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A NOTE ON THE DETERMINANT 308 IN PROSKURYAKOV’S

LINEAR ALGEBRA BOOK

ANTONIO J. DI SCALA AND MARTÍN SOMBRA

Abstract. We put in evidence and correct a mistake in the formula for the deter-
minant 308 in Proskuryakov’s linear algebra book. We apply this formula to reprove
the well-known fact that the Fubini-Study metric on the complex projective space
is Einstein.

This short note is motivated by a mistake in the formula for the interesting deter-
minant 308 in Proskuriakov’s classical book of linear algebra problems. We checked
several of its many editions including the some of first ones and of the more re-
cents [Pro67, Pro05] as well as the translations [Pro78a, Pro78b], and noticed that the
mistake has not been corrected.

Problem 308 asks to compute the determinant

(1) P308 = det















x1 a1b2 a1b3 · · · a1bn
a2b1 x2 a2b3 · · · a2bn
a3b1 a3b2 x3 · · · a3bn
...

...
...

. . .
...

anb1 anb2 anb3 · · · xn















.

The correct expression for this determinant is

(2) P308 =
(

n
∏

k=1

(xk − akbk)
)(

1 +

n
∑

k=1

akbk

xk − akbk

)

,

which in Proskuryakov’s book appears with denominators xk instead of xk −akbk, see
for instance [Pro78b, page 321].

Indeed, this formula is a consequence of the more general one for the determinant
of a sum of matrices [Mar75, pages 162-163], as it is also hinted in [Pro78b, pages 40-
41]. For convenience, we give here a self-contained proof based on the multilinearity
of the determinant function.

Proof of Formula (2). Denote by M the n×n matrix in (1), which can be written as
the sum of a diagonal and a rank 1 matrix as

M = diag(x1 − a1b1, . . . , xn − anbn) + a · bT

for the n vectors a = (a1, . . . , an) and b = (b1, . . . , bn). Considering the determinant
as a function of the columns of the matrix, we have that

P308 = det(M) = det((x1 − a1b1) e1 + b1a, . . . , (xn − anbn) en + bna),
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where ei denotes the standard n vector (0, . . . , 0,
i
1, 0, . . . , 0). By the multilinearity of

the determinant function and the fact that it vanishes when the vectors are linearly
dependent, we have that

P308 =det((x1 − a1b1) e1, . . . , (xn − anbn) en)

+

n
∑

k=1

det(b1a, . . . , bk−1a, (xk − akbk) ek, bk+1a, . . . , bna)

=

n
∏

k=1

(xk − akbk) +

n
∑

i=1

akbk
∏

l 6=k

(xl − albl),

which gives the intended formula �

As an application, we compute the Ricci form of the Fubini-Study metric on the n-
dimensional complex projective space Pn. In Riemannian geometry, this computation
is usually done using the invariance of this metric with respect to the action of the
unitary group as in [Mor07, §13.3]. By contrast, Formula (2) allows to do it in a direct
way.

Let Z0, . . . , Zn be the homogeneous coordinates of this projective space and for
each k ∈ {0, . . . , n} consider the open chart Uk = (Zk 6= 0) ≃ C

n with coordinates
z1, . . . , zn. The Fubini-Study form ωFS is the Kähler form on P

n given in these coor-
dinates by

ωFS := i∂∂ log(1 + ‖z‖2)

where ∂, ∂ are the Dolbeault operators and ‖z‖ = (|z1|
2 + · · · + |zn|

2)1/2. The corre-
sponding Hermitian matrix with respect to the frame ∂

∂zi
, i = 1, . . . , n writes down as

H =

[

∂2

∂zi∂zj
log(1 + ‖z‖2)

]

i,j

=
1

(1 + ‖z‖2)











1 + ‖z‖2 − z1 z1 −z1 z2 · · · −z1 zn
−z2 z1 1 + ‖z‖2 − z2 z2 · · · −z2 zn

...
...

. . .
...

−zn z1 −zn z2 · · · 1 + ‖z‖2 − zn zn











and by [Mor07, Formula (12.6)], the associated Ricci form is then given by

ρFS := −i∂∂ log(det(H)).

Notice that det(H) is a special case of P308 with

xi =
1 + ‖z‖2 − |zi|

2

(1 + ‖z‖2)2
, ai =

−zi

(1 + ‖z‖2)2
, bi =

zi

(1 + ‖z‖2)2
for i = 1, . . . , n.

Now a straightforward application of Formula (2) gives det(H) = (1+‖z‖2)−n−1. This
implies that

ρFS = −i∂∂ log((1 + ‖z‖2)−n−1) = (r + 1)ωFS,

showing that the Fubini-Study metric is Einstein with r + 1 as Einstein constant.
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(in Russian).
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