:; Eyya EZZ7 E:Eza Eyza El'y}T (34)

Under the hypothesis of the fully nonlinear displacement-strain relation, the Green-Lagrange tensor
can be rewritten as done in Pagani et al. [19]

E = (bj+by) u= (b +by) F,Nju,; = (B + By ™ )u,; (35)

Applying the formal matrices of derivatives operator by and by to CUF expansion of the displacement
field, the algebraic matrices B;™ and By™ are obtained, and their explicit forms can be found in
[19, 20]. The virtual variation of the strain measure is written in compact form including the previously
introduced discretization of virtual displacement Eq.(32)

SE = 6((B1™ 4+ Bm™)uy) = (B¥ + 2By ¥ )duy; (36)
Substituting now Eq.(36) into Eq.(31)(a)
8Lint = /Q suli (B + 2By SdvV = suliF), (37)

where Ffét the 3x1 FN (Fundamental Nucleus) of the internal forces vector
Ry = / (Bi + 2B’ SdV (38)
Q
Referring to the external load contribution in the variational principle, the FN of the external load

vector is exploited by means of the same derivation procedure described for the internal energy con-
tribution. If f is the vector of conservative loads applied to the structure, one has

J ext

6Lont = / SuTfdV = / Jul, F,N;f dV = suLF? (39)
Q Q

9



where F¥

oyt the 3x1 FN of the external forces vector

FY, = / FN;f dV (40)
Q
The main advantage in the adoption of CUF-based finite element models is herein noticeable by
Eq.(38) and Eq.(39) the FNs of physical quantities are defined regardless of the specific kinematic
model adopted in the discretization of finite nodes and approximation theory along the cross-section or
thickness of the structure, therefore independent expressions of physical quantities for any arbitrarily
polynomial expansion are found. The unique expressions of internal forces and external forces for
specific combinations of models adopted are exploited by assigning the finite element shape functions
N;, Nj and theory of structure approximation F; and F of any order, and exploiting the summation
over the recursive indices expansion (namely the summation over indices i and j, 7, and s). Finally,
the PVD is written in compact notation as follow
duy: B, —Fg, =0 (41)
Considering the summation over indices s and j, the global internal forces vector F;,; and external
load vector Fj,,; can be computed, following the CUF assembling procedure [15].

In a finite element scenario for hyperelasticity, both large displacements and rotations (geometrical
nonlinearities) and nonlinear constitutive law (material nonlinearities) must be taken into account for
these reasons, equilibrium equations turn out to be strongly nonlinear, and common solution techniques
are based on numerical iterative solvers.

4.2 Linearization of governing equations

The expanded nonlinear problem Eq.(41) is written as an equivalent optimization problem in the form
of minimization of residual function [30]. Defining the unbalanced nodal forces vector as

Qbres = Fint - Fext (42)

the solution of the nonlinear equilibrium problem is equivalent to finding the root of Eq.42 since,
at equilibrium, due to balance the residual nodal forces vector is null (¢res = 0). In our formula-
tion, a Newton-Raphson iterative scheme is employed, thus expanding Eq.(42) by considering Taylor’s
expansion around a known condition (u®,F? ) truncated at the first order

ext
8¢res aéres
A
ou S oF.,

Pres(U® 4+ Au, Fepy + AF opp) = ¢pes(u’, FO,,) + AX-FI' =0 (43)

where the finite variation of the nodal load vector can be rearranged under the hypothesis of conserva-
tive external load, in mathematical terms AF.;; = A()\Fref ) = ANF"?/ . Defining the tangent stiffness

P Py ext ext "
matrix as % = Kr and recognizing that 8{?—2‘2 = —I, Eq.(43) is written as
Kr(u’)Au = ANFE] — dres(u”, FL,y) (44)

Considering the loading scale parameter A as an additional variable of the problem, Eq.(44) must be
coupled with a general constraint equation, to close algebraically the problem, thus

