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Abstract

Amplitude and phase scintillation indexes (S4 and r/) provided by Ionospheric Scintillation Monitoring (ISM) receivers are the most
used GNSS-based indicators of the signal fluctuations induced by the presence of ionospheric irregularities. These indexes are available
only from ISM receivers which are not as abundant as other types of professional GNSS receivers, resulting in limited geographic dis-
tribution. This makes the scintillation indexes measurements rare and sparse compared to other types of ionospheric measurements avail-
able from GNSS receivers. Total Electron Content (TEC), on the other hand, is an ionospheric parameter available from a wide range of
multi-frequency GNSS receivers. Many efforts have worked on establishing scintillation indicators based on TEC, and geodetic receivers
in general, introducing various metrics, including the Rate of TEC change (ROT) and ROT Index (ROTI). However, a possible relation-
ship between TEC and its variation, and the corresponding scintillation index that an Ionospheric Scintillation Monitor (ISM) receiver
would estimate is not trivial. In principle, TEC can be retrieved from carrier phase measurements of the GNSS receiver, as r/. We inves-
tigate how to estimate r/ from time series of TEC and ROT measurements from an ISM in Ny-�Alesund (Svalbard) using Machine
Learning (ML). To evaluate its usability to estimate r/ from geodetic receivers, the model is tested using TEC data provided by a
quasi-co-located geodetic receiver belonging to the International GNSS Service (IGS) network. It is shown that the model performance
when TEC from the IGS receiver is used gives comparable results to the model performance when TEC from the ISM receiver is utilised.
The model’s ability to infer the exact value of the scintillation index is bound to Mean Square Error (MSE) = 0.1 radians2 when r/ � 0:8
radians. For r/ > 0:8 the MSE reaches 0.18 and 0.45 radians2 in operative testing using ISM and IGS measurements, respectively. How-
ever, the model’s ability to detect phase scintillation from IGS TEC measurements is comparable to expert visual inspection. Such a
model has potential in alerting against phase fluctuations resulting in enhanced r/, especially in locations where ISM receivers are
not available, but other types of dual-frequency GNSS receivers are present.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

Keywords: Ionospheric irregularities; Geodetic receivers; Artificial intelligence; Space weather
1. Introduction

Ionospheric scintillations are rapid random fluctuations
in the amplitude and phase of electromagnetic wave signals
https://doi.org/10.1016/j.asr.2023.07.039
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as observed by a radio receiver. It happens when the signals
pass through irregularities in the electron density distribu-
tion of the ionosphere. Scintillation affects radio wave
propagation including satellite communications, astron-
omy observations, radar remote sensing, and Global Nav-
igation Satellite Systems (GNSS) signals.
mmons.org/licenses/by-nc-nd/4.0/).
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Ionospheric irregularities are concentrated near the
magnetic equator, in the auroral zone, and the polar
region. The mechanism behind the low- and high-latitude
irregularities are different, and their effect on radio signals
is also different (Wernik et al., 2003) leading to a distinction
between low and high-latitude scintillation. The former is
mainly driven by irregularities in the electron density that
form after local sunset when the main source of ionization,
the Sun, disappears. Under geomagnetically perturbed con-
ditions, the formation of low-latitude irregularities can
increase or suppress (Balan et al., 2018). The latter is asso-
ciated with geomagnetic storms when batches of the iono-
sphere are pushed from the day side over the polar caps
into the night side creating irregularities in the ionosphere.

Ionospheric Scintillation Monitoring (ISM) receivers
are equipped with special firmware designed to process
GNSS signals under disturbed ionospheric conditions and
extract scintillation monitoring parameters (Bougard
et al., 2011). These are the widely adopted phase (r/Þ
and amplitude (S4) indices (Fremouw et al., 1978), measur-
ing the entity of the signal fluctuations in a given time win-
dow, which is typically of 1 min for ground-based GNSS
observations (van Dierendonck et al., 1993). High-
latitude scintillations are usually observed as fluctuations
in the phase of the signal and rarely in the amplitude, while
for low-latitude scintillations both amplitude and phase
fluctuations are usually observed (Jiao and Morton, 2015).

The sparse distribution of ISM receivers, relative to
other types of professional GNSS receivers, has pushed
the scientific community to investigate alternative GNSS-
based ionospheric monitoring capabilities to complement
(or replace) the ISM receivers. Dual Frequency geodetic
receivers’ networks have always been a good candidate
for these studies because of their spatial and temporal data
availability that well exceeds the ISM receivers (see, e.g.,
Scherliess et al., 2019). This has not been a trivial task
because ISM receivers implement resilient tracking loops,
low-phase noise oscillators and stable clocks with advanced
signal processing techniques to cope with the signal dynam-
ics in case of severe signal fluctuations due to the presence
of ionospheric irregularities. In fact, these receivers need to
guarantee that the effects from the local oscillator are way
less than the effects of the ionosphere. This is not the case
for geodetic receivers that are usually noisier than the ISM
receivers’ oscillators (Nguyen et al., 2019). The latter is the
main reason why geodetic receivers are not directly imple-
mented as scintillation monitoring receivers.

Another difference is that the geodetic receivers provide
the end users with pseudorange measurements from the
Position, Velocity and Time (PVT) unit typically at rates
that are 1 Hz or lower. Differently, computation of the
scintillation indexes requires the signal intensity and phase
measurements, i.e., correlators level measurements, at a
high rate of 50 Hz or higher. This prevents computing
the scintillation metrics in terms of amplitude and phase
scintillation and thus limits the integration of scintillation
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observations from geodetic receivers directly with ISM
receivers. Furthermore, the firmware of commercial ISM
receivers has been designed to compute the scintillation
indexes and other parameters in quasi-real-time (typically
a few minutes latency, depending on how the monitoring
station that is usually installed in a remote location is con-
figured to operate), making them a precious tool to moni-
tor ionospheric weather and its impact on GNSS-based
services (see, e.g. Kauristie et al., 2021).

Many methods to facilitate using the common geodetic
receivers for scintillation monitoring have been proposed.
The rate of TEC change (ROT) was introduced in the nine-
ties (Wanninger, 1993) and has been used in many scintil-
lation studies to characterize irregularities having scale
sizes from few to tens of kilometres (see, e.g. Alfonsi
et al., 2011, de Franceschi et al., 2019). Contrary to scintil-
lation indexes that utilise single frequency measurements,
ROT uses dual frequency data to observe fluctuations in
the GNSS phase measurements. Then, (Pi et al., 1997)
introduced the GPS phase fluctuation index, known as
ROT index (ROTI), which is considered today the metric
for proxying scintillation from geodetic receivers’ measure-
ments. Enhancements of phase scintillation index are asso-
ciated with electron density gradients, and, indeed, TEC
distribution indicates where gradients in the electron den-
sity are present. ROTI is then widely used in the recent lit-
erature addressing GNSS signal fluctuations of ionospheric
origin at both low (see, e.g. Alfonsi et al., 2021; Carrano
et al., 2019; Ma and Maruyama, 2006; Yang and Liu,
2016; Yizengaw and Groves, 2018) and high-latitudes
(see, e.g., Cherniak and Zakharenkova, 2017; Kotulak
et al., 2020; Shagimuratov et al., 2012; Sokolova et al.,
2023; Zhao et al., 2022) and for monitoring purposes
(Cherniak et al., 2018). However, the detection of scintilla-
tion based on ROTI alone is still not reliable and unclear,
with debate among the scientific community on the actual
physical value estimated by ROTI w.r.t the scintillation
indexes (Li et al., 2022). From a geodetic GNSS receiver
point of view, low latitude scintillations reduce the signal
amplitude and increase the phase noise (see Juan José
Miguel et al., 2018 and references within) while the high
latitude ionospheric activity acts as an additional dynamic
stress on the receiver tracking loops.

