
01 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Poster: Kotlin Assimilating the Android Ecosystem - An Appraisal of Diffusion and Impact on Maintainability / Coppola,
Riccardo; Fulcini, Tommaso; Torchiano, Marco. - ELETTRONICO. - (2024), pp. 266-267. (Intervento presentato al
convegno 46th International Conference on Software Engineering tenutosi a Lisbon (POR) nel April 14 - 20, 2024)
[10.1145/3639478.3643071].

Original

Poster: Kotlin Assimilating the Android Ecosystem - An Appraisal of Diffusion and Impact on
Maintainability

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/3639478.3643071

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987043 since: 2024-06-25T13:01:50Z

ACM/IEEE

Poster: Kotlin Assimilating the Android Ecosystem - An Appraisal
of Diffusion and Impact on Maintainability

Riccardo Coppola
riccardo.coppola@polito.it

Politecnico di Torino, Turin, Italy

Tommaso Fulcini
tommaso.fulcini@polito.it

Politecnico di Torino, Turin, Italy

Marco Torchiano
marco.torchiano@polito.it

Politecnico di Torino, Turin, Italy

ABSTRACT
Kotlin is a language alternative to Java, introduced in 2011. It
promises to address many of Java’s limitations and lead to better
application maintainability. In 2017, it became a first-class language
for Android development with full tool support. We mined a dataset
of 2708 Android applications on which we based our study. Our
empirical assessment of the diffusion of Kotlin in Android app devel-
opment shows that it is now used in around 40% of projects. Kotlin
adoption has a significant positive effect on code maintainability
metrics and in popularity among end-users and developers. Overall,
Kotlin appears to be successfully fulfilling its promise of being a
better Java for Android development.

KEYWORDS
Software Maintainability, Android Development, Kotlin

ACM Reference Format:
Riccardo Coppola, Tommaso Fulcini, and Marco Torchiano. 2024. Poster:
Kotlin Assimilating the Android Ecosystem - An Appraisal of Diffusion and
Impact on Maintainability. In 2024 IEEE/ACM 46th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion ’24), April
14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3639478.3643071

1 INTRODUCTION
Kotlin has been developed to address several limitations of the Java
language: the handling of null values possibly leading to NullPoint-
erExceptions [2]; maintainability, understandability and concise-
ness; avoiding several other common Java coding pitfalls [2].

Many developers claim that using Kotlin results in better quality
code. However, it is unclear how Kotlin code affects the main-
tainability of codebases in comparison to traditional Java Android
apps. The objectives of this paper are manifold: (i) we extend a
preliminary analysis of the state of popular repositories of Android
applications in terms of Kotlin adoption, building up on a dataset
that was originally mined in 2019 [3]; (ii) we compute a set of state-
of-the-art software quality and maintainability metrics for Kotlin;
(iii) we conducted an empirical analysis to determine the impact of
Kotlin adoption on popularity among developer, user ratings of the
application, and maintainability of software project.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3643071

2 APPROACH
The study answered four research questions: (RQ1) What is the
percentage adoption of Kotlin on Android apps on OS (open-source)
repositories? (RQ2) What is the pace of the integration of Kotlin?
(RQ3)What is the impact of the presence of Kotlin on the popularity
and feedback from users and developers? (RQ4) What is the impact
of the presence of Kotlin on code maintainability?

2.1 Repository mining
As the source of projects for our study, we selected the F-Droid
repository of OS applications because of its wide use in related
literature. The repository mining was performed on April 30, 2023,
and allowed the collection of an initial set of 3889 Android OS
projects. All OS projects extracted from this mining were then
paired with the corresponding OS project on GitHub or application
on the PlayStore (if existing). We then filtered out for our study the
projects that were developed with hybrid non-native frameworks
and those that were not updated for more than 45 days.

The final set of repositories consisted of a total of 2708 OS An-
droid projects. 1369 projects were also released on the Google Play
Store, 1578 were also published as GitHub repositories, 805 apps
were available on all three repositories.

2.2 Analysis procedure
The following metrics were extracted for each project to answer
the RQs of the study:

Diffusion (RQ1) : to evaluate diffusion we defined the Kotlin
Presence ordinal variable with four levels based on the rela-
tive quantity of Kotlin code in the whole project: No Kotlin;
Kotlin < 50%; Kotlin > 50%; Only Kotlin. The lines of code in
the Kotlin language were computed using the cloc tool1.

