
14 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

GNSS Software-Defined Radio: History, Current Developments, and Standardization Efforts / Pany, Thomas; Akos,
Dennis; Arribas, Javier; Bhuiyan, M. Zahidul H.; Closas, Pau; Dovis, Fabio; Fernandez-Hernandez, Ignacio;
Fernández–prades, Carles; Gunawardena, Sanjeev; Humphreys, Todd; Kassas, Zaher M.; López Salcedo, José A.;
Nicola, Mario; Psiaki, Mark L.; Rügamer, Alexander; Song, Young-Jin; Won, Jong-Hoon. - In: NAVIGATION. - ISSN
0028-1522. - ELETTRONICO. - 71:1(2024), pp. 1-45. [10.33012/navi.628]

Original

GNSS Software-Defined Radio: History, Current Developments, and Standardization Efforts

Publisher:

Published
DOI:10.33012/navi.628

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2986482 since: 2024-03-01T10:42:29Z

ION

Received: 16 March 2023   Revised: 28 July 2023   Accepted: 15 September 2023

DOI: 10.33012/navi.628

NAVIGATION, 71(1) Licensed under CC-BY 4.0 © 2024 Institute of Navigation

1  INTRODUCTION

Receiver development has always been an integral part of satellite navigation,
ever since early studies were conducted for the U.S. Global Positioning System
(GPS). The very first receivers were huge devices, enabling a correlation of received
satellite signals with internally generated code and carrier replicas by a mixture
of digital and analog electronics (Eissfeller & Won, 2017). Advances in semicon-
ductor technology soon enabled signal processing on dedicated chips. This tech-
nology was complex to handle and was primarily located within the U.S. industry.
Despite the success of GPS and its Russian counterpart globalnaya navigazionnaya
sputnikovaya sistema (GLONASS), internal receiver technology was barely

Abstract
Taking the work conducted by the global navigation satellite system (GNSS)
software-defined radio (SDR) working group during the last decade as a seed,
this contribution summarizes, for the first time, the history of GNSS SDR devel-
opment. This report highlights selected SDR implementations and achievements
that are available to the public or that influenced the general development of
SDR. Aspects related to the standardization process of intermediate-frequency
sample data and metadata are discussed, and an update of the Institute of
Navigation SDR Standard is proposed. This work focuses on GNSS SDR imple-
mentations in general-purpose processors and leaves aside developments con-
ducted on field programmable gate array and application-specific integrated
circuit platforms. Data collection systems (i.e., front-ends) have always been of
paramount importance for GNSS SDRs and are thus partly covered in this work.
This report represents the knowledge of the authors but is not meant as a com-
plete description of SDR history.

Keywords
GNSS, software-defined radio

O R I G I N A L A R T I C L E

GNSS Software-Defined Radio: History, Current
Developments, and Standardization Efforts

Thomas Pany1  Dennis Akos2  Javier Arribas3  M. Zahidul H. Bhuiyan4  
Pau Closas5  Fabio Dovis6  Ignacio Fernandez-Hernandez7  Carles Fernández–
Prades3  Sanjeev Gunawardena8  Todd Humphreys9  Zaher M. Kassas10  
José A. López Salcedo11  Mario Nicola12  Mark L. Psiaki13  Alexander Rügamer14  
Young-Jin Song15  Jong-Hoon Won15

1 University of the Bundeswehr Munich,
Neubiberg, Germany
2 University of Colorado, Boulder, USA
3 Centre Tecnològic de
Telecomunicacions de Catalunya,
Barcelona, Spain
4 Finnish Geospatial Research Institute,
Kirkkonummi, Finland
5 Northeastern University, Boston, USA
6 Politecnico di Torino, Turin, Italy
7 European Commission, Brussels,
Belgium
8 Air Force Institute of Technology,
Wright-Patterson Air Force Base, USA
9 The University of Texas at Austin,
Austin, USA
10 The Ohio State University, Columbus,
USA
11 Universitat Autònoma de Barcelona,
Cerdanyola del Vallès, Spain
12 LINKS Foundation, Turin, Italy
13 Virginia Tech, Blacksburg, USA
14 Fraunhofer Institute for Integrated
Circuits IIS, Erlangen, Germany
15 Inha University, Incheon, South Korea

Correspondence
Thomas Pany
University of the Bundeswehr Munich,
Neubiberg/Germany.
Email: thomas.pany@unibw.de

PANY et al.

accessible to the broader research community for a long time, as it seemed to be
impossible to realize global navigation satellite system (GNSS) signal processing on
low-cost computers. Even in 1996, a key receiver design pioneer expressed skepti-
cism that general-purpose microprocessors were, or would ever be, a suitable plat-
form for implementing a GNSS receiver (Kaplan, 1996).

The situation radically changed when the algorithms of a GPS receiver were
first implemented as MATLAB software on a desktop personal computer (PC)
and estimates of digital signal processor (DSP) resources required to run the algo-
rithms in real time were encouraging (Akos & Braasch, 1996; Akos, 1997). Soon
after, real-time processing was demonstrated, even on conventional PCs, and the
widespread use of software radio technology took off with exponential growth.
Interestingly, software radio technology did not replace existing hardware receivers
usually realized as one or more application-specific integrated circuits (ASICs), but
complemented these receivers, allowing researchers to easily implement and test
new algorithms or to develop highly specialized receivers with reasonable effort.
Today, this is a well-established approach for military, scientific, and even commer-
cial applications, as described by Curran et al. (2018).

As different research groups developed their own software radios, they used dif-
ferent data collection systems to sample GNSS signals. Whereas the data format of
digital GNSS signal streams is comparably easy to describe, the widespread use of
software radio technology made it necessary to introduce a certain level of stan-
dardization, which was finally achieved by a group of researchers, as documented
by Gunawardena et al. (2021). The result was the so-called Institute of Navigation
(ION) software-defined radio (SDR) Standard (ION SDR Working Group, 2020).

As technology evolved further, new GNSS software radios emerged, and some
deficiencies of the ION SDR Standard became apparent (Clements et al., 2021).
These conditions prompted the present paper, whose contributions are four-fold.
First, it presents the first history of GNSS SDR development (Section 2). Second, it
offers a detailed description of select GNSS SDRs (Section 3). Third, it overviews
recent front-end developments (Section 4). Finally, it summarizes the history of the
ION SDR Standard and proposes an update thereto (Section 5).

2  GNSS SDR HISTORY

The history of GNSS SDR requires more than a bit of recollection, which can
be fraught with inaccuracies, none of which are intentional in the present work.
Corrections would always be welcome.

The roots of GNSS SDR can be traced to Ohio University’s Avionics Engineering
Center around 1994. Professor Michael Braasch, a newly minted faculty member
of the Electrical and Computer Engineering Department and already recognized
as an expert in GNSS multipath, was interested in creating a high-fidelity simula-
tion of the internal signal processing within GPS and GLONASS receivers. Dennis
Akos, a Ph.D. student in the department, was intrigued by the idea. Already har-
boring a keen interest in computer science and programming, Akos took on the
simulation project at Braasch’s request under the Federal Aviation Administration
(FAA)/National Aeronautics and Space Administration (NASA) Joint University
Program. Meanwhile, publication of “The Software Radio Architecture” in the
1995 IEEE Communication Magazine (Mitola, 1995) fueled Akos’s and Braasch’s
thinking that this “simulation” could instead be targeted toward an actual software
radio implementation. The result was the first publication on GNSS SDR, which
appeared in the proceedings of the 1996 ION Annual Meeting (Akos & Braasch,
1996).

    PANY et al.

Development of this initial simulation/implementation was significantly fur-
thered through cooperation with Dr. James B. Y. Tsui of the Wright-Patterson Air
Force Base. Well recognized as an expert in digital receivers, Tsui had recently
taken an interest in satellite navigation. In 1995, two summer interns, Dennis Akos
from Ohio University and Michael Stockmaster from The Ohio State University,
worked under Tsui’s guidance to develop a MATLAB implementation of the sig-
nal processing required for basic GPS receiver operation. A digital oscilloscope
was used to capture the initial intermediate-frequency (IF) data that were criti-
cal for developing and debugging those early algorithms. Akos was responsible
for the lower-level signal processing (acquisition and code/carrier tracking), while
Stockmaster implemented the navigation solution. The cumulative result was the
first-ever GPS SDR implementation. Although fully operational, it was “slow as
molasses”: processing 30 s of IF data required hours of computation time. Tsui
published the first textbook on GPS SDR in 2000 (Tsui, 2000). A parallel contribu-
tion of this initial effort was the direct radio-frequency (RF) sampling front-end,
which garnered significant interest and pushed advances in analog-to-digital con-
verter (ADC) development (Akos et al., 1999).

After receiving his Ph.D. in 1997, Akos started his academic career as an
Assistant Professor in the Systemteknik Department of Luleå University of
Technology in Sweden, where he taught a course on computer architecture. It was
here that GPS SDR first achieved real-time operation. For a class project, Akos
provided a MATLAB-based GPS SDR and challenged a group of students to “get it
to run as fast as possible,” subject to the requirement that the complex accumula-
tion products for each channel were within 10% of those produced by the original
MATLAB-based GPS SDR. In 1999, the first “real-time” operation was achieved,
processing 60 s of IF data in 55 s. This was a notable achievement at the time,
given that renowned GPS expert Philip Ward, who was responsible for some of
the first GPS receivers, had recently expressed skepticism about the prospect of a
fully software-defined real-time GPS SDR, writing “The integrate-and-dump accu-
mulators provide filtering and resampling at the processor baseband input rate,
which is around 200 Hz [... and] well within the interrupt servicing rate of modern
high-speed microprocessors. But the 5- to 50-MHz rates [of intermediate frequency
samples] would not be manageable” (Kaplan, 1996). This real-time implementa-
tion effort was headed by student Per-Ludvig Normark and led to the results pub-
lished by Akos et al. (2001).

In the meantime, Kai Borre, a geodesy professor at Aalborg University, had
also developed MATLAB code for GPS receivers in the mid–late 1990s. Borre’s
code focused on the navigation block and included functions for the conversion
of coordinates and time references, satellite position determination, and atmo-
spheric corrections. The joint efforts of Akos, Borre, and others would later lead to
a well-known book (Borre et al., 2007), a primary reference for GNSS SDR over the
next years, and the related SoftGPS MATLAB receiver.

Upon graduation, Normark continued his GNSS receiver development with the
GPS Laboratory at Stanford University and then returned home to Sweden, where
he co-founded NordNav Technologies, which developed the first Galileo SDR, and
helped establish the architecture, together with Cambridge Silicon Radio (CSR),
to push GNSS to a price point acceptable for mobile phone adoption. CSR, a dom-
inant supplier of Bluetooth hardware to the mobile phone market at the time,
acquired NordNav in 2006. NordNav and CSR jointly redesigned the CSR 2.4-GHz
radio to multiplex to the 1575.42-MHz GPS L1 band, exploiting the fact that most
Bluetooth applications have a relatively low duty cycle. This approach, coupled
with the real-time software GPS implementation, provided a near-zero-added-cost
GPS receiver.

PANY et al.

There have been numerous contributions to GNSS SDR development since these
early years, many of which are from the co-authors of this paper. Selected devel-
opments by the authors are outlined in Section 3, including a survey of achieve-
ments by other researchers in Section 3.11. The authors are aware that many other
important contributions are missing and make no claims of establishing a com-
prehensive description. To provide the reader with a better orientation about the
chronological order of all developments, we present Table 1, reiterating that the
selection of references is partly subjective and that similar developments have
often been carried out by several research groups. The timeline demonstrates the
flexibility of SDR technology, i.e., the same code base is used for GPS L1 C/A code
signals and for signals of opportunitys (SOPs) from cellular terrestrial transmitters
or from communication satellites in low Earth orbits (LEOs).

TABLE 1
Timeline of GNSS SDR Developments

Year Milestone with comment Reference

1995 Emergence of software radio approach (Mitola, 1995)

1996 First publication of a GPS SDR
development

(Akos & Braasch, 1996)

1999 First real-time software receiver with
GPS L1 C/A code

(Akos et al., 2001)

2000 First textbook on GPS SDR published (Tsui, 2000)

2002+ Use of bit-wise correlation and SIMD
instructions

(Ledvina et al., 2003; Pany et al., 2003)

2002+ GNSS SDRs as commercial products NordNav, IFEN, Trimble, Locus Lock, etc.

2004 First multi-GNSS/multi-frequency
GNSS SDRs

(Ledvina, Psiaki, Sheinfeld, et al., 2004;
Pany, Eissfeller, et al., 2004)

2004 First real-time GNSS/INS integration
with SDR

(Gunawardena et al., 2004)

2005 GNSS SDR consolidation at
Politecnico di Torino and LINKS
Foundation

Section 3.9

2005 Demonstration of vector tracking with
a GNSS SDR

(Pany et al., 2005)

2006 First real-time all-in-view embeddable
GNSS SDR

(Humphreys et al., 2006)

2006 First use of SDR technology for AM
SOP

(McEllroy, 2006; McEllroy et al., 2006)

2007 Start of widespread adoption of SDR
technology in GNSS research

(Borre et al., 2007)

2007 First development of a snapshot
receiver

Section 3.8

2009 First multicore GNSS SDR (Humphreys et al., 2009)

2010 Adoption of a computer science
best-practice collaborative framework

Section 3.5

2010 First use of GPUs for correlation (Hobiger et al., 2010)

2011+ Use of GNSS SDR for ionospheric
research

(O’Hanlon et al., 2011; Peng & Morton,
2011)

2012+ SDR developments at the Finnish
Geospatial Research Institute

(Borre, Fernández-Hernández et al., 2022;
Söderholm et al., 2016)

(Continued)

    PANY et al.

3  CURRENT STATUS OF GNSS SDRS

In June 2023, a quick internet search did not reveal any comprehensive listing of
all GNSS SDRs. Wikipedia (2023) lists seven entries, which is far below the num-
ber of receivers known by the authors, even if the following criterion is applied to
limit the scope: a GNSS SDR (or software receiver) is defined as a piece of software
running on a general-purpose computer converting samples of a received GNSS
signal into a position velocity and time (PVT) estimate. It is clearly understood
that a front-end including ADC is required to sample the received signal, but other
than that, no further functionality is allowed to be realized via hardware. With this
definition, three categories of software receivers can be introduced:

Real-time receivers: Monolithic or modular software packages written in
an efficient low-level programming language (such as C or C++), typically
optimized for run-time efficiency and stability

Year Milestone with comment Reference

2012 Use of a DVB-T ultra-low-cost
front-end for GNSS SDR

Section 3.5

2012+ Use of SDR technology for LTE SOP (del Peral-Rosado et al., 2013; Driusso
et al., 2017; Shamaei et al., 2018)

2014+ Use of GNSS SDRs (Lightsey et al., 2014; Murrian et al.,
2021)

2014 Use of SDRs for mixed cellular 3G
GSM/CDMA and digital television
SOP

(Yang et al., 2014)

2015+ Abundance of processing power for
GNSS SDR available

(Dampf et al., 2015; Nichols et al., 2022)

2017+ Use of SDRs for 3G CDMA and 4G
LTE SOP

(Kassas et al., 2017)

2018 First use of Python for dedicated
teaching of GNSS SDR

Section 3.7

2018 First SDR enabling sub-meter-level
carrier-phase-based uncrewed aerial
vehicle navigation with 3G CDMA
and 4G LTE SOP

(Khalife & Kassas, 2018, 2022)

2020 Formal adoption of ION SDR
Standard

Section 5

2020 Use of SDR for stationary positioning
with multi-constellation Orbcomm
and Iridium LEO SOP

(Farhangian & Landry, 2020; Orabi et al.,
2021)

2021 First SDR for 5G SOP (Shamaei & Kassas, 2021b)

2021+ Use of GNSS SDR to support
development of new navigation
satellite systems

(Miller et al., 2023; Song et al., 2021)

2021 First SDR enabling vehicle navigation
with multi-constellation LEO SOP

(Kassas et al., 2023, 2021)

2022 First SDR enabling aircraft navigation
with cellular SOP

(Kassas, Abdallah, et al., 2022; Kassas,
Khalife, Abdallah, Lee, Jurado, et al.,
2022)

TABLE 1 (Continued)

PANY et al.

Teaching/research tools: Software packages written in a high-level pro-
gramming language (such as Python or MATLAB), optimized for code read-
ability and flexibility

Snapshot receivers: Receivers optimized for very short batches of signal
samples

Furthermore, the software package shall allow some configuration flexibility and
(at least theoretically) support the ION SDR Standard. The following subsections
introduce a few selected developments, emphasizing the rationale behind design
choices and current status. Each subsection is represented by one entry in Table 2
to give the reader a quick overview of the main characteristics of each develop-
ment. Section 3.1 describes the work of Psiaki, Ledvina, and Humphreys and
their efforts in real-time processing on DSPs, with the bit-wise-parallel approach
proving to be highly successful, even for space applications. Section 3.2 covers the
work of Pany and others in their efforts with multi-constellation/multi-frequency
GNSS. Section 3.3 and Section 3.4 cover the efforts of Borre and others in a readable
open-source MATLAB GPS SDR starting with Borre et al. (2007), with the most
recent GNSS update reported by Borre, Fernández-Hernández et al. (2022). Akos
has also continued this academic development of a suite of open-source GNSS
SDRs (Bernabeu et al., 2022). The widely used open-source receiver GNSS-SDR
is described in Section 3.5. The AutoNav receiver used to support the develop-
ment of the Korean Positioning System (KPS) is discussed in Section 3.6, and
Section 3.7 provides a discussion of PyChips, the basis for tutorial classes of the
ION. The Universitat Autònoma de Barcelona (UAB) snapshot GNSS software
receiver is described in Section 3.8, while Section 3.9 discusses an SDR used, e.g., in

TABLE 2
Overview of GNSS SDRs Discussed in Section 3

Name Main language Open source Main focus

GRID C++ No Real-time operation of advanced
algorithms on embedded devices

MuSNAT C++ No Analysis of navigation signal processing
and algorithm prototyping

SoftGPS MATLAB Yes Suite of GNSS SDRs with widespread use
and accompanying book

FGI-GSRx MATLAB Yes Multi-GNSS SDR with accompanying
book

GNSS-SDR C++ Yes Real-time SDR with modular structure
and widespread use

AutoNav SDR MATLAB No Support for KPS development, API, and
GPU

PyChips Python No Multi-GNSS and optimized for use in
teaching classes

UAB Snapshot
GNSS Receiver

MATLAB No Snapshot receiver that can be operated in
the cloud

NGene ANSI C No Efficient GNSS SDR used in numerous
Galileo-related projects

MATRIX MATLAB, C++ No Combined processing of GNSS with
cellular 3G/4G/5G and LEO (Starlink,
OneWeb, Orbcomm, Iridium, and
Globalstar) signals

    PANY et al.

authentication schemes or reflectometry or to assess the influence of non-standard
GNSS transmissions. Section 3.10 extends the scope of SDR to non-GNSS signals.

At the beginning of GNSS SDR development, different receivers were linked to
specific persons or research institutes; in contrast, today different receivers, tools,
or code bases are often used at the same institute. Moreover, code bases first devel-
oped by a single institute have spread into different institutes. For example, the
developments of Borre et al. (2007) forked into several branches (see, e.g., the
work by FGI (2022), Bernabeu et al. (2022), and Zhang (2022)), as discussed in
Section 3.3 and Section 3.4.

3.1  Bit-Wise Parallelism and the Emergence of GRID

The original real-time GNSS software radio work by Akos (1997) inspired an
effort within the Cornell GPS group. Psiaki had been working with non-real-time
software GNSS signal processing in MATLAB for about two years when he started
to wonder whether the slow MATLAB operations could be translated to run in
real time on a general desktop workstation. A bottleneck in GNSS digital signal
processing occurs during the performance of operations that initially process the
high-frequency RF front-end samples. RF front-ends typically sample at 4 MHz or
faster. A 12-channel receiver would have to perform on the order of 400 million
operations per second or more to achieve all of the needed signal processing. Psiaki
conceived the concept of bit-wise parallel processing as a means of addressing this
challenge. He recruited then-Ph.D. candidate Brent Ledvina to make an attempt
at implementing these ideas in the C programming language on a real-time Linux
desktop workstation. Ledvina succeeded in developing a 12-channel real-time L1
C/A-code receiver after about 6 months of effort (Ledvina et al., 2003).

The main aim of bit-wise parallelism is to work efficiently with RF front-end
data that have a low number of quantization bits. If an RF front-end produces a
1-bit digital output stream, then 32 successive sign-bit samples can be stored in a
single 32-bit unsigned integer word on a general-purpose processor. Thirty-two
successive output samples of a 2-bit RF front-end can be stored in two 32-bit
words, one containing the successive sign bits and the other containing the suc-
cessive magnitude bits. Each channel of the software receiver generates a 1-bit
or 2-bit representation of 32 successive samples of its IF carrier replica, both
in-phase and quadrature, and the successive samples are stored in parallel in
32-bit unsigned integer words. Similarly, the channel generates a 1-bit represen-
tation of 32 successive samples of its prompt pseudorandom noise (PRN) code
replica and stores them in parallel in a single 32-bit unsigned integer word. The
channel also generates an early-minus-late PRN code replica that requires 1.5 bits
per sample, which utilizes two 32-bit unsigned integer words to store 32 sam-
ples. These replica signals can be generated very efficiently by using pre-tabulated
32-bit words. The software receiver then performs a series of bit-wise AND, OR,
XOR, and similar operations that have the effect of performing PRN code mixing
and IF-to-baseband carrier mixing. The outputs of the mixing operations are con-
tained in a small number of 32-bit words, the number of which depends on the
number of bits in each RF front-end output sample and the number of bits in the
IF carrier replicas.