In recent years, the introduction of the 1 Hz IGS geode-
tic receivers (formally known as the high-rate IGS recei-
vers) has attracted efforts to estimate the scintillation
indexes themselves from geodetic receivers (Juan et al.,
2017; Mrak et al., 2020; Nguyen et al., 2019). For example,
(Nguyen et al., 2019) proposed computing the phase scintil-
lation index from the noisy geodetic receivers’ phase mea-
surements. The authors demonstrated the possibility of
modelling the oscillator noise and eventually removing its
noise from phase measurements and estimating the phase
scintillation index.

In this work, we alternatively propose using ML tech-
niques to achieve this estimation. We rely on the fact that
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TEC measured by geodetic receivers under ionospheric dis-
turbances incorporate high-order terms that are due to the
ionospheric perturbances (see Section 2). Since these terms
change rapidly under scintillation conditions, as has been
already observed and utilized by ROT and ROTI, we rely
on the ML model’s ability to learn the pattern of TEC
and dTEC time series variation under scintillation. Since
the effects from the local oscillator are present in all cases,
we expect the ML algorithm to learn to differentiate
between these time series when only variations due to the
local oscillator are present and when scintillation is present
above that. Such types of noisy signals are suitable for ML
techniques that can learn how scintillation affected TEC
time series evolve, rather than learning what are the exact
values of TEC and dTEC under disturbed ionospheric
conditions.

The objective of this work is to use TEC measurements
from geodetic receivers to detect phase scintillation with
the help of ML techniques, for possible application in scin-
tillation alerting systems when/where ISM receives are not
available. The focus of this work is only on high-latitude
scintillation where phase scintillation is dominant and the
phase-without-amplitude scintillation phenomenon is
observed. There are three main reasons for limiting this
investigation to high latitudes. First, the different physics
beneath low and high latitude irregularities formation
and the resulting scintillation effects which lead to TEC,
dTEC and r/ values at low and high latitudes to take dif-
ferent values. Second, and a direct consequence of the pre-
vious sentence, to train and/or validate the model to work
both for low and high latitudes scintillation, at leat one
ISM receiver co-located with an IGS receiver is needed
from each region. To the best of our knowledge, there is
no IGS receiver quasi-co-located with one of the low-
latitude scintillation receivers available on the eSWua scin-
tillation repository (see Section 3). Finally, the lack of low-
latitude geodetic data that well represents all the range of
r/ values. Although the ML model might learn the pattern
of strong scintillations from the TEC values provided by
ISM receivers under such conditions, the availability of
IGS measurements to test the model under the same condi-
tions is questionable. IGS receivers easily loose tracking the
signal under strong scintillation, and thus their measure-
ments will not be available for the ranges of r/ for strong
scintillation. For these reasons, we limit the model training
and testing to high-latitude phase scintillation.

This paper is organised as follows. In Section 2, the the-
oretical background of this research is covered. The theo-
retical TEC formula is recalled and compared to the
actual measured TEC by GNSS receivers. Scintillation
detection and the phase scintillation index are introduced.
Also, a brief introduction to ML models’ development is
given. The methodology is detailed in Section 3 followed
by the results in Section 4. Results are discussed and sum-
marized in Section 5. The conclusions are given in
Section 6.
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2. Background

2.1. What is included in the Geometry-Free (GF)

combination

TEC is one of the parameters that are widely used to
characterise the ionosphere. TEC is defined as the number
of electrons in a cylinder of 1 m2 cross-section from a
receiver to a satellite. It is measured in TEC units (TECU)

where 1TECU ¼ 1� 1016 electrons m�2. Theoretical TEC
is given by the integral of the electron density (ne) along a
ray path from the satellite S to the receiver R:

TECT ¼
Z R

S
neds ð1Þ

Dual frequency GNSS receivers estimate TEC by taking
advantage of the fact that the ionosphere is a dispersive
medium, i.e., the effects induced by the ionosphere are fre-
quency dependent. Recalling the expression of GNSS
phase pseudo-range between satellite S and a receiver R

at time t (/S;R
L ):

/S;R
L f ; tð Þ ¼ qS;R tð Þ þ cdtS;R tð Þ þ T S;R tð Þ � IS;RL f ; tð Þ

þ kN t0ð Þ þ �S;RL f ; tð Þ ð2Þ
where qS;R is the true range between the satellite and the

receiver, dtS;R is the difference between the satellite and

receiver clocks, T S;R is the tropospheric delay, IS;RL is the
ionospheric phase advance, kN is the ambiguity term (re-
solved by geodetic receivers using many techniques that

are out of the scope of this work), and �S;RL is the term that
includes all the errors including the receiver noise and mul-
tipath effects.

The ionospheric phase advance (IS;RL f ; tð Þ) can be esti-
mated by integrating the index of refraction along the sig-
nal path from the satellite S to the receiver R (Datta-Barua
et al., 2008; Hoque and Jakowski, 2007):

IL fð Þ ¼ 40:3
TECT

f 2
þ 1

2
2:26� 1012

f 3

Z R

S
Bcoshnedsþ 1

3

� 2439:42

f 4

Z R

S
n2eds ð3Þ

TEC is estimated from the GF combination of GNSS
measurements at two frequencies f 1 and f 2 as:

TECGF tð Þ ¼ 1

40:3

f 2
1f

2
2

f 2
2 � f 2

1

/ f 1; tð Þ � / f 2; tð Þð Þ

¼ TECT tð Þ þ Rbkn
k
e f GF ; tð Þ þ �s;rGF tð Þ ð4Þ

where �s;rGF f GF ; tð Þ includes all the error terms, and
Rbkn

k
e f GF ; tð Þ includes all the terms of ne that do not follow

1=f 2. In general, �s;rGF f GF ; tð Þ does not change rapidly over
short time windows and it can be removed by calibration.
The calibration of TEC is subject to a whole literature
(Cesaroni et al., 2021; Tornatore et al., 2021). The
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calibration method proposed by Ciraolo et al. will be
referred to as GG Calibration (Ciraolo et al., 2007), was
implemented in this study to remove the error terms �s;rGF
and obtain:

TECGG tð Þ ¼ TECT tð Þ þ Rbkn
k
e f GF ; tð Þ ð5Þ

However, the high-order terms Rbkn
k
e fGF ; tð Þ, although

are negligible for quiet ionosphere, do not follow the

1=f 2 and can vary rapidly over short time windows (see
for example (Fritsche et al., 2005; Prikryl et al., 2021)).
We leverage the ML model to learn the scintillation index
from the time evolution of these terms. The change in TEC
over short time windows has been utilised in the literature
for characterising the ionosphere, especially in disturbed
conditions. The rate of change of TEC (ROT)
(Wanninger, 1993), here referred to as dTEC, and ROTI
(Pi et al., 1997) are given by:

dTEC tð Þ ¼ TEC tð Þ � TEC t � t0ð Þ
t0

ð6Þ

ROTI tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
Rt

j¼t�N dTEC jð Þ � dTEC
�� �2

r
ð7Þ

where t0 is the interval of dTEC, dTEC
�

is the average dTEC
over the ROTI time window, and N is the number of dTEC
values in the ROTI time window. ROT and ROTI are typ-
ically computed over 1- and 5-minute time windows,
respectively. A common value for the time between consec-
utive TEC measurements from IGS data is 30 s. For the
high-rate IGS data available today from some IGS recei-
vers, TEC can be computed with a rate of up to 1 Hz
and ROTI can be defined also on shorter time windows,
e.g., 1 min to be comparable with ISM receivers’ data.

In summary, TEC measurements provided by GNSS
receivers include residuals that carry information about
scintillation. TEC is computed from the GF combination
of GNSS measurements and then calibrated to remove
the noise factors.

2.2. Scintillation detection with phase scintillation index

The phase scintillation index r/ is defined as the vari-
ance of the detrended phase over a given time interval,
which is usually 1 min for ISM receivers. Phase detrending
is a topic of debate among the scientific community since
the early 2000s, especially for high-latitude scintillations
(Forte and Radicella, 2002; Spogli, Ghobadi, et al.,
2021), and it is implemented by receivers in different ways
(For example, (Crowley et al., 2011)). It is not the objective
of this work to investigate detrending, so we will stick to
the method most used in the literature because this is
how most phase scintillation data are presented. This
means that the detrending of 50 Hz phase measurements
is accomplished with a sixth-order Butterworth filter and
a cut-off frequency of 0.1 Hz. This makes r/ sensitive to
irregularities covering the full range of scale sizes at all lat-
itudes. Additionally, the authors are aware that this choice
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affects the capability of distinguishing refractive and
diffractive contribution to scintillation, which is an open
field in scintillation research (Ghobadi et al., 2020;
McCaffrey and Jayachandran, 2019; Zheng Yuhao et al.,
2022).

Historically, the method for scintillation detection relies
on thresholds on the scintillation index. Scintillation is
declared present if the scintillation index exceeds a prede-
fined threshold. The thresholds on the indexes are not fixed
among the scientific community, with various studies
adopting different thresholds on the amplitude and phase
scintillation indexes for the different scintillation monitor-
ing receivers and for the different scintillation severity
(Alfonsi et al., 2011; Spogli et al., 2009). Acceptable thresh-
old on r/ can be defined as (Vilà-Valls et al., 2020):

r/ > 0.25 strong scintillation.
r/ > 0.15 and <0.25 moderate scintillation.
r/ < 0.15 weak-to-no scintillation.

Scintillation detection using a threshold on the scintilla-
tion index is not optimum (Taylor et al., 2012). To illus-
trate this, Fig. 1 shows an example of a phase
scintillation event on L1 frequency with manual labelling
and threshold labelling. The data was taken from PRN25

observed by an ISM receiver in Ny-�Alesund (Svalbard,
Norway) on September 8th, 2017. Data are part of the
GNSS scintillation data collection (Upper atmosphere
physics and radiopropagation Working Group, 2020)
available through the electronic Space Weather upper
atmosphere (eSWua, eswua.ingv.it) data portal managed
by Istituto Nazionale di Geofisica and Vulcanologia
(INGV, Italy). The red box shows the samples that are
manually labelled as scintillation by an expert inspector.
The red dashed line shows a threshold of r/ ¼ 0:15 radi-
ans. The grey box masks the samples that are not consid-
ered scintillation by the threshold. It can be seen from
the latter that a good portion of the scintillation window
is cut by the threshold. In other words, although the
threshold detects the existence of scintillation, it doesn’t
detect the whole scintillation window. This will be very
important when the ML model results are evaluated
because it means we can not rely on the number of scintil-
lation samples that exceed the threshold as the exact true
label, but rather as an indication of scintillation time win-
dows that are identified by the threshold. This threshold
labelling can be enhanced, for example, by using a data ser-
ies check for the proximity of events (Linty et al., 2019).
2.3. Model development with machine learning

ML has gained success in a wide range of applications
including remote sensing, telecommunications, and scien-
tific fields. Its ability to learn without prior knowledge
about the underlying physical phenomenon attracted its
use in science and engineering especially when it is complex

http://eswua.ingv.it


Fig. 1. Doubts about using a threshold on scintillation indexes as labelling methodology. r/ samples from September 8th, 2017 PRN25 are shown. The
red box shows the samples that were labelled as scintillation by expert inspection. The grey box masks the samples that are not labelled as scintillation by a
threshold ofr/ = 0.15. A good portion of the scintillation event falls below the threshold.
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to model the physics that generated the data. A ML model
can discover patterns in the data or predict values of some
variables based on measurements and previous data.

To develop a ML model, certain steps must be followed
before the model is declared operational. These steps are
illustrated in Fig. 2 (adapted from Kulin et al., 2021) and
explained in the following paragraphs.

The bulk work of ML modelling lies in data prepara-
tion. Feature engineering (also known as feature discovery
and feature extraction) is the process of selecting, trans-
forming and manipulating features (also known as attri-
butes) from the raw data using domain knowledge, in
order to improve the learning of the models.

In data cleaning, corrupted samples and outliers are
removed from the data set. Since the ML model is data-
driven, the quality of the model relies on the quality of
the data set. For example, in GNSS scintillation data, cycle
slips and oscillator anomalies might be considered outliers
and thus removed from the data. However, they can also
be considered valuable inputs if the objective of the model
is to detect outliers in the measurements. A careful defini-
tion of the objective of the model and the problem state-
ment is stressed here because of its importance in
developing a model able to accomplish the task.

Selecting the ML model is guided at the beginning by
the nature of the data set, and later by the model perfor-
mance among the tested algorithms (trial and error)
(Badillo et al., 2020; Kulin et al., 2021; Zhang et al.,
Fig. 2. Machine Learnin
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2021). Depending on the amount of labelled data provided
to the ML algorithm, ML techniques can be divided into
supervised, semi-supervised, reinforcement and unsuper-
vised learning. In supervised learning, the ML algorithm
is informed about the target outputs it is expected to pre-
dict. Thus, the model learns how to fit the data and obtain
the desired output. Supervised ML predicts the class corre-
sponding to the input data if the output is categorical data
or performs regression if it has to predict a numerical
value. In unsupervised learning, on the other hand, the
ML model explores the data and understands how they
can be grouped. In this work, the ML model is to perform
regression and we will only consider bagged regression
trees (Breiman, 1996).

Decision tree learning is based on tree structures,
defined by recursively partitioning the input space. The
decision tree is an acyclic graph in which at each branching
node a decision is made by examining a specific feature vec-
tor and depending on the decision a branch is followed
(Burkov, 2019). In other words, the learning takes place
along the branches and nodes employing applied functions
for the decision criteria in each node (Linty et al., 2019).

