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1  INTRODUCTION

Receiver development has always been an integral part of satellite navigation, 
ever since early studies were conducted for the U.S. Global Positioning System 
(GPS). The very first receivers were huge devices, enabling a correlation of received 
satellite signals with internally generated code and carrier replicas by a mixture 
of digital and analog electronics (Eissfeller & Won, 2017). Advances in semicon-
ductor technology soon enabled signal processing on dedicated chips. This tech-
nology was complex to handle and was primarily located within the U.S. industry. 
Despite the success of GPS and its Russian counterpart globalnaya navigazionnaya 
sputnikovaya sistema (GLONASS), internal receiver technology was barely 
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accessible to the broader research community for a long time, as it seemed to be 
impossible to realize global navigation satellite system (GNSS) signal processing on 
low-cost computers. Even in 1996, a key receiver design pioneer expressed skepti-
cism that general-purpose microprocessors were, or would ever be, a suitable plat-
form for implementing a GNSS receiver (Kaplan, 1996).

The situation radically changed when the algorithms of a GPS receiver were 
first implemented as MATLAB software on a desktop personal computer (PC) 
and estimates of digital signal processor (DSP) resources required to run the algo-
rithms in real time were encouraging (Akos & Braasch, 1996; Akos, 1997). Soon 
after, real-time processing was demonstrated, even on conventional PCs, and the 
widespread use of software radio technology took off with exponential growth. 
Interestingly, software radio technology did not replace existing hardware receivers 
usually realized as one or more application-specific integrated circuits (ASICs), but 
complemented these receivers, allowing researchers to easily implement and test 
new algorithms or to develop highly specialized receivers with reasonable effort. 
Today, this is a well-established approach for military, scientific, and even commer-
cial applications, as described by Curran et al. (2018).

As different research groups developed their own software radios, they used dif-
ferent data collection systems to sample GNSS signals. Whereas the data format of 
digital GNSS signal streams is comparably easy to describe, the widespread use of 
software radio technology made it necessary to introduce a certain level of stan-
dardization, which was finally achieved by a group of researchers, as documented 
by Gunawardena et al. (2021). The result was the so-called Institute of Navigation 
(ION) software-defined radio (SDR) Standard (ION SDR Working Group, 2020).

As technology evolved further, new GNSS software radios emerged, and some 
deficiencies of the ION SDR Standard became apparent (Clements et al., 2021). 
These conditions prompted the present paper, whose contributions are four-fold. 
First, it presents the first history of GNSS SDR development (Section 2). Second, it 
offers a detailed description of select GNSS SDRs (Section 3). Third, it overviews 
recent front-end developments (Section 4). Finally, it summarizes the history of the 
ION SDR Standard and proposes an update thereto (Section 5).

2  GNSS SDR HISTORY

The history of GNSS SDR requires more than a bit of recollection, which can 
be fraught with inaccuracies, none of which are intentional in the present work. 
Corrections would always be welcome.

The roots of GNSS SDR can be traced to Ohio University’s Avionics Engineering 
Center around 1994. Professor Michael Braasch, a newly minted faculty member 
of the Electrical and Computer Engineering Department and already recognized 
as an expert in GNSS multipath, was interested in creating a high-fidelity simula-
tion of the internal signal processing within GPS and GLONASS receivers. Dennis 
Akos, a Ph.D. student in the department, was intrigued by the idea. Already har-
boring a keen interest in computer science and programming, Akos took on the 
simulation project at Braasch’s request under the Federal Aviation Administration 
(FAA)/National Aeronautics and Space Administration (NASA) Joint University 
Program. Meanwhile, publication of “The Software Radio Architecture” in the 
1995 IEEE Communication Magazine (Mitola, 1995) fueled Akos’s and Braasch’s 
thinking that this “simulation” could instead be targeted toward an actual software 
radio implementation. The result was the first publication on GNSS SDR, which 
appeared in the proceedings of the 1996 ION Annual Meeting (Akos & Braasch, 
1996).
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Development of this initial simulation/implementation was significantly fur-
thered through cooperation with Dr. James B. Y. Tsui of the Wright-Patterson Air 
Force Base. Well recognized as an expert in digital receivers, Tsui had recently 
taken an interest in satellite navigation. In 1995, two summer interns, Dennis Akos 
from Ohio University and Michael Stockmaster from The Ohio State University, 
worked under Tsui’s guidance to develop a MATLAB implementation of the sig-
nal processing required for basic GPS receiver operation. A digital oscilloscope 
was used to capture the initial intermediate-frequency (IF) data that were criti-
cal for developing and debugging those early algorithms. Akos was responsible 
for the lower-level signal processing (acquisition and code/carrier tracking), while 
Stockmaster implemented the navigation solution. The cumulative result was the 
first-ever GPS SDR implementation. Although fully operational, it was “slow as 
molasses”: processing 30  s of IF data required hours of computation time. Tsui 
published the first textbook on GPS SDR in 2000 (Tsui, 2000). A parallel contribu-
tion of this initial effort was the direct radio-frequency (RF) sampling front-end, 
which garnered significant interest and pushed advances in analog-to-digital con-
verter (ADC) development (Akos et al., 1999).

After receiving his Ph.D. in 1997, Akos started his academic career as an 
Assistant Professor in the Systemteknik Department of Luleå University of 
Technology in Sweden, where he taught a course on computer architecture. It was 
here that GPS SDR first achieved real-time operation. For a class project, Akos 
provided a MATLAB-based GPS SDR and challenged a group of students to “get it 
to run as fast as possible,” subject to the requirement that the complex accumula-
tion products for each channel were within 10% of those produced by the original 
MATLAB-based GPS SDR. In 1999, the first “real-time” operation was achieved, 
processing 60  s of IF data in 55  s. This was a notable achievement at the time, 
given that renowned GPS expert Philip Ward, who was responsible for some of 
the first GPS receivers, had recently expressed skepticism about the prospect of a 
fully software-defined real-time GPS SDR, writing “The integrate-and-dump accu-
mulators provide filtering and resampling at the processor baseband input rate, 
which is around 200 Hz [... and] well within the interrupt servicing rate of modern 
high-speed microprocessors. But the 5- to 50-MHz rates [of intermediate frequency 
samples] would not be manageable” (Kaplan, 1996). This real-time implementa-
tion effort was headed by student Per-Ludvig Normark and led to the results pub-
lished by Akos et al. (2001).

In the meantime, Kai Borre, a geodesy professor at Aalborg University, had 
also developed MATLAB code for GPS receivers in the mid–late 1990s. Borre’s 
code focused on the navigation block and included functions for the conversion 
of coordinates and time references, satellite position determination, and atmo-
spheric corrections. The joint efforts of Akos, Borre, and others would later lead to 
a well-known book (Borre et al., 2007), a primary reference for GNSS SDR over the 
next years, and the related SoftGPS MATLAB receiver.

Upon graduation, Normark continued his GNSS receiver development with the 
GPS Laboratory at Stanford University and then returned home to Sweden, where 
he co-founded NordNav Technologies, which developed the first Galileo SDR, and 
helped establish the architecture, together with Cambridge Silicon Radio (CSR), 
to push GNSS to a price point acceptable for mobile phone adoption. CSR, a dom-
inant supplier of Bluetooth hardware to the mobile phone market at the time, 
acquired NordNav in 2006. NordNav and CSR jointly redesigned the CSR 2.4-GHz 
radio to multiplex to the 1575.42-MHz GPS L1 band, exploiting the fact that most 
Bluetooth applications have a relatively low duty cycle. This approach, coupled 
with the real-time software GPS implementation, provided a near-zero-added-cost 
GPS receiver.



PANY et al.

There have been numerous contributions to GNSS SDR development since these 
early years, many of which are from the co-authors of this paper. Selected devel-
opments by the authors are outlined in Section 3, including a survey of achieve-
ments by other researchers in Section 3.11. The authors are aware that many other 
important contributions are missing and make no claims of establishing a com-
prehensive description. To provide the reader with a better orientation about the 
chronological order of all developments, we present Table 1, reiterating that the 
selection of references is partly subjective and that similar developments have 
often been carried out by several research groups. The timeline demonstrates the 
flexibility of SDR technology, i.e., the same code base is used for GPS L1 C/A code 
signals and for signals of opportunitys (SOPs) from cellular terrestrial transmitters 
or from communication satellites in low Earth orbits (LEOs).

TABLE 1
Timeline of GNSS SDR Developments

Year Milestone with comment Reference

1995 Emergence of software radio approach (Mitola, 1995)

1996 First publication of a GPS SDR 
development

(Akos & Braasch, 1996)

1999 First real-time software receiver with 
GPS L1 C/A code

(Akos et al., 2001)

2000 First textbook on GPS SDR published (Tsui, 2000)

2002+ Use of bit-wise correlation and SIMD 
instructions

(Ledvina et al., 2003; Pany et al., 2003)

2002+ GNSS SDRs as commercial products NordNav, IFEN, Trimble, Locus Lock, etc.

2004 First multi-GNSS/multi-frequency 
GNSS SDRs

(Ledvina, Psiaki, Sheinfeld, et al., 2004; 
Pany, Eissfeller, et al., 2004)

2004 First real-time GNSS/INS integration 
with SDR

(Gunawardena et al., 2004)

2005 GNSS SDR consolidation at 
Politecnico di Torino and LINKS 
Foundation

Section 3.9

2005 Demonstration of vector tracking with 
a GNSS SDR

(Pany et al., 2005)

2006 First real-time all-in-view embeddable 
GNSS SDR

(Humphreys et al., 2006)

2006 First use of SDR technology for AM 
SOP

(McEllroy, 2006; McEllroy et al., 2006)

2007 Start of widespread adoption of SDR 
technology in GNSS research

(Borre et al., 2007)

2007 First development of a snapshot 
receiver

Section 3.8

2009 First multicore GNSS SDR (Humphreys et al., 2009)

2010 Adoption of a computer science 
best-practice collaborative framework

Section 3.5

2010 First use of GPUs for correlation (Hobiger et al., 2010)

2011+ Use of GNSS SDR for ionospheric 
research

(O’Hanlon et al., 2011; Peng & Morton, 
2011)

2012+ SDR developments at the Finnish 
Geospatial Research Institute

(Borre, Fernández-Hernández et al., 2022; 
Söderholm et al., 2016)

(Continued)
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3  CURRENT STATUS OF GNSS SDRS

In June 2023, a quick internet search did not reveal any comprehensive listing of 
all GNSS SDRs. Wikipedia (2023) lists seven entries, which is far below the num-
ber of receivers known by the authors, even if the following criterion is applied to 
limit the scope: a GNSS SDR (or software receiver) is defined as a piece of software 
running on a general-purpose computer converting samples of a received GNSS 
signal into a position velocity and time (PVT) estimate. It is clearly understood 
that a front-end including ADC is required to sample the received signal, but other 
than that, no further functionality is allowed to be realized via hardware. With this 
definition, three categories of software receivers can be introduced:

Real-time receivers: Monolithic or modular software packages written in 
an efficient low-level programming language (such as C or C++), typically 
optimized for run-time efficiency and stability

Year Milestone with comment Reference

2012 Use of a DVB-T ultra-low-cost 
front-end for GNSS SDR

Section 3.5

2012+ Use of SDR technology for LTE SOP (del Peral-Rosado et al., 2013; Driusso 
et al., 2017; Shamaei et al., 2018)

2014+ Use of GNSS SDRs (Lightsey et al., 2014; Murrian et al., 
2021)

2014 Use of SDRs for mixed cellular 3G 
GSM/CDMA and digital television 
SOP

(Yang et al., 2014)

2015+ Abundance of processing power for 
GNSS SDR available

(Dampf et al., 2015; Nichols et al., 2022)

2017+ Use of SDRs for 3G CDMA and 4G 
LTE SOP

(Kassas et al., 2017)

2018 First use of Python for dedicated 
teaching of GNSS SDR

Section 3.7

2018 First SDR enabling sub-meter-level 
carrier-phase-based uncrewed aerial 
vehicle navigation with 3G CDMA 
and 4G LTE SOP

(Khalife & Kassas, 2018, 2022)

2020 Formal adoption of ION SDR 
Standard

Section 5

2020 Use of SDR for stationary positioning 
with multi-constellation Orbcomm 
and Iridium LEO SOP

(Farhangian & Landry, 2020; Orabi et al., 
2021)

2021 First SDR for 5G SOP (Shamaei & Kassas, 2021b)

2021+ Use of GNSS SDR to support 
development of new navigation 
satellite systems