{ Kr(u0)Au = ANF'Y — s (u®, FO,,) (45)

ext ext
c(Au,AX) =0
The constraint equation characterizes the numerical scheme adopted, one can implement displacement
control, load control, and path-following methods by adopting a different constraint. In the present

work, the path-following method proposed by Crisfield [31] is employed, and the implementation of
such arc-length iterative solver in a CUF-based finite element scenario is described in detail in [19].
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4.3 Tangent stiffness matrix

The analytic expression of the tangent stiffness matrix is here described in detail and exploited by
linearization of equilibrium equation Eq.(42). Through the assumption of conservative loads only the
virtual variation of the internal work has to be linearized, since the second variation of external loads
will be identically null, therefore the finite variation of the internal strain energy contribution of the
variational principle is

A(0Lint) = / A(BETS)dV = / SETASAV + / A(BET)SdV (46)
Q Q Q

The two integral terms appearing in Eq.(46) are now analyzed separately.
The first term represent the linearization of constitutive equation. Adopting Holzapfel formulation,
Eq.(18) is rewritten in matrix form

1 . .
AS = CiAC = CAE = C(B;¥ +2B1V)Auy; (47)
Thus, the linearization of the constitutive equation can be written as

/ SETASIV = / sul;(B1¥ + 2Bn¥) C(B™ + B )Auy; dV =
Q Q

= (5unglTlS” Au,; + dul; K;‘fl” Au,; + dul; K:L‘;;]Aum + (5uT K9 Au,; =

ninl
= Sul K[ Aur; + oul K} Aug, (48)

where K;‘j” = KITS;J + K:jl” + K;?;]l is the non linear contribution to the tangent stiffness matrix

coming from the linearization of the constitutive equation and K;;” is the linear contribution.

The second term of Eq.(46) is the linearization of geometrical relatlons. Exploiting the same derivation
procedure described before, one can find the fundamental nucleus of the geometrical stiffness matrix
K7™ the derivation will be not reported here but can be found explicitly in [19, 20].

TS_]

/ A(SE)"SdV = sulK* Au, (49)

Substituting finally the expression of the contribution coming from the linearization of the constitutive
equation Eq.(48) and the one coming from linearization of the geometrical relations Eq.(49), the
fundamental nucleus of the tangent stiffness matrix is defined as

A(6Lint) = / SETASAV + / AGE)T SV =
Q Q

— 6uZ}-K;ls”Aun + ul, K” Aug; + dul, K””Auﬂ =

= SuLKp™ Auy (50)

As stressed in the previous theoretical derivation of the model, the FNs of sub-matrices of the tangent
stiffness matrix are defined for any arbitrary polynomial expansion chosen. The unique expression of
tangent stiffness matrix in the single CUF finite element is achieved by exploiting the summation over
indices i and j, 7 and s, thus on shape functions N;, N; and theory of structure approximation F, and
F,, but the resulting definition of FN is completely independent of the chosen kinematic models and
approximation theory.
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5 Numerical results

In this section, numerical results obtained via the present implementation of higher-order 1D beam
dn 2D plate CUF models for transversely isotropic hyperelastic materials are presented and validated
adopting as reference results popular benchmark problems available in literature or simple cases in
which closed-form solutions are known. We present different models and we investigate the capabilities
of our models when different strain energy functions are considered, more complex geometries are
involved, and in particular when different preferential directions of the fibers are chosen, analyzing
standard problems involving Cartesian or curvilinear geometries.