ML methods sometimes are not able to obtain adequate
performances when dealing with complex data, like noisy
imbalanced high-dimensional data. In such cases, these
methods might fail to capture the underlying multiple
characteristics and structures of the data (Dong et al.,
2020). Ensemble learning methods exploit multiple ML
g Modelling Cycle.
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algorithms to produce many predictive models based on
diverse features, and fuse results of individual models using
a selected voting mechanism. By doing this, ensemble
learning aims to achieve better performances than that
obtained by the individual child algorithms. Increasing
the complexity of the ensemble model decreases the model
error until reaching a certain complexity, after which the
error just increases (Dong et al., 2020). Thus, increasing
the complexity of the ensemble is not always the way to
achieve better models, but a balance between bias and vari-
ance is what we search for. The widely used ensemble clas-
sification methods include bagged trees, AdaBoost,
gradient boosting, random forest and random subspace.

Ensemble methods are considered the state-of-the-art
solution for many ML challenges. They compensate for
the errors of a single learner by other learners, and they
reach an overall better prediction performance of the
ensemble with respect to the single inducers. These
improvements are attributed to their overfitting avoidance,
extended search space and local minimum avoidance (Sagi
and Rokach, 2018).
2.4. ML models evaluation

There are various methods to visualise and evaluate the
performance of ML models. The confusion matrix is a pop-
ular method to visualise ML models’ performance, show-
ing the number of True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN) sam-
ples. The following metrics easily visualizable from the con-
fusion matrix are used in this paper:

� Accuracy: the ratio of the number of correctly classified
samples to the total number of samples.

Accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ
� True positive rate (TPR) or sensitivity: ratio of the
detected scintillation samples to the total number of true
scintillation samples.

TPR ¼ TPð Þ= TP þ FNð Þ
� False Negative Rate (FNR) or Miss detection: the ratio
of the number of scintillation samples wrongly classified
to the total number of scintillation samples.

FNR ¼ FNð Þ= TP þ FNð Þ
� False Positive Rate (FPR) or False alarm: is the ratio of
the number of samples wrongly classified as scintillation
to the total number of samples classified as scintillation.

FPR ¼ FP= TP þ FPð Þ
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Another performance visualisation tool, that is also
quite used for evaluating regression models, is the Receiver
Operating Characteristic (ROC) curve (Gneiting and
Vogel, 2022; Gönen, 2006). ROC is a graphical tool, orig-
inally proposed in signal detection theory, that analyses the
performance of a classification model by varying the detec-
tion threshold. ROC trades off between TPR and FPR and
visualises the comparison in a two-dimensional. The ideal
threshold value, the highest TPR and lowest FPR, is
located in the upper left corner of the plot. In many cases,
this is not achievable and thus a trade-off based on the tar-
geted TPR and the accepted FPR is made. The area under
the curve (AUC) is a measure of the discriminatory power
of the model, with AUC = 1 indicating an ideal model and
AUC = 0.5 indicating the model performance is as good as
a random guess.

3. Methodology: Scintillation detection with machine

learning

There are two approaches from a supervised ML point
of view to implement the objective of this work. The first
one is to train a classifier that outputs a discrete value rep-
resenting the existence of scintillation or not, and the sec-
ond is to train a regressor which outputs a continuous
value that represents the level of scintillation. The former
requires manually labelling the training, validation and
testing data sets as scintillation or no scintillation, while
the second approach requires knowledge of the continuous
value output value, and in this case, it is the phase scintil-
lation index value corresponding to the input TEC time
series.

Since the objective of this work is to issue alerts when
scintillation exceeds certain levels, on first look it seems
that we need to train a classifier that outputs scintillation
or no scintillation, based on TEC measurements. However,
manually labelling the data as scintillation or no-
scintillation is labour-intensive (see Section 2.4). We went
around this by training a regression model that infers r/

itself from TEC measurements and thus avoiding the man-
ual labelling task. The outcome of the ML training task is
thus a data-driven model that predicts the outcomes (r/)
from the input data (TEC). In the implementation phase,
this ML model is followed by a detection threshold on
the estimated r/ (br/). As discussed in Section 2.4, a thresh-
old on r/ is not the optimum way to detect scintillation,
but rather a way to identify the presence of scintillation
windows. We use the visual inspection as the final and
definitive method for evaluating the developed ML model
performance, which is easier than manually labelling the
training data sets. The threshold was selected following
ROC analysis that trades off between true scintillation
detection and false scintillation alarms. The model is eval-
uated at two stages: the accuracy of estimating r/ and its
ability to detect scintillation. Fig. 3 shows the methodology
block diagram.
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3.1. Data selection

For training the model, a multi-frequency ISM receiver
is needed. For testing the model, a high-rate IGS receiver
co-located with an ISM receiver is needed, to obtain the
TEC measurements from the former and the corresponding
r/ from the latter. For this, we choose the IGS receiver

(NYA2) in Ny-�Alesund and the nearby Septentrio
PolaRx5S ISM receivers (NYA0P and NYA1P) belonging
to INGV (Upper atmosphere physics and
radiopropagation Working Group, 2020). NYA2 was
selected because it provides the high-rate observable
(1 Hz rate) which allows computing TEC at the 15 s
cadence needed for this work. The choice of Nyalesund is
backed up by the unlimited access to the ISM data avail-
able from INGV’s receiver closely located near the IGS
receiver. The distance between NYA2 and NYA1P is
approximately 226 m, while NYA2 and NYA0P are
approximately 1.6 km apart. The IGS receiver is observing
the same ionosphere as the ISM receiver, thus the r/ that
these two receivers would estimate are assumed to be equal.
Certainly, some degree of spatial decorrelation in the r/

values is expected. However, the scintillation metric is
available with a 1-minute resolution. Such resolution does
not allow visualizing the differences resulting from the
1.6 km distance which would be in second scale latency
between the scintillation indexes that the IGS would have
estimated if capable. Indeed, it would have been beneficial
to use co-located ISG/ISM receivers for this purpose,
which to the best of our knowledge, do not exist for the
eSWua scintillation repository.

Data from 2017 to 2021 were utilised to train and test
the model. In particular, the months reported in Table 1,
with some known geomagnetic storms (Linty et al., 2018;
Spogli, Sabbagh, et al., 2021), were selected to ensure
including enough scintillation data in the data set.
Fig. 3. Model Training, Testing a
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The training and testing data sets (middle column of
Table 1) were balanced to ensure that the number of sam-
ples with r/ > 0:4 radians are well represented. A total of
2370 samples were obtained with r/ � 0:4 radians and thus
a similar number of samples were selected among the sam-
ples with r/ < 0:4 radians for the training and testing
phase. This dataset was randomly divided into 70/30 for
training and testing.