(Miller et al., 2023; Song et al., 2021)

2021 First SDR enabling vehicle navigation 
with multi-constellation LEO SOP

(Kassas et al., 2023, 2021)

2022 First SDR enabling aircraft navigation 
with cellular SOP

(Kassas, Abdallah, et al., 2022; Kassas, 
Khalife, Abdallah, Lee, Jurado, et al., 
2022)

TABLE 1 (Continued)
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Teaching/research tools: Software packages written in a high-level pro-
gramming language (such as Python or MATLAB), optimized for code read-
ability and flexibility

Snapshot receivers: Receivers optimized for very short batches of signal 
samples

Furthermore, the software package shall allow some configuration flexibility and 
(at least theoretically) support the ION SDR Standard. The following subsections 
introduce a few selected developments, emphasizing the rationale behind design 
choices and current status. Each subsection is represented by one entry in Table 2 
to give the reader a quick overview of the main characteristics of each develop-
ment. Section  3.1 describes the work of Psiaki, Ledvina, and Humphreys and 
their efforts in real-time processing on DSPs, with the bit-wise-parallel approach 
proving to be highly successful, even for space applications. Section 3.2 covers the 
work of Pany and others in their efforts with multi-constellation/multi-frequency 
GNSS. Section 3.3 and Section 3.4 cover the efforts of Borre and others in a readable 
open-source MATLAB GPS SDR starting with Borre et al. (2007), with the most 
recent GNSS update reported by Borre, Fernández-Hernández et al. (2022). Akos 
has also continued this academic development of a suite of open-source GNSS 
SDRs (Bernabeu et al., 2022). The widely used open-source receiver GNSS-SDR 
is described in Section  3.5. The AutoNav receiver used to support the develop-
ment of the Korean Positioning System (KPS) is discussed in Section  3.6, and 
Section 3.7 provides a discussion of PyChips, the basis for tutorial classes of the 
ION. The Universitat Autònoma de Barcelona (UAB) snapshot GNSS software 
receiver is described in Section 3.8, while Section 3.9 discusses an SDR used, e.g., in 

TABLE 2
Overview of GNSS SDRs Discussed in Section 3

Name Main language Open source Main focus

GRID C++ No Real-time operation of advanced 
algorithms on embedded devices

MuSNAT C++ No Analysis of navigation signal processing 
and algorithm prototyping

SoftGPS MATLAB Yes Suite of GNSS SDRs with widespread use 
and accompanying book

FGI-GSRx MATLAB Yes Multi-GNSS SDR with accompanying 
book

GNSS-SDR C++ Yes Real-time SDR with modular structure 
and widespread use

AutoNav SDR MATLAB No Support for KPS development, API, and 
GPU

PyChips Python No Multi-GNSS and optimized for use in 
teaching classes

UAB Snapshot 
GNSS Receiver

MATLAB No Snapshot receiver that can be operated in 
the cloud

NGene ANSI C No Efficient GNSS SDR used in numerous 
Galileo-related projects

MATRIX MATLAB, C++ No Combined processing of GNSS with 
cellular 3G/4G/5G and LEO (Starlink, 
OneWeb, Orbcomm, Iridium, and 
Globalstar) signals
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authentication schemes or reflectometry or to assess the influence of non-standard 
GNSS transmissions. Section 3.10 extends the scope of SDR to non-GNSS signals.

At the beginning of GNSS SDR development, different receivers were linked to 
specific persons or research institutes; in contrast, today different receivers, tools, 
or code bases are often used at the same institute. Moreover, code bases first devel-
oped by a single institute have spread into different institutes. For example, the 
developments of Borre et al. (2007) forked into several branches (see, e.g., the 
work by FGI (2022), Bernabeu et al. (2022), and Zhang (2022)), as discussed in 
Section 3.3 and Section 3.4.

3.1  Bit-Wise Parallelism and the Emergence of GRID

The original real-time GNSS software radio work by Akos (1997) inspired an 
effort within the Cornell GPS group. Psiaki had been working with non-real-time 
software GNSS signal processing in MATLAB for about two years when he started 
to wonder whether the slow MATLAB operations could be translated to run in 
real time on a general desktop workstation. A bottleneck in GNSS digital signal 
processing occurs during the performance of operations that initially process the 
high-frequency RF front-end samples. RF front-ends typically sample at 4 MHz or 
faster. A 12-channel receiver would have to perform on the order of 400 million 
operations per second or more to achieve all of the needed signal processing. Psiaki 
conceived the concept of bit-wise parallel processing as a means of addressing this 
challenge. He recruited then-Ph.D. candidate Brent Ledvina to make an attempt 
at implementing these ideas in the C programming language on a real-time Linux 
desktop workstation. Ledvina succeeded in developing a 12-channel real-time L1 
C/A-code receiver after about 6 months of effort (Ledvina et al., 2003).

The main aim of bit-wise parallelism is to work efficiently with RF front-end 
data that have a low number of quantization bits. If an RF front-end produces a 
1-bit digital output stream, then 32 successive sign-bit samples can be stored in a 
single 32-bit unsigned integer word on a general-purpose processor. Thirty-two 
successive output samples of a 2-bit RF front-end can be stored in two 32-bit 
words, one containing the successive sign bits and the other containing the suc-
cessive magnitude bits. Each channel of the software receiver generates a 1-bit 
or 2-bit representation of 32 successive samples of its IF carrier replica, both 
in-phase and quadrature, and the successive samples are stored in parallel in 
32-bit unsigned integer words. Similarly, the channel generates a 1-bit represen-
tation of 32 successive samples of its prompt pseudorandom noise (PRN) code 
replica and stores them in parallel in a single 32-bit unsigned integer word. The 
channel also generates an early-minus-late PRN code replica that requires 1.5 bits 
per sample, which utilizes two 32-bit unsigned integer words to store 32 sam-
ples. These replica signals can be generated very efficiently by using pre-tabulated 
32-bit words. The software receiver then performs a series of bit-wise AND, OR, 
XOR, and similar operations that have the effect of performing PRN code mixing 
and IF-to-baseband carrier mixing. The outputs of the mixing operations are con-
tained in a small number of 32-bit words, the number of which depends on the 
number of bits in each RF front-end output sample and the number of bits in the 
IF carrier replicas.

The final operation is the accumulation of results in the 32-bit words. This oper-
ation involves sets of bit-wise Boolean operations, as per Ledvina et al. (2003), fol-
lowed by a summation of the number of 1-bits in the resulting 32-bit unsigned 
integer words. Minimizing the execution time of the bit summation operations 
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proved to be a challenge. Ledvina solved this problem by using a pre-computed 
1-dimensional data table whose input was the unsigned integer and whose out-
put was the number of 1-bits. To ensure a reasonable table size, only the bits 
in a 16-bit unsigned integer word were counted. The original receiver’s 32-bit 
words were split in half, two table look-ups were performed, and the results were 
summed in order to count all of the 1-bits. The original algorithms were defined 
by Ledvina et al. (2003), Ledvina, Psiaki, Powell et al. (2004), and Ledvina, Psiaki, 
Powell et al. (2006).

When using very long PRN codes, such as the L2C CL code, the whole-period 
PRN code tables of the proper 32-bit words at various code phases in the origi-
nal method become impractically large. Therefore, a new method was developed 
for long PRN codes. In this method, 32-bit words of short generic PRN code chip 
sequences are tabulated, with all possible combinations of short chip sequences 
considered at various PRN code offsets relative to the start of the samples of the 
32-bit word. These methods have been described by Psiaki (2006) and Ledvina et al. 
(2007). This technique proved invaluable for dealing with long codes.

A processor that can operate on wider segments of data, up to 512 bits for cur-
rent single instruction multiple data (SIMD) instructions, gains substantial addi-
tional increases in signal processing speed (Nichols et al., 2022). However, the 
speed increase factors over brute-force integer calculations are typically not as 
high as the number of bits per word. That is, the techniques do not speed up 
the operations by a factor of 32 when processing 32 samples in parallel by using 
32-bit words to represent 32 samples. For a 2-bit RF front-end and a 32-bit pro-
cessor, the speed-up factor might be only 4 because the bit-wise parallel approach 
requires multiple operations due to, say, a simple multiplication of one time series 
by another. If one doubles the number of bits per word, however, then the speed 
tends to double. A particularly helpful feature of some recent processor designs is 
their inclusion of a hardwired command to count all of the 1-bits in a word. This 
“popcount” intrinsic obviates the table look-ups that counted 1-bits in the origi-
nal bit-wise parallel design. If the number of bits increases in the RF front-end 
samples and/or the IF carrier replicas, however, then the bit-wise parallel method 
of signal processing slows down. Signals represented by 3 or 4 bits might cause 
the processing speed gains of bit-wise parallel algorithms to be limited or even 
non-existent.

After successfully running the basic algorithms in real time using 32-bit words, 
the Cornell group showcased the efficacy of real-time GNSS software radio by 
using the same techniques to develop a dual-frequency L1 C/A and L2C receiver 
(Ledvina, Psiaki, Sheinfeld, et al., 2004) and a GPS/Galileo L1 civilian receiver 
(Ledvina, Psiaki, Humphreys, et al., 2006). These real-time software GNSS receiv-
ers each required only several person-days to be developed from the original L1 
C/A code receiver. Of course, the L1/L2 receiver required a new dual-frequency 
RF front-end. The GPS/Galileo receiver required knowledge of the civilian Galileo 
E1 PRN codes, which had not been published at that time. This requirement led 
to a supporting effort that successfully deduced the E1 PRN codes of the Galileo 
in-orbit validation (IOV) satellite GIOVE-A by recording their raw RF front-end 
samples and post-processing those samples using a suite of custom-designed SDR 
signal-processing algorithms in order to extract the chips from the noise (Psiaki 
et al., 2006).

The next development was to re-implement the bit-wise parallel code for embed-
ded (low-power, low-cost) processing. Initially targeting a Texas Instruments DSP, 
this work was accomplished in 2006 by then-Ph.D. candidate Todd Humphreys 
(Humphreys et al., 2006). Later, as a professor at The University of Texas (UT) 
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at Austin, Humphreys and his students—notably Jahshan Bhatti and Matthew 
Murrian—undertook a sequence of significant expansions and improvements to 
this receiver. Called GRID, the C++-based UT Austin receiver is now a highly 
optimized science-grade multicore GNSS SDR (Humphreys et al., 2009; Nichols 
et al., 2022). Its main features are summarized in Table 3. This receiver was the 
first GNSS SDR to be adapted for spoofing (Humphreys et al., 2008), the first GNSS 
SDR to operate in space (Lightsey et al., 2014), the first receiver of any kind to show 
that centimeter-accurate GNSS positioning is possible with a smartphone antenna 
(Pesyna et al., 2014), the first receiver to be used to locate terrestrial sources of 
GNSS interference from LEOs (Murrian et al., 2021), and the basis of the current 
state of the art in urban precise (decimeter-level) positioning (Humphreys et al., 
2020; Yoder & Humphreys, 2023). As detailed by Nichols et al. (2022), GRID has 
also reaffirmed the commercial viability of GNSS SDR in widespread low-cost 
applications: it was recently licensed by a major aerospace company for use across 
all company operations, including in the thousands of satellites of the company’s 
broadband internet mega-constellation.