The final operation is the accumulation of results in the 32-bit words. This oper-
ation involves sets of bit-wise Boolean operations, as per Ledvina et al. (2003), fol-
lowed by a summation of the number of 1-bits in the resulting 32-bit unsigned
integer words. Minimizing the execution time of the bit summation operations

PANY et al.

proved to be a challenge. Ledvina solved this problem by using a pre-computed
1-dimensional data table whose input was the unsigned integer and whose out-
put was the number of 1-bits. To ensure a reasonable table size, only the bits
in a 16-bit unsigned integer word were counted. The original receiver’s 32-bit
words were split in half, two table look-ups were performed, and the results were
summed in order to count all of the 1-bits. The original algorithms were defined
by Ledvina et al. (2003), Ledvina, Psiaki, Powell et al. (2004), and Ledvina, Psiaki,
Powell et al. (2006).

When using very long PRN codes, such as the L2C CL code, the whole-period
PRN code tables of the proper 32-bit words at various code phases in the origi-
nal method become impractically large. Therefore, a new method was developed
for long PRN codes. In this method, 32-bit words of short generic PRN code chip
sequences are tabulated, with all possible combinations of short chip sequences
considered at various PRN code offsets relative to the start of the samples of the
32-bit word. These methods have been described by Psiaki (2006) and Ledvina et al.
(2007). This technique proved invaluable for dealing with long codes.

A processor that can operate on wider segments of data, up to 512 bits for cur-
rent single instruction multiple data (SIMD) instructions, gains substantial addi-
tional increases in signal processing speed (Nichols et al., 2022). However, the
speed increase factors over brute-force integer calculations are typically not as
high as the number of bits per word. That is, the techniques do not speed up
the operations by a factor of 32 when processing 32 samples in parallel by using
32-bit words to represent 32 samples. For a 2-bit RF front-end and a 32-bit pro-
cessor, the speed-up factor might be only 4 because the bit-wise parallel approach
requires multiple operations due to, say, a simple multiplication of one time series
by another. If one doubles the number of bits per word, however, then the speed
tends to double. A particularly helpful feature of some recent processor designs is
their inclusion of a hardwired command to count all of the 1-bits in a word. This
“popcount” intrinsic obviates the table look-ups that counted 1-bits in the origi-
nal bit-wise parallel design. If the number of bits increases in the RF front-end
samples and/or the IF carrier replicas, however, then the bit-wise parallel method
of signal processing slows down. Signals represented by 3 or 4 bits might cause
the processing speed gains of bit-wise parallel algorithms to be limited or even
non-existent.

After successfully running the basic algorithms in real time using 32-bit words,
the Cornell group showcased the efficacy of real-time GNSS software radio by
using the same techniques to develop a dual-frequency L1 C/A and L2C receiver
(Ledvina, Psiaki, Sheinfeld, et al., 2004) and a GPS/Galileo L1 civilian receiver
(Ledvina, Psiaki, Humphreys, et al., 2006). These real-time software GNSS receiv-
ers each required only several person-days to be developed from the original L1
C/A code receiver. Of course, the L1/L2 receiver required a new dual-frequency
RF front-end. The GPS/Galileo receiver required knowledge of the civilian Galileo
E1 PRN codes, which had not been published at that time. This requirement led
to a supporting effort that successfully deduced the E1 PRN codes of the Galileo
in-orbit validation (IOV) satellite GIOVE-A by recording their raw RF front-end
samples and post-processing those samples using a suite of custom-designed SDR
signal-processing algorithms in order to extract the chips from the noise (Psiaki
et al., 2006).

The next development was to re-implement the bit-wise parallel code for embed-
ded (low-power, low-cost) processing. Initially targeting a Texas Instruments DSP,
this work was accomplished in 2006 by then-Ph.D. candidate Todd Humphreys
(Humphreys et al., 2006). Later, as a professor at The University of Texas (UT)

    PANY et al.

at Austin, Humphreys and his students—notably Jahshan Bhatti and Matthew
Murrian—undertook a sequence of significant expansions and improvements to
this receiver. Called GRID, the C++-based UT Austin receiver is now a highly
optimized science-grade multicore GNSS SDR (Humphreys et al., 2009; Nichols
et al., 2022). Its main features are summarized in Table 3. This receiver was the
first GNSS SDR to be adapted for spoofing (Humphreys et al., 2008), the first GNSS
SDR to operate in space (Lightsey et al., 2014), the first receiver of any kind to show
that centimeter-accurate GNSS positioning is possible with a smartphone antenna
(Pesyna et al., 2014), the first receiver to be used to locate terrestrial sources of
GNSS interference from LEOs (Murrian et al., 2021), and the basis of the current
state of the art in urban precise (decimeter-level) positioning (Humphreys et al.,
2020; Yoder & Humphreys, 2023). As detailed by Nichols et al. (2022), GRID has
also reaffirmed the commercial viability of GNSS SDR in widespread low-cost
applications: it was recently licensed by a major aerospace company for use across
all company operations, including in the thousands of satellites of the company’s
broadband internet mega-constellation.

TABLE 3
Main Features of GRID

GRID

Feature Solution Remark

Operating system GNU/Linux, macOS, Windows

Programming
environment

C++

IF sample file
input source

A wide array of formats Will accommodate proposed ION
SDR Standard

Real-time sample
input

Yes See Nichols et al. (2022)

Additional sensors IMU, cameras, lidar Requires PpEngine module

Supported GNSS GPS, Galileo, BeiDou, SBAS, QZSS,
CDMA

Nearly all open spreading codes
and navigation message streams
supported

Acquisition Multi-threaded and FFT-optimized

Tracking Vectorized, multicore, Intel SIMD
(SSE2 through AVX-512) and
ARM NEON (64-bit and 128-bit)
accelerations

Correlation no longer the
primary bottleneck under some
configurations; see Nichols et al.
(2022)

Measurement
output

All standard GNSS observables Proprietary GBX format plus
RINEX, NMEA, RTCM, MATLAB
MAT-file, KML

Navigation Extended Kalman filter based
on pseudorange and Doppler
measurements

Carrier-phase-based positioning
available with PpEngine module

Further features Vector tracking, multi-antenna,
IMU integration, space-ready,
interference mitigation and
detection

Availability Source code available via
commercial license from UT
Austin

Turnkey solutions available via
Locus Lock

Note: SBAS: satellite-based augmentation system

PANY et al.

3.2  Multi-Sensor Navigation Analysis Tool

The Multi Sensor Navigation Analysis Tool (MuSNAT) is an object-oriented but
monolithic C++ software receiver maintained by the University of the Bundeswehr
Munich (UniBwM) and was first mentioned in its present form by Pany et al. (2019).
MuSNAT started as an operational real-time receiver development, but currently, it
mostly serves to develop and demonstrate innovative signal-processing and naviga-
tion algorithms. MuSNAT is also used for teaching. It is freely available as execut-
able for academic purposes from UniBwM (2023). Its main characteristics can be
found in Table 4. In contrast to the bit-wise approach of Section 3.1 (which allows
the design of very power-efficient implementations), the design idea of MuSNAT
and its predecessors was to realize a high-end receiver running on powerful PCs
or workstations. The bit-wise approach was replaced by using SIMD instructions
of Intel/Advanced Micro Devices central processing units (CPUs). This allows
samples to be represented as 8-bit or 16-bit values, and SIMD instructions such

TABLE 4
Main Features of MuSNAT

MuSNAT

Feature Solution Remark

Operating system Windows 10/11 Compiles as GUI or as
command-line version (port of
command-line version to Linux
under preparation)

Programming
environment

Microsoft Visual Studio 2019
C++

CUDA, Intel OneAPI, vcpkg, and
.net for GUI

IF sample file input
source

ION SDR Standard and
proprietary file readers

Proprietary readers faster than ION
SDR reader

Real-time sample input Yes, via TCP/IP Server available via LabView for
selected NI USRPs

Additional sensors Lidar, IMU Lidar uses PCL format, IMU
proprietary ASCII format; video
formats supported but not yet used

Supported GNSS GPS, Galileo, BeiDou,
GLONASS, SBAS, OFDM
(LTE, 5G, etc.)

Nearly all open spreading codes
available with at least one
navigation message decoder for
each system

Acquisition Optimized FFT method CPU and GPU supported

Tracking Dot-product from Intel
Performance Primitives
(CUDA version for massive
multi-correlator applications)

Computational performance mostly
limited by memory bus width

Further features Multi-antenna, signal
generator, primary–secondary
tracking, SQL database for
logging, vector tracking,
GNSS/INS integration,
RTKLIB

Support of Galileo OSNMA/HAS
and synthetic aperture processing
via MATLAB interface

Availability Executable plus data
visualizer downloadable via
UniBwM (2023)

Source code available for research
projects with UniBwM

Note: OFDM: orthogonal frequency-division multiplexing

    PANY et al.

as AVX-512 currently allow processing of registers of up to 512 bits (i.e., 32 16-bit
samples) in parallel.

GNSS software receiver developments were initiated at UniBwM in 2002, after
it became clear that the software radio approach discovered by Akos would pro-
vide useful insights into GNSS receiver technology and would thus be indirectly
helpful in designing and building the Galileo navigation satellite system. The first
software receiver at UniBwM was designed for GPS L1 C/A only and was realized
as a MATLAB/Simulink project for post-processing. To sample the GNSS signals,
a commercial ADC with a peripheral component interconnect express (PCIe) con-
nector from National Instruments (NI) was used (PXI 5112), which was connected
either to a low-bandwidth GPS L1 C/A code front-end based on the Plessey GP
2010 RF chip set or later to one GPS L1/L2 high-bandwidth front-end, which was
specifically developed by Fraunhofer IIS (Pany, Förster, et al., 2004). Soon after, the
software for communicating with the ADC (written in C++, making use of the
Microsoft Foundation classes) was upgraded to a full GPS L1 C/A plus L2CS (only
medium-length L2 code was supported, not the long code) receiver. A detailed
analysis published by Pany et al. (2003) revealed that both the SIMD instruction set
and the size and structure of the CPU caches were important for real-time capabili-
ties. Memory bandwidth is a key issue when representing samples by multiple bits.
One of the first achievements with this receiver was the demonstration of vector
tracking (Pany et al., 2005).

Based on these results, funding was secured to support a group of five researches
over three years. This funding allowed the researchers to start a new software
receiver project, this time making full use of C++ features for object-oriented
development, and to develop a graphical user interface (GUI) connected to the
processing core via a clearly defined interface that also allowed the core to run
without a GUI. The overarching development goal at that time was to realize a
high-quality multi-GNSS multi-frequency receiver on a desktop PC or powerful
laptop that could potentially be operated on a continuous basis to replace the (at
that time) rather inflexible and expensive commercial GNSS receivers at continu-
ously operating reference stations. A concise overview of the development during
those years was written by Stöber et al. (2010), who described the improvements
compared with the start of the project lain down by Pany, Eissfeller, et al. (2004).

A loose cooperation with IFEN GmbH was initiated, which eventually resulted
in the SX3 receiver (IFEN GmbH, 2022). IFEN used the processing core as an
initial basis, improved the core, replaced the GUI, and developed new dedicated
front-ends. The C++ code was further optimized to support more channels at
higher bandwidth and almost instantaneous high-sensitivity acquisition with the
graphics processing unit (GPU) (Pany et al., 2012). Semi-codeless tracking of GPS
L2P(Y) (i.e., P-code aided cross-correlation) was also implemented. The coopera-
tion of UniBwM with IFEN lasted until 2013, when the development directions
started to diverge. IFEN used the software primarily as a base receiver platform
with an application programming interface (API) to support different applications,
whereas UniBwM continued to modify the core, which was not always beneficial
for software stability from a commercial viewpoint.

The focus at UniBwM changed in 2017, as the old GUI could no longer be main-
tained. Furthermore, real-time operation became less important, as most scientific
results were obtained in post-processing. Consequently, a new GUI was developed
and attached to the proven processing core. Any run-time optimizations within
the processing core that degraded the navigation performance (i.e., mostly causing
additional noise in the code tracking loop) were removed. The core’s logging out-
put was directed to an SQL database to store all types of intermediate results in a

PANY et al.

single file (in addition to the legacy ASCII logging into multiple files). A dedicated
visualization tool was developed for this database.

The use of Windows and Visual Studio for developing a software radio is
slightly unusual, but can be explained as follows. At UniBwM, most researchers
use Windows PCs to allow easy document exchange with each other and, most
importantly, within the European space industry. For this reason, all software
receiver developments were performed for Windows only. In terms of numerical
performance and code optimization, with the Intel C++ compiler and the Intel
Performance Primitives, Intel provided and still provides the same quality on
Windows as for Linux. Over the years, however, it became clear that the potential
use of the processing core on embedded devices and long-term stability might have
been easier to achieve on the Linux operating system. IFEN ported part of the core
to Linux, but not the full software receiver, and showed that conventional desktop
CPUs and embedded CPUs already provided an impressive processing capability
in 2015 (Dampf et al., 2015).

As already mentioned, code optimization to achieve fast (and real-time) signal
tracking was a main research focus in the first years. Different studies on CPU
assembler instructions, CPU architecture, and bottlenecks resulted in dedicated
assembler implementations. Extensive look-up tables were used, and a highly
efficient correlator implementation with the Intel x86 pmaddubsw instructions
was based on a signal sample representation as unsigned integers (including the
necessary rewriting of the correlation formulae because of the switch from the
standard representation of samples as signed integers to unsigned integers). fast
Fourier transform (FFT)-based acquisition was already very efficient on the CPU
and even more efficient on the GPU. With the use of FFT libraries provided by
NVIDIA, porting the acquisition code porting from the CPU to GPU became com-
parably easy. The situation is different for signal tracking. The tracking code has
been transferred to the GPU, and some optimization has been applied to minimize
the amount of data transfer between the CPU and GPU. However, because the
correlation parameters are slightly different for each signal tracked, the correlation
code is called multiple times, and the latency to start one thread on the GPU gen-
erates significant overhead. Thus, GPU-based tracking is currently only beneficial
if a very large number (several hundreds) of correlators is configured per tracking
channel, as pointed out by Pany et al. (2019). As modern desktop and laptop CPUs
continue to improve and make use of a many-core structure, the need to port signal
tracking to the GPU becomes less important. Furthermore, over the years, the use
of dedicated assembler code required continuous adaptation to new CPU instruc-
tion sets (e.g., from SSE to AVX instructions). The performance gained by using
hand-coded assembler routines instead of using the libraries provided by Intel
(Intel Performance Primitives) is not always worth the effort and was not further
actively pursued. Instead, dot-product routines (2 x 16-bit signed input to 64-bit
output) from the Intel Performance Primitives are employed for signal tracking.

The C++ universe is huge, and it is easy to integrate external source code. For
example, the famous RTKLIB and the ION SDR sample reader code have been
integrated. The current research work with MuSNAT focuses on GNSS/INS/lidar
integration, support of massive antenna arrays (Dötterböck et al., 2023), vector
tracking and deep GNSS/inertial navigation system (INS) coupling, support for
long term evolution (LTE)/5G signals, and GNSS signal simulation. Notably, the
maintenance of the huge C++ code base of MuSNAT at a university institute with
a high fluctuation of researchers is demanding. The learning curve for good C++
development in this context is steep and is often inefficient for the purposes of
obtaining a PhD degree. Therefore, interfaces from the C++ code to MATLAB

    PANY et al.

were established; for example, open service navigation message authentication
(OSNMA) decoding, precise point positioning computation for high accuracy
service (HAS), and lidar odometry have been implemented in MATLAB. Another
development is to use MuSNAT to generate multi-correlator values that are then
used within a full MATLAB-based receiver to emulate signal correlation via inter-
polation (Bochkati et al., 2022). Bochkati et al. (2023) used this for ease in develop-
ing synthetic aperture algorithms.

UniBwM initially used front-ends from Fraunhofer IIS, and the software receiver
included low-level universal serial bus (USB) drivers for real-time data transfer.
The same approach was used to connect the front-ends from IFEN GmbH to the
processing core. The effort required to write stable high-data-rate low-level drivers
is significant and introduces a dependency on libraries and support from the USB
chip manufacturers. To reduce these types of development efforts, the decision
was made to connect front-ends via TCP/IP. This approach is powerful in terms of
bandwidth and is also generic; a first version of this approach has been described
by Arizabaleta et al. (2021). Furthermore, with, e.g., LabVIEW from NI, it is com-
parably easy to develop a simple TCP/IP signal source for universal software radio
peripheral (USRP) front-ends. At the time of writing this paper, a more efficient
firmware for USRPs with direct field programmable gate array (FPGA) program-
ming is being developed, which will allow data to be synchronously captured from
an inertial measurement unit (IMU) together with GNSS signal samples.

3.3  SoftGPS, SoftGNSSv3.0, and Derivatives

As mentioned above, the work by Borre et al. (2007) and the associated MATLAB
receiver provided a cornerstone for GNSS SDR development. This receiver, initially
called SoftGPS and then SoftGNSS (usually referred to as SoftGNSSv3.0), included
the basic processing functions for GPS L1 C/A in a readable format and was use-
ful for educational purposes. These functions included signal FFT-based acqui-
sition, frequency, carrier phase, and code phase tracking, data synchronization
and demodulation, pseudorange generation, and eventually PVT estimation. The
MATLAB code, together with some samples, was provided in a CD with the book
and was also available at Aalborg University’s Danish GPS Lab website. In addition
to Borre and Akos, SoftGNSS included relevant contributions by Plausinaitis and
others. Unfortunately, Kai Borre passed away in 2017, and the Danish GPS Lab
was discontinued. However, SoftGNSS and its derivatives remain quite alive, as
described below.

• A new SDR GNSS book (Borre, Fernández-Hernández et al., 2022), extending
SoftGPS functionality to several frequencies, GNSS, and architectures, can
be considered as the successor of Borre et al. (2007). A main building block
of this book is the GNSS software receiver (GSRx) developed at the Finnish
Geospatial Research Institute (FGI) (FGI-GSRx), described in the following
section, but the book also includes other MATLAB receivers. In particular,
the dual-frequency GSRx (DF-GSRx), developed by Borre’s PhD student
P. Bolla, is a dual-frequency GPS L1/L5 receiver that includes dual-frequency
acquisition techniques, measurement combination (including ionosphere-free
measurements), and positioning. The book also includes a GPS L1 C/A snapshot
receiver developed by Borre’s former PhD student I. Fernandez-Hernandez,
which is more modest than that described in Section 3.8, but simple and quick
to execute and therefore possibly useful for educational purposes.

PANY et al.

• The Easy Suite libraries (Borre, 2003, 2009), still publicly available and used,
provide an excellent educational tool for diving into the basic functions of
GNSS receivers, such as calculating satellite positions from the ephemerides,
performing datum conversions, or computing the receiver position and its
accuracy in multiple ways (least squares, Kalman filter, carrier phase ambiguity
resolution, etc.).

• Bernabeu et al. (2022), as above mentioned, have provided a collection of open-
source SDRs developed at University of Colorado Boulder based on SoftGNSS.

• Zhang (2022) has provided a repository with adaptations of SoftGNSS for
different front-ends.

3.4  Finnish Geospatial Research Institute’s Multi-GNSS
Software Receiver

The software receiver developed by the FGI is known as the FGI-GSRx. The
development of the FGI-GSRx started in 2012 from the open-source GNSS software
receiver released in 2007 by Prof. Borre and his colleagues (Borre et al., 2007). The
software receiver was able to track two IOV satellites (GIOVE A and GIOVE B) from
the European GNSS system, Galileo. Since then, the researchers at FGI have been
continuously developing new capabilities for the software receiver, with the inclu-
sion of Galileo in 2013 (Söderholm et al., 2016), the Chinese satellite navigation sys-
tem BeiDou in early 2014 (Bhuiyan et al., 2015; Bhuiyan et al., 2014), the Indian
regional satellite navigation system NavIC in late 2014 (Thombre et al., 2015), and
the Russian satellite navigation system GLONASS in 2015 (Honkala, 2016).

The FGI-GSRx software receiver has been extensively used over the last decade
as a research platform in different national and international research and devel-
opment projects to develop, test, and validate novel receiver processing algorithms
for robust, resilient, and precise positioning, navigation, and timing. At present,
the FGI-GSRx can process GNSS signals from multiple constellations, including
GPS, Galileo, BeiDou, GLONASS, and NavIC. The software receiver is intended
to process raw IF signals in post-processing. The processing chain of the software
receiver consists of GNSS signal acquisition, code and carrier tracking, decoding
of the navigation message, pseudorange estimation, and PVT estimation. The soft-
ware architecture is built such that any new algorithm can be developed and tested
at any stage in the receiver processing chain without requiring significant changes
to the original codes. FGI-GSRx provides a unique and easy-to-use platform not
only for research and development, but also for those interested in learning about
GNSS receivers. Some of the main features of FGI-GSRx are listed in Table 5.