The data from April 2021 were reserved for testing the
model in an operational scenario using ISM data. For test-
ing the model in an operative scenario using IGS TEC, the
data of NYA2 for the whole month of September 2017
were selected.
3.2. Data preparation

ISM TEC and dTEC measurements were extracted from
the ISM records as provided by the receiver manufacturer.
IGS TEC measurements were calculated from the observa-
tion and navigation RINEX files available from the
CDDIS GNSS data and products archive. TEC was calcu-
lated from the carrier-phase measurements applying Eq. (4)
and calibrated using the GG method to obtain calibrated
TECGG from Eq. (5). Then, the rate of change in TEC
(dTEC) was calculated using (6). In this study, we use
TEC and dTEC at 15 s cadence because TEC in Septentrio
PolaRx5S ISM records are available at this rate. Indeed,
higher rate measurements could be obtained from the
Septentrio PolaRx5S ISM receivers by processing the
high-rate observables of the receiver, which are beyond
the scope of this paper.

The samples are prepared in blocks of 3 min that include
TEC, dTEC and the satellite elevation (hEL). This choice of
the input features set was inspired by a previous work by
the authors (Imam et al., 2021) where this feature set gave
the best performance among other sets that were derived
nd deployment flow diagram.



Table 1
Selected days for training, testing and validating the model.

Station Training and Testing Phase Operational Testing Phase

Nya0p 2017.09, 2018.08, 2019.09, 2020.09
nya1p 2020.09, 2021.02, 2021.03 2021.04
nya2 2017.09
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from the ISM record. For the sake of focusing the work on
the regression task, we follow the same methodology from
the previous work. The model predicts r/ at the end of
each 3-minutes data block with a cadence of 1 min. The
ground truth label is given by r/ index available from the
ISM record.

Samples with cycle slip giving r/ � 10 radians were
removed from the dataset. Samples with 1 < r/ < 10 radi-
ans were limited and given the value r/ ¼ 1 radian. The
reason behind the latter is that these samples show phase
scintillation index inflations that are not corresponding to
the scintillation intensity alone. On one side, these cycle
slips are often associated with strong scintillations where
the receiver fails to track the signal (Nguyen et al., 2019).
On the other hand, these r/ inflations can be due to recei-
ver and satellite anomalies (Liu and Morton, 2020). In this
work, we chose to keep them in the training sample and
consider them as indicators of strong scintillation.

3.3. Model training and testing

A bagged regression tree with 30 learners was trained to
predict br/ from TEC measurements provided by the ISM
receivers. The model and hyperparameters were selected
based on previous work by the authors, where this model
gave the best performance among a selected group of
supervised ML techniques (Imam et al., 2021). In this
work, and in favour of focusing the investigation on the
regression task, we do not discuss ML algorithms perfor-
mance comparison and hyper-parameters optimization.
Indeed, these could be the topic of follow-up work.

IGS data can provide TEC values but not the r/ index,
while ISM receivers provide both. We opt for using ISM
receivers’ data both for the inputs and outputs of the ML
model training. This choice was motivated by a need to
investigate if it is even possible to train a ML model to infer
the value of r/ in the first place. Furthermore, by using
only the data from ISM receivers, the effect of the local
oscillator noise between the receiver that calculated r/

and the receiver that is providing TEC is not present.
The testing of the model, however, was carried out using

TEC from both ISM and IGS receivers in operative scenar-
ios, i.e., in the same way the data is expected to be provided
to the model when it is deployed. The testing using IGS
data is indeed the main result of this work, which explores
the feasibility of this proposed methodology in estimatingbr/ using TEC from IGS receivers.
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4. Results and discussion

In this section results of training and testing the model
are shown. First, the performance of the model during
the training and testing phase is shown. Next, the model
is tested in an operative scenario using 1 month of ISM
TEC data. Such a test is important to assess the model per-
formance when the same type of data used for the training
phase is used for testing the model on a large scale. This is
also important to confirm that the model is not overfitted
to the training data set. Then the model testing using data
from the IGS receivers is shown. The latter, if successful,
could be the beginning of a new era of reliable scintillation
alerts using geodetic receivers in areas where ISM receivers
are not present.

4.1. Model training performance: Estimating r/ from ISM

TEC

In this section, we report the results of training and test-
ing the ML model in retrieving the phase scintillation
index. Here, TEC was calculated using the same receiver
that produced r/.

Fig. 4 shows the MSE reported by the model training (a)
and testing (b). The histogram on the left panel shows the
true r/ distribution. The middle panel shows the predictedbr/ distribution. The right panel shows the MSE between
r/ and br/, grouped by r/ range. The MSE reported by
the model training is below 0.05 for all r/ ranges, with
an overall MSE = 0.0089 radians2. The overall MSE
obtained when testing the model however is higher
(0.0198 radians2) and reaches approx. 0.1 radians2 for a
couple of r/ ranges. The balancing of the classes to include
an equal number of samples above and below r/ ¼ 0:4
radians shows evident flaws. Looking at the distribution
of the true r/, the samples with r/ � 0:4 radians are obvi-
ously not well represented. We decide to keep investigating
the model in its current state, without further enhancing
the training set.

4.2. Testing the model using 1 month of ISM TEC data

In this section, the model is tested in an operative sce-
nario using TEC data from the same scintillation receivers
that were used for training the model. This is similar to
deploying the model in an operative phase. The ML model
is provided with all the data of all the satellites for a certain
period and the predicted br/ is evaluated.

The data from April 2021 were reserved for this testing,
i.e., they were not part of the training or testing sets. In
Fig. 5, sample results for PRN02, PRN17 and PRN01
observed on the 2nd, 16th, and 19th of the month, respec-
tively, are shown. The top left plot shows r/ and br/ in red
and blue respectively. The ROC curve is shown in the top
right plot. The bottom left plot shows the detected scintil-



Fig. 4. Model training (a) and testing (b) performances. The left and middle panels show the histograms of the true r/ and predicted br/, respectively. The
right panel shows the MSE between r/ and br/ binned by true r/ range.
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lation instances, and the bottom right plot shows the corre-
sponding confusion matrix. Focusing on Fig. 5(a), it can be
seen that br/ is inflated around the same values that the true
r/ is inflated. However, the error in estimating the exact r/

value, as anticipated by the MSE analysis, is evident. This
indicated that the model’s ability to detect scintillation
occurrence might be high, although its ability to estimate
the exact r/ is low. To quantify this detection ability, the
model is further evaluated using the ROC. Here the true
label was set using a threshold of r/ ¼ 0:15 radians, to test
the model’s ability to alert about scintillation when r/

exceed this threshold. Indeed, the disadvantages of using
such a detection mechanism are understood as discussed
in Section 2. From the ROC analysis, it is found that by
setting a threshold of br/ � 0:2 radians, the TPR and
FPR corresponding to the red circle in the ROC curves
are obtained. The detected scintillation instances using this
threshold on br/ are shown in the bottom left plot, and the
corresponding confusion matrix is shown in the bottom
right plot. The red dots show the true r/, the red dashed
line is the alert threshold of r/ ¼ 0:15 radians, and the blue
dots show the instance of scintillation as identified by the
ML model and the br/ threshold. Although only a couple
of samples in this data series exceeded the alert threshold,
the ML model identifies the time window between 12:30
and 13:00 as scintillation. This is indeed what would be
manually labelled as scintillation by visual inspection. This
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also explains the high number of FP due to all the samples
that are part of the scintillation window but fall below the
alert threshold. This brings back our concerns about using
a threshold on r/ as a strict scintillation detection mecha-
nism. Nevertheless, the ML model learnt to detect scintilla-
tion windows with performance closer to manual labelling
than the threshold.