5.1 Shear test of an incompressible block

The first problem is a simple shear test of a fiber-reinforced incompressible cubic block. This classical
benchmark problem in hyperelasticity is a special case for which closed-form solutions are known.
Geometry and boundary conditions are depicted in Fig. 6.

z=h, u, =0

z=0, u,=0

(a) Geometry and boundary conditions (b) Deformed configuration
Figure 6: Simple shear tension test, description of the problem.
Material is modeled adopting a refined version of the classical HGO (Holzapfel-Gasser-Ogden)

model for fiber-reinforced materials [2] and presented in Mendez at al. [32], in which the authors
proposed this refined strain energy function to investigate the physical meaning of I5 invariant

U = Wy (I3) + Wiso (11, 12, I3) + Wani(13, 14, I5) (51)

k k
\II’UOZ(I?J) = 5(‘] - 1)2 = 5(\/I>3 - 1)2 (52)

C — C _
Vol o, I5) = S (0 = 1) = S (L 7 = 1) (53)
LI]aniso(IZS 1y 15) = 672(663(A_1)2 - 1) + 674(6%([75_1:42)2 - 1) =

B 263 205

= 2 (Caltaly P g g S (el R (54)
203 205

Material parameters adopted numerical constants considered are described in Table 1.

We now derive the explicit analytic expression of deformation gradient components, thus the analytic
expression of the non-null terms of PK2 stress tensor. If {9, 1%, 20} are the coordinates of the generic
material point of the cube in the reference configuration and {z,y,z} are the coordinate in the de-
formed configuration, as previously shown in Fig. 1, the deformation field components for the shear
problem in the y — z plane shown in Fig.6 are known, thus also the deformation gradient and the right
Cauchy-Green strain tensor

0

r=2 1 00 10 0
(CC,y,Z) = f(x07y0’20) y=y0—|—720 —- F=1(0 1 Yy — C _FTF_ 0 1 Y
z=20 0 01 0 v 1+797
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362

where 7 is a strictly positive real number. Supposing again that ag = (ax,ay,az)T, invariants and
pseudo-invariants required for the computation of physical quantities are

I = 3—|—’Y2

L— a9 Iy = ai + ay(ay + azy) + az(ayy + a-(1+ 7))
2= —9 — &Y

P Is = a2 + ay(ay + a:7?) + az(ayy? + a.(1 ++2)?)

One can note that J = detF = 1, so the mathematical enforcement of incompressibility is obtained
by imposing the deformation gradient components. Computing then the derivatives of strain energy
function Eq.(51), and computing the analytic expression of the stress tensor S by Eq.(17), finally the
analytic expression of Cauchy’s "true” stress tensor function of the shear parameter v is obtained

o — LpsET (55)
J

Due to the analytic complexity, here extended expression of PK2 stress components are not reported but
they can be computed easily. In this study case, the capabilities of the present implementation of CUF-
based models are investigated by analyzing the mechanical behavior when different fiber directions are
considered. To validate the present implementation of hyperelastic 1D and 2D CUF models, the cubic
specimen is analyzed by two independent models in the first case, the mathematical model adopted
makes use of 1D beam elements, with one L4 linear element adopted for the cross-section discretization
and one B2 linear element along the axis; in the case of 2D plate CUF models, only one Q4 linear
element is adopted in the discretization of the mid-surface and one LE2 linear element is adopted for
the thickness expansion theory. In particular, the mechanical response of the cube is analyzed in six
different study cases, for each discretization adopted, in which different fiber vectors are considered.

k [kPa] c¢; [kPa] co [kPa] e¢3[-] ¢4 [kPa] ¢5[-]
1-108 50 831.4  4.241  350.96 6.18

Table 1: Simple shear problem material properties

Figure 7(a), Fig. 7(b) and Fig. 7(c) depict, for each unitary versor ag considered, the geometrical
model of the fiber-reinforcement considered and the 1D CUF finite element adopted, instead Fig.
7(d), Fig. 7(e) and Fig. 7(f) show the comparison between the analytic stress-stretch curve and the
numerical results obtained by discretizing the specimen with 1LE2-1B2 beam CUF element, plotting
the stress distribution versus the shear parameter - in all cases, a perfect superposition of the numerical
results is achieved. The same analysis is performed adopting the indicated 2D plate discretization of
the cubic specimen, but for the sake of brevity, results are not reported here since actual numerical
results perfectly match the one already presented. As another example, following the proposed study
cases in Mendez et al. [32], the mechanical response of the cubic specimen is analyzed in the case of
a preferential direction of the fibers laying in the y — z plane, inclined of an angle 6 with respect to
the y-axis. Three different inclination conditions are proposed # = 30°, § = 45° and 0 = 60°. Figure
7(g), Fig. 7(h) and 7(i) shows the comparison between analytic and numeric stress-stretch curves in
the case of 1Q4-1B2 results are perfectly matching the analytic solution in all the cases.