The software receiver was released as open source in February 2022 (FGI, 2022).
FGI-GSRx was also accompanied by the book GNSS Software Receivers, a next edi-
tion of one of the fundamental GNSS textbooks, published in 2022 by Cambridge
University Press (Borre, Fernández-Hernández et al., 2022). This book system-
atically introduces software receiver processing functionalities, with experimen-
tal results for the GPS L1 C/A signal in Section 2 (Borre, Bhuiyan et al., 2022),
GLONASS L1OF signal in Section 3 (Bhuiyan, Honkala et al., 2022), Galileo E1 OS
signal in Section 4 (Bhuiyan, Söderholm, Ferrara et al., 2022), BeiDou B1I signal in
Section 5 (Bhuiyan, Söderholm, Thombre et al., 2022), NavIC L5 signal in Section 6
(Thombre et al., 2022), and a single-frequency multi-constellation solution with
three GNSS signals in Section 7 (Söderholm et al., 2022). The readers can easily
follow the fundamental receiver processing chain for each individual GNSS signal,

    PANY et al.

with the distinctive changes among those signals discussed and highlighted in fig-
ures. One noteworthy contribution of this book is a method for integrating several
GNSS signals to form a single-frequency multi-GNSS PVT solution, presented in
Section 7.

The FGI-GSRx can be utilized at universities and other research institutes as a
tool for training graduate-level students and early-stage researchers and for provid-
ing hands-on experience in GNSS receiver development. This receiver can also be
utilized in the vast GNSS industry as a benchmark software-defined receiver imple-
mentation. The software receiver is already being used in the “GNSS Technologies”
course offered widely in Finland at the University of Vaasa, Tampere University,
Aalto University, and the Finnish Institute of Technology.

TABLE 5
Main Features of FGI-GSRx

FGI-GSRx

Feature Solution Remark

Operating
system

Windows 10 Compiles in Windows 10
environment. The software receiver
should run in another operating
system that can host MATLAB or
OCTAVE.

Programming
environment

MATLAB Executes in MATLAB 2019 or any
later version. The software receiver
can be also executed in OCTAVE.

IF sample file
input source

ION SDR Standard Reads input data files following the
ION SDR Standard.

Processing mode Only operates as a post-processing
GNSS receiver

Can read raw IF data for complete
receiver processing or can load
previously saved acquisition
and/or tracking data in order to
skip acquisition and/or tracking
operations to be able to process
the navigation solution depending
on the parameters set in the user
configuration file.

Supported GNSS GPS L1, Galileo E1, BeiDou B1,
GLONASS L1, NavIC L5

Open-source FGI-GSRx only
supports single-frequency
multi-GNSS processing.

Acquisition FFT-based signal acquisition Sophisticated research-specific
implementation for high-sensitivity
acquisition is not published as open
source.

Tracking Table-based three-stage tracking Based on the tracking status of each
individual satellite, the software
receiver switches among three
stages: i) PULL IN, ii) COARSE
TRACKING, and iii) FINE
TRACKING.

Navigation Traditional least squares Users can select the signal-to-noise
ratio or elevation cut-off mask
in order to select the satellites
that contribute to the position
computation.

PANY et al.

3.5  GNSS-SDR, an Open-Source Software-Defined
GNSS Receiver

The software receiver developed by the Centre Tecnològic de Telecomunicacions
de Catalunya (CTTC), named GNSS-SDR (but not related to the ION SDR Standard),
is another example of a multi-band, multi-system receiver. This receiver has been
constantly evolving since 2010, keeping pace with the newest GNSS algorithms
and signals over more than a decade. The GNSS-SDR originated as a by-product
of a CTTC research staff initiative, with the aim of providing a framework for col-
laborating with other researchers seeking to accelerate research and development
of software-defined GNSS receiver technology. The receiver focuses on baseband
signal processing, although it has the ability to run a navigation engine (refer to
Table 6). The early stages of development progressed slowly under a personal
side-project scheme with no funding, but with the purely exploratory objective of
designing an optimal architecture specifically suitable for GNSS signal processing,
where concepts such as testability, extensibility, reusability, scalability, maintain-
ability, portability, adaptability to new non-standard requirements, and adoption
of computer science best practices were considered from the start.

The GNSS-SDR first became popular in August 2012, with reports of GNSS
usage via extremely cheap (about $25) digital video broadcast-terrestrial (DVB-T)
receivers based on Taiwan’s Realtek RTL2832U chipset, sold in the form of USB

TABLE 6
Main Features of GNSS-SDR

GNSS-SDR

Feature Solution Remark

Operating
system

GNU/Linux, macOS,
Windows OS through
WSL

Included as a software package in Debian and
Ubuntu and in Macports for macOS. Tested
on ArchLinux, CentOS 7, Fedora, OpenSUSE,
Rocky Linux.

Programming
environment

C++ Software linters are automatically run at each
code change to ensure that high-quality coding
standards are met.

Processing mode Real-time and
post-processing

Can work in real time using a wide assortment
of commercial RF front-ends and in
post-processing mode with a number of file
formats (including input files produced by the
ION SDR Standard conversion tools).

Supported GNSS GPS L1, L2C, L5; Galileo
E1, E5a, E5b, E6;
GLONASS L1 CA, L2
CA; BeiDou B1, B3

The modular design allows for easy inclusion
of new signals.

Acquisition FFT-based signal
acquisition

A-GNSS capabilities to accelerate the time to
first fix.

Tracking Multicorrelator-based
data and pilot signal
tracking

Customizable DLL, phase-locked loop (PLL),
frequecy-locked loop (FLL). High-dynamics
capabilities. SIMD-accelerated in both i686
and ARM CPUs (see Fernández–Prades et al.
(2016a)).

Navigation Traditional least squares,
code- and carrier-based
positioning modes

Positioning engine based on RTKLIB
implementation (Takasu & Yasuda, 2009). All
possible supported GNSS signal combinations
are allowed.

    PANY et al.

dongles that allow users to watch over-the-air DVB-T European broadcast televi-
sion on their PCs. These devices typically send partially decoded MPEG transport
frames over the USB; however, by exploiting an undocumented mode of operation
of the demodulator chip, the user was able to obtain raw in-phase and quadrature
samples, stream them through the USB to a PC, and then apply the GNSS-SDR
software processing, turning the DVB-T receiver into a GNSS receiver and deliv-
ering the position in real time (see Fernández–Prades et al. (2013)). In a parallel
development, in November 2013, the European Space Agency (ESA) acknowl-
edged GNSS-SDR as one of the first 50 receivers worldwide to achieve a successful
Galileo position fix.

The project gained momentum and maturity over the years, and it currently has
a solid and valuable user base that continuously provides feedback, enhancements,
and new features. Current versions are included in major GNU/Linux distributions,
such as Debian and Ubuntu, and in Macports for Apple’s macOS. The software
package has been used in several publicly and privately funded research projects
(including the European Union Agency for the Space Programme [EUSPA], ESA,
National Science Foundation [NSF], and NASA activities, as well as educational
programs such as Google’s Summer of Code), and it has been reportedly used for
research purposes worldwide. The authors opened a discussion of quality met-
rics and key performance indicators for any generic software-defined receiver
(Fernández–Prades et al. (2016b) provided an extended online version available at
https://gnss-sdr.org/design-forces/) and proposed the concept of continuous repro-
ducibility in GNSS signal processing (Fernández–Prades et al., 2018).

The full project and source code documentation can be found online at https://
gnss-sdr.org, a website with over 5000 unique visitors per month, which contributes
to raising awareness on GNSS technology. The website content is also available on
a GitHub repository at https://github.com/gnss-sdr/geniuss-place, hence undergo-
ing public scrutiny. The project is also well connected to its software ecosystem and
existing SDR platforms. It builds on a wide range of GNU/Linux distributions and
versions (ranging from those released in 2014 to the most recent releases), and it
provides a Yocto/Openembedded layer, which allows its portability to a wide range
of embedded platforms (see Fernández–Prades (2022)).

The software produces standard outputs for observables and navigation data
(RINEX files and RTCM-104 v3.2 messages as defined by the Networked Transport
of RTCM via Internet Protocol), as well as position fixes in application-specific
messages (e.g., NMEA 0183), a variety of geographic information system-oriented
file formats (KML, GeoJSON, GPX), and custom binary outputs that allow the
observability of internal signal-processing subproducts.

3.6  AutoNav SDR

The AutoNav SDR is a MATLAB-based multi-GNSS, multi-frequency software
receiver that was developed by the Autonomous Navigation Laboratory of Inha
University, South Korea (Song et al., 2021). Its main features are presented in
Table 7. The critical point considered in the design phase of this SDR is the max-
imization of reconfigurability. Because South Korea is developing its own satel-
lite navigation system, KPS, which is targeted to operate from 2035 as reported by
Ministry of Science and ICT of Korea (2021), a flexible receiver that can process
not-yet-existent signals is required. The AutoNav SDR is designed to provide full
reconfigurability in terms of target signal combinations and signal characteristics,
especially for the easy addition of new signal proposals. To achieve this, a basic

https://gnss-sdr.org/design-forces/
https://gnss-sdr.org
https://gnss-sdr.org
https://github.com/gnss-sdr/geniuss-place

PANY et al.

framework of software receiver was designed with an appropriate processing func-
tional architecture and data structure in consideration of signal expandability. This
framework was then applied to realize an SDR for GPS L1 C/A code signal as a
first realization example by reconfiguring a configuration file via a GUI. Then, dif-
ferent signals of the other constellations (GLONASS, Galileo, BeiDou navigation
satellite system (BDS), Quasi-Zenith Satellite System (QZSS), NavIC) and frequen-
cies (L1, L2, L5) were quickly added by utilizing this expandability. In this way,
KPS signal candidates can be easily added to the SDR to evaluate and compare the
performance of each candidate in the signal design phase. Similarly, a reconfig-
urable GNSS simulator was developed at the same time with the same idea. This
MATLAB-based IF-level GNSS/KPS simulator can be ideally suited to test the nav-
igation performance of any GNSS signal as well as new KPS signals by reconfigur-
ing signal design parameters via a GUI.

Although the AutoNav SDR is targeted for post-processing only, the original cor-
relation operation in MATLAB with variables of double precision was too slow at
the beginning of its design phase. Hence, two simple accelerations were applied to
the SDR: a GPU-based acquisition module and a MEX correlator for tracking. The
GPU-based signal acquisition module was implemented in a simple way using the
Parallel Computing Toolbox of MATLAB. If the GPU is usable, local variables for
the correlation (i.e., code and carrier replicas) are generated in the GPU memory
using the gpuArray function. Then, FFT, inverse FFT, and correlations are auto-
matically performed in the GPU. Finally, the correlation results are extracted via
a gather function. With this simple approach, the execution time is reduced by a
factor of approximately 2.12 compared with the general CPU-based acquisition,
without the relatively complex development using CUDA.

Because the most time-consuming process of the receiver is the correlation in the
signal tracking, a MEX function is employed to reduce the computational burden.

TABLE 7
Main Features of AutoNav SDR

AutoNav SDR

Feature Solution Remark

Operating system Windows

Programming environment MATLAB and C

Processing mode Post-processing

Supported GNSS GPS (L1 C/A, L2C, L5), GLONASS
L1, Galileo (E1, E5a, E5b), BDS
(B1I, B1C, B2a), QZSS (L1 C/A,
L1C, L2C, L5), NavIC L5

Free selection of signal
combination

Acquisition GPU-based acquisition Simple implementation
using the Parallel
Computing Toolbox in
MATLAB

Tracking MEX correlator 18/8-bit code/carrier
replica tables, 32-bit
code/-carrier NCOs, bit
shift operations

Further features API, easy addition of new signals,
RINEX observation logging, RF
interference mitigation based on
pulse blanking, direct state-tracking
Kalman filter

    PANY et al.

The MEX function connects the MATLAB environment to the external function
written in C/C++ language with an appropriate wrapper function so that the user
can call it within MATLAB. The MEX correlator was written in the standard C
language and uses integer-based variables. The SDR pre-generates the code and
carrier replica tables in the initialization process with resolutions of 18 bits and
8 bits, respectively. The code and carrier numerically controlled oscillators (NCOs)
have a resolution of 32 bits; thus, the indices of the tables for current code and car-
rier replica generation are calculated via bit shift operations of 14 bits and 24 bits,
respectively. With these implementations, the overall execution time became much
faster (approximately five-fold faster) than the original double precision-based
code, but it still cannot operate in real time. Currently, Inha University is develop-
ing an FPGA-based real-time GNSS receiver in which only the correlator is substi-
tuted by the FPGA board at the original AutoNav SDR.

To further enhance its flexibility, the AutoNav SDR also provides APIs at each
part of the signal processing chain (such as the ring buffer, acquisition, tracking,
navigation message extraction, position calculation, etc.). The API design was
influenced by the ipexSR of Stöber et al. (2010) and was implemented in a sim-
ilar manner with the dynamic link library (DLL). Because MATLAB can load a
library from DLL and call a function within the library, the API concept of the C/
C++-based software can also be used analogously in the MATLAB environment.
If the SDR is converted to an executable file (.exe) and provided to a user, the user
can freely modify functions or develop algorithms by generating the DLL, without
the need for the whole source code.

3.7  PyChips

PyChips is a relatively new object-oriented satnav SDR that has been developed
from scratch since 2018. It is based on the experience gained from two previous imple-
mentations, namely, the MATLAB SDR that was distributed with the Wideband
Transform-domain Instrumentation GNSS Receiver (TRIGR) (see Section 5) and the
ChameleonChips GNSS SDR Toolbox for MATLAB (Gunawardena, 2014).

One of the key promises of SDRs is their flexibility and, hence, their utility as
an education and research tool. In the satnav context, various publicly available
SDRs can be used to teach basic courses on satnav systems, signal processing, and
receiver design. However, there is an implicit assumption that students have the
relevant programming language skills for a particular SDR. Students are expected
to understand the inner workings of the SDR in detail and, more importantly, to
make modifications to the code to add advanced capabilities and/or revisions as
part of their graduate research projects. While somewhat valid, this assumption of
programming language proficiency may not always hold true. Further, depending
on the situation, it may be more efficient and beneficial for graduate students to
make deeper progress on their research instead of spending time in becoming pro-
gramming language experts. PyChips was developed from the ground up to sup-
port this notion. A more detailed introduction to PyChips has been provided by
Gunawardena (2021). The main features of PyChips are summarized in Table 8.
This receiver is implemented in Python with C++ bindings, where performance is
absolutely essential for reasonably fast execution.

The current version of PyChips supports the creation and definition of entire
constellations of satellites with advanced next-generation signal structures, along
with interference sources and channel effects. The simulation portion of PyChips
(comprising numerous source objects) synthesizes these signals at the sample
level onto one or more sample streams that are grouped into objects called stream

PANY et al.

containers. A stream container is an abstraction of a satnav receiver’s antenna(s)
and RF front-end subsystem. The stream container can be multi-frequency or
multi-element, can have different sample rates and bandwidths, and can have an IF
or baseband sampling architecture and any and all combinations thereof. If the use
case involves live-sky signal processing, then one or more sampled SDR data files
can be specified to instantiate a stream container object that is functionally identi-
cal and imperceptible from a simulated one. PyChips uses the ION SDR Standard
to determine the appropriate C/C++ decoder/unpacker/re-quantizer kernel to use
for reading and parsing these SDR files.

TABLE 8
Main Features of PyChips

PyChips

Feature Solution Remark

Operating system Windows x64 Due to pre-compiled C/C++ bindings
that currently use the Windows API for
file reading and threading. Linux support
under development.

Programming
environment

SARDL, Python, C/C++ SDR entirely specified using JSON-based
SARDL. Assembles pre-built configurable
Python and C/C++ objects at run-time
according to user SARDL specifications.

IF sample file
input source

ION SDR Standard Parses ION metadata hierarchy to select the
appropriate decoder kernel written in C++.
Sample decoding is split across multiple
threads using a data parallel architecture.

Real-time sample
input

Not currently supported

Additional
sensors

None

Supported GNSS Supports all civilian satnav
signals (GPS, GLONASS,
Galileo, BeiDou, QZSS,
NavIC, SBAS)

Spreading codes defined as memory codes.
Code replicas specified as an assembly of
sequence objects (static, subcarrier, overlay,
mux, etc.; see Gunawardena (2021)).

Acquisition FFT-based generic
acquisition engine with
configurable coherent and
noncoherent integration
settings

Automatically detects and implements
circular vs. non-circular frequency-domain
correlation based on code length.

Tracking Generic tracking
module assembled from
configurable functional
blocks (e.g., carrier
wipe-off, code replica,
correlator, gearbox,
accumulator, etc.) and a
generic controller object—
all defined in SARDL

Employs split-sum correlation
(Gunawardena & van Graas, 2006). Always
operates on a 1-ms block of samples and
retires the current block before operating
on the next block (no sample shifting to
align with the SV time of transmission).
Direct initialization of tracking objects
configured for other signals from the same
SV (e.g., GPS L1 C/A to L1C, L2C, and L5).

Measurement
output

Yes CSV format.

Availability Versions distributed at ION
conference tutorials

Versions used at ION tutorials.

    PANY et al.

The sample streams contained in a PyChips stream container are processed using
numerous sink objects. Currently, implemented examples include virtual oscillo-
scopes and spectrum analyzers, as well as acquisition engines and signal-tracking
modules.

A unique feature of PyChips is that all of the functionalities described above
are defined/specified by a draft SDR language called Signal and ARchitecture
Description Language (SARDL). SARDL is implemented as a grouping of JavaScript
object notation (JSON) files. Current and next-generation advanced satnav signal
structures and the receiver architectures used to process them are constructed by
assembling pre-built low-level functional blocks. For example, as described by
Gunawardena (2021), the user can build receiver tracking modules to process GPS
L1C TMBOC(6, 1, 4/33) and Galileo E1OS CBOC(6, 1, 1/11) MBOC signals as sim-
ple BOC(1, 1) signals to model a low-cost, low-power mass market receiver or a
high-end survey-grade receiver taking full advantage of these “dual-personality”
signals.

Indeed, at this stage, the goal of the PyChips project is to hone SARDL with a
vast number of diverse signal specifications, use cases, and applications in order to
explore the concept of a “satnav signals and systems specification language.” Today,
the reference SDR that implements SARDL is written in Python and is therefore
called PyChips. However, the ultimate goal of this effort is to contribute toward
satnav SDR implementations that have the performance, power efficiency, and
scalability of ASICs with the flexibility, reconfigurability, adaptability, and ease of
use of software.

3.8  UAB Snapshot GNSS Software Receiver

The UAB snapshot GNSS software receiver (cf. Table 9) was originally developed
as part of the research activities on indoor GNSS positioning carried out by the
Signal Processing for Communications and Navigation (SPCOMNAV) group at
UAB in 2007. At that time, the group was involved in one of two parallel contracts
awarded by the ESA to assess the feasibility of indoor GNSS positioning, under the
project named DINGPOS. The proposed strategy was to rely on a combination of
technologies such as Wi-Fi, ultra wideband, 2G/3G cellular networks, and GNSS, as
discussed by López-Salcedo et al. (2008). As far as GNSS was concerned, UAB was
in charge of developing the software implementation of a so-called high-sensitivity
GNSS (HS-GNSS) receiver, which would be able to operate under the extremely
weak signal conditions experienced indoors. This implementation involves work-
ing with attenuation losses of 10–40 dB, which drive the effective carrier power
to noise power spectral density, i.e., C/N0, down to values for which conventional
GNSS receivers cannot operate.

The proposed HS-GNSS receiver implementation was based on a snapshot archi-
tecture in which a batch of input samples is processed at one time to provide the
user’s position. This approach is often referred to in the literature as “push-to-fix”
or “acquisition-only” because no tracking stage is actually implemented at the
receiver. Consequently, the receiver operates in open-loop mode by providing at
its output the observables obtained directly from the acquisition stage. The imple-
mentation of the HS-GNSS software receiver was strongly influenced by the
work already initiated by Gonzalo Seco-Granados before joining UAB, during his
period from 2002 to 2005 as technical staff at the European Space Research and
Technology Center of the ESA in The Netherlands, where he was leading research
activities concerning indoor GNSS and snapshot GNSS receivers. The core of the

PANY et al.

UAB snapshot GNSS receiver was inspired by the concept of double-FFT acquisi-
tion introduced by Jiménez-Baños et al. (2006). This algorithm uses two consecu-
tive FFT operations to implement the correlation of the received signal with the
local code replica and then the simultaneous estimation of the fine Doppler fre-
quency and bit synchronization. Readers interested in the double-FFT algorithm
and a detailed description of the UAB snapshot GNSS receiver implementation are
referred to the comprehensive description written by Seco-Granados et al. (2012).

From a general perspective, the UAB snapshot GNSS software receiver imple-
ments a set of specific signal-processing techniques that are tailored to indoor
working conditions. Nevertheless, the implementation is flexible and does not pre-
vent the receiver from operating efficiently in other scenarios, such as outdoors. For
an indoor environment, the most important impairment to be counteracted is the
severe attenuation due to propagation through building materials and other obsta-
cles. Attenuation of up to 40 dB can easily be experienced, thus requiring specific
action to recover as much of the lost power in order to still be able to detect GNSS
satellites. Because the received energy is the most important parameter from a sig-
nal detection and estimation viewpoint and because energy is simply the power
multiplied by the observation time, the only way to compensate for an extremely
weak received power is to increase the observation time. Thus, a longer piece of
received signal must be processed, which requires very long correlation integra-
tion times at the GNSS receiver, on the order of hundreds of milliseconds or even
a few seconds. Unfortunately, increasing the correlation time is hindered by the

TABLE 9
Main Features of the UAB Snapshot GNSS Receiver

UAB Snapshot GNSS Receiver

Feature Solution Remark

Operating system Any supported by
MATLAB

Programming
environment

MATLAB MATLAB version 6.0 (R12, 2000) or higher.

Processing mode Post-processing

Supported GNSS GPS (L1 C/A, L5),
Galileo (E1C, E5a)

Acquisition FFT-based signal
acquisition

Implementing the double-FFT algorithm for
both code correlation and bit synchronization.
Long correlations can be implemented by
noncoherently combining a set of coherent
correlations. A-GNSS is used to narrow the
acquisition search space. Compatible with
3GPP RRLP-compliant XML data.