Similar results can be observed for PRN17 Fig. 5(b) and
PRN01 Fig. 5(c), where the detection threshold on br/

slightly differs for each satellite, as it is extracted from
the relevant ROC curves. However, they are all withinbr/ � 0:2 radians.

To evaluate the overall model performance for the
whole month of April 2021, the model performance in
terms of MSE and ROC is reported. Fig. 6(a) reports the
distribution of r/ (left), the distribution of br/(middle)
and the MSE between the two values (right). The number
of samples is much greater than the ones reported in the
training and testing phase because here all the samples of
1 month are included. The samples with r/ < 0:15 radians
are abundant while the samples with r/ > 0:4 radians are
hardly present. This is a typical scenario for scintillation,
and it shows why although we used approximately
6 months of data for training the model, the number of
samples was at the end in the order of 5,000 samples.

In the same Figure, the MSE for r/ > 0:8 radians is
noticeably high. This is due to the samples with cycle slips



Fig. 5. Sample results of testing the model in an operative scenario using ISM TEC. The figures show model testing results using data of PRN02 (a)
PRN17 (b) and PRN01 (c) on the 2nd, 16th and 19th of April 2021 respectively. The upper left plot shows r/ (red) and br/(blue). The upper right plot
shows the ROC evaluated for alerts when r/ > 0:15 radian. The red circle shows the threshold on br/ and the corresponding FPR and TPR. The lower left
plot shows the detection using this threshold on br/ and the corresponding confusion matrix is shown in the lower right plot.
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that we chose to include in the training set. Indeed the r/

associated with these samples do not correspond to the
scintillation activity (as mentioned in Section 2) and the
model indeed did not learn how to associate br/ to these
values. In fact, the model did not provide any prediction
with br/ > 0:7 radians, which explains the high MSE for
r/ > 0:7 radians, and confirms the limitations of using
the model in its current condition for estimating the exact
value of the scintillation index.

Next, we focus on the model’s ability to detect scintilla-
tion from TEC. The ROC curve for the data of the whole
month is shown in Fig. 6. Here we show the results when
the true scintillation threshold was set tor/ = 0.15 rad
(red), r/=0.25 rad (green) andr/ = 0.4 rad (blue) radian,
i.e., setting different scintillation alert levels. It can be
noticed that the bow of the curve moves toward the upper
left corner of the plot (the performance of a perfect classi-
fier) as the threshold on the true r/ increases. For the alert
Fig. 6. Overall model performance in an operative scenario using 1 month of
true r/ and predicted br/, respectively. The right panel shows the MSE between
of r/ ¼ 0:15; 0:25; 0:4f g radians.
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threshold of r/ ¼ 0:15 radians in particular, the model can
achieve approx. 95% true scintillation detection, accepting
10% false scintillation alarm. These are close to the values
shown in Fig. 5 where the high false positives agreed with
visual inspection. Hence, if the objective is to alert about
scintillation with r/ > 0:15 radians, then the model is able
to achieve this task with TP and FP rates >95% and <10%,
respectively, and detection capability close to visual inspec-
tion. However, if the objective is to achieve the exact value
of r/, then the model wrongly estimates the index with up
to MSE = 0.18 radians2 when r/ is above 0.8 rad, accord-
ing to the 1-month operational scenario testing. Next, this
model will be further tested using TEC from IGS receivers.
4.3. Testing the model using IGS TEC data

The model validated above uses TEC data from ISM
receivers. In this section, the model is tested with TEC data
ISM TEC data. (a) The left and middle panels show the histograms of the
r/ and br/ binned by r/ range. (b) ROC for three levels of alert thresholds
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provided by the IGS receiver. First, we have a look at sam-
ple correlation plots between TEC measurements from IGS
and ISM receivers. Then we show three selected results of
testing the ML model on IGS data. Finally, we show statis-
tics of testing the model with 1 month of data.

Before evaluating the performance of the ML model
using IGS TEC data, we investigate the correlation
between ISM and IGS TEC (Fig. 7(a)), and the correlation
between ISM and IGS dTEC (Fig. 7(b)). Four hours of
data from PRN01 on September 3rd, 2017 were used for
producing these correlations. The two plots also show the
histograms of the 4 values (TECISM, TECIGS, dTECISM

and dTECIGS) for the sake of a complete picture. The cor-
relation between TECISM and TECIGS is low (0.46) while
the correlation between dTECISM and dTECIGS is high
(0.95). This was anticipated in Section 2 when discussing
TEC calibration. TECISM is calibrated using the GG
method, while TECIGS is provided by the scintillation recei-
ver manufacturer. The temporal series of the same data are
shown in Fig. 7(c). The top plot shows the true r/(blue and
left y-axis) and the satellite elevation (red and right y-axis).
The middle plot shows TEC provided by the ISM receiver
(red) and the one estimated from the IGS data (blue). The
bottom plot shows dTEC for the ISM (red) and IGS (blue)
receivers. The TEC values from the ISM receiver are nois-
ier than the values from the IGS receiver, however, the
dTEC values are almost identical. Thus, if the model is
relying on dTEC more than TEC as an indicator of scintil-
lation, it is expected to give a similar performance to the
one reported in the previous Section. This can be further
investigated by evaluating how each input feature is con-
tributing to the model performance (i.e. feature importance
analysis).

The ML model prediction results on sample satellites
with PRNs 08 (strong scintillation), 10 (moderate scintilla-
tion) and 26 (weak scintillation) measured on the 8th, 10th
and 26th of the month, are shown in Fig. 8(a)-(c), respec-
tively. The upper left plot shows in red and blue dots,
respectively, the true r/ and the corresponding br/ pre-
dicted by the ML model. The x-axis is the time in UT.
The upper right plot is the ROC curve. The lower left plot
shows the scintillation detection results using the ML
model (blue dots) and the corresponding true r/. The lower
right plot shows the confusion matrix for the detection
results. Focusing on Fig. 8(a), r/ and br/ values are inflated
around the same time window. However, as observed in
Section 4.2, the ML model is not inferring the exact r/

value measured by the ISM receiver. This further confirms
that the model in its current state is not suitable for infer-
ring r/. The detection ability of the model using IGS data
is, however, interesting. Again, the ROC curve was
obtained by setting the threshold on the true r/ to
0.15 rad. For these data, and with a threshold ofbr/ � 0:2 radians, it is possible to detect the time window
of scintillation from IGS measurements as shown in the
bottom left plot. The confusion matrix (bottom right) con-
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firms that many of the samples in the scintillation window
fall below the 0.15 rad alert threshold, however, they have
been detected as a scintillation event by the ML model.