TABLE 3
Main Features of GRID

GRID

Feature Solution Remark

Operating system GNU/Linux, macOS, Windows

Programming 
environment

C++

IF sample file 
input source

A wide array of formats Will accommodate proposed ION 
SDR Standard

Real-time sample 
input

Yes See Nichols et al. (2022)

Additional sensors IMU, cameras, lidar Requires PpEngine module

Supported GNSS GPS, Galileo, BeiDou, SBAS, QZSS, 
CDMA

Nearly all open spreading codes 
and navigation message streams 
supported

Acquisition Multi-threaded and FFT-optimized

Tracking Vectorized, multicore, Intel SIMD 
(SSE2 through AVX-512) and 
ARM NEON (64-bit and 128-bit) 
accelerations

Correlation no longer the 
primary bottleneck under some 
configurations; see Nichols et al. 
(2022)

Measurement 
output

All standard GNSS observables Proprietary GBX format plus 
RINEX, NMEA, RTCM, MATLAB 
MAT-file, KML

Navigation Extended Kalman filter based 
on pseudorange and Doppler 
measurements

Carrier-phase-based positioning 
available with PpEngine module

Further features Vector tracking, multi-antenna, 
IMU integration, space-ready, 
interference mitigation and 
detection

Availability Source code available via 
commercial license from UT 
Austin

Turnkey solutions available via 
Locus Lock

Note: SBAS: satellite-based augmentation system
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3.2  Multi-Sensor Navigation Analysis Tool

The Multi Sensor Navigation Analysis Tool (MuSNAT) is an object-oriented but 
monolithic C++ software receiver maintained by the University of the Bundeswehr 
Munich (UniBwM) and was first mentioned in its present form by Pany et al. (2019). 
MuSNAT started as an operational real-time receiver development, but currently, it 
mostly serves to develop and demonstrate innovative signal-processing and naviga-
tion algorithms. MuSNAT is also used for teaching. It is freely available as execut-
able for academic purposes from UniBwM (2023). Its main characteristics can be 
found in Table 4. In contrast to the bit-wise approach of Section 3.1 (which allows 
the design of very power-efficient implementations), the design idea of MuSNAT 
and its predecessors was to realize a high-end receiver running on powerful PCs 
or workstations. The bit-wise approach was replaced by using SIMD instructions 
of Intel/Advanced Micro Devices central processing units (CPUs). This allows 
samples to be represented as 8-bit or 16-bit values, and SIMD instructions such 

TABLE 4
Main Features of MuSNAT

MuSNAT

Feature Solution Remark

Operating system Windows 10/11 Compiles as GUI or as 
command-line version (port of 
command-line version to Linux 
under preparation)

Programming 
environment

Microsoft Visual Studio 2019 
C++

CUDA, Intel OneAPI, vcpkg, and 
.net for GUI

IF sample file input 
source

ION SDR Standard and 
proprietary file readers

Proprietary readers faster than ION 
SDR reader

Real-time sample input Yes, via TCP/IP Server available via LabView for 
selected NI USRPs

Additional sensors Lidar, IMU Lidar uses PCL format, IMU 
proprietary ASCII format; video 
formats supported but not yet used

Supported GNSS GPS, Galileo, BeiDou, 
GLONASS, SBAS, OFDM 
(LTE, 5G, etc.)

Nearly all open spreading codes 
available with at least one 
navigation message decoder for 
each system

Acquisition Optimized FFT method CPU and GPU supported

Tracking Dot-product from Intel 
Performance Primitives 
(CUDA version for massive 
multi-correlator applications)

Computational performance mostly 
limited by memory bus width

Further features Multi-antenna, signal 
generator, primary–secondary 
tracking, SQL database for 
logging, vector tracking, 
GNSS/INS integration, 
RTKLIB

Support of Galileo OSNMA/HAS 
and synthetic aperture processing 
via MATLAB interface

Availability Executable plus data 
visualizer downloadable via 
UniBwM (2023)

Source code available for research 
projects with UniBwM

Note: OFDM: orthogonal frequency-division multiplexing
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as AVX-512 currently allow processing of registers of up to 512 bits (i.e., 32 16-bit 
samples) in parallel.

GNSS software receiver developments were initiated at UniBwM in 2002, after 
it became clear that the software radio approach discovered by Akos would pro-
vide useful insights into GNSS receiver technology and would thus be indirectly 
helpful in designing and building the Galileo navigation satellite system. The first 
software receiver at UniBwM was designed for GPS L1 C/A only and was realized 
as a MATLAB/Simulink project for post-processing. To sample the GNSS signals, 
a commercial ADC with a peripheral component interconnect express (PCIe) con-
nector from National Instruments (NI) was used (PXI 5112), which was connected 
either to a low-bandwidth GPS L1 C/A code front-end based on the Plessey GP 
2010 RF chip set or later to one GPS L1/L2 high-bandwidth front-end, which was 
specifically developed by Fraunhofer IIS (Pany, Förster, et al., 2004). Soon after, the 
software for communicating with the ADC (written in C++, making use of the 
Microsoft Foundation classes) was upgraded to a full GPS L1 C/A plus L2CS (only 
medium-length L2 code was supported, not the long code) receiver. A detailed 
analysis published by Pany et al. (2003) revealed that both the SIMD instruction set 
and the size and structure of the CPU caches were important for real-time capabili-
ties. Memory bandwidth is a key issue when representing samples by multiple bits. 
One of the first achievements with this receiver was the demonstration of vector 
tracking (Pany et al., 2005).

Based on these results, funding was secured to support a group of five researches 
over three years. This funding allowed the researchers to start a new software 
receiver project, this time making full use of C++ features for object-oriented 
development, and to develop a graphical user interface (GUI) connected to the 
processing core via a clearly defined interface that also allowed the core to run 
without a GUI. The overarching development goal at that time was to realize a 
high-quality multi-GNSS multi-frequency receiver on a desktop PC or powerful 
laptop that could potentially be operated on a continuous basis to replace the (at 
that time) rather inflexible and expensive commercial GNSS receivers at continu-
ously operating reference stations. A concise overview of the development during 
those years was written by Stöber et al. (2010), who described the improvements 
compared with the start of the project lain down by Pany, Eissfeller, et al. (2004).

A loose cooperation with IFEN GmbH was initiated, which eventually resulted 
in the SX3 receiver (IFEN GmbH, 2022). IFEN used the processing core as an 
initial basis, improved the core, replaced the GUI, and developed new dedicated 
front-ends. The C++ code was further optimized to support more channels at 
higher bandwidth and almost instantaneous high-sensitivity acquisition with the 
graphics processing unit (GPU) (Pany et al., 2012). Semi-codeless tracking of GPS 
L2P(Y) (i.e., P-code aided cross-correlation) was also implemented. The coopera-
tion of UniBwM with IFEN lasted until 2013, when the development directions 
started to diverge. IFEN used the software primarily as a base receiver platform 
with an application programming interface (API) to support different applications, 
whereas UniBwM continued to modify the core, which was not always beneficial 
for software stability from a commercial viewpoint.

The focus at UniBwM changed in 2017, as the old GUI could no longer be main-
tained. Furthermore, real-time operation became less important, as most scientific 
results were obtained in post-processing. Consequently, a new GUI was developed 
and attached to the proven processing core. Any run-time optimizations within 
the processing core that degraded the navigation performance (i.e., mostly causing 
additional noise in the code tracking loop) were removed. The core’s logging out-
put was directed to an SQL database to store all types of intermediate results in a 
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single file (in addition to the legacy ASCII logging into multiple files). A dedicated 
visualization tool was developed for this database.

The use of Windows and Visual Studio for developing a software radio is 
slightly unusual, but can be explained as follows. At UniBwM, most researchers 
use Windows PCs to allow easy document exchange with each other and, most 
importantly, within the European space industry. For this reason, all software 
receiver developments were performed for Windows only. In terms of numerical 
performance and code optimization, with the Intel C++ compiler and the Intel 
Performance Primitives, Intel provided and still provides the same quality on 
Windows as for Linux. Over the years, however, it became clear that the potential 
use of the processing core on embedded devices and long-term stability might have 
been easier to achieve on the Linux operating system. IFEN ported part of the core 
to Linux, but not the full software receiver, and showed that conventional desktop 
CPUs and embedded CPUs already provided an impressive processing capability 
in 2015 (Dampf et al., 2015).

As already mentioned, code optimization to achieve fast (and real-time) signal 
tracking was a main research focus in the first years. Different studies on CPU 
assembler instructions, CPU architecture, and bottlenecks resulted in dedicated 
assembler implementations. Extensive look-up tables were used, and a highly 
efficient correlator implementation with the Intel x86 pmaddubsw instructions 
was based on a signal sample representation as unsigned integers (including the 
necessary rewriting of the correlation formulae because of the switch from the 
standard representation of samples as signed integers to unsigned integers). fast 
Fourier transform (FFT)-based acquisition was already very efficient on the CPU 
and even more efficient on the GPU. With the use of FFT libraries provided by 
NVIDIA, porting the acquisition code porting from the CPU to GPU became com-
parably easy. The situation is different for signal tracking. The tracking code has 
been transferred to the GPU, and some optimization has been applied to minimize 
the amount of data transfer between the CPU and GPU. However, because the 
correlation parameters are slightly different for each signal tracked, the correlation 
code is called multiple times, and the latency to start one thread on the GPU gen-
erates significant overhead. Thus, GPU-based tracking is currently only beneficial 
if a very large number (several hundreds) of correlators is configured per tracking 
channel, as pointed out by Pany et al. (2019). As modern desktop and laptop CPUs 
continue to improve and make use of a many-core structure, the need to port signal 
tracking to the GPU becomes less important. Furthermore, over the years, the use 
of dedicated assembler code required continuous adaptation to new CPU instruc-
tion sets (e.g., from SSE to AVX instructions). The performance gained by using 
hand-coded assembler routines instead of using the libraries provided by Intel 
(Intel Performance Primitives) is not always worth the effort and was not further 
actively pursued. Instead, dot-product routines (2 x 16-bit signed input to 64-bit 
output) from the Intel Performance Primitives are employed for signal tracking.

The C++ universe is huge, and it is easy to integrate external source code. For 
example, the famous RTKLIB and the ION SDR sample reader code have been 
integrated. The current research work with MuSNAT focuses on GNSS/INS/lidar 
integration, support of massive antenna arrays (Dötterböck et al., 2023), vector 
tracking and deep GNSS/inertial navigation system (INS) coupling, support for 
long term evolution (LTE)/5G signals, and GNSS signal simulation. Notably, the 
maintenance of the huge C++ code base of MuSNAT at a university institute with 
a high fluctuation of researchers is demanding. The learning curve for good C++ 
development in this context is steep and is often inefficient for the purposes of 
obtaining a PhD degree. Therefore, interfaces from the C++ code to MATLAB 
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were established; for example, open service navigation message authentication 
(OSNMA) decoding, precise point positioning computation for high accuracy 
service (HAS), and lidar odometry have been implemented in MATLAB. Another 
development is to use MuSNAT to generate multi-correlator values that are then 
used within a full MATLAB-based receiver to emulate signal correlation via inter-
polation (Bochkati et al., 2022). Bochkati et al. (2023) used this for ease in develop-
ing synthetic aperture algorithms.

UniBwM initially used front-ends from Fraunhofer IIS, and the software receiver 
included low-level universal serial bus (USB) drivers for real-time data transfer. 
The same approach was used to connect the front-ends from IFEN GmbH to the 
processing core. The effort required to write stable high-data-rate low-level drivers 
is significant and introduces a dependency on libraries and support from the USB 
chip manufacturers. To reduce these types of development efforts, the decision 
was made to connect front-ends via TCP/IP. This approach is powerful in terms of 
bandwidth and is also generic; a first version of this approach has been described 
by Arizabaleta et al. (2021). Furthermore, with, e.g., LabVIEW from NI, it is com-
parably easy to develop a simple TCP/IP signal source for universal software radio 
peripheral (USRP) front-ends. At the time of writing this paper, a more efficient 
firmware for USRPs with direct field programmable gate array (FPGA) program-
ming is being developed, which will allow data to be synchronously captured from 
an inertial measurement unit (IMU) together with GNSS signal samples.

3.3  SoftGPS, SoftGNSSv3.0, and Derivatives

As mentioned above, the work by Borre et al. (2007) and the associated MATLAB 
receiver provided a cornerstone for GNSS SDR development. This receiver, initially 
called SoftGPS and then SoftGNSS (usually referred to as SoftGNSSv3.0), included 
the basic processing functions for GPS L1 C/A in a readable format and was use-
ful for educational purposes. These functions included signal FFT-based acqui-
sition, frequency, carrier phase, and code phase tracking, data synchronization 
and demodulation, pseudorange generation, and eventually PVT estimation. The 
MATLAB code, together with some samples, was provided in a CD with the book 
and was also available at Aalborg University’s Danish GPS Lab website. In addition 
to Borre and Akos, SoftGNSS included relevant contributions by Plausinaitis and 
others. Unfortunately, Kai Borre passed away in 2017, and the Danish GPS Lab 
was discontinued. However, SoftGNSS and its derivatives remain quite alive, as 
described below.