Tracking None No tracking is implemented because the
receiver architecture is based on snapshot mode
(i.e., acquisition-only).

Navigation Weighted least
squares

Coarse-time navigation is implemented.

Further features Implements near–
far detection and
interference detection

Note: 3GPP: Third-Generation Partnership Project; RRLP: radio resource location services
protocol

    PANY et al.

presence of navigation message data symbols, residual Doppler errors, and clock
instabilities. Consequently, the approach adopted in practice by most snapshot
GNSS receivers, particularly those intended for high-sensitivity applications, is to
split a long correlation into pieces of shorter, but sufficiently long, coherent cor-
relations whose outputs are then noncoherently accumulated. This combination of
coherent and noncoherent correlation has proven to be successful in increasing the
receiver sensitivity and thus enabling the receiver to detect a few GNSS satellites
indoors. An interesting discussion on the importance of sufficiently long coherent
integrations has been provided by Pany et al. (2009).

The correlation between the received signal and the local replica is the most
important operation of a snapshot GNSS receiver because, with such correlation,
the most accurate code delay and Doppler observables must be estimated. Here,
no tracking stage is implemented, and thus, there is no opportunity to further
refine these observables in subsequent stages of the receiver. For this reason, the
correlation must be implemented in the most optimal way, taking into account
subtle details that might be ignored in conventional GNSS receiver implementa-
tions. Such optimality is achieved by the double-FFT algorithm implemented in
the UAB snapshot GNSS receiver, which applies an optimal joint estimation of the
code delay and fine Doppler over a long period of time, where potential sign tran-
sitions may occur because of the presence of data-modulating symbols. Additional
considerations, such as how to handle a non-integer number of samples when
performing the FFT, the interpolation between consecutive correlation peaks,
the code-Doppler effect over a long correlation period, etc., have been reported by
Seco-Granados et al. (2012).

The code delay and Doppler estimates provided by the acquisition stage are
directly used by the navigation module to compute the user’s position. Such
code-delay estimates are ambiguous for one code period because no absolute
time reference is available, and therefore, no other time-delay information can be
provided besides that contained with a PRN code period. Here, only one batch
of received samples is processed, and thus, no access to the transmission time
encoded onto the navigation message is generally available. As a result, the user’s
position must be computed without such time reference, which reflects a specific
feature of snapshot GNSS receivers. This problem can be solved by coarse-time
navigation, where the conventional navigation equations are augmented to include
an additional unknown that represents the missing absolute time reference.
Interested readers will find an excellent description of this method in the work by
(Van Diggelen, 2009, Ch. 4).

Since its development in 2008, the UAB snapshot GNSS receiver has been a key
tool for many research activities at the SPCOMNAV group. This software has been
used, for instance, to characterize multipath propagation indoors (López-Salcedo
et al., 2009), to assess the feasibility of using GNSS receivers in missions to the Moon,
where the weak-signal problem is similar to the indoor case (Manzano-Jurado
et al., 2014), to test near–far mitigation techniques that may appear in indoor/
space applications (Locubiche-Serra et al., 2016), to assess the impact of phase
noise (Gómez-Casco et al., 2016), and to provide GNSS positioning to internet of
things (IOT) sensors in smart cities (Minetto et al., 2020) by means of a cloud-based
implementation of the UAB snapshot GNSS receiver that was developed from 2016
to 2018.

Migration of the UAB snapshot receiver into a cloud-based implementation was
a major milestone that attracted the interest of the community and opened the
door for new applications and use cases. The interest in cloud GNSS positioning
was motivated by the fact that, at that time, GNSS software receivers were running

PANY et al.

in local computers next to the user, who collected the samples to be processed.
However, with the advent and widespread deployment of cloud computing plat-
forms such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud,
such local computers could actually be placed anywhere, and remote access could
be granted to upload and process GNSS samples in a remote server in a scalable
manner. Furthermore, this approach was well suited for a snapshot GNSS receiver
implementation, in which a batch of samples could be sent to a remote server
where the user’s position would then be computed via the same tools as in any
other snapshot GNSS receiver. These computations include using assisted GNSS
(A-GNSS) for reducing the acquisition search space, making extensive use of FFT
operations, and computing the user’s position by means of coarse-time navigation
techniques.

This concept motivated the so-called “cloudGNSSrx,” the cloud-based implemen-
tation of the UAB snapshot GNSS receiver, as described by SPCOMNAV (2019). The
architecture was based on a dockerized compilation of the MATLAB source code
implementing the UAB snapshot GNSS receiver. Then, a system of job queues,
schedulers and load balancers was built on AWS to automate and scale the remote
execution of the receiver, and an API was developed for machine-to-machine com-
munication, facilitating the provision of GNSS positioning to small IOT sensors
(Lucas-Sabola et al., 2016). In this way, IOT sensors requiring GNSS positioning
were able to offload most of the computational load to a remote server, thus signifi-
cantly reducing the power consumption and extending their battery lifetime.

Low-power GNSS positioning is one of the main applications of cloud GNSS soft-
ware receivers, because, for snapshots shorter than a few tens of milliseconds, the
energy spent in sending the GNSS samples to the cloud is balanced by the signif-
icant energy saved at the user’s terminal for not processing such samples and for
performing such processing at the cloud instead (Lucas-Sabola et al., 2017). This
feature was acknowledged by the former European GNSS Agency (GSA), now the
EUSPA, who identified the UAB cloud GNSS receiver as promising technology for
the future adoption of GNSS in the IOT domain (European Union Agency for the
Space Programme, 2018). The cloud GNSS software receiver developed by UAB was
then licensed in 2019 to the startup company Loctio, who significantly improved
the initial prototype and produced a commercial product.

It is important to remark that apart from the low-power consumption use case,
cloud GNSS software receivers can also be used to provide access to sophisticated
signal processing techniques that cannot be implemented in conventional receiv-
ers, such as advanced signal-monitoring techniques, spoofing detection, or authen-
ticated/certified positioning, the latter being reported by Rügamer et al. (2016).
Thus, there is a brilliant future ahead for cloud GNSS software receivers with many
exciting new applications to come.

3.9  The NGene Family of Receivers at Politecnico di
Torino and LINKS

The development of NGene, a GNSS software receiver, originated at Politecnico
di Torino and the LINKS Foundation in the early 2000s. At that time, the Navigation
Signal Analysis and Simulation Group was already engaged in software implemen-
tation of various sections of GNSS baseband processing. This endeavor capitalized
on the group’s extensive expertise in digital signal processing and specifically in
simulating complex communication systems.

    PANY et al.

Efforts initially focused on optimizing the acquisition and tracking stages, both
as post-processing tools and as core processing units on programmable hardware.
In 2005, under regional funding, the research team, partially affiliated with the
Istituto Superiore Mario Boella (now part of the LINKS Foundation), commenced
the development of a fully software-based, real-time GNSS receiver for GPS and
forthcoming Galileo signals.

The outcome of the work was the software receiver NGene, as documented by
Molino et al. (2009). NGene demonstrated real-time processing capabilities for GPS,
Galileo, and European Geostationary Navigation Overlay Service signal compo-
nents transmitted on the L1/E1 band. Prior to processing, the signals were subjected
to IF downconversion and digitalization by an external analog front-end device.
Communication between the front-end device and the software receiver occurred
via a USB connection. The hardware component of the receiving chain consisted
solely of the antenna, its low noise amplifier (LNA), and the analog-to-digital con-
verter with front-end filtering, with all other components being software-based.
This fundamental architecture laid the groundwork for subsequent enhancements
and has been the essential building block of the NGene receiver family.

Thanks to its reconfigurable and modular structure, NGene has long served
as the primary tool for in-lab analysis, development, and prototyping of
signal-processing algorithms and architectures. Because of its flexible implemen-
tation, NGene was adapted to process the Galileo IOV signals (GIOVE-A) and sub-
sequently to process the first Galileo signals immediately upon their availability,
as detailed by Margaria et al. (2012). As a result, the research team was among the
first worldwide to achieve a position fix using the initial four Galileo satellites.
Over time, the software receiver continued to evolve and was tailored to address
diverse applications, leveraging the advantages of software radio implementation
(see Table 10).

Today, the NGene receiver family offers configurable support for various
RF-to-IF front-ends, which connect to the software processor via USB, meeting the
requirements of numerous activities and projects. A simplified, low-complexity
version was developed to enable GNSS positioning capabilities on ARM-based
embedded processors (Gamba, Nicola, et al., 2015). Additional branches of the soft-
ware were adapted for GNSS reflectometry receiver deployment in reflectometry
tests (Gamba, Marucco, et al., 2015), evaluation of anti-jamming algorithms, and
detection of non-standard code transmission and its effects on Galileo position-
ing (Dovis et al., 2017), while also serving as a tool for studying the 2019 Galileo
outage event (Dovis et al., 2019). One of the latest branches of the NGene family
encompasses algorithms for authenticating Galileo messages using the OSNMA,
as described by Nicola et al. (2022); Gamba et al. (2020a). Furthermore, a set of
functions is being developed to support future GPS Chimera authentication service
processing (Gamba et al., 2020b).

3.10  The MATRIX SDR for Navigation with SOPs

MATRIX (Multichannel Adaptive TRansceiver Information eXtractor) is a
state-of-the-art cognitive SDR, developed at Kassas’ Autonomous Systems Perception,
Intelligence, and Navigation (ASPIN) Laboratory, for navigation with terrestrial and
space-based SOPs (Kassas et al., 2020). MATRIX continuously searches for opportune
signals from which it draws navigation and timing information, employing signal
characterization on the fly as necessary. MATRIX can produce a navigation solution
in a standalone fashion (Shamaei & Kassas, 2021a) or by fusing SOPs with sensors

PANY et al.

(e.g., IMU (Morales & Kassas, 2021), lidar (Maaref et al., 2019), etc.), digital maps
(Maaref & Kassas, 2020), and/or other signals (e.g., GNSS) (Kassas et al., 2017). Figure 1
shows MATRIX’s architecture, and Table 11 lists its main features.

TABLE 10
Main Features of the NGene Receiver Family

NGene Receiver Family

Feature Solution Remark

Operating system GNU/Linux-based Because it is based on standard libraries,
it can also run on Windows.

Programming
environment

ANSI C and assembly
(Intel x86 and ARM SIMD
instructions)

Eclipse IDE and GNU Compiler
Collection compiler.

IF sample file input
source

Binary file

Processing mode Real time and
post-processing

Can work in real time from USB-based
RF front-ends and in post-processing
mode with binary file formats.

Additional sensors

Supported GNSS GPS L1 C/A, Galileo E1

Acquisition FFT-based algorithm

Tracking Multi-correlator-based data
tracking loop

Measurement
output

Yes Acquisition, tracking, and PVT results
available as binary/text log files.

Availability Restricted Licensing of a public release currently
under discussion.

Further features Scintillation monitoring,
interference detection,
Galileo OSNMA
authentication

Specific modified versions for research
purposes.

FIGURE 1 MATRIX cognitive SDR architecture
The SDR consists of (i) USRPs to collect different radio signals, (ii) various modules to produce
navigation observables from different types of signals (e.g., cellular, LEO satellites, etc.),
(iii) external sensors (e.g., IMU, lidar, GNSS receivers, etc.), whose measurements can be fused
with the navigation observables produced by the signal modules, and (iv) a navigation filter that
fuses all measurements to produce a navigation solution.

    PANY et al.

On one hand, MATRIX has achieved the most accurate navigation results
to date in the published literature with cellular SOPs (3G code division mul-
tiple access (CDMA), 4G LTE, and 5G new radio (NR)), achieving meter-level
navigation indoors (Abdallah & Kassas, 2021) and on ground vehicles
(Maaref & Kassas, 2022) and sub-meter-level navigation on uncrewed aerial
vehicles (Khalife & Kassas, 2022). In addition, MATRIX’s efficacy has been
demonstrated in a real-world GPS-denied environment (Kassas, Khalife,
Abdallah, & Lee, 2022), achieving a position root mean squared error of 2.6 m
with 7 cellular LTE eNodeBs over a trajectory of 5 km (one of which was more
than 25 km away), during which GPS was intentionally jammed (Abdallah et al.,
2022). MATRIX has also achieved remarkable results on high-altitude aircraft,
where it was able to acquire and track cellular 3G CDMA and 4G LTE signals
at altitudes as high as 23,000 ft above ground level and from cellular towers
more than 100 km away (Kassas, Khalife, Abdallah, Lee, Jurado, et al., 2022).
Furthermore, meter-level high-altitude aircraft navigation was demonstrated
over aircraft trajectories exceeding 50 km, by fusing MATRIX’s cellular naviga-
tion observables with an altimeter (Kassas, Abdallah, et al., 2022).

On the other hand, MATRIX has achieved the first published results in the lit-
erature for exploiting unknown SpaceX’s Starlink LEO satellite signals for posi-
tioning, obtaining a horizontal positioning error of 10 m with Doppler observables
(Neinavaie et al., 2021) and 7.7 m with carrier phase observables (Khalife et al., 2022).
In addition, the first ground vehicle navigation results with multi-constellation LEO
satellites (Orbcomm, Iridium NEXT, and Starlink) were achieved with MATRIX
(Kassas et al., 2021), upon coupling its LEO navigation observables with an INS in

TABLE 11
Main Features of MATRIX

MATRIX

Feature Solution Remark

Operating system Linux, Windows

Programming
environment

C++, MATLAB, LabVIEW

IF sample file input
source

Binary file

Real-time sample
input

Yes Some SOP modules support real-time
processing.

Additional sensors IMU, GNSS

Supported GNSS GPS L1 C/A

Acquisition FFT-based signal
acquisition

Tracking DLL, PLL, FLL, Kalman
filter

Different tracking loops per SOP
module.

Measurement output Yes Acquisition, tracking, and PVT results
available as text/CSV files and via GUI.

Navigation Weighted least squares,
Kalman filter, Doppler,
code- and carrier-based
positioning modes

Availability Restricted Licensing options available via The
Ohio State University.

PANY et al.

a tightly coupled fashion through a simultaneous tracking and navigation frame-
work (Kassas et al., 2019).

3.11  Other Achievements with GNSS SDRs

Apart from the success stories described in the previous subsections, a number
of other achievements have been accomplished with GNSS SDRs, as listed in this
subsection.

The first real-time GNSS/INS integration with an SDR was achieved by
Gunawardena et al. (2004), and one of the first GNSS SDR implementations on a
GPU was reported by Hobiger et al. (2010).

GNSS SDRs are known to achieve the highest possible sensitivity, as different inte-
gration schemes or data wipe-off procedures can be performed in post-processing.
This enables very long coherent integration times, which are beneficial for sensitiv-
ity or multipath mitigation, as reported in Section 3.8. Characterization of the GPS
transmit antenna pattern with a 30-s-long coherent integration resulting in 0-dBHz
sensitivity has been discussed by Donaldson et al. (2020). The same sensitivity was
achieved by 300 noncoherent integrations, each 1 s long, by iPosi Inc. (2015) for the
purpose of indoor timing.

Graphical programming languages, such as LabVIEW and Simulink, are attrac-
tive choices for implementing SDRs because of their flexibility, modularity, and
upgradability. Moreover, because SDRs are conceptualized as block diagrams,
graphical programming languages enable a one-to-one correspondence between
the architectural conceptualization and software implementation (Hamza et al.,
2009; Kassas et al., 2013).

The scope of SDRs was first extended to non-GNSS signals by McEllroy et al.
(2006). SDRs became the implementation of choice in numerous studies aimed
at exploiting SOPs for navigation purposes (Diouf et al., 2021, 2019; Kassas et al.,
2017), such as (i) cellular 3G CDMA (Khalife et al., 2018; Pesyna et al., 2011;
Yang & Soloviev, 2018), 4G LTE (del Peral-Rosado et al., 2017; Ikhtiari, 2019; Kang
et al., 2019; Shamaei & Kassas, 2018; Shamaei et al., 2018; Wang et al., 2022; Yang
et al., 2022), and 5G NR (Abdallah & Kassas, 2022; del Peral-Rosado et al., 2022;
Fokin & Volgushev, 2022; Lapin et al., 2022; Santana et al., 2021; Shamaei & Kassas,
2021b; Tang & Peng, 2022); (ii) AM/FM radio (Chen et al., 2020; McEllroy, 2006;
Psiaki & Slosman, 2022; Souli et al., 2021); (iii) digital television (Souli et al., 2020,
2022; Yang & Soloviev, 2020); and (iv) LEO satellites (Farhangian et al., 2021;
Farhangian & Landry, 2020; Nardin et al., 2021; Orabi et al., 2021; Pinell, 2021;
Zhao et al., 2022).

Because of their enhanced analysis possibilities, GNSS SDRs proved to be very
useful for elucidating ionospheric scintillation. The first dedicated SDRs were
described by O’Hanlon et al. (2011); Peng & Morton (2011). The authors used a
general-purpose front-end that was reconfigurable for multi-GNSS multi-band
signals and a custom dual-frequency front-end. The first system further evolved
into an intelligent, scintillation event-driven data collection, as reported by Morton
et al. (2015).

Commercialization of academic SDR developments was partly discussed in
the previous sections. In addition, a major receiver manufacturer has provided
GNSS SDRs, starting with a timing receiver (Trimble Inc., 2005) and then mov-
ing to a flexible narrowband receiver (Trimble Inc., 2017). Wideband signals were
later added, with some signal processing performed on an FPGA, as reported by
PR Newswire (2021). The most recent commercial activity has been reported by
LocusLock (2022) and builds upon the software described in Section 3.1.

    PANY et al.

4  SDR FRONT-ENDS

As outlined above, a front-end is required to obtain digital samples for SDR pro-
cessing. The front-end tasks are to receive, filter, amplify, downconvert, and further
digitize and quantize the analog RF signal entering the GNSS antenna. Many dif-
ferent types of front-ends have been used for GNSS SDRs. Roughly, five different
categories can be identified:

Discrete components: Using RF-connectable components such as LNAs,
filters, or ADCs, it is comparable easy to realize the function of a front-end
and log IF or baseband samples. These setups are easy to realize, but are
often bulky and sometimes prone to interference.

Commercial signal recorders: Several companies offer GNSS signal
recorders that allow one to record (and often to replay) one or more GNSS
frequency bands. These recorders usually do not implement a real-time
connection to an SDR.

Generic non-GNSS front-ends: SDR technology is used in many different
fields of electrical engineering, and front-ends covering a wide frequency
range are available. Their prices range from a few dollars (Fernández–
Prades et al., 2013) to highly sophisticated multi-channel front-ends costing
several tens of thousands of dollars. The oscillator quality, bit width, and
RF-filter characteristics are not always optimal for GNSS signal processing.

Dedicated GNSS real-time front-ends: Built for the purpose of realizing
a real-time GNSS SDR, these front-ends are compact and built with discrete
components. A good example is described in Section 4.1.

ASICs: Some RF ASICs seem to target GNSS SDR use, and evaluation kits
allow streaming of IF samples, e.g., as reported by NTLAB, UAB (2022); RF
Micro Devices, Inc., Greensboro (2006).

GNSS signals need a relatively high sampling rate of the front-end, and when
connected to a PC via a USB cable, the transfer was not always reliable in early
years. Various optimizations and workarounds have been implemented, such as
watermarking the IF sample stream and skipping lost sample packets (Foerster &
Pany, 2013). With the advent of USB 3.0 and PCIe, these solutions became obsolete.

In the following section, we describe Fraunhofer USB front-ends as an example
of user needs as well as the main features and general architectures of GNSS SDR
front-ends. For a broader perspective of GNSS-compatible front-ends in the mar-
ket, the interested reader can refer to the work by (Borre, Fernández-Hernández
et al., 2022, Ch. 12).

4.1  Fraunhofer USB Front-Ends

The scientific community, along with some industrial partners, required a
multi-band solution for the upcoming civil multi-band signals in GPS and Galileo
planning. In 2006, Fraunhofer IIS developed a front-end called the L125 Triband
USB (see Figure 2(a)), which allowed recording of fixed frequencies of L1/E1, L2,
and L5/E5a. This front-end had one antenna input and, via two USB 2.0 connec-
tors, could record data streams with a sampling rate of up to 40 megasamples per
second (MSPS) and a 2- or 4-bit ADC resolution. However, increasing customer
demands for portable and flexible solutions led to a complete redesign of the USB

PANY et al.

front-end concept. One major request was reconfigurability on the SDR front-end
side. To meet these different requirements in one SDR front-end hardware com-
ponent, a new version of the USB front-end was developed that realizes signal
conditioning to an onboard FPGA, enabling desired reconfigurability on the fly.
This feature was necessary to allow for a single-band receiver with a low sampling
rate for specific real-time SDR projects, as well as a wideband and multi-frequency
front-end for other projects.

In 2012, Fraunhofer IIS (Rügamer et al., 2012) introduced the Flexiband
multi-system, multi-band USB front-end depicted in Figure 2(b). Within the last
ten years, this front-end has been used and validated in numerous scientific and
industrial projects. Furthermore, it has been commercialized and is distributed as
the “MGSE REC” product of TeleOrbit GmbH (2022).

