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ORIGINAL ARTICLE

A regularized higher-order beam elements for damage analysis of reinforced
concrete beams

J. Shena, M. R. T Arrudab, A. Pagania , and E. Carreraa

aMul2 Team, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy; bCERIS, Instituto Superior T�ecnico,
Universidade de Lisboa, Lisbon, Portugal

ABSTRACT
This work presents a numerical method for damage analysis of reinforced concrete beams using
the higher-order beam theory based on Carrera unified formulation. The component-wise
approach is employed to model the concrete and steel reinforcing bars as two independent one-
dimensional finite elements. A modified Mazars damage model with tensile and compressive dam-
age propagation laws is utilized for concrete, and an elastic-perfectly plastic law is used for steel
rebars. To address the instability and mesh dependence caused by the strain-softening behavior
of concrete, a fracture energy regularization technique based on the crack band model is devel-
oped, especially for the higher-order beam theory. The proposed method is validated by compar-
ing its numerical results with three experimental benchmark results. The comparison indicates that
the method accurately predicts the damage distribution of concrete and the flexural behavior of
RC beams under quasi-static loading conditions while remaining computationally efficient.
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1. Introduction

Reinforced concrete (RC) structures, which consist of con-
crete and steel, are widely employed in civil engineering.
Many researchers utilized computational techniques such as
the finite element method (FEM) for structural analysis and
design instead of experimental campaigns. However, the
elastic-plastic behavior of steel and the quasi-brittle nature
of concrete poses challenges for non-linear numerical ana-
lysis of RC structures. Moreover, the accurate simulation of
crack initiation and propagation is crucial in capturing the
behavior of concrete. In RC structures, cracks may develop
not only externally but also at the interfaces between steel
rebars and the surrounding concrete, thereby adding com-
plexity to the fracture analysis of RC structures.

The simulation of crack formation and growth in RC
structures is crucial for evaluating their structural perform-
ance. Two commonly employed approaches to simulate the
non-linear behavior of pure concrete structures or RC struc-
tures are the discrete model [1, 2] and the continuum dam-
age model [3, 4]. The discrete crack model allows
displacement discontinuity by introducing interface elements
to all element boundaries. However, the model depends on
the mesh boundaries, and a re-meshing technique is
required, leading to highly refined meshes [5].
Consequently, the concept of strong discontinuity [6] has
been developed to capture the arbitrary cracks in concrete,

further contributing to the development of extended FEM
(XFEM) [7, 8], embedded FEM (EFEM) [9, 10], and other
related methods.

Alternatively, the continuum damage model is more
popular due to its computational convenience. In this
approach, concrete is treated as a continuum media, and the
degradation of concrete stiffness represents the discontinuity
caused by cracks. This method is easily combined with the
analysis of rebars since physical discontinuous field deform-
ation is explicitly required [11, 12]. Currently, the plastic
deformation of steel can be simulated accurately through the
FEM with Von Mises plasticity model [13]. Several popular
continuum damage models have been proposed and vali-
dated, including isotropic [14] and anisotropic damage mod-
els [15]. For complex loadings, damage-plasticity models
[16, 17] have been proposed to consider both the inelastic
and damage-dependent behavior of the material.

One issue associated with the continuum damage model
is the occurrence of energy dissipation in localized regions
rather than distributed zones when concrete strain softening
occurs [18]. This phenomenon can lead to the pathological
sensitivity of the numerical results to the element character-
istics. Various localization limiters have been proposed to
mitigate the mesh-dependency issue, such as nonlocal mod-
els, including integral [19] and gradient models [20], where
stress at a point depends on the strain at both the local and
neighboring points. Another simpler limiter is the crack
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band model [21], which helps to restore the objectivity of
numerical solutions by adjusting the concrete constitutive
laws. This method introduces a characteristic element length
to rescale the post-peak part of the concrete stress-strain law
to avoid the tendency of fracture energy to approach zero.
However, the correct way to determine the characteristic
length for a given finite element remains an open ques-
tion [22].