Evolution (RQ2) : To analyze the evolution of the projects,
we took monthly snapshots of each project, by considering
the last commit in each frame. Each snapshot was analyzed
with the cloc tool. We then divided the projects into different
Kotlin adoption groups and reported the ratio of projects
in each group with respect to the total number of projects
available at any given monthly snapshot.

Popularity (RQ3) : To analyze popularity, we considered two
distinct sets of projects: (i) the projects that were present on
the PlayStore (regardless of their presence on GitHub), and
that were not abandoned (a total of 912 projects): for them,
we considered as a popularity metric the average rating (i.e.,
the Stars); (ii) the projects that were available on GitHub
(regardless of their presence on the PlayStore), and that were

1https://github.com/AlDanial/cloc

https://doi.org/10.1145/3639478.3643071
https://doi.org/10.1145/3639478.3643071
https://doi.org/10.1145/3639478.3643071
https://github.com/AlDanial/cloc

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Riccardo Coppola, Tommaso Fulcini, and Marco Torchiano

not abandoned: for them, we considered as popularity met-
rics the number of stars averaged by the project lifespan
months and the number of watching accounts.

Maintainability (RQ4) : To analyze maintainability, we con-
sidered the set of projects that were updated after October
2017, and we considered the most newly updated repository
between the tarball hosted on F-Droid and the last commit
on GitHub (if present). We applied the rca (Rust Code Anal-
ysis)2 tool to the codebase. We selected the six metrics that
are most related to code maintainability and understand-
ability: CC (McCabe’s Cyclomatic Complexity) [4]; Halstead
Difficulty [5]; the logarithm of Halstead Effort; MI (Main-
tainability Index); WMC (Weighted Method per Class) [6];
Cognitive Complexity [7]. For the details of the metrics the
interested reader may refer to Ardito et al. [1].

3 RESULTS
By analyzing the total amount of projects, it emerges that 1023 out
of 2,708 (37.8%) featured lines of code written in Kotlin. 551 (20.3%)
were instead entirely written in Kotlin. The fraction of projects
with the presence of Kotlin increases if the most recent update of
the project is on F-Droid (38.9%) rather than on GitHub (35.8%).

When Kotlin is adopted, on average the majority of the code is
written with it (75.90% LOCs, 77.80% files) hinting at a preference
of the developers in using Kotlin rather than Java when the two
languages are used in the same project. The interested reader can
refer to the online appendix for additional details3.

Answer to RQ1: 38% of analyzed apps contain Kotlin code.

To answer RQ2, we considered the set of projects not abandoned
on GitHub, with last update after October 2017 (967 projects).

For each month, we discarded the projects that were no longer
updated in the previous year. The amount of projects with Kotlin
steadily increased over the surveyed period: from 6.8% (39 out of
574) to 48% (241 out of 501), whilst there is a visible contraction in
the number of projects featuring only Java (-52.2% since October
2017, and -13.4% only on the first four months of 2023).

Restricting the analysis of Kotlin evolution only to the 342 projects
with Kotlin that were most recently updated on GitHub, excluding
projects that were not updated for the last 12 months a clear trend
of increase in the relative amount of Kotlin code inside Android
projects can be seen.

Answer to RQ2: since 2017 the proportion of active projects
using Kotlin raised from 8% to 48%.

We notice a significant positive effect of having a project fully
developed in Kotlin on the average number of stars on the Play-
Store platform (average 4.4 mean rating, against average 4.14 mean
rating, p-value equal to 1.35e-04). There is no statistically signifi-
cant difference between the groups "Kotlin minority" and "Kotlin
majority" and the reference group "Only Java".

Regarding GitHub stars per project, a statistically significant pos-
itive difference in normalized GitHub stars was verified for projects
2https://github.com/mozilla/rust-code-analysis
3doi.org/10.6084/m9.figshare.24999962

fully developed in Kotlin. Regarding GitHub Watching per project,
there is no statistically significant difference between any group
and the reference "Only Java" group.