A regular Flexiband unit consists of up to three analog reception boards, a car-
rier board with ADCs and an FPGA, and a USB 3.0 interface board. A common
antenna input port is supported, with separate front-end input signals for up to
three antenna inputs. Three dual-channel ADCs sample the incoming signal
with 81 MSPS and 8 bits in-phase/quadrature. The raw data stream is received
by an FPGA in which different digital operations such as filtering, mixing, data
rate reduction, and bit-width reduction as well as digital automatic gain control
are applied. Finally, a single multiplexed data stream is formed together with
a checksum. This multiplexed stream is sent via a USB 3.0 interface to the PC.
Data rates of up to 1296 MBit/s or 162 MByte/s for a raw data stream are sup-
ported. The Flexiband GUI software receives the raw multiplexed stream, veri-
fies its integrity, and demultiplexes it. The data streamed can be either written
to hard disk or sent to a customer application (e.g., a software receiver). The raw
samples can be stored as a multiplexed data stream, in an 8-bit/sample format,
or directly as a .mat file for MATLAB. In parallel, the ION Metadata *.sdrx is
provided.

Because of its bandwidth, sampling rates, quantization, and multiplexing schema
flexibility, the ION SDR Standard is a perfect fit to clearly and unambiguously
define the configuration for the user. Therefore, immediately after the first conclu-
sion of the ION SDR Standard, each binary raw data output file of the Flexiband
front-end is equipped with an sdrx metadata file specifying the raw data format.

Finally, a replay variant of this Flexiband exists, which reads in the raw IF samples
on hard disk using the ION SDR Standard specification and replays the digital data as
an analog RF output stream supporting multiple GNSS bands at the same time.

FIGURE 2 Two exemplary USB front-ends from Fraunhofer IIS (a) TriBand USB2.0 front-
end from 2006 (b) Flexiband USB3.0 front-end from 2012 onwards

    PANY et al.

5  ION SDR STANDARD

The previous sections have already clarified that data exchange between the
various SDRs requires a certain level of standardization. The events that led up
to the suggestion of developing what became the ION SDR Standard (also known
as the ION GNSS Metadata Standard, ION SDR Metadata Standard, GNSS SDR
Sampled Data Metadata Standard, or GNSS SDR Metadata Standard) can be
traced back to circa 1999. Building upon the successful contributions made
by Akos, the Ohio University Avionics Engineering Center undertook several
research projects leveraging GPS SDRs. One such project was called the GPS
anomalous event monitor (GAEM) (Snyder et al., 1999). This project was spon-
sored by the FAA Technical Center and led by Prof. Frank van Graas. Commercial
GPS receivers within prototype local-area augmentation system ground facilities
were experiencing brief unexplained outages. GAEM maintained a continuous
10-s history of IF samples in a circular memory buffer. When an outage occurred,
GAEM was triggered to dump this buffer to disk and collect for an additional
10 s. These sample files were then post-processed in MATLAB to determine the
cause of the anomaly. Early versions of GAEM used commercial data collec-
tion cards and had numerous issues related to their proprietary drivers. Around
2001, Gunawardena developed a refined version of GAEM based on one of the
earliest commercially available PCI-based dual-ADC-plus-FPGA development
cards. This version collected two GPS L1 data streams at 5 MSPS and 2-MHz
bandwidth. This version of GAEM was fielded at three airports, operated con-
tinuously for over three years, and helped to characterize numerous anomalous
events (Gunawardena et al., 2009). This GAEM also supported a continuous
collection mode and was used for several research projects, including the char-
acterization of GPS multipath over water (Zhu & Van Graas, 2009) and GPS/
IMU deep integration demonstrations in flight (Soloviev et al., 2004). For the
latter project, the 2-kHz raw data from a micro-electromechanical system IMU
were interleaved with SDR samples thanks to the FPGA-based architecture that
allowed for such custom capabilities.

Circa 2002, as these research projects progressed, the 2-MHz bandwidth lim-
itation of GAEM became apparent. There was a pressing need to support emerg-
ing research opportunities related to GPS L5, as well as high-fidelity GPS signal
quality monitoring. A multi-band and higher-bandwidth (24 MHz) front-end and
SDR data collection system was needed. There were only a handful of vendors sell-
ing such systems at the time, and it was not clear whether these systems would
serve the purpose for satnav SDR applications (sampling coherency concerns,
etc.). Moreover, the >$350k price tag of these systems far precluded any hope of
their purchase for university research. Thus, researchers decided to develop this
capability in-house. In 2003, a 2-channel L1/L5 front-end with 24-MHz bandwidth
and 56.32 MSPS was developed (Gunawardena et al., 2007) based on connector-
ized RF components. The sampling and collection subsystems were carried over
from GAEM.

The capabilities of the dual-frequency high-bandwidth system attracted interest
from several universities, government research groups, and a defense contractor.
To support these opportunities, the development of a new system known as the
Wideband TRIGR was completed in 2008 (Gunawardena & Van Graas, 2011). The
front-end was miniaturized to a single-frequency custom printed circuit board
module. Up to eight such modules (with the required frequency options) were
combined with an 8-channel 12-bit ADC to create modular systems for various
sponsors. The raw samples from the ADC are transferred to a PCIe FPGA card,

PANY et al.

where the eight streams are packed in various formats according to the user’s selec-
tion in a GUI. Supported formats range from any one stream at 1-bit sample depth,
any two streams at 12 bits (sign extended to 16), to all eight streams at 4 bits. The
sustained data transfer rate from the PCIe FPGA card to storage via a redundant
array of independent disks (RAID) was limited to 240 MB/s. Thus, the appropriate
format had to be selected to balance between the required capability and transfer
rate. The generated file names embed a coordinated universal time (UTC) time-
stamp as well as the packed stream order and sample depth.

The event-based data collection feature of GAEM needed to be incorporated into
Wideband TRIGR. However, the >10× data rate meant that a 10-s circular buffer
could not be easily implemented in random access memory using the 32-bit sys-
tems of the day. This issue was addressed by writing data as a sequence of smaller
files, where a new file was spawned before the current file was closed, with some
sample overlap for data integrity, a technique known as temporal splitting. A sep-
arate process was used to delete older files from the RAID array to make room for
new files unless an event was received, in which case the files surrounding the
event were moved to a folder for post-processing.

With the myriad of sample packing formats available for Wideband TRIGR,
along with the temporal splitting-based file generation scheme, it became clear that
a machine-readable metadata file needed to be included with every collection. An
XML schema was designed for this purpose.

Up until this time, apart from the FPGA-based real-time GPS receiver that was
developed and used for certain projects, all SDR files generated by GAEM and
Wideband TRIGR were post-processed in MATLAB. As others have mentioned, this
step was excruciatingly slow, especially for Wideband TRIGR data. To address this
issue and to support the rapid emergence of multi-band and multi-constellation
satnav signals, Gunawardena wrote and distributed a MATLAB SDR toolbox in
which correlation was performed in optimized C code and multi-threading was
leveraged in a parallel data architecture. This toolbox, known as ChameleonChips,
also read the XML metadata files produced by Wideband TRIGR to determine
the appropriate sample unpacking kernel to use. This work was presented at ION
GNSS+ 2013 in Nashville, TN (Gunawardena, 2013). During this presentation, it
was suggested that the satnav SDR community adopt a metadata standard—similar
to the standard developed for Wideband TRIGR—in order to alleviate the numer-
ous difficulties associated with sharing such files. This suggestion was met with
widespread support and enthusiasm. Longstanding ION members Phillip Ward,
Jade Morton, and Michael Braasch helped to pitch this idea to the ION Executive
Committee.

During the January 2014 Council Meeting in San Diego, ION approved the
process for establishing a formal standard (Gunawardena et al., 2021). The
ION GNSS SDR Metadata Working Group (WG) was formed in April 2014 with
Thomas Pany and Gunawardena as co-chairs (James Curran was later added as
a third co-chair). Membership represented academia, industry (including satnav
SDR product vendors as well as traditional satnav equipment manufacturers),
non-profit research entities, and government agencies spanning countries in
Europe, America, Asia, and Australia. The WG developed the standard as well
as associated normative software over a course of six years. With regard to the
normative software, while many individuals contributed, initial development of
the C++ object model was performed by Michael Mathews of Loctronix while
James Curran wrote much of the functionality to decode packed samples based
on the metadata specification. The draft standard was adopted as the formal ION
SDR Standard in January 2020.

    PANY et al.

5.1  Use of the ION SDR Standard

Today, the ION SDR Standard serves as a reference for describing IF formats and
is useful, for example, for public tenders or if an established format is needed. A
number of SDRs include the C++ libraries to read metadata and IF samples.

The level of exchange of IF samples between research groups is limited to some
extent, and such exchanges occur much less frequently than, e.g., the exchange
of RINEX files. This trend is related to the huge size of IF sample files and to the
fact that, for the majority of GNSS use cases, RINEX observation data or PVT
exchange is sufficient. Furthermore, GNSS SDRs still tend to use primarily the
same front-ends, and once the respective data format is known, there is obviously
no need to describe it via the XML format. A disadvantage of the C++ routines is
their generic design, which renders sample reading quite slow, as each sample is
isolated via a number of for-loops from the input files. Clements et al. (2021) pro-
posed an algorithm to automatically generate optimized code for sample reading
for a given IF format, but this proposal has not yet been manifest into a usable
implementation.

5.2  ION SDR Standard Extension

During the standardization process, a number of features were identified that
appeared to be useful for the standard; however, a lack of resources did not allow
for the inclusion of all of these features in the formal standardization procedure.
These features are described in Appendix II of ION SDR Working Group (2020). At
the ION-GNSS+ 2022 meeting in September, the following points were discussed
and will be included in Appendix II of the next version (V1.1) of the ION SDR
Standard.

5.2.1  Flexible Bit Layout

The ION SDR Standard defines a “lump” as the ordered containment of all sam-
ples occurring within an interval. The ordered containment is understood in a reg-
ular way, with the samples of individual streams held together. Clements et al.
(2021) view this aspect as a limitation, as highly efficient SDRs may use efficient
bit-packing schemes to optimize data transfer over communication lines that need
buffering. They have identified a need to distribute the samples of different streams
in interleaved ways over the lump. This interleaving cannot be described by V1.0 of
the ION SDR Standard. To overcome this limitation, the authors propose a new but
optional attribute for the lump object, called “layout.” If the layout is present, fur-
ther information on the bit packing scheme must be provided, explicitly describing
the type of each bit of a lump. The authors presented a detailed proposal for this
new lump layout following the structure of the existing standard. The proposal
even includes more advanced bit use cases, such as puncturing (e.g., explicit omis-
sion of bits) and overwriting of bits by time markers.

5.2.2  Refined Sample Rate/Epoch Definitions

Clements et al. (2021) noted that V1.0 of the ION SDR Standard makes implicit
assumptions about the timing of the sampling process that are not suitable for

PANY et al.

staggered sampling. Staggered sampling occurs if the sampling instants of differ-
ent GNSS signals are delayed with respect to each other, which might be of use for
increasing the observability of GNSS interference in a multi-antenna system. To
overcome this limitation, the authors propose the addition of two new attributes
for “stream” objects to shift the sampling epochs of different GNSS streams with
respect to each other.

5.2.3  JSON Format for Metadata Files

Comment ID 22 of the initial request for comments suggested that the WG should
consider markup languages other than XML for metadata files, specifically JSON,
YAML, and TOML (Anonymous, 2017). In 2017, this comment was addressed by
asserting that the XML format would be maintained for the time being, as nor-
mative software that parses XML had already been developed. However, the WG
responded with the assurance that “other markup languages will be considered in
the future based on community need and interest.”

As of the time of this writing and with the experience gained from developing
PyChips (a satnav SDR that is completely described using a draft signal/system
specification language based on JSON, as described in Section 3.7), it is this author’s
opinion that JSON may have some distinct advantages over XML for future appli-
cations and use cases. For example, JSON streaming is a methodology for transfer-
ring object-oriented data over communications protocols (Wikipedia, 2022) and
is widely used in well-known applications such as that described by Plotly (2022).
Hence, streaming JSON could be one way to parse SDR sample streams whose for-
mats are changing dynamically.

Figure 3 presents a notional listing for a JSON-formatted metadata description
for the Flexiband front-end XML metadata listing reported by Gunawardena et al.
(2021).

To maintain compatibility with the existing and formally adopted XML-based
metadata specification, it is understood that any adoption of another markup lan-
guage such as JSON must include open-source normative software and tools to
convert between these formats. The adoption of JSON-based metadata is currently
being considered for future versions of PyChips. Once a successful implementa-
tion has been achieved, consideration for adopting JSON as another valid option
for representing ION SDR Standard-compliant metadata in a future version of the
standard will be requested.

SUMMARY AND CONCLUSION

Since the beginning of GPS SDR developments in the mid 1990s, together with
the operational declaration of GPS, the feasibility of GPS SDR has been widely
proven by several platforms and their derivatives. We defined GNSS SDR platforms
as those implementing receiver functions in general-purpose software and proces-
sors and divided them in real-time receivers, teaching/research tools, and snapshot
receivers. We described some of these platforms, with a focus on those related to
the authors but also including other developments. In particular, and based on the
pioneering work by Akos, we described the bit-wise parallelism platform devel-
oped by the Cornell GPS group, which led to GRID by UT Austin; the MuSNAT
receiver by UniBwM, which led to IFEN GmbH’s SX3 commercial receiver; the
SoftGPS MATLAB receiver and associated book, which are widely used for GNSS

    PANY et al.

teaching and are also influencing other platforms, such as FGI-GSRx; the popular
C++ open-source GNSS-SDR by CTTC; AutoNav SDR by Inha University; PyChips
by Gunawardena, based on Python; the snapshot GNSS receiver developed by UAB,
leading to cloudGNSSrx; the real-time NGene receiver developed by LINKS, used
for early testing of the first Galileo signals and OSNMA; and the MATRIX receiver
by ASPIN for navigation with terrestrial and space-based SOPs, among others. We
provided an overview of the tasks and components of SDR front-ends, and for this
purpose, we described Fraunhofer developments from the last few years as a refer-
ence. Finally, we discussed the ION SDR Standard, officially approved by ION in
2020, and its current extensions.

FIGURE 3 Notional JSON representation of Flexiband front-end metadata from
Gunawardena et al. (2021)

PANY et al.

In view of the impact in the GNSS community and progress in the last decades,
we conclude that GNSS SDR has a promising future and will continue coexisting
with FPGA and ASIC receivers in the decades to come.

a c k n o w l e d g m e n t s a n d r e m a r k s
The authors are mainly listed in alphabetical order to reflect the variety and

importance of all contributions. The contributions have been partly edited by
Thomas Pany, who also takes responsibility for the structure of the work, the
abstract, and the introduction and is thus listed as first author. This article is based
on a contribution by the same authors to the ION-GNSS+ conference 2022 in
Denver, CO.

The GNSS SDR developments at the University of the Bundeswehr Munich,
described in Section 3.2, were supported by numerous research projects adminis-
tered by the German Aerospace Center and were financed by the German Federal
Ministry for Economic Affairs and Climate Action. The authors acknowledge finan-
cial support from the University of the Bundeswehr München for this publication.

At Northeastern University, support has been partially provided by the NSF
under awards ECCS-1845833 and CCF-2326559.

The UAB snapshot GNSS software receiver was supported in part by numerous
ESA-funded research projects and by the Spanish State Research Agency under
project PID2020-118984GB-I00.

The MATRIX SDR development at the ASPIN Laboratory was supported by
the Office of Naval Research under grants N00014-16-1-2305, N00014-19-1-2613,
and N00014-19-1-2511; the Air Force Office of Scientific Research under
grant FA9550-22-1-0476; the U.S. Department of Transportation under grant
69A3552047138 for the CARMEN University Transportation Center; and the
National Institute of Standards and Technology under grant 70NANB17H192.

The authors would like to acknowledge the work of Prof. Kai Borre, who passed
away in 2017, for his influential contributions to the GNSS SDR field over the last
decades.

The views expressed in this article are those of the individual authors and do not
reflect the official policy or position of any state or government entity.

r e f e r e n c e s
Abdallah, A., & Kassas, Z. (2021). Multipath mitigation via synthetic aperture beamforming for

indoor and deep urban navigation. IEEE Transactions on Vehicular Technology, 70(9), 8838–
8853. https://doi.org/10.1109/TVT.2021.3094807

Abdallah, A., & Kassas, Z. (2022). Opportunistic navigation using sub-6 GHz 5G downlink signals:
A case study on a ground vehicle. Proc. of the 16th European Conference on Antennas and
Propagation (EuCAP), Madrid, Spain, 1–5. https://doi.org/10.23919/EuCAP53622.2022.9769276

Abdallah, A., Kassas, Z., & Lee, C. (2022). Demo: I am not afraid of the GPS jammer: Exploiting
cellular signals for accurate ground vehicle navigation in a GPS-denied environment. Proc.
of the Workshop on Automotive and Autonomous Vehicle Security (AutoSec), San Diego, CA, 1.
https://dx.doi.org/10.14722/autosec.2022.23049

Akos, D., & Braasch, M. (1996). A software radio approach to global navigation satellite system
receiver design. Proc. of the 52nd Annual Meeting of the Institute of Navigation, Cambridge, MA,
455–463. https://www.ion.org/publications/abstract.cfm?articleID=1104

Akos, D. M. (1997). A software radio approach to global navigation satellite system receiver design
[Doctoral dissertation, Fritz J. and Dolores H. Russ College of Engineering and Technology, Ohio
University]. https://web.stanford.edu/group/scpnt/gpslab/pubs/theses/DennisAkosThesis97.
pdf

Akos, D. M., Normark, P.-L., Enge, P., Hansson, A., & Rosenlind, A. (2001). Real-time GPS software
radio receiver. Proc. of the 2001 National Technical Meeting of the Institute of Navigation, Long
Beach, CA, 809–816. https://www.ion.org/publications/abstract.cfm?articleID=194

Akos, D. M., Stockmaster, M., Tsui, J. B., & Caschera, J. (1999). Direct bandpass sampling of
multiple distinct RF signals. IEEE Transactions on Communications, 47(7), 983–988. https://
doi.org/10.1109/26.774848

https://doi.org/10.1109/TVT.2021.3094807
https://doi.org/10.23919/EuCAP53622.2022.9769276
https://dx.doi.org/10.14722/autosec.2022.23049
https://www.ion.org/publications/abstract.cfm?articleID=1104
https://web.stanford.edu/group/scpnt/gpslab/pubs/theses/DennisAkosThesis97.pdf
https://web.stanford.edu/group/scpnt/gpslab/pubs/theses/DennisAkosThesis97.pdf
https://www.ion.org/publications/abstract.cfm?articleID=194
https://doi.org/10.1109/26.774848
https://doi.org/10.1109/26.774848

    PANY et al.