• A new SDR GNSS book (Borre, Fernández-Hernández et al., 2022), extending 
SoftGPS functionality to several frequencies, GNSS, and architectures, can 
be considered as the successor of Borre et al. (2007). A main building block 
of this book is the GNSS software receiver (GSRx) developed at the Finnish 
Geospatial Research Institute (FGI) (FGI-GSRx), described in the following 
section, but the book also includes other MATLAB receivers. In particular, 
the dual-frequency GSRx (DF-GSRx), developed by Borre’s PhD student 
P. Bolla, is a dual-frequency GPS L1/L5 receiver that includes dual-frequency 
acquisition techniques, measurement combination (including ionosphere-free 
measurements), and positioning. The book also includes a GPS L1 C/A snapshot 
receiver developed by Borre’s former PhD student I. Fernandez-Hernandez, 
which is more modest than that described in Section 3.8, but simple and quick 
to execute and therefore possibly useful for educational purposes.
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• The Easy Suite libraries (Borre, 2003, 2009), still publicly available and used, 
provide an excellent educational tool for diving into the basic functions of 
GNSS receivers, such as calculating satellite positions from the ephemerides, 
performing datum conversions, or computing the receiver position and its 
accuracy in multiple ways (least squares, Kalman filter, carrier phase ambiguity 
resolution, etc.).

• Bernabeu et al. (2022), as above mentioned, have provided a collection of open-
source SDRs developed at University of Colorado Boulder based on SoftGNSS.

• Zhang (2022) has provided a repository with adaptations of SoftGNSS for 
different front-ends.

3.4  Finnish Geospatial Research Institute’s Multi-GNSS 
Software Receiver

The software receiver developed by the FGI is known as the FGI-GSRx. The 
development of the FGI-GSRx started in 2012 from the open-source GNSS software 
receiver released in 2007 by Prof. Borre and his colleagues (Borre et al., 2007). The 
software receiver was able to track two IOV satellites (GIOVE A and GIOVE B) from 
the European GNSS system, Galileo. Since then, the researchers at FGI have been 
continuously developing new capabilities for the software receiver, with the inclu-
sion of Galileo in 2013 (Söderholm et al., 2016), the Chinese satellite navigation sys-
tem BeiDou in early 2014 (Bhuiyan et al., 2015; Bhuiyan et al., 2014), the Indian 
regional satellite navigation system NavIC in late 2014 (Thombre et al., 2015), and 
the Russian satellite navigation system GLONASS in 2015 (Honkala, 2016).

The FGI-GSRx software receiver has been extensively used over the last decade 
as a research platform in different national and international research and devel-
opment projects to develop, test, and validate novel receiver processing algorithms 
for robust, resilient, and precise positioning, navigation, and timing. At present, 
the FGI-GSRx can process GNSS signals from multiple constellations, including 
GPS, Galileo, BeiDou, GLONASS, and NavIC. The software receiver is intended 
to process raw IF signals in post-processing. The processing chain of the software 
receiver consists of GNSS signal acquisition, code and carrier tracking, decoding 
of the navigation message, pseudorange estimation, and PVT estimation. The soft-
ware architecture is built such that any new algorithm can be developed and tested 
at any stage in the receiver processing chain without requiring significant changes 
to the original codes. FGI-GSRx provides a unique and easy-to-use platform not 
only for research and development, but also for those interested in learning about 
GNSS receivers. Some of the main features of FGI-GSRx are listed in Table 5.

The software receiver was released as open source in February 2022 (FGI, 2022). 
FGI-GSRx was also accompanied by the book GNSS Software Receivers, a next edi-
tion of one of the fundamental GNSS textbooks, published in 2022 by Cambridge 
University Press (Borre, Fernández-Hernández et al., 2022). This book system-
atically introduces software receiver processing functionalities, with experimen-
tal results for the GPS L1 C/A signal in Section  2 (Borre, Bhuiyan et al., 2022), 
GLONASS L1OF signal in Section 3 (Bhuiyan, Honkala et al., 2022), Galileo E1 OS 
signal in Section 4 (Bhuiyan, Söderholm, Ferrara et al., 2022), BeiDou B1I signal in 
Section 5 (Bhuiyan, Söderholm, Thombre et al., 2022), NavIC L5 signal in Section 6 
(Thombre et al., 2022), and a single-frequency multi-constellation solution with 
three GNSS signals in Section 7 (Söderholm et al., 2022). The readers can easily 
follow the fundamental receiver processing chain for each individual GNSS signal, 
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with the distinctive changes among those signals discussed and highlighted in fig-
ures. One noteworthy contribution of this book is a method for integrating several 
GNSS signals to form a single-frequency multi-GNSS PVT solution, presented in 
Section 7.

The FGI-GSRx can be utilized at universities and other research institutes as a 
tool for training graduate-level students and early-stage researchers and for provid-
ing hands-on experience in GNSS receiver development. This receiver can also be 
utilized in the vast GNSS industry as a benchmark software-defined receiver imple-
mentation. The software receiver is already being used in the “GNSS Technologies” 
course offered widely in Finland at the University of Vaasa, Tampere University, 
Aalto University, and the Finnish Institute of Technology.

TABLE 5
Main Features of FGI-GSRx

FGI-GSRx

Feature Solution Remark

Operating 
system

Windows 10 Compiles in Windows 10 
environment. The software receiver 
should run in another operating 
system that can host MATLAB or 
OCTAVE.

Programming 
environment

MATLAB Executes in MATLAB 2019 or any 
later version. The software receiver 
can be also executed in OCTAVE.

IF sample file 
input source

ION SDR Standard Reads input data files following the 
ION SDR Standard.

Processing mode Only operates as a post-processing 
GNSS receiver

Can read raw IF data for complete 
receiver processing or can load 
previously saved acquisition 
and/or tracking data in order to 
skip acquisition and/or tracking 
operations to be able to process 
the navigation solution depending 
on the parameters set in the user 
configuration file.

Supported GNSS GPS L1, Galileo E1, BeiDou B1, 
GLONASS L1, NavIC L5

Open-source FGI-GSRx only 
supports single-frequency 
multi-GNSS processing.

Acquisition FFT-based signal acquisition Sophisticated research-specific 
implementation for high-sensitivity 
acquisition is not published as open 
source.

Tracking Table-based three-stage tracking Based on the tracking status of each 
individual satellite, the software 
receiver switches among three 
stages: i) PULL IN, ii) COARSE 
TRACKING, and iii) FINE 
TRACKING.

Navigation Traditional least squares Users can select the signal-to-noise 
ratio or elevation cut-off mask 
in order to select the satellites 
that contribute to the position 
computation.
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3.5  GNSS-SDR, an Open-Source Software-Defined 
GNSS Receiver

The software receiver developed by the Centre Tecnològic de Telecomunicacions 
de Catalunya (CTTC), named GNSS-SDR (but not related to the ION SDR Standard), 
is another example of a multi-band, multi-system receiver. This receiver has been 
constantly evolving since 2010, keeping pace with the newest GNSS algorithms 
and signals over more than a decade. The GNSS-SDR originated as a by-product 
of a CTTC research staff initiative, with the aim of providing a framework for col-
laborating with other researchers seeking to accelerate research and development 
of software-defined GNSS receiver technology. The receiver focuses on baseband 
signal processing, although it has the ability to run a navigation engine (refer to 
Table 6). The early stages of development progressed slowly under a personal 
side-project scheme with no funding, but with the purely exploratory objective of 
designing an optimal architecture specifically suitable for GNSS signal processing, 
where concepts such as testability, extensibility, reusability, scalability, maintain-
ability, portability, adaptability to new non-standard requirements, and adoption 
of computer science best practices were considered from the start.

The GNSS-SDR first became popular in August 2012, with reports of GNSS 
usage via extremely cheap (about $25) digital video broadcast-terrestrial (DVB-T) 
receivers based on Taiwan’s Realtek RTL2832U chipset, sold in the form of USB 

TABLE 6
Main Features of GNSS-SDR

GNSS-SDR

Feature Solution Remark

Operating 
system

GNU/Linux, macOS, 
Windows OS through 
WSL

Included as a software package in Debian and 
Ubuntu and in Macports for macOS. Tested 
on ArchLinux, CentOS 7, Fedora, OpenSUSE, 
Rocky Linux.

Programming 
environment

C++ Software linters are automatically run at each 
code change to ensure that high-quality coding 
standards are met.

Processing mode Real-time and 
post-processing

Can work in real time using a wide assortment 
of commercial RF front-ends and in 
post-processing mode with a number of file 
formats (including input files produced by the 
ION SDR Standard conversion tools).

Supported GNSS GPS L1, L2C, L5; Galileo 
E1, E5a, E5b, E6; 
GLONASS L1 CA, L2 
CA; BeiDou B1, B3

The modular design allows for easy inclusion 
of new signals.

Acquisition FFT-based signal 
acquisition

A-GNSS capabilities to accelerate the time to 
first fix.

Tracking Multicorrelator-based 
data and pilot signal 
tracking

Customizable DLL, phase-locked loop (PLL), 
frequecy-locked loop (FLL). High-dynamics 
capabilities. SIMD-accelerated in both i686 
and ARM CPUs (see Fernández–Prades et al. 
(2016a)).

Navigation Traditional least squares, 
code- and carrier-based 
positioning modes

Positioning engine based on RTKLIB 
implementation (Takasu & Yasuda, 2009). All 
possible supported GNSS signal combinations 
are allowed.
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dongles that allow users to watch over-the-air DVB-T European broadcast televi-
sion on their PCs. These devices typically send partially decoded MPEG transport 
frames over the USB; however, by exploiting an undocumented mode of operation 
of the demodulator chip, the user was able to obtain raw in-phase and quadrature 
samples, stream them through the USB to a PC, and then apply the GNSS-SDR 
software processing, turning the DVB-T receiver into a GNSS receiver and deliv-
ering the position in real time (see Fernández–Prades et al. (2013)). In a parallel 
development, in November 2013, the European Space Agency (ESA) acknowl-
edged GNSS-SDR as one of the first 50 receivers worldwide to achieve a successful 
Galileo position fix.

The project gained momentum and maturity over the years, and it currently has 
a solid and valuable user base that continuously provides feedback, enhancements, 
and new features. Current versions are included in major GNU/Linux distributions, 
such as Debian and Ubuntu, and in Macports for Apple’s macOS. The software 
package has been used in several publicly and privately funded research projects 
(including the European Union Agency for the Space Programme [EUSPA], ESA, 
National Science Foundation [NSF], and NASA activities, as well as educational 
programs such as Google’s Summer of Code), and it has been reportedly used for 
research purposes worldwide. The authors opened a discussion of quality met-
rics and key performance indicators for any generic software-defined receiver 
(Fernández–Prades et al. (2016b) provided an extended online version available at 
https://gnss-sdr.org/design-forces/) and proposed the concept of continuous repro-
ducibility in GNSS signal processing (Fernández–Prades et al., 2018).

The full project and source code documentation can be found online at https://
gnss-sdr.org, a website with over 5000 unique visitors per month, which contributes 
to raising awareness on GNSS technology. The website content is also available on 
a GitHub repository at https://github.com/gnss-sdr/geniuss-place, hence undergo-
ing public scrutiny. The project is also well connected to its software ecosystem and 
existing SDR platforms. It builds on a wide range of GNU/Linux distributions and 
versions (ranging from those released in 2014 to the most recent releases), and it 
provides a Yocto/Openembedded layer, which allows its portability to a wide range 
of embedded platforms (see Fernández–Prades (2022)).

The software produces standard outputs for observables and navigation data 
(RINEX files and RTCM-104 v3.2 messages as defined by the Networked Transport 
of RTCM via Internet Protocol), as well as position fixes in application-specific 
messages (e.g., NMEA 0183), a variety of geographic information system-oriented 
file formats (KML, GeoJSON, GPX), and custom binary outputs that allow the 
observability of internal signal-processing subproducts.

3.6  AutoNav SDR

The AutoNav SDR is a MATLAB-based multi-GNSS, multi-frequency software 
receiver that was developed by the Autonomous Navigation Laboratory of Inha 
University, South Korea (Song et al., 2021). Its main features are presented in 
Table 7. The critical point considered in the design phase of this SDR is the max-
imization of reconfigurability. Because South Korea is developing its own satel-
lite navigation system, KPS, which is targeted to operate from 2035 as reported by 
Ministry of Science and ICT of Korea (2021), a flexible receiver that can process 
not-yet-existent signals is required. The AutoNav SDR is designed to provide full 
reconfigurability in terms of target signal combinations and signal characteristics, 
especially for the easy addition of new signal proposals. To achieve this, a basic 

https://gnss-sdr.org/design-forces/
https://gnss-sdr.org
https://gnss-sdr.org
https://github.com/gnss-sdr/geniuss-place
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framework of software receiver was designed with an appropriate processing func-
tional architecture and data structure in consideration of signal expandability. This 
framework was then applied to realize an SDR for GPS L1 C/A code signal as a 
first realization example by reconfiguring a configuration file via a GUI. Then, dif-
ferent signals of the other constellations (GLONASS, Galileo, BeiDou navigation 
satellite system (BDS), Quasi-Zenith Satellite System (QZSS), NavIC) and frequen-
cies (L1, L2, L5) were quickly added by utilizing this expandability. In this way, 
KPS signal candidates can be easily added to the SDR to evaluate and compare the 
performance of each candidate in the signal design phase. Similarly, a reconfig-
urable GNSS simulator was developed at the same time with the same idea. This 
MATLAB-based IF-level GNSS/KPS simulator can be ideally suited to test the nav-
igation performance of any GNSS signal as well as new KPS signals by reconfigur-
ing signal design parameters via a GUI.