Answer to RQ3: end-users on PlayStore assign ratings 1/4
of star higher to projects with Kotlin; on GitHub, pure Kotlin
projects get 8 stars per month more than pure Java ones.

The metrics to answer RQ4 were collected on all the projects that
were updated after October 2017. Regarding WMC, Kotlin Majority
and Only Kotlin had a statistically significant difference compared
to the reference group "No Kotlin". This suggests that the applica-
tions of Kotlin tend to have a lower number of weighted methods
per class, with an average decrease from 17.03 to 7.47 when only
Kotlin is used. Regarding CC, the difference between the groups
"Kotlin Majority" and "Only Kotlin" against the reference group "No
Kotlin" proved to be statistically significant, with an average de-
crease from 1.88 to 1.74 and 1.70, respectively. Concerning the log10
of the Halstead Effort, the difference between the groups "Kotlin
Majority" and "Only Kotlin" against the reference group "Only Java"
proved to be statistically significant, with an average decrease from
5.43 to 4.79 and 4.42, respectively. We observe a similar significant
difference for the Halstead difficulty, with a decrease from 29.33
to 11.49 from "No Kotlin" to "Only Kotlin". Regarding MI, all the
groups had a statistically significant positive effect compared to
the "No Kotlin" reference group. For projects with Kotlin only, we
observe an increase from 30.64 to 38.14. Finally, regarding Cognitive
Complexity, we observe a statistically significant negative differ-
ence only for the "Kotlin Majority" (reduction of 0.44) and "Only
Kotlin" (reduction of 0.56) compared to the 1.42 average value for
the "No Kotlin" reference group.

Answer to RQ4: consistent improvement of all maintainabil-
ity related metrics: McCabe CC ↓ 9.6%, WMC ↓ 56%, Halstead
Effort ↓ 18.6%, Halstead Difficulty ↓ 60.6%, Cognitive Com-
plexity ↓ 39.4%, Maintainability Index ↑ 24.5%.

REFERENCES
[1] Luca Ardito, Luca Barbato, Marco Castelluccio, Riccardo Coppola, Calixte Denizet,

Sylvestre Ledru, and Michele Valsesia. 2020. rust-code-analysis: A Rust library to
analyze and extract maintainability information from source codes. SoftwareX 12
(2020), 100635.

[2] Subham Bose, Madhuleena Mukherjee, Aditi Kundu, and Madhurima Banerjee.
2018. A comparative study: java vs kotlin programming in android application
development. International Journal of Advanced Research in Computer Science 9, 3
(2018), 41–45.

[3] Riccardo Coppola, Luca Ardito, and Marco Torchiano. 2019. Characterizing the
transition to kotlin of android apps: a study on f-droid, play store, and github.
In Proceedings of the 3rd ACM SIGSOFT International Workshop on App Market
Analytics. 8–14.

[4] Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip Laplante.
2016. Cyclomatic Complexity. IEEE Software 33, 6 (2016), 27–29. https://doi.org/
10.1109/MS.2016.147

[5] T Hariprasad, G Vidhyagaran, K Seenu, and Chandrasegar Thirumalai. 2017. Soft-
ware complexity analysis using halstead metrics. In 2017 International Conference
on Trends in Electronics and Informatics (ICEI). 1109–1113. https://doi.org/10.1109/
ICOEI.2017.8300883

[6] Wei Li. 1998. Another metric suite for object-oriented programming. Journal
of Systems and Software 44, 2 (1998), 155–162. https://doi.org/10.1016/S0164-
1212(98)10052-3

[7] Jingqiu Shao and YingxuWang. 2003. A newmeasure of software complexity based
on cognitive weights. Canadian Journal of Electrical and Computer Engineering 28,
2 (2003), 69–74.

https://doi.org/10.1109/MS.2016.147
https://doi.org/10.1109/MS.2016.147
https://doi.org/10.1109/ICOEI.2017.8300883
https://doi.org/10.1109/ICOEI.2017.8300883
https://doi.org/10.1016/S0164-1212(98)10052-3
https://doi.org/10.1016/S0164-1212(98)10052-3

	Abstract
	1 Introduction
	2 Approach
	2.1 Repository mining
	2.2 Analysis procedure

	3 Results
	References