Anonymous. (2017). RFC1 comments and responses. https://sdr.ion.org/RFC1_Comments_
Responses.html

Arizabaleta, M., Ernest, H., Dampf, J., Kraus, T., Sanchez-Morales, D., Dötterböck, D., Schütz, A., &
Pany, T. (2021). Recent enhancements of the multi-sensor navigation analysis tool (MuSNAT).
Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS+ 2021), St. Louis, MO, 2733–2753. https://doi.org/10.33012/2021.17960

Bernabeu, J., Palafox, F., Li, Y., & Akos, D. (2022). A collection of SDRs for global navigation
satellite systems (GNSS). Proc. of the 2022 International Technical Meeting of the Institute of
Navigation, Long Beach, CA, 906–919. https://doi.org/10.33012/2022.18230

Bhuiyan, M., Söderholm, S., Thombre, S., Ruotsalainen, L., & Kuusniemi, H. (2015). Performance
analysis of a dual frequency software-defined BeiDou receiver with B1 and B2 signals. Proc.
of the China Satellite Navigation Conference (CSNC), Xi’an, China, 827–839. Springer. http://
dx.doi.org/10.1007/978-3-662-46638-4_72

Bhuiyan, M. Z., Söderholm, S., Thombre, S., Ruotsalainen, L., & Kuusniemi, H. (2014). Overcoming
the challenges of BeiDou receiver implementation. Sensors, 14(11), 22082–22098. https://doi.
org/10.3390/s141122082

Bhuiyan, M. Z. H., Söderholm, S., Thombre, S., & Kuusniemi, H. (2022). BeiDou B1I receiver
processing. In K. Borre., I. Fernández-Hernández, J. A. López-Salcedo & M. Z. H. Bhuiyan
(Eds.), GNSS software receivers, 153–163. Cambridge University Press. https://doi.
org/10.1017/9781108934176.007

Bhuiyan, M. Z. H., Söderholm, S., Ferrara, G., Kirkko-Jaakkola, M., Kuusniemi, H., López-Salcedo, J.
A., & Fernández-Hernández, I. (2022). Galileo E1 receiver processing. In K. Borre., I. Fernández-
Hernández, J. A. López-Salcedo & M. Z. H. Bhuiyan (Eds.), GNSS software receivers, 140–152.
Cambridge University Press. https://doi.org/10.1017/9781108934176.006

Bhuiyan, M. Z. H., Honkala, S., Söderholm, S., & Kuusniemi, H. (2022). GLONASS L1OF
receiver processing. In K. Borre., I. Fernández-Hernández, J. A. López-Salcedo & M. Z. H.
Bhuiyan (Eds.), GNSS software receivers, 126–139. Cambridge University Press. https://doi.
org/10.1017/9781108934176.005

Bochkati, M., Dampf, J., & Pany, T. (2022). On the use of multi-correlator values as sufficient
statistics as basis for flexible ultra-tight GNSS/INS integration developments. Proc. of the 2022
25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 1–8.
https://doi.org/10.23919/FUSION49751.2022.9841253

Bochkati, M., Dampf, J., & Pany, T. (2023). Receiver clock estimation for RTK-grade multi-GNSS
multifrequency synthetic aperture processing. Proc. of the 2023 IEEE/ION Position, Location,
and Navigation Symposium (PLANS), Monterey, CA, 968–976. https://doi.org/10.1109/
PLANS53410.2023.10140032

Borre, K. (2003). The GPS Easy Suite—Matlab code for the GPS newcomer. GPS Solutions, 7(1),
47–51. https://doi.org/10.1007/s10291-003-0049-3

Borre, K. (2009). GPS Easy Suite II. Inside GNSS, 2, 48–51. https://www.insidegnss.com/pdf/
EasySuite.pdf

Borre, K., Akos, D., Bertelsen, N., Rinder, P., & Jensen, S. H. (2007). A software-defined GPS and
Galileo receiver, single frequency approach. Birkhäuser. https://doi.org/10.1007/978-0-8176-
4540-3

Borre, K., Fernandez-Hernandez, I., Lopez-Salcedo, J. A., & Bhuiyan, M. Z. H. (Eds.). (2022).
GNSS software receivers. Cambridge University Press. https://doi.org/10.1017/9781108934176

Borre, K., Bhuiyan, M. Z. H., Söderholm, S., Kuusniemi, H., Fernández-Hernández, I., & López-
Salcedo, J. A. (2022). GPS L1 C/A receiver processing. In K. Borre., I. Fernández-Hernández,
J. A. López-Salcedo & M. Z. H. Bhuiyan (Eds.), GNSS software receivers, 108–125. Cambridge
University Press. https://doi.org/10.1017/9781108934176.004

Chen, X., Wei, Q., Wang, F., Jun, Z., Wu, S., & Men, A. (2020). Super-resolution time of arrival
estimation for a symbiotic FM radio data system. IEEE Transactions on Broadcasting, 66(4),
847–856. https://doi.org/10.1109/TBC.2019.2957666

Clements, Z., Iannucci, P. A., Humphreys, T. E., & Pany, T. (2021). Optimized bit-packing for
bit-wise software-defined GNSS radio. Proc. of the 34th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, MO, 3749–3771.
https://doi.org/10.33012/2021.18015

Curran, J. T., Fernández–Prades, C., Morrison, A., & Bavaro, M. (2018). Innovation: The continued
evolution of the GNSS software-defined radio. GPS World, 29(1), 43–49. https://www.gpsworld.
com/innovation-the-continued-evolution-of-the-gnss-software-defined-radio/

Dampf, J., Pany, T., Bär, W., Winkel, J., Stöber, C., Fürlinger, K., Closas, P., & Garcia-Molina,
J. A. (2015). More than we ever dreamed possible: Processor technology for GNSS software
receivers in the year 2015. Inside GNSS, 10(4), 62–72. https://www.researchgate.net/
publication/289355114_More_Than_We_Ever_Dreamed_Possible_Processor_Technology_
for_GNSS_Software_Receivers_in_the_Year_2015

del Peral-Rosado, J., Estatuet-Castillo, R., López-Salcedo, J., Seco-Granados, G., Chaloupka, Z.,
Ries, L., & Garcoa-Molina, J. (2017). Evaluation of hybrid positioning scenarios for autonomous
vehicle applications. Proc. of the 30th International Technical Meeting of the Satellite Division

https://sdr.ion.org/RFC1_Comments_Responses.html
https://sdr.ion.org/RFC1_Comments_Responses.html
https://doi.org/10.33012/2021.17960
https://doi.org/10.33012/2022.18230
http://dx.doi.org/10.1007/978-3-662-46638-4_72
http://dx.doi.org/10.1007/978-3-662-46638-4_72
https://doi.org/10.3390/s141122082
https://doi.org/10.3390/s141122082
https://doi.org/10.1017/9781108934176.007
https://doi.org/10.1017/9781108934176.007
https://doi.org/10.1017/9781108934176.006
https://doi.org/10.1017/9781108934176.005
https://doi.org/10.1017/9781108934176.005
https://doi.org/10.23919/FUSION49751.2022.9841253
https://doi.org/10.1109/PLANS53410.2023.10140032
https://doi.org/10.1109/PLANS53410.2023.10140032
https://doi.org/10.1007/s10291-003-0049-3
https://www.insidegnss.com/pdf/EasySuite.pdf
https://www.insidegnss.com/pdf/EasySuite.pdf
https://doi.org/10.1007/978-0-8176-4540-3
https://doi.org/10.1007/978-0-8176-4540-3
https://doi.org/10.1017/9781108934176
https://doi.org/10.1017/9781108934176.004
https://doi.org/10.1109/TBC.2019.2957666
https://doi.org/10.33012/2021.18015
https://www.gpsworld.com/innovation-the-continued-evolution-of-the-gnss-software-defined-radio/
https://www.gpsworld.com/innovation-the-continued-evolution-of-the-gnss-software-defined-radio/
https://www.researchgate.net/publication/289355114_More_Than_We_Ever_Dreamed_Possible_Processor_Technology_for_GNSS_Software_Receivers_in_the_Year_2015
https://www.researchgate.net/publication/289355114_More_Than_We_Ever_Dreamed_Possible_Processor_Technology_for_GNSS_Software_Receivers_in_the_Year_2015
https://www.researchgate.net/publication/289355114_More_Than_We_Ever_Dreamed_Possible_Processor_Technology_for_GNSS_Software_Receivers_in_the_Year_2015

PANY et al.

of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, 2541–2553. https://doi.
org/10.33012/2017.15220

del Peral-Rosado, J., Lopez-Salcedo, J., Seco-Granados, G., Zanier, F., Crosta, P., Ioannides, R.,
& Crisci, M. (2013). Software-defined radio LTE positioning receiver towards future hybrid
localization systems. Proc. of the 31st AIAA International Communication Satellite Systems
Conference, Florence, Italy, 1–11. https://doi.org/10.2514/6.2013-5610

del Peral-Rosado, J., Nolle, P., Razavi, S., Lindmark, G., Shrestha, D., Gunnarsson, F., Kaltenberger,
F., Sirola, N., Särkkä, O., Roström, J., Vaarala, K., Miettinen, P., Pjoani, G., Canzian, L.,
Babaroglu, H., Rastorgueva-Foi, E., Talvitie, J., & Flachs, D. (2022). Design considerations of
dedicated and aerial 5G networks for enhanced positioning services. Proc. of the 10th Workshop
on Satellite Navigation Technology (NAVITEC), Noordwijk, Netherlands, 1–12. https://doi.
org/10.1109/NAVITEC53682.2022.9847557

Diouf, C., Janssen, G., Dun, H., Kazaz, T., & Tiberius, C. (2021). A USRP-based testbed for
wideband ranging and positioning signal acquisition. IEEE Transactions on Instrumentation
and Measurement, 70, 1–15. https://doi.org/10.1109/TIM.2021.3065449

Diouf, C., Janssen, G., Kazaz, T., Dun, H., Chamanzadeh, F., & Tiberius, C. (2019). A 400 Msps
SDR platform for prototyping accurate wideband ranging techniques. Proc. of the 16th Workshop
on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 1–6. https://doi.
org/10.1109/WPNC47567.2019.8970251

Donaldson, J. E., Parker, J. J., Moreau, M. C., Highsmith, D. E., & Martzen, P. D. (2020).
Characterization of on-orbit GPS transmit antenna patterns for space users. NAVIGATION,
67(2), 411–438. https://doi.org/10.1002/navi.361

Dovis, F., Linty, N., Berardo, M., Cristodaro, C., Minetto, A., Nguyen Hong, L., Pini, M., Falco,
G., Falletti, E., Margaria, D., Marucco, G., Motella, B., Nicola, M., & Gamba, M. T. (2017).
Anomalous GPS signals reported from SVN49. GPS World. https://www.gpsworld.com/
anomalous-gps-signals-reported-from-svn49/

Dovis, F., Minetto, A., Nardin, A., Falletti, E., Margaria, D., Nicola, M., & Vannucchi, M. (2019).
What happened when Galileo experienced a week-long service outage. GPS World. https://
www.gpsworld.com/why-galileo-experienced-a-week-long-service-outage

Dötterböck, D., Pany, T., Lesjak, R., Prechtl, T., & Tabatabaei, A. (2023). PRN sequence estimation
with a self-calibrating 40-element antenna array. NAVIGATION, 70(4). https://doi.org/10.33012/
navi.600

Driusso, M., Marshall, C., Sabathy, M., Knutti, F., Mathis, H., & Babich, F. (2017). Vehicular
position tracking using LTE signals. IEEE Transactions on Vehicular Technology, 66(4), 3376–
3391. https://doi.org/10.1109/TVT.2016.2589463

Eissfeller, B., & Won, J.-H. (2017). Receiver architecture. In P. J. Teunissen & O. Montenbruck
(Eds.), Springer handbook of global navigation satellite systems, 365–400. Springer. https://doi.
org/10.1007/978-3-319-42928-1

European Union Agency for the Space Programme. (2018). GNSS User Technology Report. https://
www.gsa.europa.eu/system/files/reports/gnss_user_tech_report_2018.pdf

Farhangian, F., Benzerrouk, H., & Landry, R. (2021). Opportunistic in-flight INS alignment using
LEO satellites and a rotatory IMU platform. Aerospace, 8(10), 280–281. https://doi.org/10.3390/
aerospace8100280

Farhangian, F., & Landry, R. (2020). Multi-constellation software-defined receiver for Doppler
positioning with LEO satellites. Sensors, 20(20), 5866–5883. https://doi.org/10.3390/s20205866

Fernández–Prades, C. (2022). Yocto geniux. https://github.com/carlesfernandez/yocto-geniux.
https://doi.org/10.5281/zenodo.7848142

Fernández–Prades, C., Arribas, J., & Closas, P. (2016a). Accelerating GNSS software receivers.
Proc. of the 29th International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS + 2016), Portland, OR, 44–61. https://doi.org/10.33012/2016.14576

Fernández–Prades, C., Arribas, J., & Closas, P. (2016b). Assessment of software-defined GNSS
receivers. Proc. of the 2016 8th ESA Workshop on Satellite Navigation Technologies and European
Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands, 1–9.
https://doi.org/10.1109/NAVITEC.2016.7931740

Fernández–Prades, C., Closas, P., & Arribas, J. (2013). Turning a television into a GNSS receiver.
Proc. of the 26th International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS+ 2013), Nashville, TN, 1492–1507. https://www.ion.org/publications/
abstract.cfm?articleID=11334

Fernández–Prades, C., Vilà-Valls, J., Arribas, J., & Ramos, A. (2018). Continuous reproducibility
in GNSS signal processing. IEEE Access, 6(1), 20451–20463. https://doi.org/10.1109/
ACCESS.2018.2822835

FGI. (2022). The FGI-GSRx software defined GNSS receiver goes open source. https://www.
maanmittauslaitos.fi/en/topical_issues/fgi-gsrx-software-defined-gnss-receiver-goes-open-
source

Foerster, F., & Pany, T. (2013). Device and method for producing a data stream on the basis of
data packets provided with packet sequence marks, and satellite receivers for providing the data

https://doi.org/10.33012/2017.15220
https://doi.org/10.33012/2017.15220
https://doi.org/10.2514/6.2013-5610
https://doi.org/10.1109/NAVITEC53682.2022.9847557
https://doi.org/10.1109/NAVITEC53682.2022.9847557
https://doi.org/10.1109/TIM.2021.3065449
https://doi.org/10.1109/WPNC47567.2019.8970251
https://doi.org/10.1109/WPNC47567.2019.8970251
https://doi.org/10.1002/navi.361
https://www.gpsworld.com/anomalous-gps-signals-reported-from-svn49/
https://www.gpsworld.com/anomalous-gps-signals-reported-from-svn49/
https://www.gpsworld.com/why-galileo-experienced-a-week-long-service-outage
https://www.gpsworld.com/why-galileo-experienced-a-week-long-service-outage
https://doi.org/10.33012/navi.600
https://doi.org/10.33012/navi.600
https://doi.org/10.1109/TVT.2016.2589463
https://doi.org/10.1007/978-3-319-42928-1
https://doi.org/10.1007/978-3-319-42928-1
https://www.gsa.europa.eu/system/files/reports/gnss_user_tech_report_2018.pdf
https://www.gsa.europa.eu/system/files/reports/gnss_user_tech_report_2018.pdf
https://doi.org/10.3390/aerospace8100280
https://doi.org/10.3390/aerospace8100280
https://doi.org/10.3390/s20205866
https://github.com/carlesfernandez/yocto-geniux
https://doi.org/10.5281/zenodo.7848142
https://doi.org/10.33012/2016.14576
https://doi.org/10.1109/NAVITEC.2016.7931740
https://www.ion.org/publications/abstract.cfm?articleID=11334
https://www.ion.org/publications/abstract.cfm?articleID=11334
https://doi.org/10.1109/ACCESS.2018.2822835
https://doi.org/10.1109/ACCESS.2018.2822835
https://www.maanmittauslaitos.fi/en/topical_issues/fgi-gsrx-software-defined-gnss-receiver-goes-open-source
https://www.maanmittauslaitos.fi/en/topical_issues/fgi-gsrx-software-defined-gnss-receiver-goes-open-source
https://www.maanmittauslaitos.fi/en/topical_issues/fgi-gsrx-software-defined-gnss-receiver-goes-open-source

    PANY et al.

stream (U.S. Patent No. 8451170; German Patent No. 102008014981). https://patents.google.
com/patent/US20110050491

Fokin, G., & Volgushev, D. (2022). Software-defined radio network positioning technology
design. Problem statement. Proc. of Systems of Signals Generating and Processing in the Field
of on Board Communications, Moscow, Russian Federation, 1–6. https://doi.org/10.1109/
IEEECONF53456.2022.9744391

Gamba, M. T., Marucco, G., Pini, M., Ugazio, S., Falletti, E., & Lo Presti, L. (2015). Prototyping
a GNSS-based passive radar for UAVs: An instrument to classify the water content feature of
lands. Sensors, 15(11), 28287–28313. https://doi.org/10.3390/s151128287

Gamba, M. T., Nicola, M., & Falletti, E. (2015). eNGene: An ARM based embedded real-time
software GNSS receiver. Proc. of the 28th International Technical Meeting of the Satellite Division
of the Institute of Navigation (ION GNSS+ 2015), Tampa, FL, 3178–3187. https://www.ion.org/
publications/abstract.cfm?articleID=12891

Gamba, M. T., Nicola, M., & Motella, B. (2020a). Galileo OSNMA: An implementation for ARM-
based embedded platforms. Proc. of the 2020 International Conference on Localization and GNSS
(ICL-GNSS), Tampere, Finland, 1–6. https://doi.org/10.1109/ICL-GNSS49876.2020.9115539

Gamba, M. T., Nicola, M., & Motella, B. (2020b). GPS Chimera: A software profiling analysis. Proc.
of the 33rd International Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS+ 2020), 3781–3793. https://doi.org/10.33012/2020.17717

Gómez-Casco, D., López-Salcedo, J. A., & Seco-Granados, G. (2016). Generalized integration
techniques for high-sensitivity GNSS receivers affected by oscillator phase noise. Proc. of the
2016 IEEE Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 1–5. https://
doi.org/10.1109/SSP.2016.7551809

Gunawardena, S. (2013). A universal GNSS software receiver MATLAB® toolbox for education
and research. Proc. of the 26th International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS+ 2013), Nashville, TN, 1560–1576. https://www.ion.org/
publications/abstract.cfm?articleID=11230

Gunawardena, S. (2014). A universal GNSS software receiver toolbox. Inside GNSS, 58–67. https://
insidegnss.com/a-universal-gnss-software-receiver-toolbox/

Gunawardena, S. (2021). A high performance easily configurable satnav SDR for advanced
algorithm development and rapid capability deployment. Proc. of the 2021 International
Technical Meeting of the Institute of Navigation, 539–554. https://doi.org/10.33012/2021.17808

Gunawardena, S., Pany, T., & Curran, J. (2021). ION GNSS software-defined radio metadata
standard. NAVIGATION, 68(1), 11–20. https://doi.org/10.1002/navi.407

Gunawardena, S., Soloviev, A., & van Graas, F. (2004). Real time implementation of deeply
integrated software GPS receiver and low cost IMU for processing low-CNR GPS signals. Proc.
of the 60th Annual Meeting of the Institute of Navigation, Dayton, OH, 108–114. https://www.
ion.org/publications/abstract.cfm?articleID=5602

Gunawardena, S., Soloviev, A., & van Graas, F. (2007). Wideband transform-domain GPS
instrumentation receiver for signal quality and anomalous event monitoring. NAVIGATION,
54(4), 317–331. https://www.ion.org/publications/abstract.cfm?articleID=102456

Gunawardena, S., & van Graas, F. (2006). Split-sum correlator simplifies range computations in
GPS receiver. Electronics Letters, 42, 1469–1471. https://doi.org/10.1049/el:20062921

Gunawardena, S., & van Graas, F. (2011). Multi-channel wideband GPS anomalous event
monitor. Proc. of the 24th International Technical Meeting of the Satellite Division of the Institute
of Navigation (ION GNSS 2011), Portland, OR, 1957–1968. https://www.ion.org/publications/
abstract.cfm?articleID=9744

Gunawardena, S., Zhu, Z., Uijt de Haag, M., & van Graas, F. (2009). Remote-controlled,
continuously operating GPS anomalous event monitor. NAVIGATION, 56(2), 97–113. https://
www.ION.org/publications/abstract.cfm?articleID=102491

Hamza, G., Zekry, A., & Motawie, I. (2009). Implementation of a complete GPS receiver
using Simulink. IEEE Circuits and Systems Magazine, 9(4), 43–51. https://doi.org/10.1109/
MCAS.2009.934706

Hobiger, T., Gotoh, T., Amagai, J., Koyama, Y., & Kondo, T. (2010). A GPU based real-time GPS
software receiver. GPS solutions, 14(2), 207–216. http://doi.org/10.1007/s10291-009-0135-2

Honkala, S. (2016). GLONASS satellite navigation signal implementation in a software-
defined multi-constellation satellite navigation receiver [Unpublished Master’s thesis, Aalto
University]. https://aaltodoc.aalto.fi/bitstream/handle/123456789/20169/master_Honkala_
Salomon_2016.pdf?sequence=1&isAllowed=y

Humphreys, T., Psiaki, M., Kintner, P., & Ledvina, B. (2006, September). GNSS receiver
implementation on a DSP: Status, challenges, and prospects. Proc. of the 19th International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort
Worth, TX, 2370–2382. https://www.ion.org/publications/abstract.cfm?articleID=7061

Humphreys, T. E., Bhatti, J., Pany, T., Ledvina, B., & O’Hanlon, B. (2009). Exploiting multicore
technology in software defined GNSS receivers. Proc. of the 22nd International Technical
Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA,
326–338. https://www.ion.org/publications/abstract.cfm?articleID=8436

https://patents.google.com/patent/US20110050491
https://patents.google.com/patent/US20110050491
https://doi.org/10.1109/IEEECONF53456.2022.9744391
https://doi.org/10.1109/IEEECONF53456.2022.9744391
https://doi.org/10.3390/s151128287
https://www.ion.org/publications/abstract.cfm?articleID=12891
https://www.ion.org/publications/abstract.cfm?articleID=12891
https://doi.org/10.1109/ICL-GNSS49876.2020.9115539
https://doi.org/10.33012/2020.17717
https://doi.org/10.1109/SSP.2016.7551809
https://doi.org/10.1109/SSP.2016.7551809
https://www.ion.org/publications/abstract.cfm?articleID=11230
https://www.ion.org/publications/abstract.cfm?articleID=11230
https://insidegnss.com/a-universal-gnss-software-receiver-toolbox/
https://insidegnss.com/a-universal-gnss-software-receiver-toolbox/
https://doi.org/10.33012/2021.17808
https://doi.org/10.1002/navi.407
https://www.ion.org/publications/abstract.cfm?articleID=5602
https://www.ion.org/publications/abstract.cfm?articleID=5602
https://www.ion.org/publications/abstract.cfm?articleID=102456
https://doi.org/10.1049/el:20062921
https://www.ion.org/publications/abstract.cfm?articleID=9744
https://www.ion.org/publications/abstract.cfm?articleID=9744
https://www.ION.org/publications/abstract.cfm?articleID=102491
https://www.ION.org/publications/abstract.cfm?articleID=102491
https://doi.org/10.1109/MCAS.2009.934706
https://doi.org/10.1109/MCAS.2009.934706
http://doi.org/10.1007/s10291-009-0135-2
https://aaltodoc.aalto.fi/bitstream/handle/123456789/20169/master_Honkala_Salomon_2016.pdf?sequence=1&isAllowed=y
https://aaltodoc.aalto.fi/bitstream/handle/123456789/20169/master_Honkala_Salomon_2016.pdf?sequence=1&isAllowed=y
https://www.ion.org/publications/abstract.cfm?articleID=7061
https://www.ion.org/publications/abstract.cfm?articleID=8436

PANY et al.