Although the AutoNav SDR is targeted for post-processing only, the original cor-
relation operation in MATLAB with variables of double precision was too slow at 
the beginning of its design phase. Hence, two simple accelerations were applied to 
the SDR: a GPU-based acquisition module and a MEX correlator for tracking. The 
GPU-based signal acquisition module was implemented in a simple way using the 
Parallel Computing Toolbox of MATLAB. If the GPU is usable, local variables for 
the correlation (i.e., code and carrier replicas) are generated in the GPU memory 
using the gpuArray function. Then, FFT, inverse FFT, and correlations are auto-
matically performed in the GPU. Finally, the correlation results are extracted via 
a gather function. With this simple approach, the execution time is reduced by a 
factor of approximately 2.12 compared with the general CPU-based acquisition, 
without the relatively complex development using CUDA.

Because the most time-consuming process of the receiver is the correlation in the 
signal tracking, a MEX function is employed to reduce the computational burden. 

TABLE 7
Main Features of AutoNav SDR

AutoNav SDR

Feature Solution Remark

Operating system Windows

Programming environment MATLAB and C

Processing mode Post-processing

Supported GNSS GPS (L1 C/A, L2C, L5), GLONASS 
L1, Galileo (E1, E5a, E5b), BDS 
(B1I, B1C, B2a), QZSS (L1 C/A, 
L1C, L2C, L5), NavIC L5

Free selection of signal 
combination

Acquisition GPU-based acquisition Simple implementation 
using the Parallel 
Computing Toolbox in 
MATLAB

Tracking MEX correlator 18/8-bit code/carrier 
replica tables, 32-bit 
code/-carrier NCOs, bit 
shift operations

Further features API, easy addition of new signals, 
RINEX observation logging, RF 
interference mitigation based on 
pulse blanking, direct state-tracking 
Kalman filter
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The MEX function connects the MATLAB environment to the external function 
written in C/C++ language with an appropriate wrapper function so that the user 
can call it within MATLAB. The MEX correlator was written in the standard C 
language and uses integer-based variables. The SDR pre-generates the code and 
carrier replica tables in the initialization process with resolutions of 18 bits and 
8 bits, respectively. The code and carrier numerically controlled oscillators (NCOs) 
have a resolution of 32 bits; thus, the indices of the tables for current code and car-
rier replica generation are calculated via bit shift operations of 14 bits and 24 bits, 
respectively. With these implementations, the overall execution time became much 
faster (approximately five-fold faster) than the original double precision-based 
code, but it still cannot operate in real time. Currently, Inha University is develop-
ing an FPGA-based real-time GNSS receiver in which only the correlator is substi-
tuted by the FPGA board at the original AutoNav SDR.

To further enhance its flexibility, the AutoNav SDR also provides APIs at each 
part of the signal processing chain (such as the ring buffer, acquisition, tracking, 
navigation message extraction, position calculation, etc.). The API design was 
influenced by the ipexSR of Stöber et al. (2010) and was implemented in a sim-
ilar manner with the dynamic link library (DLL). Because MATLAB can load a 
library from DLL and call a function within the library, the API concept of the C/
C++-based software can also be used analogously in the MATLAB environment. 
If the SDR is converted to an executable file (.exe) and provided to a user, the user 
can freely modify functions or develop algorithms by generating the DLL, without 
the need for the whole source code.

3.7  PyChips

PyChips is a relatively new object-oriented satnav SDR that has been developed 
from scratch since 2018. It is based on the experience gained from two previous imple-
mentations, namely, the MATLAB SDR that was distributed with the Wideband 
Transform-domain Instrumentation GNSS Receiver (TRIGR) (see Section 5) and the 
ChameleonChips GNSS SDR Toolbox for MATLAB (Gunawardena, 2014).

One of the key promises of SDRs is their flexibility and, hence, their utility as 
an education and research tool. In the satnav context, various publicly available 
SDRs can be used to teach basic courses on satnav systems, signal processing, and 
receiver design. However, there is an implicit assumption that students have the 
relevant programming language skills for a particular SDR. Students are expected 
to understand the inner workings of the SDR in detail and, more importantly, to 
make modifications to the code to add advanced capabilities and/or revisions as 
part of their graduate research projects. While somewhat valid, this assumption of 
programming language proficiency may not always hold true. Further, depending 
on the situation, it may be more efficient and beneficial for graduate students to 
make deeper progress on their research instead of spending time in becoming pro-
gramming language experts. PyChips was developed from the ground up to sup-
port this notion. A more detailed introduction to PyChips has been provided by 
Gunawardena (2021). The main features of PyChips are summarized in Table 8. 
This receiver is implemented in Python with C++ bindings, where performance is 
absolutely essential for reasonably fast execution.

The current version of PyChips supports the creation and definition of entire 
constellations of satellites with advanced next-generation signal structures, along 
with interference sources and channel effects. The simulation portion of PyChips 
(comprising numerous source objects) synthesizes these signals at the sample 
level onto one or more sample streams that are grouped into objects called stream 
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containers. A stream container is an abstraction of a satnav receiver’s antenna(s) 
and RF front-end subsystem. The stream container can be multi-frequency or 
multi-element, can have different sample rates and bandwidths, and can have an IF 
or baseband sampling architecture and any and all combinations thereof. If the use 
case involves live-sky signal processing, then one or more sampled SDR data files 
can be specified to instantiate a stream container object that is functionally identi-
cal and imperceptible from a simulated one. PyChips uses the ION SDR Standard 
to determine the appropriate C/C++ decoder/unpacker/re-quantizer kernel to use 
for reading and parsing these SDR files.

TABLE 8
Main Features of PyChips

PyChips

Feature Solution Remark

Operating system Windows x64 Due to pre-compiled C/C++ bindings 
that currently use the Windows API for 
file reading and threading. Linux support 
under development.

Programming 
environment

SARDL, Python, C/C++ SDR entirely specified using JSON-based 
SARDL. Assembles pre-built configurable 
Python and C/C++ objects at run-time 
according to user SARDL specifications.

IF sample file 
input source

ION SDR Standard Parses ION metadata hierarchy to select the 
appropriate decoder kernel written in C++. 
Sample decoding is split across multiple 
threads using a data parallel architecture.

Real-time sample 
input

Not currently supported

Additional 
sensors

None

Supported GNSS Supports all civilian satnav 
signals (GPS, GLONASS, 
Galileo, BeiDou, QZSS, 
NavIC, SBAS)

Spreading codes defined as memory codes. 
Code replicas specified as an assembly of 
sequence objects (static, subcarrier, overlay, 
mux, etc.; see Gunawardena (2021)).

Acquisition FFT-based generic 
acquisition engine with 
configurable coherent and 
noncoherent integration 
settings

Automatically detects and implements 
circular vs. non-circular frequency-domain 
correlation based on code length.

Tracking Generic tracking 
module assembled from 
configurable functional 
blocks (e.g., carrier 
wipe-off, code replica, 
correlator, gearbox, 
accumulator, etc.) and a 
generic controller object—
all defined in SARDL

Employs split-sum correlation 
(Gunawardena & van Graas, 2006). Always 
operates on a 1-ms block of samples and 
retires the current block before operating 
on the next block (no sample shifting to 
align with the SV time of transmission). 
Direct initialization of tracking objects 
configured for other signals from the same 
SV (e.g., GPS L1 C/A to L1C, L2C, and L5).

Measurement 
output

Yes CSV format.

Availability Versions distributed at ION 
conference tutorials

Versions used at ION tutorials.
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The sample streams contained in a PyChips stream container are processed using 
numerous sink objects. Currently, implemented examples include virtual oscillo-
scopes and spectrum analyzers, as well as acquisition engines and signal-tracking 
modules.

A unique feature of PyChips is that all of the functionalities described above 
are defined/specified by a draft SDR language called Signal and ARchitecture 
Description Language (SARDL). SARDL is implemented as a grouping of JavaScript 
object notation (JSON) files. Current and next-generation advanced satnav signal 
structures and the receiver architectures used to process them are constructed by 
assembling pre-built low-level functional blocks. For example, as described by 
Gunawardena (2021), the user can build receiver tracking modules to process GPS 
L1C TMBOC(6, 1, 4/33) and Galileo E1OS CBOC(6, 1, 1/11) MBOC signals as sim-
ple BOC(1, 1) signals to model a low-cost, low-power mass market receiver or a 
high-end survey-grade receiver taking full advantage of these “dual-personality” 
signals.

Indeed, at this stage, the goal of the PyChips project is to hone SARDL with a 
vast number of diverse signal specifications, use cases, and applications in order to 
explore the concept of a “satnav signals and systems specification language.” Today, 
the reference SDR that implements SARDL is written in Python and is therefore 
called PyChips. However, the ultimate goal of this effort is to contribute toward 
satnav SDR implementations that have the performance, power efficiency, and 
scalability of ASICs with the flexibility, reconfigurability, adaptability, and ease of 
use of software.

3.8  UAB Snapshot GNSS Software Receiver

The UAB snapshot GNSS software receiver (cf. Table 9) was originally developed 
as part of the research activities on indoor GNSS positioning carried out by the 
Signal Processing for Communications and Navigation (SPCOMNAV) group at 
UAB in 2007. At that time, the group was involved in one of two parallel contracts 
awarded by the ESA to assess the feasibility of indoor GNSS positioning, under the 
project named DINGPOS. The proposed strategy was to rely on a combination of 
technologies such as Wi-Fi, ultra wideband, 2G/3G cellular networks, and GNSS, as 
discussed by López-Salcedo et al. (2008). As far as GNSS was concerned, UAB was 
in charge of developing the software implementation of a so-called high-sensitivity 
GNSS (HS-GNSS) receiver, which would be able to operate under the extremely 
weak signal conditions experienced indoors. This implementation involves work-
ing with attenuation losses of 10–40 dB, which drive the effective carrier power 
to noise power spectral density, i.e., C/N0, down to values for which conventional 
GNSS receivers cannot operate.

The proposed HS-GNSS receiver implementation was based on a snapshot archi-
tecture in which a batch of input samples is processed at one time to provide the 
user’s position. This approach is often referred to in the literature as “push-to-fix” 
or “acquisition-only” because no tracking stage is actually implemented at the 
receiver. Consequently, the receiver operates in open-loop mode by providing at 
its output the observables obtained directly from the acquisition stage. The imple-
mentation of the HS-GNSS software receiver was strongly influenced by the 
work already initiated by Gonzalo Seco-Granados before joining UAB, during his 
period from 2002 to 2005 as technical staff at the European Space Research and 
Technology Center of the ESA in The Netherlands, where he was leading research 
activities concerning indoor GNSS and snapshot GNSS receivers. The core of the 
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UAB snapshot GNSS receiver was inspired by the concept of double-FFT acquisi-
tion introduced by Jiménez-Baños et al. (2006). This algorithm uses two consecu-
tive FFT operations to implement the correlation of the received signal with the 
local code replica and then the simultaneous estimation of the fine Doppler fre-
quency and bit synchronization. Readers interested in the double-FFT algorithm 
and a detailed description of the UAB snapshot GNSS receiver implementation are 
referred to the comprehensive description written by Seco-Granados et al. (2012).

From a general perspective, the UAB snapshot GNSS software receiver imple-
ments a set of specific signal-processing techniques that are tailored to indoor 
working conditions. Nevertheless, the implementation is flexible and does not pre-
vent the receiver from operating efficiently in other scenarios, such as outdoors. For 
an indoor environment, the most important impairment to be counteracted is the 
severe attenuation due to propagation through building materials and other obsta-
cles. Attenuation of up to 40 dB can easily be experienced, thus requiring specific 
action to recover as much of the lost power in order to still be able to detect GNSS 
satellites. Because the received energy is the most important parameter from a sig-
nal detection and estimation viewpoint and because energy is simply the power 
multiplied by the observation time, the only way to compensate for an extremely 
weak received power is to increase the observation time. Thus, a longer piece of 
received signal must be processed, which requires very long correlation integra-
tion times at the GNSS receiver, on the order of hundreds of milliseconds or even 
a few seconds. Unfortunately, increasing the correlation time is hindered by the 

TABLE 9
Main Features of the UAB Snapshot GNSS Receiver

UAB Snapshot GNSS Receiver

Feature Solution Remark

Operating system Any supported by 
MATLAB

Programming 
environment

MATLAB MATLAB version 6.0 (R12, 2000) or higher.