While traditional 1-dimensional (1D) models like the
Euler-Bernoulli Beam Model (EBBM) and Timoshenko
Beam Model (TBM) help capture the bending behavior of
simple, slender structural members, their low computational
costs are insufficient for capturing the material non-linearity
due to cracking in RC heterogeneous structures. For detailed
and accurate analysis of such structures, 3-dimensional (3D)
models are required. Various 3D models have been devel-
oped in which 3D solid finite elements are adopted for con-
crete and beam or truss elements are employed for rebars
[11, 23, 24]. Interface models have also been added to
account for bond-slip between concrete and reinforcing bars
[25, 26]. However, the computational costs associated with
these models are heavy, particularly for large-scale struc-
tures. Homogenization techniques [27, 28] can be utilized to
combine the behavior of concrete and steel to address these
cost issues.

To balance the computational efficiency of 1D models
and the elaboration of 3D models, a higher-order beam the-
ory [29] based on Carrera Unified Formulation (CUF) [30]
can be employed. According to CUF, a higher-order 1D
beam model is utilized, and 3D displacement fields can be
obtained by expanding the cross-section using various poly-
nomials, such as Taylor [31] and Lagrange [32]. In the
framework of CUF, the orders of the approximation func-
tion for the beam element and the expanded function for
the cross-section are considered as the input of analysis,
eliminating the need for ad hoc assumptions. Lagrange
expansion is preferred because it enables CUF to handle
arbitrary geometries for both static and free-vibration analy-
ses [33, 34]. Another developed method for analyzing
composite structures with two or more parts, such as fiber-
reinforced structures, is the Component-Wise (CW)
approach based on CUF [35]. This approach divides the
structures into different components based on the materials
used, and each component can be modeled individually and
simultaneously using Lagrange expansion cross-sectional ele-
ments. [36] has demonstrated the superior performance of
the CW approach compared to other modeling approaches
based on CUF, although only linear static analysis was con-
ducted. Moreover, [37] has presented a damage analysis of
notched RC beams based on 1D-CUF models under direct
tension, which is not a typical loading condition in real
engineering applications.

In this context, this study aims to develop a method for
simulating the non-linear behavior of bend-dominated rein-
forced concrete (RC) structures using 1D-CUF models that
accurately predict experimental results. To accomplish this,
we combine a modified Mazars damage model, which is
effective in pure concrete damage modeling [38, 39], with

the plastic behavior of steel rebars. To model cracks at the
interface, we approximate them by locally initiating and
evolving concrete damage around the steel rebars, avoiding
the need for interface models. Additionally, we address the
mesh dependence caused by concrete strain-softening by
adopting a fracture energy regularization technique based on
the crack band model and designing a consistent character-
istic element length specifically for 1D-CUF models. Overall,
the novelty of this work lies in developing an advanced
numerical model based on a simple damage model for non-
linear analysis of RC structures, which can be easily imple-
mented in actual engineering design.

This paper is organized as follows: First, some methodol-
ogies, including 1D higher-order beam theory, the CW
approach, and a modified Mazars damage model, are pre-
sented. Next, three bending-dominated RC beams are simu-
lated and compared with corresponding experimental
results. Finally, some meaningful conclusions are drawn
from the previous analysis.

2. Unified higher-order beam theory

The present work is based on a one-dimensional beam
model derived from CUF and implemented using FEM [30].
In the framework of CUF, 3D displacement of the 1D beam
model can be enriched by expanding the corresponding
cross-section, which is expressed as:

uðx, y, zÞ ¼ Fsðx, zÞusðyÞ, s ¼ 1, 2, ::::,M (1)

where usðyÞ represents the generalized displacement vector
of beam model; Fs is the expansion function related to
cross-section; s is an Einstein notation indicating summa-
tion and M is the number of terms in the expansion
function.