13
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Figure 7: Shear tension test comparison between analytic and 1D beam CUF numerical solution
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5.2 Circular plate under uniform transversal pressure

As a second numerical example, the bending of a circular plate presented by Beheshti et al. [13]
is considered a benchmark case study. A circular plate of radius R = 50 mm and thickness h = 5
mm clamped at the lateral surface is subjected to a vertical transversal pressure q,. The geometrical
features and boundary conditions are depicted in Fig. 8(a).

Q9

U=0 (clamped) " v... TE-N / LE-N

(a) Geometry and boundary conditions. (b) Mathematical model description.

Figure 8: Circular plate configuration of the case study.

The mechanical response of the plate is investigated for different material conditions in the first
case, an isotropic hyperelastic plate is analyzed, and thereafter a fiber-reinforced hyperelastic one in
the same geometrical and load conditions. In the anisotropic case, two different fiber distributions are
considered separately, a radial reinforcement and then a tangential reinforcement thanks to the numer-
ical integration technique, the unitary vector ag required for the computation of physical quantities is
defined locally by the Gauss integration point in each element of the discretization.

(a) Radial reinforcement. (b) Angular reinforcement.

Figure 9: Circular plate, anisotropic case, fiber distribution in the definition of principal fiber direction, by
taking advantage of the numerical integration scheme employed in stiffness matrices computation,
the vector ag is defined starting from the physical coordinates of the Gauss integration point, in this
way a globally accurate distribution of fibers can be easily obtained.

Material is modeled with an isotropic Neo-Hookean model coupled with the standard reinforcement
model for fiber-reinforced hyperelastic material and a stabilized volumetric logarithmic-power model
_k A 2 2
V(C) =5 (h=3)+5(J = 1)" — plog J +7(Is = 1) (56)
where the infinitesimal shear modulus is set to p = 1 MPa, the Lame constant is set to A = 4 MPa
and the reinforcing model constant is v = 0.375 MPa. In the case of an isotropic plate, the constant
v is set equal to zero.
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As a preliminary investigation, a convergence analysis is carried out considering 2D plate CUF
models, analyzing the influence of different kinematic models adopted in the discretization of plate
mid-surface and the influence of the theory approximation along the thickness thus a convergence
analysis for an increasing number of Q9 parabolic elements along the mid surface of the plate will
be considered, instead the influence of the mathematical model in the expansion along the thickness
will be investigated considering linear, quadratic, and cubic Taylor Expansion model and Lagrange
Expansion model, that will be addressed as TEN (where N is the polynomial order), LE2 (Lagrange
parabolic model) and LE3 (Lagrange cubic model). Actual numerical results obtained adopting 2D
plate CUF elements are compared with the reference results, analyzing the structure in the specific
configuration of transversely isotropic hyperelastic material with radial fiber distribution.

Figure 10(a) shows the equilibrium paths of the clamped plate in the radial fiber distribution
condition analyzing the influence of the total number of finite elements adopted in the discretization on
the numerical solution, instead of Fig. 10(b) shows the influence of the mathematical model adopted
in the thickness expansion, plotting the vertical transversal displacement of the center of the plate
(measured at the mid surface) versus the modulus of applied pressure. In all the cases, a perfect
superposition of the numerical results is evidenced, and accurate predictions are obtained.