Processing mode Post-processing

Supported GNSS GPS (L1 C/A, L5), 
Galileo (E1C, E5a)

Acquisition FFT-based signal 
acquisition

Implementing the double-FFT algorithm for 
both code correlation and bit synchronization. 
Long correlations can be implemented by 
noncoherently combining a set of coherent 
correlations. A-GNSS is used to narrow the 
acquisition search space. Compatible with 
3GPP RRLP-compliant XML data.

Tracking None No tracking is implemented because the 
receiver architecture is based on snapshot mode 
(i.e., acquisition-only).

Navigation Weighted least 
squares

Coarse-time navigation is implemented.

Further features Implements near–
far detection and 
interference detection

Note: 3GPP: Third-Generation Partnership Project; RRLP: radio resource location services 
protocol
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presence of navigation message data symbols, residual Doppler errors, and clock 
instabilities. Consequently, the approach adopted in practice by most snapshot 
GNSS receivers, particularly those intended for high-sensitivity applications, is to 
split a long correlation into pieces of shorter, but sufficiently long, coherent cor-
relations whose outputs are then noncoherently accumulated. This combination of 
coherent and noncoherent correlation has proven to be successful in increasing the 
receiver sensitivity and thus enabling the receiver to detect a few GNSS satellites 
indoors. An interesting discussion on the importance of sufficiently long coherent 
integrations has been provided by Pany et al. (2009).

The correlation between the received signal and the local replica is the most 
important operation of a snapshot GNSS receiver because, with such correlation, 
the most accurate code delay and Doppler observables must be estimated. Here, 
no tracking stage is implemented, and thus, there is no opportunity to further 
refine these observables in subsequent stages of the receiver. For this reason, the 
correlation must be implemented in the most optimal way, taking into account 
subtle details that might be ignored in conventional GNSS receiver implementa-
tions. Such optimality is achieved by the double-FFT algorithm implemented in 
the UAB snapshot GNSS receiver, which applies an optimal joint estimation of the 
code delay and fine Doppler over a long period of time, where potential sign tran-
sitions may occur because of the presence of data-modulating symbols. Additional 
considerations, such as how to handle a non-integer number of samples when 
performing the FFT, the interpolation between consecutive correlation peaks, 
the code-Doppler effect over a long correlation period, etc., have been reported by 
Seco-Granados et al. (2012).

The code delay and Doppler estimates provided by the acquisition stage are 
directly used by the navigation module to compute the user’s position. Such 
code-delay estimates are ambiguous for one code period because no absolute 
time reference is available, and therefore, no other time-delay information can be 
provided besides that contained with a PRN code period. Here, only one batch 
of received samples is processed, and thus, no access to the transmission time 
encoded onto the navigation message is generally available. As a result, the user’s 
position must be computed without such time reference, which reflects a specific 
feature of snapshot GNSS receivers. This problem can be solved by coarse-time 
navigation, where the conventional navigation equations are augmented to include 
an additional unknown that represents the missing absolute time reference. 
Interested readers will find an excellent description of this method in the work by 
(Van Diggelen, 2009, Ch. 4).

Since its development in 2008, the UAB snapshot GNSS receiver has been a key 
tool for many research activities at the SPCOMNAV group. This software has been 
used, for instance, to characterize multipath propagation indoors (López-Salcedo 
et al., 2009), to assess the feasibility of using GNSS receivers in missions to the Moon, 
where the weak-signal problem is similar to the indoor case (Manzano-Jurado 
et al., 2014), to test near–far mitigation techniques that may appear in indoor/
space applications (Locubiche-Serra et al., 2016), to assess the impact of phase 
noise (Gómez-Casco et al., 2016), and to provide GNSS positioning to internet of 
things (IOT) sensors in smart cities (Minetto et al., 2020) by means of a cloud-based 
implementation of the UAB snapshot GNSS receiver that was developed from 2016 
to 2018.

Migration of the UAB snapshot receiver into a cloud-based implementation was 
a major milestone that attracted the interest of the community and opened the 
door for new applications and use cases. The interest in cloud GNSS positioning 
was motivated by the fact that, at that time, GNSS software receivers were running 
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in local computers next to the user, who collected the samples to be processed. 
However, with the advent and widespread deployment of cloud computing plat-
forms such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud, 
such local computers could actually be placed anywhere, and remote access could 
be granted to upload and process GNSS samples in a remote server in a scalable 
manner. Furthermore, this approach was well suited for a snapshot GNSS receiver 
implementation, in which a batch of samples could be sent to a remote server 
where the user’s position would then be computed via the same tools as in any 
other snapshot GNSS receiver. These computations include using assisted GNSS 
(A-GNSS) for reducing the acquisition search space, making extensive use of FFT 
operations, and computing the user’s position by means of coarse-time navigation 
techniques.

This concept motivated the so-called “cloudGNSSrx,” the cloud-based implemen-
tation of the UAB snapshot GNSS receiver, as described by SPCOMNAV (2019). The 
architecture was based on a dockerized compilation of the MATLAB source code 
implementing the UAB snapshot GNSS receiver. Then, a system of job queues, 
schedulers and load balancers was built on AWS to automate and scale the remote 
execution of the receiver, and an API was developed for machine-to-machine com-
munication, facilitating the provision of GNSS positioning to small IOT sensors 
(Lucas-Sabola et al., 2016). In this way, IOT sensors requiring GNSS positioning 
were able to offload most of the computational load to a remote server, thus signifi-
cantly reducing the power consumption and extending their battery lifetime.

Low-power GNSS positioning is one of the main applications of cloud GNSS soft-
ware receivers, because, for snapshots shorter than a few tens of milliseconds, the 
energy spent in sending the GNSS samples to the cloud is balanced by the signif-
icant energy saved at the user’s terminal for not processing such samples and for 
performing such processing at the cloud instead (Lucas-Sabola et al., 2017). This 
feature was acknowledged by the former European GNSS Agency (GSA), now the 
EUSPA, who identified the UAB cloud GNSS receiver as promising technology for 
the future adoption of GNSS in the IOT domain (European Union Agency for the 
Space Programme, 2018). The cloud GNSS software receiver developed by UAB was 
then licensed in 2019 to the startup company Loctio, who significantly improved 
the initial prototype and produced a commercial product.

It is important to remark that apart from the low-power consumption use case, 
cloud GNSS software receivers can also be used to provide access to sophisticated 
signal processing techniques that cannot be implemented in conventional receiv-
ers, such as advanced signal-monitoring techniques, spoofing detection, or authen-
ticated/certified positioning, the latter being reported by Rügamer et al. (2016). 
Thus, there is a brilliant future ahead for cloud GNSS software receivers with many 
exciting new applications to come.

3.9  The NGene Family of Receivers at Politecnico di 
Torino and LINKS

The development of NGene, a GNSS software receiver, originated at Politecnico 
di Torino and the LINKS Foundation in the early 2000s. At that time, the Navigation 
Signal Analysis and Simulation Group was already engaged in software implemen-
tation of various sections of GNSS baseband processing. This endeavor capitalized 
on the group’s extensive expertise in digital signal processing and specifically in 
simulating complex communication systems.
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Efforts initially focused on optimizing the acquisition and tracking stages, both 
as post-processing tools and as core processing units on programmable hardware. 
In 2005, under regional funding, the research team, partially affiliated with the 
Istituto Superiore Mario Boella (now part of the LINKS Foundation), commenced 
the development of a fully software-based, real-time GNSS receiver for GPS and 
forthcoming Galileo signals.

The outcome of the work was the software receiver NGene, as documented by 
Molino et al. (2009). NGene demonstrated real-time processing capabilities for GPS, 
Galileo, and European Geostationary Navigation Overlay Service signal compo-
nents transmitted on the L1/E1 band. Prior to processing, the signals were subjected 
to IF downconversion and digitalization by an external analog front-end device. 
Communication between the front-end device and the software receiver occurred 
via a USB connection. The hardware component of the receiving chain consisted 
solely of the antenna, its low noise amplifier (LNA), and the analog-to-digital con-
verter with front-end filtering, with all other components being software-based. 
This fundamental architecture laid the groundwork for subsequent enhancements 
and has been the essential building block of the NGene receiver family.

Thanks to its reconfigurable and modular structure, NGene has long served 
as the primary tool for in-lab analysis, development, and prototyping of 
signal-processing algorithms and architectures. Because of its flexible implemen-
tation, NGene was adapted to process the Galileo IOV signals (GIOVE-A) and sub-
sequently to process the first Galileo signals immediately upon their availability, 
as detailed by Margaria et al. (2012). As a result, the research team was among the 
first worldwide to achieve a position fix using the initial four Galileo satellites. 
Over time, the software receiver continued to evolve and was tailored to address 
diverse applications, leveraging the advantages of software radio implementation 
(see Table 10).

Today, the NGene receiver family offers configurable support for various 
RF-to-IF front-ends, which connect to the software processor via USB, meeting the 
requirements of numerous activities and projects. A simplified, low-complexity 
version was developed to enable GNSS positioning capabilities on ARM-based 
embedded processors (Gamba, Nicola, et al., 2015). Additional branches of the soft-
ware were adapted for GNSS reflectometry receiver deployment in reflectometry 
tests (Gamba, Marucco, et al., 2015), evaluation of anti-jamming algorithms, and 
detection of non-standard code transmission and its effects on Galileo position-
ing (Dovis et al., 2017), while also serving as a tool for studying the 2019 Galileo 
outage event (Dovis et al., 2019). One of the latest branches of the NGene family 
encompasses algorithms for authenticating Galileo messages using the OSNMA, 
as described by Nicola et al. (2022); Gamba et al. (2020a). Furthermore, a set of 
functions is being developed to support future GPS Chimera authentication service 
processing (Gamba et al., 2020b).

3.10  The MATRIX SDR for Navigation with SOPs

MATRIX (Multichannel Adaptive TRansceiver Information eXtractor) is a 
state-of-the-art cognitive SDR, developed at Kassas’ Autonomous Systems Perception, 
Intelligence, and Navigation (ASPIN) Laboratory, for navigation with terrestrial and 
space-based SOPs (Kassas et al., 2020). MATRIX continuously searches for opportune 
signals from which it draws navigation and timing information, employing signal 
characterization on the fly as necessary. MATRIX can produce a navigation solution 
in a standalone fashion (Shamaei & Kassas, 2021a) or by fusing SOPs with sensors 
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(e.g.,  IMU (Morales & Kassas, 2021), lidar (Maaref et al., 2019), etc.), digital maps 
(Maaref & Kassas, 2020), and/or other signals (e.g., GNSS) (Kassas et al., 2017). Figure 1 
shows MATRIX’s architecture, and Table 11 lists its main features.

TABLE 10
Main Features of the NGene Receiver Family

NGene Receiver Family

Feature Solution Remark

Operating system GNU/Linux-based Because it is based on standard libraries, 
it can also run on Windows.

Programming 
environment

ANSI C and assembly 
(Intel x86 and ARM SIMD 
instructions)

Eclipse IDE and GNU Compiler 
Collection compiler.

IF sample file input 
source

Binary file

Processing mode Real time and 
post-processing

Can work in real time from USB-based 
RF front-ends and in post-processing 
mode with binary file formats.

Additional sensors

Supported GNSS GPS L1 C/A, Galileo E1

Acquisition FFT-based algorithm

Tracking Multi-correlator-based data 
tracking loop

Measurement 
output

Yes Acquisition, tracking, and PVT results 
available as binary/text log files.

Availability Restricted Licensing of a public release currently 
under discussion.

Further features Scintillation monitoring, 
interference detection, 
Galileo OSNMA 
authentication

Specific modified versions for research 
purposes.