This work adopts Lagrange-type expansion (LE) for Fs as
it can handle any arbitrary cross-section. Quadrilateral ele-
ments such as four-node linear (L4), nine-node quadratic
(L9), and sixteen-node cubic (L16) are typically used due to
their higher accuracy. More detailed information on LE can
be found in [30].

By discretizing the beam using the classical finite element
method, the displacement field can be rewritten as:

uðx, y, zÞ ¼ Fsðx, zÞNiðyÞusi, i ¼ 1, :::,NNE (2)

where usi is the nodal displacement vector, and Ni is the
beam shape function with NNE nodes per beam element.

Typically, two-node linear (B2), three-node quadratic
(B3), and four-node cubic (B4) beam elements are com-
monly used. The detailed shape functions for these elements
can also be found in [30]. However, it is essential to note
that the choice of beam finite elements is independent of
the selection of the class and order of the expansion func-
tion, which is one of the advantages of CUF models.

The governing equation for static problems can be
obtained using the principle of virtual displacements. The
detailed derivation process can be found in [39]. For the
sake of simplicity, the final equation is provided below:

Kssijusi ¼ Fsj (3)
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where Fsj is the nodal external force vector, and Kssij is the
fundamental nucleus of the stiffness matrix, which can be
computed as:

Kssij ¼
ð
l

ð
X
DT NjðyÞFsðx, zÞ

� �
CD Fsðx, zÞNiðyÞ

� �
dXdl (4)

where l and X represent the length of beam element and
area of cross-section, respectively; C is the material matrix;
D is the differentiation operator; i, j, and s, s are indexes
related to beam shape function and cross-sectional expan-
sion function respectively. The integral in Equation 4 is
obtained numerically using the Gauss quadrature technique,
which is given explicitly in [30].

3. Component-wise approach

The reinforced concrete beam is a kind of composite struc-
ture that is made of steel and concrete (Figure 1a). An
extension of 1D-CUF models, known as the component-
wise approach, is utilized to model the concrete and steel
individually and simultaneously. As shown in Figure 1b, the
steel rebars and surrounding concrete are considered inde-
pendent components using the same beam elements. The
cross-section can then be discretized into multiple Lagrange
elements with different materials, and the Lagrange points
in the boundaries of other materials can ensure the continu-
ity conditions among the various components, as shown in
Figure 1c.

Through this approach, the CUF model allows each com-
ponent to maintain its independent material and geometrical
properties. A refined model can also be determined for the
interested component as needed. Some examples of the CW
approach can be found in [36, 37].

4. Modified Mazars damage model

This section discusses a modified Mazars damage model
with fracture energy regularization technique to obtain the
objectivity of RC damage analysis. Mazars damage model is
an isotropic damage model for concrete described in [14].
This model is based on the theory of elasticity coupled with
damage mechanics. It employs a scalar damage variable to
account for the uniform degradation of the stiffness proper-
ties in all directions. This variable depends only on the posi-
tive effective strains in the principle directions.

Compared to other damage models, such as concrete
damage plasticity (CDP), the Mazars damage model does
not consider permanent strains. However, it is adequate for
damage analysis of RC structures under quasi-static load
because the plastic behavior from rebars plays a more crit-
ical role in RC structures. Besides, when using fracture
energy regularization for tension and compression, the
structural response can get regularized and no longer be
mesh dependent. Moreover, introducing this regularization
can eliminate the need for fitting parameters. Therefore, the
proposed model is ideal for practical structural design due
to its simplicity and robustness.

4.1. Model formulation

Mazars [14] introduced a scalar variable for classical
Hooke’s law to consider the non-linear behavior of concrete
material, which is written as:

r ¼ ð1� dÞCe (5)

where r and e represent the stress and strain vector; d is the
damage variable used to monitor the stiffness degradation.