Humphreys, T. E., Ledvina, B. M., Psiaki, M. L., O’Hanlon, B. W., & Kintner, P. M., Jr. (2008).
Assessing the spoofing threat: Development of a portable GPS civilian spoofer. Proc. of the
21st International Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2008), Savannah, GA, 2314–2325. https://www.ion.org/publications/abstract.
cfm?articleID=8132

Humphreys, T. E., Murrian, M. J., & Narula, L. (2020). Deep-urban unaided precise global
navigation satellite system vehicle positioning. IEEE Intelligent Transportation Systems

Magazine, 12(3), 109–122. https://doi.org/10.1109/MITS.2020.2994121
IFEN GmbH. (2022). SX3 GNSS Software Receiver — ifen.com. https://www.ifen.com/receivers/

sx3-gnss-software-receiver/
Ikhtiari, N. (2019). Navigation in GNSS denied environments using software defined radios and

LTE signals of opportunities [Master’s thesis, University of Canterbury]. UC Library Repository.
http://dx.doi.org/10.26021/3061

ION SDR Working Group. (2020). Global navigation satellite systems software defined radio
sampled data metadata standard, revision 1.0. https://sdr.ion.org

iPosi Inc. (2015). iPosi GNSS signal processing and assistance; performance. https://iposi.com/
technology/

Jiménez-Baños, D., Blanco-Delgado, N., López-Risueño, G., Seco-Granados, G., & Garcia-
Rodriguez, A. (2006). Innovative techniques for GPS indoor positioning using a snapshot
receiver. Proc. of the International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS 2006), Fort Worth, TX, 2944–2955. https://www.ion.org/publications/
abstract.cfm?articleID=6834

Kang, T., Lee, H., & Seo, J. (2019). Analysis of the maximum correlation peak value and RSRQ
in LTE signals according to frequency bands and sampling frequencies. Proc. of the 2019 19th
International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South),
1182–1186. https://doi.org/10.23919/ICCAS47443.2019.8971462

Kaplan, E. (1996). Understanding GPS principles and applications. Artech House Publishers.
Kassas, Z., Abdallah, A., Lee, C., Jurado, J., Duede, J., Hoeffner, Z., Hulsey, T., Quirarte, R., &

Tay, R. (2022). Protecting the skies: GNSS-less accurate aircraft navigation with terrestrial
cellular signals of opportunity. Proc. of the 35th International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS+ 2022), Denver, CO, 1014–1025. https://doi.
org/10.33012/2022.18579

Kassas, Z., Bhatti, J., & Humphreys, T. (2013). A graphical approach to GPS software-defined
receiver implementation. Proc. of the 2013 IEEE Global Conference on Signal and Information
Processing, Austin, TX, 1226–1229. https://doi.org/10.1109/GlobalSIP.2013.6737129

Kassas, Z., Khalife, J., Abdallah, A., & Lee, C. (2020). I am not afraid of the jammer: Navigating
with signals of opportunity in GPS-denied environments. Proc. of the 33rd International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2020),
1566–1585. https://doi.org/10.33012/2020.17737

Kassas, Z., Khalife, J., Abdallah, A., & Lee, C. (2022). I am not afraid of the GPS jammer: Resilient
navigation via signals of opportunity in GPS-denied environments. IEEE Aerospace and
Electronic Systems Magazine, 37(7), 4–19. https://doi.org/10.1109/MAES.2022.3154110

Kassas, Z., Khalife, J., Abdallah, A., Lee, C., Jurado, J., Wachtel, S., Duede, J., Hoeffner, Z., Hulsey,
T., Quirarte, R., & Tay, R. (2022). Assessment of cellular signals of opportunity for high altitude
aircraft navigation. IEEE Aerospace and Electronic Systems Magazine, 37(10), 4–19. https://doi.
org/10.1109/MAES.2022.3187142

Kassas, Z., Khalife, J., Shamaei, K., & Morales, J. (2017). I hear, therefore I know where I am:
Compensating for GNSS limitations with cellular signals. IEEE Signal Processing Magazine,
34(5), 111–124. https://doi.org/10.1109/MSP.2017.2715363

Kassas, Z., Kozhaya, S., Saroufim, J., Kanj, H., & Hayek, S. (2023). A look at the stars: Navigation
with multi-constellation LEO satellite signals of opportunity. Inside GNSS Magazine, 18(4),
38–47. https://insidegnss.com/a-look-at-the-stars-navigation-with-multi-constellation-leo-
satellite-signals-of-opportunity/

Kassas, Z., Morales, J., & Khalife, J. (2019). New-age satellite-based navigation – STAN:
Simultaneous tracking and navigation with LEO satellite signals. Inside GNSS, 14(4), 56–65.
https://insidegnss.com/new-age-satellite-based-navigation-stan-simultaneous-tracking-and-
navigation-with-leo-satellite-signals/

Kassas, Z., Neinavaie, M., Khalife, J., Khairallah, N., Haidar-Ahmad, J., Kozhaya, S., & Shadram,
Z. (2021). Enter LEO on the GNSS stage: Navigation with Starlink satellites. Inside GNSS, 16(6),
42–51. https://insidegnss.com/enter-leo-on-the-gnss-stage-navigation-with-starlink-satellites/

Khalife, J., & Kassas, Z. (2018). Precise UAV navigation with cellular carrier phase measurements.
Proc. of the 2018 IEEE/ION Position, Location, and Navigation Symposium (PLANS), Monterey,
CA, 978–989. https://doi.org/10.1109/PLANS.2018.8373476

Khalife, J., & Kassas, Z. (2022). On the achievability of submeter-accurate UAV navigation with
cellular signals exploiting loose network synchronization. IEEE Transactions on Aerospace and
Electronic Systems, 58(5), 4261–4278. https://doi.org/10.1109/TAES.2022.3162770

https://www.ion.org/publications/abstract.cfm?articleID=8132
https://www.ion.org/publications/abstract.cfm?articleID=8132
https://doi.org/10.1109/MITS.2020.2994121
https://www.ifen.com/receivers/sx3-gnss-software-receiver/
https://www.ifen.com/simulators/sx3-gnss-software-receiver/
http://dx.doi.org/10.26021/3061
https://sdr.ion.org
https://iposi.com/technology/
https://iposi.com/technology/
https://www.ion.org/publications/abstract.cfm?articleID=6834
https://www.ion.org/publications/abstract.cfm?articleID=6834
https://doi.org/10.23919/ICCAS47443.2019.8971462
https://doi.org/10.33012/2022.18579
https://doi.org/10.33012/2022.18579
https://doi.org/10.1109/GlobalSIP.2013.6737129
https://doi.org/10.33012/2020.17737
https://doi.org/10.1109/MAES.2022.3154110
https://doi.org/10.1109/MAES.2022.3187142
https://doi.org/10.1109/MAES.2022.3187142
https://doi.org/10.1109/MSP.2017.2715363
https://insidegnss.com/a-look-at-the-stars-navigation-with-multi-constellation-leo-satellite-signals-of-opportunity/
https://insidegnss.com/a-look-at-the-stars-navigation-with-multi-constellation-leo-satellite-signals-of-opportunity/
https://insidegnss.com/new-age-satellite-based-navigation-stan-simultaneous-tracking-and-navigation-with-leo-satellite-signals/
https://insidegnss.com/new-age-satellite-based-navigation-stan-simultaneous-tracking-and-navigation-with-leo-satellite-signals/
https://insidegnss.com/enter-leo-on-the-gnss-stage-navigation-with-starlink-satellites/
https://doi.org/10.1109/PLANS.2018.8373476
https://doi.org/10.1109/TAES.2022.3162770

    PANY et al.

Khalife, J., Neinavaie, M., & Kassas, Z. (2022). The first carrier phase tracking and positioning
results with Starlink LEO satellite signals. IEEE Aerospace and Electronic Systems Magazine,
56(2), 1487–1491. https://doi.org/10.1109/TAES.2021.3113880

Khalife, J., Shamaei, K., & Kassas, Z. (2018). Navigation with cellular CDMA signals – part I:
Signal modeling and software-defined receiver design. IEEE Transactions on Signal Processing,
66(8), 2191–2203. https://doi.org/10.1109/TSP.2018.2799167

Lapin, I., Granados, G., Samson, J., Renaudin, O., Zanier, F., & Ries, L. (2022). STARE: Real-time
software receiver for LTE and 5G NR positioning and signal monitoring. Proc. of the Workshop
on Satellite Navigation Technology (NAVITEC), Noordwijk, Netherlands, 1–11. https://doi.
org/10.1109/NAVITEC53682.2022.9847544

Ledvina, B., Powell, S., Kintner, P., & Psiaki, M. (2003). A 12-channel real-time GPS L1 software
receiver1. Proc. of the 2003 National Technical Meeting of the Institute of Navigation, Anaheim,
CA, 767–782. https://www.ion.org/publications/abstract.cfm?articleID=3823

Ledvina, B., Psiaki, M., Humphreys, T., Powell, S., & Kintner, P. (2006). A real-time software
receiver for the GPS and Galileo L1 signals. Proc. of the 19th International Technical Meeting of
the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 2321–2333.
https://www.ion.org/publications/abstract.cfm?articleID=6942

Ledvina, B., Psiaki, M., Powell, S., & Kintner, P. (2004). Bit-wise parallel algorithms for efficient
software correlation applied to a GPS software receiver. IEEE Transactions on Wireless
Communications, 3(5), 1469–1473. https://doi.org/10.1109/TWC.2004.833467

Ledvina, B., Psiaki, M., Powell, S., & Kintner, P. (2006). Real-time software receiver (U.S. Patent No.
7010060). U.S. Patent and Trademark Office. https://patents.google.com/patent/US7010060/en

Ledvina, B., Psiaki, M., Powell, S., & Kintner, P. (2007). Real-time software receiver (U.S. Patent No.
7305021). U.S. Patent and Trademark Office. https://patents.google.com/patent/US7305021B2/en

Ledvina, B., Psiaki, M., Sheinfeld, D., Cerruti, A., Powell, S., & Kintner, P. (2004). A real-time
GPS civilian L1/L2 software receiver. Proc. of the International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS 2004), Long Beach, CA, 986–1005. https://
www.ion.org/publications/abstract.cfm?articleID=5775

Lightsey, G., Humphreys, T., Bhatti, J., Joplin, A., O’Hanlon, B., & Powell, S. (2014). Demonstration
of a space capable miniature dual frequency GNSS receiver. NAVIGATION, 61(1), 53–64.
https://doi.org/10.1002/navi.52

Locubiche-Serra, S., López-Salcedo, J. A., & Seco-Granados, G. (2016). Statistical near-far
detection techniques for GNSS snapshot receivers. Proc. of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Shanghai, China, 6570–6574. https://doi.
org/10.1109/ICASSP.2016.7472943

Locus Lock. (2022). Reliable, accurate, and intelligent GPS lock. https://locuslock.com
López-Salcedo, J. A., Capelle, Y., Toledo, M., Seco, G., López-Vicario, J., Kubrak, D., Monnerat,

M., Mark, A., & Jiménez, D. (2008). DINGPOS: A hybrid indoor navigation platform for GPS
and Galileo. Proc. of the International Technical Meeting of the Satellite Division of the Institute
of Navigation (ION GNSS 2008), Savannah, GA, 1780–1791. https://www.ion.org/publications/
abstract.cfm?articleID=8090

López-Salcedo, J. A., Parro-Jiménez, J. M., & Seco-Granados, G. (2009). Multipath detection
metrics and attenuation analysis using a GPS snapshot receiver in harsh environments.
Proc. of the 2009 3rd European Conference on Antennas and Propagation (EuCAP), Berlin,
Germany, 3692–3696. https://ieeexplore.ieee.org/document/5068391

Lucas-Sabola, V., Seco-Granados, G., López-Salcedo, J. A., García-Molina, J., & Crisci, M. (2017).
Efficiency analysis of cloud GNSS signal processing for IoT applications. Proc. of the 30th
International Technical Meeting of the Satellite Division of the Institute of Navigation (ION
GNSS+ 2017), Portland, OR, 3843–3852. https://doi.org/10.33012/2017.15237

Lucas-Sabola, V., Seco-Granados, G., López-Salcedo, J. A., García-Molina, J. A., & Crisci, M.
(2016, June). Cloud GNSS receivers: New advanced applications made possible. Proc. of the
2016 International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, 1–6.
https://doi.org/10.1109/ICL-GNSS.2016.7533852

Maaref, M., & Kassas, Z. (2020). Ground vehicle navigation in GNSS-challenged environments
using signals of opportunity and a closed-loop map-matching approach. IEEE Transactions
on Intelligent Transportation Systems, 21(7), 2723–2723. https://doi.org/10.1109/
TITS.2019.2907851

Maaref, M., & Kassas, Z. (2022). Autonomous integrity monitoring for vehicular navigation with
cellular signals of opportunity and an IMU. IEEE Transactions on Intelligent Transportation
Systems, 23(6), 5586–5601. https://doi.org/10.1109/TITS.2021.3055200

Maaref, M., Khalife, J., & Kassas, Z. (2019). Lane-level localization and mapping in GNSS-
challenged environments by fusing Lidar data and cellular pseudoranges. IEEE Transactions
on Intelligent Vehicles, 4(1), 73–89. https://doi.org/10.1109/TIV.2018.2886688

Manzano-Jurado, M., Alegre-Rubio, J., Pellacani, A., Seco-Granados, G., López-Salcedo, J. A.,
Guerrero, E., & García-Rodríguez, A. (2014). Use of weak GNSS signals in a mission to the
moon. Proc. of the 2014 7th ESA Workshop on Satellite Navigation Technologies and European

https://doi.org/10.1109/TAES.2021.3113880
https://doi.org/10.1109/TSP.2018.2799167
https://doi.org/10.1109/NAVITEC53682.2022.9847544
https://doi.org/10.1109/NAVITEC53682.2022.9847544
https://www.ion.org/publications/abstract.cfm?articleID=3823
https://www.ion.org/publications/abstract.cfm?articleID=6942
https://doi.org/10.1109/TWC.2004.833467
https://patents.google.com/patent/US7010060/en
https://patents.google.com/patent/US7305021B2/en
https://www.ion.org/publications/abstract.cfm?articleID=5775
https://www.ion.org/publications/abstract.cfm?articleID=5775
https://doi.org/10.1002/navi.52
https://doi.org/10.1109/ICASSP.2016.7472943
https://doi.org/10.1109/ICASSP.2016.7472943
https://locuslock.com
https://www.ion.org/publications/abstract.cfm?articleID=8090
https://www.ion.org/publications/abstract.cfm?articleID=8090
https://ieeexplore.ieee.org/document/5068391
https://doi.org/10.33012/2017.15237
https://doi.org/10.1109/ICL-GNSS.2016.7533852
https://doi.org/10.1109/TITS.2019.2907851
https://doi.org/10.1109/TITS.2019.2907851
https://doi.org/10.1109/TITS.2021.3055200
https://doi.org/10.1109/TIV.2018.2886688

PANY et al.

Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands, 1–8.
http://dx.doi.org/10.1109/NAVITEC.2014.7045151

Margaria, D., Linty, N., Favenza, A., Nicola, M., Musumeci, L., Falco, G., Falletti, E., Pini, M.,
Fantino, M., & Dovis, F. (2012). Contact! – First acquisition and tracking of IOV Galileo signals.
Inside GNSS, 7, 45–55. https://insidegnss.com/wp-content/uploads/2018/01/IGM_janfeb12-
NavSAS.pdf

McEllroy, J. (2006). Navigation using signals of opportunity in the AM transmission band
[Master’s thesis, Air Force Institute of Technology]. AFIT Scholar. https://scholar.afit.edu/cgi/
viewcontent.cgi?article=4453&context=etd

McEllroy, J., Raquet, J., & Temple, M. (2006). Use of a software radio to evaluate signals of
opportunity for navigation. Proc. of the 19th International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 126–133. https://www.
ion.org/publications/abstract.cfm?articleID=6768

Miller, N. S., Koza, T. J., Morgan, S. C., Martin, S. M., Neish, A., Grayson, R., & Reid, T. (2023).
SNAP: A Xona Space Systems and GPS software-defined receiver. Proc. of the 2023 IEEE/ION
Position, Location and Navigation Symposium (PLANS), Monterey, CA, 897–904. https://doi.
org/10.1109/PLANS53410.2023.10139956

Minetto, A., Dovis, F., Vesco, A., Garcia-Fernandez, M., López-Cruces, À., Trigo, J. L., Molina, M.,
Pérez-Conesa, A., Gáñez-Fernández, J., Seco-Granados, G., & López-Salcedo, J. A. (2020). A
testbed for GNSS-based positioning and navigation technologies in smart cities: The HANSEL
project. Smart Cities, 3(4), 1219–1241. https://doi.org/10.3390/smartcities3040060

Ministry of Science and ICT of Korea. (2021). Launch to become the world’s seventh ‘space
powerhouse’! https://www.msit.go.kr/eng/bbs/view.do?sCode=eng&mId=4&mPid=2&pageIndex=
36&bbsSeqNo=42&nttSeqNo=568&searchOpt=ALL&searchTxt=

Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26–38.
https://doi.org/10.1109/35.393001

Molino, A., Nicola, M., Pini, M., & Fantino, M. (2009). N-GENE GNSS software receiver for
acquisition and tracking algorithms validation. Proc. of the 17th European Signal Processing
Conference, Glasgow, UK, 2171–2175. https://ieeexplore.ieee.org/document/7077862

Morales, J., & Kassas, Z. (2021). Tightly-coupled inertial navigation system with signals of
opportunity aiding. IEEE Transactions on Aerospace and Electronic Systems, 57(3), 1930–1948.
https://doi.org/10.1109/TAES.2021.3054067

Morton, Y., Jiao, Y., & Taylor, S. (2015). High-latitude and equatorial ionospheric scintillation based
on an event-driven multi-GNSS data collection system. Proc. of the 14th International Ionospheric
Effects Symposium, Alexandria, VA. https://api.semanticscholar.org/CorpusID:53550046

Murrian, M. J., Narula, L., Iannucci, P. A., Budzien, S., O’Hanlon, B.W., Powell, S. P., & Humphreys,
T. E. (2021). First results from three years of GNSS interference monitoring from low Earth
orbit. NAVIGATION, 68(4), 673–685. https://doi.org/10.1002/navi.449

Nardin, A., Dovis, F., & Fraire, J. (2021). Empowering the tracking performance of LEO-based
positioning by means of meta-signals. IEEE Journal of Radio Frequency Identification, 5(3),
244–253. https://doi.org/10.1109/JRFID.2021.3077082

Neinavaie, M., Khalife, J., & Kassas, Z. (2021). Acquisition, Doppler tracking, and positioning with
Starlink LEO satellites: First results. IEEE Transactions on Aerospace and Electronic Systems,
58(3), 2606–2610. https://doi.org/10.1109/TAES.2021.3127488

Nichols, H. A., Murrian, M. J., & Humphreys, T. E. (2022). Software-defined GNSS is ready for
launch. Proc. of the 35th International Technical Meeting of the Satellite Division of the Institute
of Navigation (ION GNSS+ 2022), Denver, CO, 996–1013. https://doi.org/10.33012/2022.18313

Nicola, M., Motella, B., Pini, M., & Falletti, E. (2022). Galileo OSNMA public observation
phase: Signal testing and validation. IEEE Access, 10, 27960–27969. https://doi.org/10.1109/
ACCESS.2022.3157337

NTLAB, UAB. (2022). Unique ICs for GNSS Receivers. https://ntlab.lt/
O’Hanlon, B. W., Psiaki, M. L., Powell, S., Bhatti, J. A., Humphreys, T. E., Crowley, G., & Bust, G.

S. (2011). Cases: A smart, compact GPS software receiver for space weather monitoring. Proc.
of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2011), Portland, OR, 274–2753. https://doi.org/10.15781/T2N010949

Orabi, M., Khalife, J., & Kassas, Z. (2021). Opportunistic navigation with Doppler measurements
from Iridium Next and Orbcomm LEO satellites. Proc. of the IEEE Aerospace Conference, Big
Sky, MT, 1–9. https://doi.org/10.1109/AERO50100.2021.9438454

Pany, T., Dötterböck, D., Gomez-Martinez, H., Hammed, M. S., Hörkner, F., Kraus, T., Maier, D.,
Sanchez-Morales, D., Schütz, A., Klima, P., & Ebert, D. (2019). The multi-sensor navigation
analysis tool (MuSNAT) – Architecture, LiDAR, GPU/CPU GNSS signal processing. Proc. of the
32nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION
GNSS+ 2019), Miami, FL, 4087–4115. https://doi.org/10.33012/2019.17128

Pany, T., Eissfeller, B., Hein, G., Moon, S., & Sanroma, D. (2004). IPEXSR: A PC based software
GNSS receiver completely developed in Europe. Proc. of the ELMAR-2010, Zadar, Croatia,
407–416. https://ieeexplore.ieee.org/document/5606128

http://dx.doi.org/10.1109/NAVITEC.2014.7045151
https://insidegnss.com/wp-content/uploads/2018/01/IGM_janfeb12-NavSAS.pdf
https://insidegnss.com/wp-content/uploads/2018/01/IGM_janfeb12-NavSAS.pdf
https://scholar.afit.edu/cgi/viewcontent.cgi?article=4453&context=etd
https://scholar.afit.edu/cgi/viewcontent.cgi?article=4453&context=etd
https://www.ion.org/publications/abstract.cfm?articleID=6768
https://www.ion.org/publications/abstract.cfm?articleID=6768
https://doi.org/10.1109/PLANS53410.2023.10139956
https://doi.org/10.1109/PLANS53410.2023.10139956
https://doi.org/10.3390/smartcities3040060
https://www.msit.go.kr/eng/bbs/view.do%3FsCode%3Deng%26mId%3D4%26mPid%3D2%26pageIndex%3D36%26bbsSeqNo%3D42%26nttSeqNo%3D568%26searchOpt%3DALL%26searchTxt%3D
https://www.msit.go.kr/eng/bbs/view.do%3FsCode%3Deng%26mId%3D4%26mPid%3D2%26pageIndex%3D36%26bbsSeqNo%3D42%26nttSeqNo%3D568%26searchOpt%3DALL%26searchTxt%3D
https://doi.org/10.1109/35.393001
https://ieeexplore.ieee.org/document/7077862
https://doi.org/10.1109/TAES.2021.3054067
https://api.semanticscholar.org/CorpusID:53550046
https://doi.org/10.1002/navi.449
https://doi.org/10.1109/JRFID.2021.3077082
https://doi.org/10.1109/TAES.2021.3127488
https://doi.org/10.33012/2022.18313
https://doi.org/10.1109/ACCESS.2022.3157337
https://doi.org/10.1109/ACCESS.2022.3157337
https://ntlab.lt/
https://doi.org/10.15781/T2N010949
https://doi.org/10.1109/AERO50100.2021.9438454
https://doi.org/10.33012/2019.17128
https://ieeexplore.ieee.org/document/5606128

    PANY et al.