FIGURE 1 MATRIX cognitive SDR architecture
The SDR consists of (i) USRPs to collect different radio signals, (ii) various modules to produce 
navigation observables from different types of signals (e.g., cellular, LEO satellites, etc.), 
(iii) external sensors (e.g., IMU, lidar, GNSS receivers, etc.), whose measurements can be fused 
with the navigation observables produced by the signal modules, and (iv) a navigation filter that 
fuses all measurements to produce a navigation solution.
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On one hand, MATRIX has achieved the most accurate navigation results 
to date in the published literature with cellular SOPs (3G code division mul-
tiple access (CDMA), 4G LTE, and 5G new radio (NR)), achieving meter-level 
navigation indoors (Abdallah & Kassas, 2021) and on ground vehicles 
(Maaref & Kassas, 2022) and sub-meter-level navigation on uncrewed aerial 
vehicles (Khalife & Kassas, 2022). In addition, MATRIX’s efficacy has been 
demonstrated in a real-world GPS-denied environment (Kassas, Khalife, 
Abdallah, & Lee, 2022), achieving a position root mean squared error of 2.6 m 
with 7 cellular LTE eNodeBs over a trajectory of 5 km (one of which was more 
than 25 km away), during which GPS was intentionally jammed (Abdallah et al., 
2022). MATRIX has also achieved remarkable results on high-altitude aircraft, 
where it was able to acquire and track cellular 3G CDMA and 4G LTE signals 
at altitudes as high as 23,000 ft above ground level and from cellular towers 
more than 100 km away (Kassas, Khalife, Abdallah, Lee, Jurado, et al., 2022). 
Furthermore, meter-level high-altitude aircraft navigation was demonstrated 
over aircraft trajectories exceeding 50 km, by fusing MATRIX’s cellular naviga-
tion observables with an altimeter (Kassas, Abdallah, et al., 2022).

On the other hand, MATRIX has achieved the first published results in the lit-
erature for exploiting unknown SpaceX’s Starlink LEO satellite signals for posi-
tioning, obtaining a horizontal positioning error of 10 m with Doppler observables 
(Neinavaie et al., 2021) and 7.7 m with carrier phase observables (Khalife et al., 2022). 
In addition, the first ground vehicle navigation results with multi-constellation LEO 
satellites (Orbcomm, Iridium NEXT, and Starlink) were achieved with MATRIX 
(Kassas et al., 2021), upon coupling its LEO navigation observables with an INS in 

TABLE 11
Main Features of MATRIX

MATRIX

Feature Solution Remark

Operating system Linux, Windows

Programming 
environment

C++, MATLAB, LabVIEW

IF sample file input 
source

Binary file

Real-time sample 
input

Yes Some SOP modules support real-time 
processing.

Additional sensors IMU, GNSS

Supported GNSS GPS L1 C/A

Acquisition FFT-based signal 
acquisition

Tracking DLL, PLL, FLL, Kalman 
filter

Different tracking loops per SOP 
module.

Measurement output Yes Acquisition, tracking, and PVT results 
available as text/CSV files and via GUI.

Navigation Weighted least squares, 
Kalman filter, Doppler, 
code- and carrier-based 
positioning modes

Availability Restricted Licensing options available via The 
Ohio State University.
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a tightly coupled fashion through a simultaneous tracking and navigation frame-
work (Kassas et al., 2019).

3.11  Other Achievements with GNSS SDRs

Apart from the success stories described in the previous subsections, a number 
of other achievements have been accomplished with GNSS SDRs, as listed in this 
subsection.

The first real-time GNSS/INS integration with an SDR was achieved by 
Gunawardena et al. (2004), and one of the first GNSS SDR implementations on a 
GPU was reported by Hobiger et al. (2010).

GNSS SDRs are known to achieve the highest possible sensitivity, as different inte-
gration schemes or data wipe-off procedures can be performed in post-processing. 
This enables very long coherent integration times, which are beneficial for sensitiv-
ity or multipath mitigation, as reported in Section 3.8. Characterization of the GPS 
transmit antenna pattern with a 30-s-long coherent integration resulting in 0-dBHz 
sensitivity has been discussed by Donaldson et al. (2020). The same sensitivity was 
achieved by 300 noncoherent integrations, each 1 s long, by iPosi Inc. (2015) for the 
purpose of indoor timing.

Graphical programming languages, such as LabVIEW and Simulink, are attrac-
tive choices for implementing SDRs because of their flexibility, modularity, and 
upgradability. Moreover, because SDRs are conceptualized as block diagrams, 
graphical programming languages enable a one-to-one correspondence between 
the architectural conceptualization and software implementation (Hamza et al., 
2009; Kassas et al., 2013).

The scope of SDRs was first extended to non-GNSS signals by McEllroy et al. 
(2006). SDRs became the implementation of choice in numerous studies aimed 
at exploiting SOPs for navigation purposes (Diouf et al., 2021, 2019; Kassas et al., 
2017), such as (i) cellular 3G CDMA (Khalife et al., 2018; Pesyna et al., 2011; 
Yang & Soloviev, 2018), 4G LTE (del Peral-Rosado et al., 2017; Ikhtiari, 2019; Kang 
et al., 2019; Shamaei & Kassas, 2018; Shamaei et al., 2018; Wang et al., 2022; Yang 
et al., 2022), and 5G NR (Abdallah & Kassas, 2022; del Peral-Rosado et al., 2022; 
Fokin & Volgushev, 2022; Lapin et al., 2022; Santana et al., 2021; Shamaei & Kassas, 
2021b; Tang & Peng, 2022); (ii) AM/FM radio (Chen et al., 2020; McEllroy, 2006; 
Psiaki & Slosman, 2022; Souli et al., 2021); (iii) digital television (Souli et al., 2020, 
2022; Yang & Soloviev, 2020); and (iv) LEO satellites (Farhangian et al., 2021; 
Farhangian & Landry, 2020; Nardin et al., 2021; Orabi et al., 2021; Pinell, 2021; 
Zhao et al., 2022).

Because of their enhanced analysis possibilities, GNSS SDRs proved to be very 
useful for elucidating ionospheric scintillation. The first dedicated SDRs were 
described by O’Hanlon et al. (2011); Peng & Morton (2011). The authors used a 
general-purpose front-end that was reconfigurable for multi-GNSS multi-band 
signals and a custom dual-frequency front-end. The first system further evolved 
into an intelligent, scintillation event-driven data collection, as reported by Morton 
et al. (2015).

Commercialization of academic SDR developments was partly discussed in 
the previous sections. In addition, a major receiver manufacturer has provided 
GNSS SDRs, starting with a timing receiver (Trimble Inc., 2005) and then mov-
ing to a flexible narrowband receiver (Trimble Inc., 2017). Wideband signals were 
later added, with some signal processing performed on an FPGA, as reported by 
PR Newswire (2021). The most recent commercial activity has been reported by 
LocusLock (2022) and builds upon the software described in Section 3.1.
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4  SDR FRONT-ENDS

As outlined above, a front-end is required to obtain digital samples for SDR pro-
cessing. The front-end tasks are to receive, filter, amplify, downconvert, and further 
digitize and quantize the analog RF signal entering the GNSS antenna. Many dif-
ferent types of front-ends have been used for GNSS SDRs. Roughly, five different 
categories can be identified:

Discrete components: Using RF-connectable components such as LNAs, 
filters, or ADCs, it is comparable easy to realize the function of a front-end 
and log IF or baseband samples. These setups are easy to realize, but are 
often bulky and sometimes prone to interference.

Commercial signal recorders: Several companies offer GNSS signal 
recorders that allow one to record (and often to replay) one or more GNSS 
frequency bands. These recorders usually do not implement a real-time 
connection to an SDR.

Generic non-GNSS front-ends: SDR technology is used in many different 
fields of electrical engineering, and front-ends covering a wide frequency 
range are available. Their prices range from a few dollars (Fernández–
Prades et al., 2013) to highly sophisticated multi-channel front-ends costing 
several tens of thousands of dollars. The oscillator quality, bit width, and 
RF-filter characteristics are not always optimal for GNSS signal processing.

Dedicated GNSS real-time front-ends: Built for the purpose of realizing 
a real-time GNSS SDR, these front-ends are compact and built with discrete 
components. A good example is described in Section 4.1.

ASICs: Some RF ASICs seem to target GNSS SDR use, and evaluation kits 
allow streaming of IF samples, e.g., as reported by NTLAB, UAB (2022); RF 
Micro Devices, Inc., Greensboro (2006).

GNSS signals need a relatively high sampling rate of the front-end, and when 
connected to a PC via a USB cable, the transfer was not always reliable in early 
years. Various optimizations and workarounds have been implemented, such as 
watermarking the IF sample stream and skipping lost sample packets (Foerster & 
Pany, 2013). With the advent of USB 3.0 and PCIe, these solutions became obsolete.

In the following section, we describe Fraunhofer USB front-ends as an example 
of user needs as well as the main features and general architectures of GNSS SDR 
front-ends. For a broader perspective of GNSS-compatible front-ends in the mar-
ket, the interested reader can refer to the work by (Borre, Fernández-Hernández 
et al., 2022, Ch. 12).

4.1  Fraunhofer USB Front-Ends

The scientific community, along with some industrial partners, required a 
multi-band solution for the upcoming civil multi-band signals in GPS and Galileo 
planning. In 2006, Fraunhofer IIS developed a front-end called the L125 Triband 
USB (see Figure 2(a)), which allowed recording of fixed frequencies of L1/E1, L2, 
and L5/E5a. This front-end had one antenna input and, via two USB 2.0 connec-
tors, could record data streams with a sampling rate of up to 40 megasamples per 
second (MSPS) and a 2- or 4-bit ADC resolution. However, increasing customer 
demands for portable and flexible solutions led to a complete redesign of the USB 
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front-end concept. One major request was reconfigurability on the SDR front-end 
side. To meet these different requirements in one SDR front-end hardware com-
ponent, a new version of the USB front-end was developed that realizes signal 
conditioning to an onboard FPGA, enabling desired reconfigurability on the fly. 
This feature was necessary to allow for a single-band receiver with a low sampling 
rate for specific real-time SDR projects, as well as a wideband and multi-frequency 
front-end for other projects.

In 2012, Fraunhofer IIS (Rügamer et al., 2012) introduced the Flexiband 
multi-system, multi-band USB front-end depicted in Figure 2(b). Within the last 
ten years, this front-end has been used and validated in numerous scientific and 
industrial projects. Furthermore, it has been commercialized and is distributed as 
the “MGSE REC” product of TeleOrbit GmbH (2022).

A regular Flexiband unit consists of up to three analog reception boards, a car-
rier board with ADCs and an FPGA, and a USB 3.0 interface board. A common 
antenna input port is supported, with separate front-end input signals for up to 
three antenna inputs. Three dual-channel ADCs sample the incoming signal 
with 81 MSPS and 8 bits in-phase/quadrature. The raw data stream is received 
by an FPGA in which different digital operations such as filtering, mixing, data 
rate reduction, and bit-width reduction as well as digital automatic gain control 
are applied. Finally, a single multiplexed data stream is formed together with 
a checksum. This multiplexed stream is sent via a USB 3.0 interface to the PC. 
Data rates of up to 1296 MBit/s or 162 MByte/s for a raw data stream are sup-
ported. The Flexiband GUI software receives the raw multiplexed stream, veri-
fies its integrity, and demultiplexes it. The data streamed can be either written 
to hard disk or sent to a customer application (e.g., a software receiver). The raw 
samples can be stored as a multiplexed data stream, in an 8-bit/sample format, 
or directly as a .mat file for MATLAB. In parallel, the ION Metadata *.sdrx is 
provided.

Because of its bandwidth, sampling rates, quantization, and multiplexing schema 
flexibility, the ION SDR Standard is a perfect fit to clearly and unambiguously 
define the configuration for the user. Therefore, immediately after the first conclu-
sion of the ION SDR Standard, each binary raw data output file of the Flexiband 
front-end is equipped with an sdrx metadata file specifying the raw data format.

Finally, a replay variant of this Flexiband exists, which reads in the raw IF samples 
on hard disk using the ION SDR Standard specification and replays the digital data as 
an analog RF output stream supporting multiple GNSS bands at the same time.