Figure 1. An illustration of CW approach for modeling RC structures: a) definition of RC structures, b) individual steel and concrete component, and c) assembled
cross-section with Lagrange elements along with the beam.
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The positive principle strain governs the initiation of
both tensile and compressive damage. Therefore, an equiva-
lent strain eeq, as defined by Mazars, is calculated as:

eeqðeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

heiiþ2

vuut (6)

where h�iþ is the Macauley bracket for picking out the posi-
tive value, and ei are the principle strains. Then the loading
function is:

f ðe, jÞ ¼ eeqðeÞ � j (7)

where j is a threshold of damage growth that equals the
ultimate tensile strain of material at first and then keeps
updated as the eeqðeÞ after first damage.

4.2. Damage propagation

Once f ðe, jÞ � 0 in Equation 7, the damage is activated and
determined by a combination of tensile and compressive
damage responses. This can be expressed as:

d ¼ atdt þ acdc (8)

where at and ac are weights that link the damage variable in
tension dt and compression dc: The explicit calculation of at
and ac can be found in [38].

The damage variables are related to the internal variable
j which equals to the equivalent strain under monotonic
loading [22]. While the original Mazars damage model [14]
also provided damage propagation laws for dt and dc, these
require fitting experimental results to obtain some parame-
ters. In this work, modified damage evolution laws for ten-
sion and compression are adopted based on concrete
constitutive laws (Figure 2) from fib MC2010 [40], which
are more practical. Additionally, a fracture energy regular-
ization technique based on crack band model is employed to
regularize the softening behavior and prevent mesh
dependency.

For simplicity and brevity, the damage evolution law of
tension is shown as Eq 9, which is derived from a classical
exponential softening constitutive law depicted in Figure 2a.

More detailed information on this derivation can be found
[38].

dt ¼ gt jtð Þ ¼
1� ed0

jt
exp

ed0�jt
etu�ed0

� �
if jt6etres

1� pt � ed0
jt

if jt > etres

8>><
>>:

(9)

where ed0 is the limit elastic strain, which is calculated by
dividing the mean uniaxial tensile strength fctm by Young’s
modulus E; pt is residual tensile stress ratio that is the ratio
between the residual tensile stress and fctm, which ensures
the value of damage not equal 1.0 but infinitely close to 1.0;
etres is the corresponding residual tensile strain; etu is the
equivalent ultimate strain for bilinear softening, which is
shown in Figure 2a and calculated as:

Gft

lc
¼ fctmðetu � ed0Þ (10)

where Gft is the fracture energy of mode I cracking. etu can
be adjusted to control the slope of the softening diagram
through introducing the characteristic element length lc:

Similarly, the damage evolution law of compression is
derived from compressive stress-strain curve depicted in
Figure 2b and the explicit formulation is expressed as:

dc ¼ gc jcð Þ ¼

1� k� �ec��e2c
� �

fcm
1þ ðk�2Þ � �ecð ÞEcmjc if jc 6 ec1

1� fcm
Ecmjc

if ec1 < jc 6 ec2

1þ k1
Ecm

� k2
Ecmjc

if ec2 < jc 6 ecres

1� pcfcm
Ecmjc

if ecres < jc

8>>>>>>>>>>><
>>>>>>>>>>>:

(11)

with

jc ¼ jt
�

ffiffiffi
2

p ; �ec ¼ jc
ec1

; k ¼ 1:05Ecmec1
fcm

; k1

¼ fcm
ecu � ec2ð Þ ; k2 ¼ fcm þ k1 � ec2;

where fcm is the mean compressive strength of the concrete;

Figure 2. Concrete constitutive laws for modified Mazars damage model: a) tension and b) compression.
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Ecm is the secant Young’s modulus; k, k1 and k2 are parame-
ters from [41] to describe the softening part of constitutive
laws; ec1 and ec2 are strain parameters adopted from [41],
respectively; �ec is a unidimensional strain ratio provided in
[40]. pc is residual compressive stress ratio that is the ratio
between the residual compressive stress and fcm, which
ensures stress never equals 0.0 to avoid convergence prob-
lem; ecres is the corresponding residual compressive strain;
ecu is the extreme compressive strain, which is shown in
Figure 2b and calculated by:

Gfc

lc
¼ fcm � ecu þ ec2 � ec1ð Þ

2

� �
(12)

where Gfc represents the energy dissipation per unit area
due to crushing. Similarly, the slope of softening part can be
controlled by adjusting ecu through introducing the charac-
teristic element length lc:

4.3. Characteristic element length

The characteristic element length lc depends on various
aspects of mesh discretization such as element shapes,
dimensions, interpolation functions, and so on [22]. In the
past, three main methods have been developed to estimate
this length: (1) the method based on element area or volume
[42], (2) the projection method [43], and (3) Oliver’s
method [44] which was extended to 3D linear elements by
Govindjee [45]. These methods are partially reviewed in
[22]. Recently, some modifications [46, 47] have been made
to Govindjee’s method to improve the accuracy of lc estima-
tion. However, these methods are limited to linear elements
or only validated in 2D problems, making them unsuitable
for higher-order beam elements based on CUF.

Given the aforementioned summary, this work employs a
new method for estimating the characteristic element length,
inspired by [47]. The new estimation method is extensively
discussed in [48]. A simple example is employed here for
illustration in Figure 3. One B3 element with three nodes is
used to model the beam, while one L9 element with nine
nodes is used for cross-section expansion. Then, A volume
is assembled, as shown in the first two steps of Figure 3.
According to the order of beam element and expansion
element, the assembled volume is divided into eight small
volumes in this case, each containing eight nodes similar to
a linear solid element. Next, the middle points of each edge

and the unit vector of the major principal strain at the
target point are obtained and stored, assuming that the
small gray shaded volume contains an interested point
(Gaussian point). Finally, the projection method of [47] is
conducted, as shown in the last step of Figure 3, and can be
expressed as:

lcðxÞ ¼ lmax � lminj j (13)

with

lmax ¼ max xM � nðxÞ½ �
lmin ¼ min xM � nðxÞ½ � (14)

where x represents coordinates of the target point; xM
means all coordinates of middle points from a small volume
that containing the target point and nðxÞ is the unit vector
of principal strain on the target point.

5. Numerical results

In this section, three experimental benchmarks are selected
to assess the efficiency and accuracy of proposed method.
One benchmark consists of an RC beam with only bottom
rebars, while the other two consist of RC beams with stir-
rups for anti-shear failure. Quasi-static modeling is adopted
for all numerical models through displacement-control
method.

5.1. Leonhardt shear beam

The first experimental benchmark, named as Leohardt shear
beam, is adopted from [49] to assess the proposed method.
This beam is a reinforced concrete beam with a single bot-
tom reinforcement, and its geometric information and
boundary conditions are shown in Figure 4. The beam has
two longitudinal rebars with a diameter of 26mm, and the
concrete cover is 37mm. The loading process is displace-
ment-controlled, with a maximum displacement value of
5mm. The relevant material properties are listed in Table 1.
The hardening behavior of the steel rebar is assumed to be
perfectly plastic.

The half model, shown in Figure 5a is adopted in finite
element analysis as the beam is symmetric across the y axes.
The mesh discretizations on cross-section are shown in
Figure 5b where there are three different sections, and the
steel components are highlighted in red.

Figure 3. An illustration of estimation method for lc:
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Table 2 lists four models used to study the mesh-
independence of the proposed method. The discretizations
of cross-sections are the same for all models, while Model C
and D adopt linear elements and Models A and B use quad-
ratic elements. Model A adopts higher-order beam elements
with higher-order cross-section expansion, which should
provide the highest accuracy due to highest number of
degrees of freedom (DoFs). Compared to Model A, Model B
and Model C investigate saving the computational costs by
reducing the order of beam elements and cross-section
expansion, respectively. Model D investigates convergence
and mesh-independence by increasing the number of beam
elements compared to Model C.