The same result is observed for PRN10 (middle panel)
and PRN26 (bottom panel). The ML model correctly
detects most of the instances that the true label using visual
inspection will consider as scintillation. This confirms that
although the model is using TEC from IGS receivers as
inputs, it can provide the same performance that it
achieved when TEC from ISM receivers were considered.
In particular, the model’s ability to accurately detect the
scintillation windows is impressive. The latter can be imple-
mented for scintillation alerts from non-ISM receivers’
measurements, and thus issue reliable scintillation alerts
from non-ISM receivers.

The visual inspection included 200 figures in total, from
September 2017. Each figure represents one day of one
satellite data, similar to the panels of Fig. 8. The ML label
agrees with visual inspection in 193 of these figures (95%).
The ML model missed to detect only 2 scintillation events
(1%), and 8 figures were wrongly labelled by the ML model
as scintillation (4%).

To finalise this results section, we show in Fig. 9 the
MSE and the ROC for the whole month of September
2017, similar to the figures shown in Section 4.2. In panel
(a), the left and middle plots show the histograms of the
true r/ and predicted br/, respectively. The right panel
shows the MSE between r/ and br/ binned by r/ range.
Panel (b) shows the ROC curves for three levels of alert
thresholds of r/, 0.15, 0.25 and 0.4 rad. Surely, TEC values
are taken from the IGS receiver while the ground truth r/

is taken from the ISM receiver. Looking at the histogram
of r/, there are not many samples with r/ > 0:4 radians
and all the values with r/ ¼ 1:0 radians are related to cycle
slips explained in Section 3. The ML model estimated that
a good number of samples have br/ > 0:4 radian, and none
of the samples have br/ ¼ 1 radians. This explains the high
MSE in the right plot, where the samples with true r/ ¼ 1
radians were all ‘‘wrongly” estimated by the ML model.
Similar behaviour of the model was observed when it was
tested using ISM TEC data for 1 month where the model
never assigned br/ > 0:7 radians. This further confirms that
the model testing with IGS data gives similar results to test-
ing the model with ISM data.

The ROC curve in panel (b) is also similar to the ROC in
Fig. 6 that was obtained when testing the model using ISM
TEC data. The AUC is slightly lower than AUC reported
in Fig. 6. However, since the detection threshold on br/ in
Fig. 8 were similar to those observed in Fig. 5, and the false
positives agree with the manual labelling using visual
inspection, this detection capability of the model using
IGS TEC measurements is considered equivalent to the
model performance using ISM TEC data. This detection
accuracy is to be compared with other metrics for scintilla-
tion detection from non-ISM receivers, for example, ROTI.
Also, the agreement between the model’s detection and



Fig. 7. Correlation between TEC and dTEC estimated by the ISM and IGS receivers. Four hours of data from PRN01 on September, 3rd 2017 were used
in these plots (a) the histograms of IGS and ISM TEC and their correlation (b) the histograms of IGS and ISM dTEC and their correlation (c) the time
series of r/ and the satellite elevation angle (top), slant TEC from IGS and ISM data (middle), and dTEC from the IGS and ISM data (bottom).
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manual labelling with visual inspection is still to be
quantified.

A summary of these results and discussion is given in the
next Section.
5. Summary and discussion

The ML model trained in this article is a regressor that
predicts the value of r/, hence outputs br/. A threshold set
on br/ was implemented as the scintillation detection mech-
anism. The optimal threshold was selected following ROC
analysis. The model performance in terms of the MSE
between r/ and br/ was evaluated. Also, the scintillation
alert capabilities from br/ was investigated. Two ISM recei-

vers in Ny-�Alesund were utilised for training the ML
model. A quasi-co-located IGS receiver was utilised for
testing the model when TEC from a non-ISM receiver is
provided as input to the model.

The model was evaluated in two stages. In the first stage,
1 month of TEC measurements from the ISM receivers
were used to infer the value of r/. It was found that the
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model is not able to infer the exact value of r/, howeverbr/ from the ML model is inflated around the same time
windows as the true r/. This agreement was evaluated in
terms of ROC and detection of scintillation from br/. It
was found that detecting scintillation from br/ estimated
by the ML shows a good correlation with scintillation
detection using visual inspection. Sample results of this
are shown in Fig. 5. The model’s ability to reliably detect
scintillation from ISM TEC measurements is further
confirmed.

In the second stage of testing, TEC measurements from
an IGS receiver were provided as inputs to the model. The
MSE between r/ and br/ (Fig. 6) is around 0.1, except for
r/ � 0:9� 1:0 radians where the MSE reached 0.4 radi-
ans2, as was the case for the ISM TEC testing. However,
detecting scintillation from this ML inferred br/ shows
great agreement with scintillation detection using visual
inspection (Fig. 9), as was the case for the TEC from
ISM receivers. In particular, the MSE (panel (a) in Fig. 6
and Fig. 9) and the ROC curves (panel (b) in Fig. 6 and
Fig. 9) are very similar in both test scenarios. This indicates



Fig. 8. Sample results of testing the model in an operative scenario using IGS TEC. The Panels show model testing results using data of (a) PRN08 (strong
scintillation), (b) PRN10 (moderate scintillation) and (c) PRN26 (weak scintillation) measured on the 8th, 10th and 26th of September 2017 respectively.
The upper left plot shows r/ (red) and br/(blue). The upper right plot shows the ROC evaluated for alert when r/ > 0:15 radian. The lower left plot shows
the detection using this threshold on br/ and the corresponding confusion matrix is shown in the lower right plot.
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Fig. 9. Overall model performance in an operative scenario using 1 month of IGS TEC data. (a) The left and middle panels show the histograms of the
true r/ and predicted br/, respectively. The right panel shows the MSE between r/ and br/ binned by true r/ range. (b) ROC for three levels of alert
thresholds of r/ ¼ 0:15; 0:25; 0:4f g radian.
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that indeed TEC from IGS can be used for detecting scin-
tillation with performance comparable to scintillation
detection from an ISM TEC using this ML model. This
detection capability based on dTEC is in line with the liter-
ature on detecting scintillation from geodetic receivers
using ROT and ROTI for example.

The TEC values from the ISM receivers are noisier than
the calibrated TEC from IGS receivers while the dTEC
from the two receivers are almost identical. Moreover,
the ML model performance when TEC and dTEC from
IGS receivers were used as inputs gave a comparable per-
formance to the ML testing using TEC and dTEC from
ISM receivers. An investigation into how much the ML
model relies on TEC and dTEC values will give insight into
this aspect. In particular, the model seems to rely on dTEC
more than TEC and thus it was able to achieve this detec-
tion when the type of receiver changes from ISM to IGS.
Indeed, such reliance on dTEC is desirable because it is
possible to obtain almost identical dTEC values from
ISM and IGS receivers, without doing calibration. In prin-
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ciple, the geometry-free combination (i.e.
/ f 1; tð Þ � / f 2; tð Þð Þ in Eq. (4)) can be argued to give similar
results without the need to calculate TEC and calibrate it.

This model performance is not a surprise. High latitude
r/ is known to be affected by the ionospheric refractive
effects, which are the base for calculating TEC. However,
the model performance in detecting the diffractive effects
has not been investigated. In particular, it would be inter-
esting to evaluate the model performance in detecting the
scintillation events identified by (Ghobadi et al., 2020;
Spogli, Ghobadi, et al., 2021) using adaptive phase
detrending techniques.