0.1 T 0.1 T
m— Ref. radial m— Ref. radial
= » 80Q9-1LE2, 3033 DOFs = #» LE2 - 6705 DOFs
0.08 L "B 132Q9-1LE2, 4977 DOFs i 0.08 L *+@ " LE3-8940 DOFs
156Q9-1LE2, 5841 DOFs — M= TE1 - 4470 DOFs
= +++ 180Q9-1LE2, 6705 DOFs =—0: - TE2 - 6705 DOFs

q [MPa]
q [MPa]

£ .. TE3 - 8940 DOFs
0.06 - / 7 0.06 - TE4 - 11175 DOFs
0.04 |- : B 0.04 |

0.02 / ! - 0.02

0 (M':g"“.‘ = I I 0 y_‘:'ﬂ-f— o I I
0 5 10 15 20 0 5 10 15 20
- u, [mm] -uz [mm]
(a) Convergence analysis (b) Effect of theory expansion model

Figure 10: Circular plate equilibrium curve of the plate in the radial fiber distribution configuration.

In the following, the nonlinear static analysis of clamped plate in each described material con-
figuration is carried out the isotropic and fiber-reinforced cases are studied adopting the convergent
mathematical model previously described, employing 180 Q9 parabolic elements in the discretization
of the plate mid-surface and a single LE3 element along the thickness. Figure 11 shows the equilibrium
path for all material configurations, comparing the transversal displacement of the center of the plate
(measured on the mid-surface) obtained by 2D CUF models with reference results. Actual numerical
solutions are in perfect agreement with the reference solution. In particular, a stiffer behavior of the
plate can be observed when a radial distribution of fibers is considered, instead in the case of tangen-
tial/angular distribution the mechanical behavior is similar to the isotropic one. In the case of radial
fiber distribution, Fig. 12(a) shows the transversal displacement distribution along the plate thickness
(measured at the center), instead Fig. 12(b) shows the longitudinal displacement distribution along the
diameter of the plate, measured at the mid surface. Again, the linear TE1 model, which corresponds
to the first-order shear deformation theory, is not able to capture the correct transversal behavior due
to the theoretical model assumptions. Figure 13 shows the deformed configurations of the anisotropic
radial reinforced plate in different load conditions.
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various expansion theories, radial fiber distribution case.
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Furthermore, the influence of expansion approximation theory on the description of stresses is
investigated. The clamped plate is considered now in the isotropic material condition, employing the
previously convergent mesh made by 180 Q9 parabolic elements and different expansion models to
analyze the through-the-thickness stress distributions. Figure 14 shows the distributions of PK2 stress
components along the z direction, measured at the point A positioned at coordinates (—3/4R,0) mm on
the plate mid-surface, when a transversal pressure ¢, = 0.1 MPa is applied. In all the cases, differences
are evidenced between models, which can be addressed to the higher accuracy of the deformation
gradient and invariants computation thanks to higher-order expansions of the displacement field, which
lead to more accurate predictions of the stress field components.
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431

The same comparison is considered to investigate Cauchy’s stress, measured again at the same point
and considering the same load configuration. Cauchy’s stresses are computed thanks to the deformation
gradient and the already available PK2 by Eq. (55). The through-the-thickness distribution of Cauchy’s
stresses obtained adopting the same expansion approximation theories is shown in Fig. 14. Again, the
same considerations previously made are experienced in this last comparison.
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Figure 15: Circular plate effects of theory expansion on through-the-thickness stresses distribution, Cauchy’s
stresses for the isotropic case and load condition q, = 0.1 MPa.
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5.3 Cantilever square plate under traction pressure

In this third case study, the large strains analysis of a cantilever square plate, presented by Beheshti et
al. [13], is carried out. A square plate of lateral length a = 20 mm and thickness t = 1 mm is subjected
to a tensile pressure load at the free end of the plate. The geometrical features and boundary conditions
are depicted in Fig. 16(a).