Figure 6 plots the displacement at the center of the beam
versus the reaction force at one of the supports from four
different models, including experimental one for compari-
son. Before the loading achieves around 36% of maximum
displacement (1:8mm), all of the numerical curves match
well with the experimental curve and are close to each other.

After this point, some small divergence occurs among the
different numerical curves, but the stiffness of all numerical
models remains similar. The experimental peak load is
approximately 68:26kN with a corresponding displacement
of approximately 3:1mm: All of the numerical models can
achieve the peak value, but the corresponding displacements

Figure 5. Mesh assignment of Leonhardt beam: (a) Beam element; (b) LE cross-section discretization.

Table 2. Leonhardt shear beam: mesh configurations.

Model No. Model A Model B Model C Model D

Beam element 20B4 20B2 20B2 34B2
LE L9 L9 L4 L4
DoFs 96885 33789 9078 14958

Figure 6. Load-displacement curves of Leonhardt shear beams from different
models.

Figure 4. Leonhardt shear beam: geometry and boundary conditions (Unit:mm).

Table 1. Leonhardt shear beam: Material properties.

Material type E (GPa) fctm (MPa) fcm (MPa) Gft(N/m) Gfc(N/m) t fy (MPa)

Concrete 31.72 1.64 28.48 100.0 19870 0.2 –
Steel 208 – – – – 0.3 560
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are around 4:5mm: This difference is because the numerical
stiffness of the latter part is clearly lower than the experi-
mental stiffness.

To explain the above phenomenon, Figure 7 displays
damage propagation during loading. For comparison,
observed cracks in the experiment are plotted in Figure 8.
Initially, damage occurs at the bottom and propagates verti-
cally from Figure 7a–c due to beam bending. Following this,
damage develops obliquely because of shear behavior, as
demonstrated from Figure 7d–e. At this stage, the numerical
stiffness exhibits a reduction, falling below the experimental
value. Finally, horizontal damage is formed, connecting the
support and the previously developed diagonal damage, as
seen in Figure 7f. The final damage distribution is akin to
the actual experimental cracks, except that a diagonal crack
connecting the support and loading point was observed
from the experimental campaign. However, it is essential to
note that the proposed modified Mazars damage model only
considers tensile and compressive damage based on fracture
mode I and does not consider shear fracture. This drawback
can account for the slight discrepancy between the numer-
ical and experimental stiffness in the later stage.

Figure 9 illustrates the damage distributions at a displace-
ment of 4mm for different numerical models to investigate
the objectivity of numerical models. It turns out that all
models predict a similar damage distribution, with some
vertical damage occurring in the mid-span and horizontal

damage connected to one oblique damage in the side span.
Combining this with the nonlinear performance shown in
Figure 6, it can be concluded that the proposed method can
provide mesh-independent results with any mesh configur-
ation, even with Model C, which has less than 10,000
degrees of freedom.

5.2. Four-point bending RC beam

This experimental benchmark was reinforced with stirrups
to resist the shear behavior. It was reported in [50, 51] that
the concrete collapse occurred due to the failure of concrete
compression. Therefore, it is an important benchmark for
validating regularized higher-order finite elements associated
with compressive fracture energy. The geometric and
boundary conditions are reported in Figure 10, with stirrups
reinforced every 60mm and a concrete cover thickness of
15mm. The material properties are listed in Table 3. A
bilinear model is used for steel initially, followed by an elas-
tic-plastic model after ultimate strain.

Figure 11 illustrates the beam mesh and cross-sectional
expansions used for the numerical analysis. A similar half-
structure is adopted as in the previous benchmark, but more
beam elements are required due to the presence of stirrups,
which result in a periodic change of the cross-section.

Figure 7. Damage distributions of Model A (20B4þ L9) at: a) 8%, b) 16%, c) 24%, d) 36%, e) 64%, and f) 80% of the maximum displacement.

Figure 8. Cracks observed in the experiment of Leonhardt shear beam.
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To investigate the objectivity of numerical results
obtained from different mesh configurations, four models
listed in Table 4 are designed. The cross-sectional

expansions are kept the same for four models to investigate
the influence of the number and order of beam elements.