On a different note, taking into account the differences
between low- and high-latitude scintillations, the model
performance in detecting equatorial phase scintillations
using TEC from equatorial ISM and IGS receivers could

be investigated. A new ML model that predicts br/ or bS 4

in this case, might be needed because of the differences
between high- and low-latitude scintillations discussed in
Section 2.
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During data preparation, strong decisions were made
regarding cleaning and balancing the training set which
can be summarized as follows:

� In the training phase, the data set was balanced by
including a comparable number of samples with
r/ � 0:4 radians and r/ < 0:4 radians. This was done
by removing a large portion of the noise samples. How-
ever, this resulted in a change in the shape of the distri-
bution of r/ as shown in Fig. 4. In particular, the
samples with r/ slightly less than 0.4 rad were not well
represented in the training set. Since this balancing
was implemented using a random selector, this misrepre-
sentation of samples with r/ � 0:4 radians was evident
and expected. Future works are recommended to bal-
ance the training set using techniques that are suitable
for imbalanced non-Gaussian data.

� Cycle slips by ISM receivers are usually indications of
strong scintillation where the receiver fails to cope with
the signal. Therefore, r/ in these cases show inflated val-
ues that are not proportional to the scintillation inten-
sity. On the other hand, ISM receivers’ r/>1 rad
inflations can be due to non-ionospheric related sources,
e.g. from the receivers and satellites oscillator anomalies.
In this work, they were considered valuable samples and

were limited to r/ 1 < r/ < 10
� � ¼ 1 assuming all these

inflations are due to strong scintillation. This choice,
although guarantees more scintillation samples associ-
ated with strong scintillations, needs to be further stud-
ied to understand the effect of including and excluding
ISM receivers’ cycle slips on the final testing when IGS
receivers are used.

Finally, in developing this model, several choices were
made by the authors during the model training. These are
summarized next and recommendations for future imple-
mentations are listed:

� First of all, the ML model was trained with TEC values
provided by the ISM receivers as inputs because, since
we are proposing to use TEC to infer r/, it was impor-
tant to investigate in the first place if the ML will be able
to learn the relationship between TEC and r/ that were
estimated by the same receiver. Later, the model was
tested in a situation where the receiver estimating TEC
and the one estimating r/ are different. Given the
promising results achieved in this paper, future models
can attempt to directly train the model using measure-
ments from the geodetic receivers.

� When testing the model using IGS data, TEC was cali-
brated using the GG method as explained in Section 2.
Looking at the relationship between TEC from the
two receivers (Fig. 7) and the overall performance of
the model when IGS-calibrated TEC values were uti-
lized (Fig. 9), it can be argued the calibration was not
important and GF combination could have led to the
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same results while simplifying the data preparation. This
can be verified by testing the model using uncalibrated
TEC values or by using other calibration methods.
Another approach would be to calibrate TEC from the
ISM receivers using the same GG calibration method
that was used for IGS TEC, or even to calculate the
GF from both ISM and IGS receivers’ data and use that
for training and testing the model.

� The ML algorithm choice and the feature set selection
were inspired by a previous work by the authors
(Imam et al., 2021). Neither the optimal ML model
nor the input features were investigated in this paper;
in order to focus the work on the regression task. How-
ever, since the trained regression model in this work
shows good results, we recommend future works to con-
sider ML models that are tailored for time-series inputs,
including deep learning models, to improve the model’s
ability to infer r/ value with high accuracy.

� Lastly, this paper considers TEC at 15 s cadence. How-
ever, since IGS high-rate data are provided at a rate of
1 Hz, time series with denser samples can be considered
as inputs for the ML model. On the other hand, if the
model is to be deployed on a wide scale, and since many
of the IGS receivers today provide measurements at 30 s
cadence, a ML model that takes as inputs TEC at a
lower sampling rate might be needed. This is important
also for the possible processing of historic IGS data for
scintillation detection using the ML model.

In summary, the results of detecting phase scintillation
from non-ISM receivers’ TEC measurements and ML tech-
niques are satisfying and show comparable results to scin-
tillation detection from TEC provided by ISM receivers.
Also, the feasibility of inferring phase scintillation level is
promising. The testing of the model with TEC data from
IGS and ISM receivers gave comparable results, meaning
that when it comes to TEC, ISM receivers have no advan-
tage over geodetic receivers. It is applicability in alerting
against scintillation in areas where ISM receivers are not
available is comparable to visual inspection and is to be
validated against other scintillation detection mechanisms
from non-ISM receivers, like the ROTI index. However,
for inferring the value of r/ from geodetic receivers’ TEC
measurements, this ML model is not capable of this
because of the choice of the ML algorithm and the utilized
training data set. To keep investigating the latter, the paper
gives recommendations on the next steps.
6. Conclusion

This work investigates detecting scintillation from TEC
measurements using ML techniques. The choice of TEC
as input to the ML model is interesting because TEC can
be obtained from a wide range of GNSS receivers, including
the IGS network. Utilising the IGS receivers’ data for
inferring the value of r/ combined with ML capabilities is
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foreseen to enhance reliable scintillation alerts using geode-
tic receivers in areas where ISM receivers are not available.

A bagged regression tree was trained using temporal ser-
ies of TEC and dTEC measurements provided by two ISM

receivers in Ny-�Alesund, Svalbard. Data from 2017 to 2021
were used for this training. Data from both ISM and IGS
receivers were considered when testing the model.

The model was tested in two stages. First, one month of
TEC measurements from the same ISM receivers that were
used for training the model was used. The model’s ability
to infer the exact value of r/ showed MSE of up to 0.18
radians2. However, its ability to detect scintillation, which
was evaluated using ROC curves, is impressive and its per-
formance is close to expert scintillation detection using
visual inspection.

In the second stage of testing, TEC measurements from
an IGS receiver were provided to the ML model. The mod-
el’s ability to infer the value of r/ from IGS data showed
the same MSE as its performance when TEC from ISM
receivers were used, except for the cases where cycle slips
on the ISM receiver were suspected. Hence, the model’s
ability to infer the exact r/ was not achieved. More impor-
tantly, the model’s ability to detect scintillation from br/

inferred using IGS TEC measurements is found to be sim-
ilar to the previous test scenario using ISM TEC, and thus
it shows agreement with scintillation detection by expert
visual inspection. This detection ability is in line with the
objectives of this work in alerting of scintillation using
non-ISM receivers’ measurements with potential applica-
tion in scintillation alerts in regions where ISM receivers
are not available.

The next steps in this work can be divided into two tracks.
The first one is to compare the model’s detection capability
from IGS TECmeasurements to other metrics, for example,
ROTI. The second track is to work on enhancing the ML
model training. This includes investigating ML algorithms
other than the bagged regression trees, investigating the
optimal input features, and enhancing the data set with bet-
ter balancing and less non-ionospheric r/ inflations.

In conclusion, the work on inferring the value of r/

from TEC measurements is promising. However, the scin-
tillation detection from br/ is to be improved. Further per-
formance evaluation for the latter is needed to assess its
capacity compared to the other metrics for detecting scin-
tillation from geodetic receivers.
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