2019

AVAVAN \/r\r\r\

(a) Geometry and boundary conditions (b) Discretization

Figure 16: Clamped square plate configuration of the case study

The square plate is made by a transversely isotropic hyperelastic material with a singe-fiber pre-
ferred direction, defined as the unitary vector ag in the plane y — z inclined of an angle 6 with respect
to y-axis, thus ag = (0,cos6,sinf) the same plate is studied in different fiber configurations, with
inclination angle varying from 0° to 90°. Material is modeled adopting the same strain energy function
model Eq.(56) of the previous case study, with the same material constants as done in the reference
case [13].

The structure is discretized adopting 1D CUF models, employing 20 L9 parabolic elements along
the clamped side of the plate and 15 B4 cubic elements along the longitudinal side of the beam in the
y direction as shown in Fig. 16(b), for a total number of degrees of freedom equal to 16974.

The effects of anisotropy and the presence of a preferential direction are investigated by analyzing
the horizontal displacement of points A and B, located at the tip free-end of the plate, for increasing
the value of the tensile traction load applied. Figure 17(a) shows the load-displacement curve for fiber
inclination angle § = 0° and 6 = 30° in this case, for § = 0° the horizontal displacement of the two-point
are exactly coincident and, since the fiber direction is aligned with the load direction, the plate is much
stiffer, instead in the case of 8 = 30° there is a transversal component of the preferential direction that
affects the deformation process, and the final configuration results unsymmetric. Figure 17(b) shows
instead the equilibrium path curve for fiber inclination angle § = 60° and 8 = 90°. Differently with
respect to the previously considered cases, since the preferential direction is more inclined, the plate
is much less stiff; large displacement and strains of the plate are obtained with much lower values of
applied pressure. Again, when 6 = 90° there is no component along the direction of the load thus the
deformed structure is symmetric.
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Figure 17: Clamped square plate equilibrium curve for various fiber inclination
463 Figure 18 shows the deformed configuration for different fiber inclination configurations when the

161 horizontal displacement of the point B is around 19 mm it can be clearly noted the strong influence
165 of the mechanical behavior of the material with respect to anisotropy preferential direction.
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Figure 18: Clamped square plate deformed configuration representation
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6 Conclusions

In this paper, we proposed the unified beam (1D) and plate (2D) CUF models for the large strain
analysis of materials and structures in the hyperelastic compressible and incompressible regimes. In
the domain of CUF, governing equations for the nonlinear static analysis of transversely isotropic
hyperelastic materials are expressed in a compact notation starting from a generalized expansion
of the 3D displacement unknowns coupling kinematic models and expansion theories, in a resulting
expression of physical quantities (internal and external forces vector, tangent stiffness matrix) in matrix
form, defining our fundamental nuclei independent of the polynomial expansion adopted. Numerical
solutions are obtained by solving an algebraic system of equations with a Newton-Raphson linearized
scheme. Our proposed results prove the capabilities of the present implementation of CUF 1D and
2D models to deal with large strains of fiber-reinforced hyperelastic structures, providing accurate
results in terms of displacement and stress distributions, thanks to the higher-order three-dimensional
description of the stress field guaranteed by the Unified formulation with adequate computational costs
required for convergent solutions. The generalization of the constitutive law from isotropic hyperelastic
to transversely isotropic hyperelastic materials is straightforward thanks to the Unified Formulation
of tangent stiffness matrix in which the material Jacobian tensor is employed instead of the classical
elasticity tensor, allowing us to rewrite the formulation of fully nonlinear finite element CUF models
in the same framework without loss of generalities. Future works will deal with the extension of CUF
hyperelastic models to shell structures, multilayered hyperelastic composites involved in biological
tissue modeling (for which a suitable model for anisotropic behavior is required), the generalization of
constitutive law adopted for orthotropic hyperelastic models in which the influence of two principal
fiber directions are included, the stress analysis of multilayered composites made of linear elastic and
hyperelastic layers, and finally the implementation of stabilization method for locking prevention, such
as the hybrid formulation, in which the hydrostatic pressure (directly linked to the volumetric strains)
is interpolated with an independent polynomial expansion.
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