Pany, T., Falk, N., Riedl, B., Hartmann, T., Stangl, G., & Stöber, C. (2012). Software GNSS receiver:
An answer for precise positioning research. GPS World, 23(9), 60–66. https://www.gpsworld.
com/software-gnss-receiver-an-answer-for-precise-positioning-research/

Pany, T., Förster, F., & Eissfeller, B. (2004). Real-time processing and multipath mitigation of high-
bandwidth L1/L2 GPS signals with a PC-based software receiver. Proc. of the 17th International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2004), Long
Beach, CA, 971–985. https://www.ion.org/publications/abstract.cfm?articleID=5774

Pany, T., Kaniuth, R., & Eissfeller, B. (2005). Deep integration of navigation solution and signal
processing. Proc. of the 18th International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS 2005), Long Beach, CA, 1095–1102. https://www.ion.org/
publications/abstract.cfm?articleID=6305

Pany, T., Moon, S. W., Irsigler, M., Eissfeller, B., & Fürlinger, K. (2003). Performance assessment
of an under-sampling SWC receiver for simulated high-bandwidth GPS/Galileo signals and
real signals. Proc. of the 16th International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, 103–116. https://www.ion.org/
publications/abstract.cfm?articleID=5187

Pany, T., Riedl, B., Winkel, J., Wörz, T., Schweikert, R., Niedermeier, H., Lagrasta, S., López-
Risueño, G., & Jiménez-Baños, D. (2009). Coherent integration time: The longer, the better.
Inside GNSS, 4(6), 52–61. https://www.insidegnss.com/auto/novdec09-wp.pdf

Peng, S., & Morton, Y. (2011). A USRP2-based multi-constellation and multi-frequency GNSS
software receiver for ionosphere scintillation studies. Proc. of the 2011 International Technical
Meeting of the Institute of Navigation, San Diego, CA, 1033–1042. https://www.ion.org/
publications/abstract.cfm?articleID=9551

Pesyna, K., Kassas, Z., Bhatti, J., & Humphreys, T. (2011). Tightly-coupled opportunistic navigation
for deep urban and indoor positioning. Proc. of the 24th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, 3605–3616.
https://www.ion.org/publications/abstract.cfm?articleID=9914

Pesyna, K. M., Jr., Heath, R. W., Jr., & Humphreys, T. E. (2014). Centimeter positioning with a
smartphone-quality GNSS antenna. Proc. of the 27th International Technical Meeting of the
Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Portland, OR, 1568–1577.
https://www.ion.org/publications/abstract.cfm?articleID=12308

Pinell, C. (2021). Receiver architectures for positioning with low Earth orbit satellite signals
[Unpublished Master’s thesis, Lulea University of Technology, School of Electrical Engineering].
http://www.diva-portal.org/smash/get/diva2:1638231/FULLTEXT01.pdf

Plotly. (2022). Plotly JSON chart schema. https://plotly.com/chart-studio-help/json-chart-schema/
PR Newswire. (2021). New trimble DA2 receiver boosts performance of trimble catalyst GNSS

positioning service. https://www.prnewswire.com/news-releases/new-trimble-da2-receiver-
boosts-performance-of-trimble-catalyst-GNSS-positioning-service-301381160.html

Psiaki, M. (2006). Real-time generation of bit-wise parallel representations of over-sampled PRN
codes. IEEE Transactions on Wireless Communications, 5(3), 487–491. https://doi.org/10.1109/
TWC.2006.1611075

Psiaki, M., Humphreys, T., Mohiuddin, S., Powell, S., Cerruti, A., & Kintner, P. (2006). Searching
for Galileo. Proc. of the 19th International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS 2006), Fort Worth, TX, 1567–1575. https://www.ion.org/
publications/abstract.cfm?articleID=6973

Psiaki, M., & Slosman, B. (2022). Tracking digital FM OFDM signals for the determination of
navigation observables. NAVIGATION, 69(2). https://doi.org/10.33012/navi.521

RF Micro Devices, Inc., Greensboro. (2006). RFMD announces availability of the RFMD(R) GPS
RF8110 scalable GPS solution. https://ir.qorvo.com/node/12736/pdf

Rügamer, A., Förster, F., Stahl, M., & Rohmer, G. (2012). A flexible and portable multiband GNSS
front-end system. Proc. of the 25th International Technical Meeting of the Satellite Division of
the Institute of Navigation (ION GNSS 2012), Nashville, TN, 2378–2389. https://www.ion.org/
publications/abstract.cfm?articleID=10432

Rügamer, A., Rubino, D., Lukcin, I., Taschke, S., Stahl, M., & Felber, W. (2016). Secure position
and time information by server side PRS snapshot processing. Proc. of the 29th International
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2016),
Portland, OR, 3002–3017. https://doi.org/10.33012/2016.14781

Santana, G., de Cristo, R., & Branco, K. (2021). Integrating cognitive radio with unmanned aerial
vehicles: An overview. Sensors, 21(3), 830–856. https://doi.org/10.3390/s21030830

Seco-Granados, G., López-Salcedo, J. A., Jiménez-Baños, D., & López-Risueño, G. (2012).
Challenges in indoor global navigation satellite systems: Unveiling its core features in
signal processing. IEEE Signal Processing Magazine, 29(2), 108–131. https://doi.org/10.1109/
MSP.2011.943410

Shamaei, K., & Kassas, Z. (2018). LTE receiver design and multipath analysis for navigation in
urban environments. NAVIGATION, 65(4), 655–675. https://doi.org/10.1002/navi.272

https://www.gpsworld.com/software-gnss-receiver-an-answer-for-precise-positioning-research/
https://www.gpsworld.com/software-gnss-receiver-an-answer-for-precise-positioning-research/
https://www.ion.org/publications/abstract.cfm?articleID=5774
https://www.ion.org/publications/abstract.cfm?articleID=6305
https://www.ion.org/publications/abstract.cfm?articleID=6305
https://www.ion.org/publications/abstract.cfm?articleID=5187
https://www.ion.org/publications/abstract.cfm?articleID=5187
https://www.insidegnss.com/auto/novdec09-wp.pdf
https://www.ion.org/publications/abstract.cfm?articleID=9551
https://www.ion.org/publications/abstract.cfm?articleID=9551
https://www.ion.org/publications/abstract.cfm?articleID=9914
https://www.ion.org/publications/abstract.cfm?articleID=12308
http://www.diva-portal.org/smash/get/diva2:1638231/FULLTEXT01.pdf
https://plotly.com/chart-studio-help/json-chart-schema/
https://www.prnewswire.com/news-releases/new-trimble-da2-receiver-boosts-performance-of-trimble-catalyst-GNSS-positioning-service-301381160.html
https://www.prnewswire.com/news-releases/new-trimble-da2-receiver-boosts-performance-of-trimble-catalyst-GNSS-positioning-service-301381160.html
https://doi.org/10.1109/TWC.2006.1611075
https://doi.org/10.1109/TWC.2006.1611075
https://www.ion.org/publications/abstract.cfm?articleID=6973
https://www.ion.org/publications/abstract.cfm?articleID=6973
https://doi.org/10.33012/navi.521
https://ir.qorvo.com/node/12736/pdf
https://www.ion.org/publications/abstract.cfm?articleID=10432
https://www.ion.org/publications/abstract.cfm?articleID=10432
https://doi.org/10.33012/2016.14781
https://doi.org/10.3390/s21030830
https://doi.org/10.1109/MSP.2011.943410
https://doi.org/10.1109/MSP.2011.943410
https://doi.org/10.1002/navi.272

PANY et al.

Shamaei, K., & Kassas, Z. (2021a). A joint TOA and DOA acquisition and tracking approach for
positioning with LTE signals. IEEE Transactions on Signal Processing, 69, 2689–2705. https://
doi.org/10.1109/TSP.2021.3068920

Shamaei, K., & Kassas, Z. (2021b). Receiver design and time of arrival estimation for opportunistic
localization with 5G signals. IEEE Transactions on Wireless Communications, 20(7), 4716–4731.
https://doi.org/10.1109/TWC.2021.3061985

Shamaei, K., Khalife, J., & Kassas, Z. (2018). Exploiting LTE signals for navigation: Theory to
implementation. IEEE Transactions on Wireless Communications, 17(4), 2173–2189. https://
doi.org/10.1109/TWC.2018.2789882

Snyder, C., Feng, G., & Van Graas, F. (1999). GPS anomalous event monitor (GAEM). Proc. of the
55th Annual Meeting of the Institute of Navigation, Cambridge, MA, 185–189.

Söderholm, S., Bhuiyan, M., Thombre, S., Ruotsalainen, L., & Kuusniemi, H. (2016). A multi-
GNSS software-defined receiver: Design, implementation, and performance benefits. Annals of
Telecommunications, 71, 399–410. https://doi.org/10.1007/s12243-016-0518-7

Söderholm, S., Bhuiyan, M. Z. H., Ferrara, G., Thombre, S., & Kuusniemi, H. (2022). A multi-
GNSS software receiver. In K. Borre., I. Fernández-Hernández, J. A. López-Salcedo & M. Z.
H. Bhuiyan (Eds.), GNSS software receivers, 174–188. Cambridge University Press. https://doi.
org/10.1017/9781108934176.009

Soloviev, A., Gunawardena, S., & Van Graas, F. (2004). Deeply integrated GPS/low-cost IMU
for low CNR signal processing: Flight test results and real time implementation. Proc. of the
17th International Technical Meeting of the Satellite Division of the Institute of Navigation
(ION GNSS 2004), Long Beach, CA, 1598–1608. https://www.ion.org/publications/abstract.
cfm?articleID=5840

Song, Y. J., Lee, H. B., & Won, J. H. (2021). Design of multi-constellation and multi-frequency
GNSS SDR with fully reconfigurable functionality. Journal of Positioning, Navigation, and
Timing, 10(2), 91–102. https://doi.org/10.11003/JPNT.2021.10.2.91

Souli, N., Kolios, P., & Ellinas, G. (2020). Relative positioning of autonomous systems using signals
of opportunity. Proc. of the IEEE 91st Vehicular Technology Conference (VTC2020), Antwerp,
Belgium, 1–6. https://doi.org/10.1109/VTC2020-Spring48590.2020.9128912

Souli, N., Kolios, P., & Ellinas, G. (2021). Online relative positioning of autonomous vehicles
using signals of opportunity. IEEE Transactions on Intelligent Vehicles, 7(4), 873–885. https://
doi.org/10.1109/TIV.2021.3124727

Souli, N., Kolios, P., & Ellinas, G. (2022). Adaptive frequency band selection for accurate and fast
positioning utilizing SOPs. Proc. of the International Conference on Unmanned Aircraft Systems
(ICUAS), Dubrovnik, Croatia, 1309–1315. https://doi.org/10.1109/ICUAS54217.2022.9836189

SPCOMNAV. (2019). Cloud GNSS Receiver. http://cloudGNSSrx.com
Stöber, C., Anghileri, M., Ayaz, A. S., Dötterböck, D., Krämer, I., Kropp, V., Won, J.-H., Eissfeller, B.,

Güixens, D. S., & Pany, T. (2010). ipexSR: A real-time multi-frequency software GNSS receiver.
Proc. of the International Symposium on Electronics in Marine (ELMAR-2010), Dubrovnik,
Croatia, 407–416. https://ieeexplore.ieee.org/document/5606128

Takasu, T., & Yasuda, A. (2009). Development of the low-cost RTK-GPS receiver with an open
source program package RTKLIB. Proc. of the International symposium on GPS/GNSS, Jeju,
Korea, Vol. 1. https://www.researchgate.net/publication/228811569

Tang, G., & Peng, A. (2022). 5G receiver design based on downlink intermittent signals tracking
algorithm. Proc. of the China Satellite Navigation Conference (CSNC 2022), Beijing, China,
462–471. https://doi.org/10.1007/978-981-19-2576-4_41

TeleOrbit GmbH. (2022). MGSE REC: GNSS radio frequency front-end. https://teleorbit.eu/en/
satnav/mgse-rec/

Thombre, S., Bhuiyan, M., Söderholm, S., Kirkko-Jaakkola, M., Ruotsalainen, L., & Kuusniemi,
H. (2015). A software multi-GNSS receiver implementation for the Indian regional navigation
satellite system. IETE Journal of Research, 62(2), 246–256. https://doi.org/10.1080/03772063.2
015.1093968

Thombre, S., Bhuiyan, M. Z. H., Söderholm, S., & Kuusniemi, H. (2022). NavIC L5 receiver
processing. In K. Borre., I. Fernández-Hernández, J. A. López-Salcedo & M. Z. H. Bhuiyan
(Eds.), GNSS software receivers, 164–173. Cambridge University Press. https://doi.
org/10.1017/9781108934176.008

Trimble Inc. (2005). Trimble introduces future-ready GNSS positioning technology. https://investor.
trimble.com/news-releases/news-release-details/trimble-introduces-future-ready-GNSS-
positioning-technology

Trimble Inc. (2017). Trimble DA1 catalyst GNSS systems. https://geospatial.trimble.com/en/
links?dcs=Collection-133515

Tsui, J. B.-Y. (2000). Fundamentals of Global Positioning System receivers: A software approach.
Wiley-Interscience. https://doi.org/10.1002/0471200549

UniBwM. (2023). MuSNAT — LRT 9. https://www.unibw.de/lrt9/lrt-9.2/software-packages/
MuSNAT

van Diggelen, F. (2009). A-GPS: Assisted GPS, GNSS, and SBAS. Artech House.

https://doi.org/10.1109/TSP.2021.3068920
https://doi.org/10.1109/TSP.2021.3068920
https://doi.org/10.1109/TWC.2021.3061985
https://doi.org/10.1109/TWC.2018.2789882
https://doi.org/10.1109/TWC.2018.2789882
https://doi.org/10.1007/s12243-016-0518-7
https://doi.org/10.1017/9781108934176.009
https://doi.org/10.1017/9781108934176.009
https://www.ion.org/publications/abstract.cfm?articleID=5840
https://www.ion.org/publications/abstract.cfm?articleID=5840
https://doi.org/10.11003/JPNT.2021.10.2.91
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128912
https://doi.org/10.1109/TIV.2021.3124727
https://doi.org/10.1109/TIV.2021.3124727
https://doi.org/10.1109/ICUAS54217.2022.9836189
http://cloudGNSSrx.com
https://ieeexplore.ieee.org/document/5606128
https://www.researchgate.net/publication/228811569
https://doi.org/10.1007/978-981-19-2576-4_41
https://teleorbit.eu/en/satnav/mgse-rec/
https://teleorbit.eu/en/satnav/mgse-rec/
https://doi.org/10.1080/03772063.2015.1093968
https://doi.org/10.1080/03772063.2015.1093968
https://doi.org/10.1017/9781108934176.008
https://doi.org/10.1017/9781108934176.008
https://investor.trimble.com/news-releases/news-release-details/trimble-introduces-future-ready-GNSS-positioning-technology
https://investor.trimble.com/news-releases/news-release-details/trimble-introduces-future-ready-GNSS-positioning-technology
https://investor.trimble.com/news-releases/news-release-details/trimble-introduces-future-ready-GNSS-positioning-technology
https://geospatial.trimble.com/en/links%3Fdcs%3DCollection-133515
https://geospatial.trimble.com/en/links%3Fdcs%3DCollection-133515
https://doi.org/10.1002/0471200549
https://www.unibw.de/lrt9/lrt-9.2/software-packages/MuSNAT
https://www.unibw.de/lrt9/lrt-9.2/software-packages/MuSNAT

    PANY et al.

Wang, P., Wang, Y., & Morton, J. (2022). Signal tracking algorithm with adaptive multipath
mitigation and experimental results for LTE positioning receivers in urban environments. IEEE
Transactions on Aerospace and Electronic Systems, 58(4), 2779–2795. https://doi.org/10.1109/
TAES.2021.3139569

Wikipedia. (2022). JSON streaming. https://en.wikipedia.org/wiki/JSON_streaming
Wikipedia. (2023). GNSS software-defined receiver. https://en.wikipedia.org/wiki/GNSS_software-

defined_receiver
Yang, C., Arizabaleta-Diez, M., Weitkemper, P., & Pany, T. (2022). An experimental analysis of

cyclic and reference signals of 4G LTE for TOA estimation and positioning in mobile fading
environments. IEEE Aerospace and Electronic Systems Magazine, 37(9), 16–41. https://doi.
org/10.1109/MAES.2022.3186650

Yang, C., Nguyen, T., & Blasch, E. (2014). Mobile positioning via fusion of mixed signals of
opportunity. IEEE Aerospace and Electronic Systems Magazine, 29(4), 34–46. https://doi.
org/10.1109/MAES.2013.130105

Yang, C., & Soloviev, A. (2018). Positioning with mixed signals of opportunity subject to multipath
and clock errors in urban mobile fading environments. Proc. of the 31st International Technical
Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018), Miami, FL,
223–243. https://doi.org/10.33012/2018.15833

Yang, C., & Soloviev, A. (2020). Mobile positioning with signals of opportunity in urban and urban
canyon environments. Proc. of the IEEE/ION Position, Location, and Navigation Symposium
(PLANS), Portland, OR, 1043–1059. https://doi.org/10.1109/PLANS46316.2020.9109876

Yoder, J. E., & Humphreys, T. E. (2023). Low-cost inertial aiding for deep-urban tightly-coupled
multi-antenna precise GNSS. NAVIGATION, 70(1). https://doi.org/10.33012/navi.561

Zhang, X. (2022). GitHub - TMBOC/SoftGNSS: current working ver. of SoftGNSS v3.0 for GN3sV2,
GN3sV3, NT1065EVK, and NUT4NT samplers. https://github.com/TMBOC/SoftGNSS

Zhao, C., Qin, H., & Li, Z. (2022). Doppler measurements from multiconstellations in opportunistic
navigation. IEEE Transactions on Instrumentation and Measurement, 71, 1–9. https://doi.
org/10.1109/TIM.2022.3147315

Zhu, Z., & Van Graas, F. (2009). Earth-surface multipath detection and error modeling for aircraft
GPS receivers. NAVIGATION, 56(1), 45–56. https://doi.org/10.1002/j.2161-4296.2009.tb00443.x

How to cite this article: Pany, T., Akos, D., Arribas, J., Bhuiyan, M. Z. H., Closas,
P., Dovis, F., Fernandez-Hernandez, I., Fernández–Prades, C., Gunawardena,
S., Humphreys, T., Kassas, Z., López-Salcedo, J. A., Nicola, M., Psiaki, M. L.,
Rügamer, A., Song, Y-J., & Won, J-H. (2024). GNSS software-defined radio:
History, current developments, and standardization efforts. NAVIGATION,
71(1). https://doi.org/10.33012/navi.628

https://doi.org/10.1109/TAES.2021.3139569
https://doi.org/10.1109/TAES.2021.3139569
https://en.wikipedia.org/wiki/JSON_streaming
https://en.wikipedia.org/wiki/GNSS_software-defined_receiver
https://en.wikipedia.org/wiki/GNSS_software-defined_receiver
https://doi.org/10.1109/MAES.2022.3186650
https://doi.org/10.1109/MAES.2022.3186650
https://doi.org/10.1109/MAES.2013.130105
https://doi.org/10.1109/MAES.2013.130105
https://doi.org/10.33012/2018.15833
https://doi.org/10.1109/PLANS46316.2020.9109876
https://doi.org/10.33012/navi.561
https://github.com/TMBOC/SoftGNSS
https://doi.org/10.1109/TIM.2022.3147315
https://doi.org/10.1109/TIM.2022.3147315
https://doi.org/10.1002/j.2161-4296.2009.tb00443.x
https://doi.org/10.33012/navi.628

	GNSS Software-Defined Radio: History, Current Developments, and Standardization Efforts
	Abstract
	Keywords
	1 INTRODUCTION
	2 GNSS SDR HISTORY
	3 CURRENT STATUS OF GNSS SDRS
	3.1 Bit-Wise Parallelism and the Emergence of GRID
	3.2 Multi-Sensor Navigation Analysis Tool
	3.3 SoftGPS, SoftGNSSv3.0, and Derivatives
	3.4 Finnish Geospatial Research Institute’s Multi-GNSS Software Receiver
	3.5 GNSS-SDR, an Open-Source Software-Defined GNSS Receiver
	3.6 AutoNav SDR
	3.7 PyChips
	3.8 UAB Snapshot GNSS Software Receiver
	3.9 The NGene Family of Receivers at Politecnico di Torino and LINKS
	3.10 The MATRIX SDR for Navigation with SOPs
	3.11 Other Achievements with GNSS SDRs

	4 SDR FRONT-ENDS
	4.1 Fraunhofer USB Front-Ends

	5 ION SDR STANDARD
	5.1 Use of the ION SDR Standard
	5.2 ION SDR Standard Extension
	5.2.1 Flexible Bit Layout
	5.2.2 Refined Sample Rate/Epoch Definitions
	5.2.3 JSON Format for Metadata Files

	SUMMARY AND CONCLUSION
	Acknowledgments and Remarks
	References