Figure 12 displays the load-displacement curves for vari-
ous models, and the experimental curve is included for com-
parison. The numerical curves exhibit high similarity
regardless of the mesh configurations adopted. The initial
linear stiffness obtained from the numerical results agrees
with the experimental value. However, the crack loads pre-
dicted by all the models are higher than the experimental
value. This discrepancy is attributed to initial cracks or
defects in the experimental specimens, also reported in [38].
Subsequently, the stiffness at the inelastic stage with cracks
predicted by the numerical results closely approximates the
experimental campaign results. Finally, The numerical
curves corresponding to phase III also show a good agree-
ment with the experimental curve. Overall, these results
demonstrate the robustness and reliability of the proposed
numerical models, with mesh-independent results that
accurately capture the material’s behavior under both elastic
and inelastic phases.

Figure 9. Damage distributions of Leonhardt shear beams at 4mm from: a) Model A (20B4þ L9); b) Model B (20B2þ L9); c) Model C (20B2þ L4); d) Model D
(34B2þ L4).

Figure 10. Four-point bending RC beam: geometry and boundary conditions (Unit:mm).

Table 3. Four-point bending RC beam: material properties.

Material E (GPa) fctm (MPa) fcm (MPa) Gft(N/m) Gfc(N/m) t fy (MPa) fyu (MPa)

Concrete 31.0 2.8 37 140.0 21000 0.2 – –
Steel 193 – – – – 0.3 546 691

Figure 11. Mesh assignment of four-point bending RC beam: (a) Beam elem-
ent; (b) LE cross-section discretization.

Table 4. Four-point bending RC beams: mesh configuration.

Model No. Model 1 Model 2 Model 3 Model 4

Beam element 75B2 40B2 40B3 40B4
LE L9 L9 L9 L9
DoFs 102696 55551 109647 163743
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Figure 13 depicts the damage propagation during the
loading process, with all diagrams presented considering the
deformed shape. Initially, multiple micro-cracks occur at the
bottom of the beam, with the corresponding crack load
being around 7:15kN, which matches well with the expected
value from [38]. As the loading continues, vertical damage
propagates, and the steel rebars begin to yield, as shown in
Figure 14, at 18% of the maximum displacement. The corre-
sponding damage distribution is shown in Figure 13c. The
concrete begins to crush at around 50% of the maximum

displacement, as shown in Figure 13d, with damage also
occurring at the top middle part. Last, Figure 13e presents
the final vertical damage, which is similar to vertical cracks
shown in Figure 15.

5.3. Three-point bending RC beam

The last benchmark is a three-point bending test of a con-
crete beam reinforced with longitudinal steel bars and stir-
rups conducted in [52]. The geometric and reinforcement
design of the tested specimen is shown in Figure 16. The
beam is subjected to a single concentrated vertical load at

Figure 13. Damage distribution of Model 1 (75B2þ L9) at: a) 2%; b) 6%; c) 18%; d) 50%; e) 100% of the maximum displacement.

Figure 14. Von Mises stress distribution of steel rebars at 18% of the maximum
displacement.

Figure 12. Load-displacement curves of four-point bending RC beams from dif-
ferent models.
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the top mid-span, with a maximum displacement control of
5mm. The stirrups are spaced at 100mm in the span and
reduced to 50mm near both ends (each along 500mm).Only
two longitudinal steel bars are placed at the bottom and top,
and the concrete protective thickness is 20mm. Therefore,
the beam was characterized as under-reinforced and failed
in ductile flexure, with the yielding of steel rebars followed
by concrete crushing, as reported in [52]. The beam is rela-
tively large compared to the previous two benchmarks, mak-
ing it ideal for validating the proposed method. Material
properties of concrete and steel are listed in Table 5.