FIGURE 2 Two exemplary USB front-ends from Fraunhofer IIS (a) TriBand USB2.0 front-
end from 2006 (b) Flexiband USB3.0 front-end from 2012 onwards
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5  ION SDR STANDARD

The previous sections have already clarified that data exchange between the 
various SDRs requires a certain level of standardization. The events that led up 
to the suggestion of developing what became the ION SDR Standard (also known 
as the ION GNSS Metadata Standard, ION SDR Metadata Standard, GNSS SDR 
Sampled Data Metadata Standard, or GNSS SDR Metadata Standard) can be 
traced back to circa 1999. Building upon the successful contributions made 
by Akos, the Ohio University Avionics Engineering Center undertook several 
research projects leveraging GPS SDRs. One such project was called the GPS 
anomalous event monitor (GAEM) (Snyder et al., 1999). This project was spon-
sored by the FAA Technical Center and led by Prof. Frank van Graas. Commercial 
GPS receivers within prototype local-area augmentation system ground facilities 
were experiencing brief unexplained outages. GAEM maintained a continuous 
10-s history of IF samples in a circular memory buffer. When an outage occurred, 
GAEM was triggered to dump this buffer to disk and collect for an additional 
10 s. These sample files were then post-processed in MATLAB to determine the 
cause of the anomaly. Early versions of GAEM used commercial data collec-
tion cards and had numerous issues related to their proprietary drivers. Around 
2001, Gunawardena developed a refined version of GAEM based on one of the 
earliest commercially available PCI-based dual-ADC-plus-FPGA development 
cards. This version collected two GPS L1 data streams at 5 MSPS and 2-MHz 
bandwidth. This version of GAEM was fielded at three airports, operated con-
tinuously for over three years, and helped to characterize numerous anomalous 
events (Gunawardena et al., 2009). This GAEM also supported a continuous 
collection mode and was used for several research projects, including the char-
acterization of GPS multipath over water (Zhu & Van Graas, 2009) and GPS/
IMU deep integration demonstrations in flight (Soloviev et al., 2004). For the 
latter project, the 2-kHz raw data from a micro-electromechanical system IMU 
were interleaved with SDR samples thanks to the FPGA-based architecture that 
allowed for such custom capabilities.

Circa 2002, as these research projects progressed, the 2-MHz bandwidth lim-
itation of GAEM became apparent. There was a pressing need to support emerg-
ing research opportunities related to GPS L5, as well as high-fidelity GPS signal 
quality monitoring. A multi-band and higher-bandwidth (24 MHz) front-end and 
SDR data collection system was needed. There were only a handful of vendors sell-
ing such systems at the time, and it was not clear whether these systems would 
serve the purpose for satnav SDR applications (sampling coherency concerns, 
etc.). Moreover, the >$350k price tag of these systems far precluded any hope of 
their purchase for university research. Thus, researchers decided to develop this 
capability in-house. In 2003, a 2-channel L1/L5 front-end with 24-MHz bandwidth 
and 56.32 MSPS was developed (Gunawardena et al., 2007) based on connector-
ized RF components. The sampling and collection subsystems were carried over 
from GAEM.

The capabilities of the dual-frequency high-bandwidth system attracted interest 
from several universities, government research groups, and a defense contractor. 
To support these opportunities, the development of a new system known as the 
Wideband TRIGR was completed in 2008 (Gunawardena & Van Graas, 2011). The 
front-end was miniaturized to a single-frequency custom printed circuit board 
module. Up to eight such modules (with the required frequency options) were 
combined with an 8-channel 12-bit ADC to create modular systems for various 
sponsors. The raw samples from the ADC are transferred to a PCIe FPGA card, 
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where the eight streams are packed in various formats according to the user’s selec-
tion in a GUI. Supported formats range from any one stream at 1-bit sample depth, 
any two streams at 12 bits (sign extended to 16), to all eight streams at 4 bits. The 
sustained data transfer rate from the PCIe FPGA card to storage via a redundant 
array of independent disks (RAID) was limited to 240 MB/s. Thus, the appropriate 
format had to be selected to balance between the required capability and transfer 
rate. The generated file names embed a coordinated universal time (UTC) time-
stamp as well as the packed stream order and sample depth.

The event-based data collection feature of GAEM needed to be incorporated into 
Wideband TRIGR. However, the >10× data rate meant that a 10-s circular buffer 
could not be easily implemented in random access memory using the 32-bit sys-
tems of the day. This issue was addressed by writing data as a sequence of smaller 
files, where a new file was spawned before the current file was closed, with some 
sample overlap for data integrity, a technique known as temporal splitting. A sep-
arate process was used to delete older files from the RAID array to make room for 
new files unless an event was received, in which case the files surrounding the 
event were moved to a folder for post-processing.

With the myriad of sample packing formats available for Wideband TRIGR, 
along with the temporal splitting-based file generation scheme, it became clear that 
a machine-readable metadata file needed to be included with every collection. An 
XML schema was designed for this purpose.

Up until this time, apart from the FPGA-based real-time GPS receiver that was 
developed and used for certain projects, all SDR files generated by GAEM and 
Wideband TRIGR were post-processed in MATLAB. As others have mentioned, this 
step was excruciatingly slow, especially for Wideband TRIGR data. To address this 
issue and to support the rapid emergence of multi-band and multi-constellation 
satnav signals, Gunawardena wrote and distributed a MATLAB SDR toolbox in 
which correlation was performed in optimized C code and multi-threading was 
leveraged in a parallel data architecture. This toolbox, known as ChameleonChips, 
also read the XML metadata files produced by Wideband TRIGR to determine 
the appropriate sample unpacking kernel to use. This work was presented at ION 
GNSS+ 2013 in Nashville, TN (Gunawardena, 2013). During this presentation, it 
was suggested that the satnav SDR community adopt a metadata standard—similar 
to the standard developed for Wideband TRIGR—in order to alleviate the numer-
ous difficulties associated with sharing such files. This suggestion was met with 
widespread support and enthusiasm. Longstanding ION members Phillip Ward, 
Jade Morton, and Michael Braasch helped to pitch this idea to the ION Executive 
Committee.

During the January 2014 Council Meeting in San Diego, ION approved the 
process for establishing a formal standard (Gunawardena et al., 2021). The 
ION GNSS SDR Metadata Working Group (WG) was formed in April 2014 with 
Thomas Pany and Gunawardena as co-chairs (James Curran was later added as 
a third co-chair). Membership represented academia, industry (including satnav 
SDR product vendors as well as traditional satnav equipment manufacturers), 
non-profit research entities, and government agencies spanning countries in 
Europe, America, Asia, and Australia. The WG developed the standard as well 
as associated normative software over a course of six years. With regard to the 
normative software, while many individuals contributed, initial development of 
the C++ object model was performed by Michael Mathews of Loctronix while 
James Curran wrote much of the functionality to decode packed samples based 
on the metadata specification. The draft standard was adopted as the formal ION 
SDR Standard in January 2020.
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5.1  Use of the ION SDR Standard

Today, the ION SDR Standard serves as a reference for describing IF formats and 
is useful, for example, for public tenders or if an established format is needed. A 
number of SDRs include the C++ libraries to read metadata and IF samples.

The level of exchange of IF samples between research groups is limited to some 
extent, and such exchanges occur much less frequently than, e.g., the exchange 
of RINEX files. This trend is related to the huge size of IF sample files and to the 
fact that, for the majority of GNSS use cases, RINEX observation data or PVT 
exchange is sufficient. Furthermore, GNSS SDRs still tend to use primarily the 
same front-ends, and once the respective data format is known, there is obviously 
no need to describe it via the XML format. A disadvantage of the C++ routines is 
their generic design, which renders sample reading quite slow, as each sample is 
isolated via a number of for-loops from the input files. Clements et al. (2021) pro-
posed an algorithm to automatically generate optimized code for sample reading 
for a given IF format, but this proposal has not yet been manifest into a usable 
implementation.

5.2  ION SDR Standard Extension

During the standardization process, a number of features were identified that 
appeared to be useful for the standard; however, a lack of resources did not allow 
for the inclusion of all of these features in the formal standardization procedure. 
These features are described in Appendix II of ION SDR Working Group (2020). At 
the ION-GNSS+ 2022 meeting in September, the following points were discussed 
and will be included in Appendix II of the next version (V1.1) of the ION SDR 
Standard.

5.2.1  Flexible Bit Layout

The ION SDR Standard defines a “lump” as the ordered containment of all sam-
ples occurring within an interval. The ordered containment is understood in a reg-
ular way, with the samples of individual streams held together. Clements et al. 
(2021) view this aspect as a limitation, as highly efficient SDRs may use efficient 
bit-packing schemes to optimize data transfer over communication lines that need 
buffering. They have identified a need to distribute the samples of different streams 
in interleaved ways over the lump. This interleaving cannot be described by V1.0 of 
the ION SDR Standard. To overcome this limitation, the authors propose a new but 
optional attribute for the lump object, called “layout.” If the layout is present, fur-
ther information on the bit packing scheme must be provided, explicitly describing 
the type of each bit of a lump. The authors presented a detailed proposal for this 
new lump layout following the structure of the existing standard. The proposal 
even includes more advanced bit use cases, such as puncturing (e.g., explicit omis-
sion of bits) and overwriting of bits by time markers.

5.2.2  Refined Sample Rate/Epoch Definitions

Clements et al. (2021) noted that V1.0 of the ION SDR Standard makes implicit 
assumptions about the timing of the sampling process that are not suitable for 
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staggered sampling. Staggered sampling occurs if the sampling instants of differ-
ent GNSS signals are delayed with respect to each other, which might be of use for 
increasing the observability of GNSS interference in a multi-antenna system. To 
overcome this limitation, the authors propose the addition of two new attributes 
for “stream” objects to shift the sampling epochs of different GNSS streams with 
respect to each other.

5.2.3  JSON Format for Metadata Files

Comment ID 22 of the initial request for comments suggested that the WG should 
consider markup languages other than XML for metadata files, specifically JSON, 
YAML, and TOML (Anonymous, 2017). In 2017, this comment was addressed by 
asserting that the XML format would be maintained for the time being, as nor-
mative software that parses XML had already been developed. However, the WG 
responded with the assurance that “other markup languages will be considered in 
the future based on community need and interest.”

As of the time of this writing and with the experience gained from developing 
PyChips (a satnav SDR that is completely described using a draft signal/system 
specification language based on JSON, as described in Section 3.7), it is this author’s 
opinion that JSON may have some distinct advantages over XML for future appli-
cations and use cases. For example, JSON streaming is a methodology for transfer-
ring object-oriented data over communications protocols (Wikipedia, 2022) and 
is widely used in well-known applications such as that described by Plotly (2022). 
Hence, streaming JSON could be one way to parse SDR sample streams whose for-
mats are changing dynamically.

Figure 3 presents a notional listing for a JSON-formatted metadata description 
for the Flexiband front-end XML metadata listing reported by Gunawardena et al. 
(2021).

To maintain compatibility with the existing and formally adopted XML-based 
metadata specification, it is understood that any adoption of another markup lan-
guage such as JSON must include open-source normative software and tools to 
convert between these formats. The adoption of JSON-based metadata is currently 
being considered for future versions of PyChips. Once a successful implementa-
tion has been achieved, consideration for adopting JSON as another valid option 
for representing ION SDR Standard-compliant metadata in a future version of the 
standard will be requested.

SUMMARY AND CONCLUSION

Since the beginning of GPS SDR developments in the mid 1990s, together with 
the operational declaration of GPS, the feasibility of GPS SDR has been widely 
proven by several platforms and their derivatives. We defined GNSS SDR platforms 
as those implementing receiver functions in general-purpose software and proces-
sors and divided them in real-time receivers, teaching/research tools, and snapshot 
receivers. We described some of these platforms, with a focus on those related to 
the authors but also including other developments. In particular, and based on the 
pioneering work by Akos, we described the bit-wise parallelism platform devel-
oped by the Cornell GPS group, which led to GRID by UT Austin; the MuSNAT 
receiver by UniBwM, which led to IFEN GmbH’s SX3 commercial receiver; the 
SoftGPS MATLAB receiver and associated book, which are widely used for GNSS 
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teaching and are also influencing other platforms, such as FGI-GSRx; the popular 
C++ open-source GNSS-SDR by CTTC; AutoNav SDR by Inha University; PyChips 
by Gunawardena, based on Python; the snapshot GNSS receiver developed by UAB, 
leading to cloudGNSSrx; the real-time NGene receiver developed by LINKS, used 
for early testing of the first Galileo signals and OSNMA; and the MATRIX receiver 
by ASPIN for navigation with terrestrial and space-based SOPs, among others. We 
provided an overview of the tasks and components of SDR front-ends, and for this 
purpose, we described Fraunhofer developments from the last few years as a refer-
ence. Finally, we discussed the ION SDR Standard, officially approved by ION in 
2020, and its current extensions.

FIGURE 3 Notional JSON representation of Flexiband front-end metadata from 
Gunawardena et al. (2021)
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In view of the impact in the GNSS community and progress in the last decades, 
we conclude that GNSS SDR has a promising future and will continue coexisting 
with FPGA and ASIC receivers in the decades to come.
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