Similarly to the previous benchmarks, a half structure is
adopted due to symmetry across the y axis. The beam elem-
ent assignment and cross-section discretization are shown in

Figure 17. Commonly, one beam element should be assigned
along the thickness of the stirrups, and another one should
be assigned along the space between two adjacent stirrups.
Since more stirrups exist in this benchmark, more beam ele-
ments are required compared to previous benchmarks.

Due to the large number of stirrups in the structure, a
minimum of 59 beam elements are required, as shown in
Model I in Table 6. However, finer meshes with more beam
elements are also presented, such as Model II and Model III
in Table 6. Although only linear beam elements are used,
the DoFs are still heavy. Therefore, higher-order elements
are not investigated in this case.

Figure 15. Crack distribution from the experiment of four-point bending RC beam.

Figure 16. Three-point bending RC beam: geometry and boundary conditions (Unit:mm).

Table 5. Three-point bending RC beam: material properties.

Material type E (GPa) fctm (MPa) fcm (MPa) Gft(N/m) Gfc(N/m) t fy (MPa)

Concrete 32.12 2.0 35.3 70.0 21000 0.167 –
Steel 220.0 – – – – 0.28 507.0

Figure 17. Mesh assignment of three-point bending RC beam: (a) Beam elem-
ent; (b) LE cross-section discretization.

Table 6. Four-point bending RC beams: mesh configuration.

Model No. Model I Model II Model III

Beam element 59B2 77B2 121B2
LE L9 L9 L9
DoFs 99198 128844 201312

Figure 18. Load-displacement curves of three-point bending RC beams from
different models.
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Figure 18 compares the load-displacement curves
obtained from the three numerical models and the experi-
mental result. The curves from the numerical models exhibit
a high degree of similarity, providing evidence for the mesh
independence of the proposed method. All numerical mod-
els capture the stiffness related to phase I and II well.
However, the maximum loads obtained from all numerical
models during phase II are slightly higher than the experi-
mental value. The RC beam exhibited its weakest plane at
the midspan in the experimental campaign. A stiff plate is
added to the top of the FEM model to avoid stress concerta-
tion, which leads to the shift of the weakest plane away
from the midspan, as shown in Figure 19. Additionally, a
higher theoretical ultimate load of around 41:04kN, dis-
played in Figure 18, is expected if the weakest plane is
assumed to occur 200mm from the midspan. Therefore, the
slight discrepancy between experimental and numerical
results in the third phase is acceptable.

Figure 19 shows that the finer mesh can provide more
detailed and accurate damage distributions compared to the
coarser meshes. However, the overall damage patterns, such
as the vertical damage caused by bending behavior, are simi-
lar for all numerical models.

6. Conclusions

This research work investigated the damage analysis of RC
beams using 1D higher-order beam theory based on Carrera
unified formulation. The proposed method utilized a com-
ponent-wise approach to explicitly model the concrete and
steel components. The modified Mazars damage model was
adopted to evaluate concrete damage, while an elastic-
perfectly plastic material response was employed for steel
rebars. A fracture energy regularization technique was
adopted with a new estimation method for the characteristic
element length to mitigate the mesh dependence of finite

element models. The following conclusions were drawn
based on the comparisons between numerical and experi-
mental results from three benchmarks of bending-dominated
RC beams:

1. In terms of load-displacement curves, the proposed 1D
CUF model with the proposed material models can
accurately predict both linear and non-linear behavior
of RC beams under bending

2. Despite the lack of consideration for mode II shear frac-
ture, the modified Mazars damage model can still cap-
ture the similar non-linear behavior of RC shear beams
compared to experimental campaigns.

3. The fracture energy regularization technique, with the new
estimation method for the characteristic element length,
effectively mitigates mesh dependence, allowing for com-
putational costs to be saved by adopting coarser meshes.

Although accurate and robust results were obtained
through the proposed model, a large number of DoFs was
required if many stirrups were imposed, as seen in the third
numerical example, which caused an increase in computa-
tional costs. Therefore, ongoing studies will explore adopting a
node-dependent kinematic approach [53] to address this issue.
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