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A B S T R A C T   

Background and objective: In everyday clinical practice, medical decision is currently based on clinical guidelines 
which are often static and rigid, and do not account for population variability, while individualized, patient- 
oriented decision and/or treatment are the paradigm change necessary to enter into the era of precision medi
cine. Most of the limitations of a guideline-based system could be overcome through the adoption of Clinical 
Decision Support Systems (CDSSs) based on Artificial Intelligence (AI) algorithms. However, the black-box na
ture of AI algorithms has hampered a large adoption of AI-based CDSSs in clinical practice. In this study, an 
innovative AI-based method to compress AI-based prediction models into explainable, model-agnostic, and 
reduced decision support systems (NEAR) with application to healthcare is presented and validated. 
Methods: NEAR is based on the Shapley Additive Explanations framework and can be applied to complex input 
models to obtain the contributions of each input feature to the output. Technically, the simplified NEAR models 
approximate contributions from input features using a custom library and merge them to determine the final 
output. Finally, NEAR estimates the confidence error associated with the single input feature contributing to the 
final score, making the result more interpretable. Here, NEAR is evaluated on a clinical real-world use case, the 
mortality prediction in patients who experienced Acute Coronary Syndrome (ACS), applying three different 
Machine Learning/Deep Learning models as implementation examples. 
Results: NEAR, when applied to the ACS use case, exhibits performances like the ones of the AI-based model from 
which it is derived, as in the case of the Adaptive Boosting classifier, whose Area Under the Curve is not sta
tistically different from the NEAR one, even the model’s simplification. Moreover, NEAR comes with intrinsic 
explainability and modularity, as it can be tested on the developed web application platform (https://near 
dashboard.pythonanywhere.com/). 
Conclusions: An explainable and reliable CDSS tailored to single-patient analysis has been developed. The pro
posed AI-based system has the potential to be used alongside the clinical guidelines currently employed in the 
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medical setting making them more personalized and dynamic and assisting doctors in taking their everyday 
clinical decisions.   

1. Introduction 

Artificial Intelligence (AI) and its subfields Machine Learning (ML) 
and Deep Learning (DL) are rapidly transforming many aspects of 
healthcare [1]. Critical clinical challenges, like automated diagnosis, 
prognosis, drug discovery, and treatment effects, have been greatly 
improved using ML and DL algorithms [2–7]. Among the most signifi
cant aims of AI in healthcare, the personalization of clinical evaluations 
and treatments for specific patients plays a key role [8]. Medical de
cisions and best clinical practices are based on clinical guidelines, which 
suffer from being often static, rigid, and derived from average pop
ulations. In general, guidelines result from randomized controlled trials. 
However, guidelines might not always fit real-world patients. In this 
context, data-driven methodologies may greatly improve clinical 
guidelines, making them more personalized, more flexible, and more 
adaptable to specific situations, thus, addressing the modern vision of 
precision medicine. 

The above-mentioned trend is embodied by the rapid increase in the 
medical domain of Clinical Decision Support Systems (CDSSs) [9] 
augmented by AI algorithms [10]. A traditional CDSS is a software tool 
designed to support the physician during the clinical decision-making 
process, in which the characteristics of an individual patient are 
matched to a computerized clinical knowledge base, to produce patient- 
specific evaluations and/or recommendations to be presented to the 
clinician for a decision [11]. 

In recent years several successful examples of AI-based systems 
employed in clinical decision-making have been proposed, driven by the 
recent progress in ML/DL which has moved towards deeper and more 
complex architectures [12] able to tackle typical problems in biomedi
cine. However, complexity comes at cost. Deep models are often 
described as black boxes generating predictions without providing the 
reasons behind their outcomes [8]. This lack of understanding leads to 
severe consequences, especially in medical applications, where clinical 
decisions ultimately affect human health [13]. Other similar concerns 
around the use of AI-based CDSSs in healthcare include lack of trans
parency [1], transferability, informativeness, fairness, privacy [14], and 
confidence [15]. The mentioned challenges are amplified in the preci
sion medicine setting, where experts require much more information 
from a CDSS than a simple binary prediction to perform their diagnosis 
[15]. For these reasons, eXplainability in AI (XAI) and the related con
cepts of interpretability and transparency have become central priorities 
in AI’s fair and ethical application in medicine [16]. 

XAI in CDSSs is a relatively new area of study, but there are already 
several examples of explainable tools applied to clinical frameworks 
[17–19]. Nevertheless, most of the systems provide explanations for 
individual patient decisions without making the underlying ML/DL 
model more understandable, more transparent, and ultimately more 
usable, and do not effectively address the well-known trade-off between 
the accuracy and transparency of complex models. 

In this broad scenario, there are still unresolved issues concerning 
clinical guidelines and unmet requirements regarding ML/DL models, 
such as being ethical, trustworthy, transparent, and fair. More in detail, 
a human-centric vision is crucial when developing CDSSs based on ML/ 
DL models. This means that the end-user (e.g., medical doctors) should 
be able to interact with those tools in an easy, effective, reliable, and 
friendly way, without the need for technical knowledge. Moreover, AI- 
driven tools in healthcare should also empower medical doctors with 
knowledge base extracted from real-world data and population analysis 
to support prognosis and diagnosis of real-world patients yet without 
disclosing data or personal information employed for generating the 
knowledge base. 

To tackle the above-mentioned open issues and to meet the listed 
ML/DL-based product requirements, we propose NEAR, an AI-based 
method to compress complex models into an explainable, model- 
agnostic, and reduced decision support system with potential applica
tions in healthcare. NEAR is a modular environment that transfers the 
prediction capabilities of a standard ML/DL classifier to a simpler 
explainable model through the Shapley Additive Explanations (SHAP) 
framework [20]. This approach creates an effective tool for clinical risk 
prediction, with several advantages compared to the initial ML/DL 
model. First, each prediction comes with an error score that describes its 
reliability. Then, each prediction is supported by its feature importance, 
i.e., the impact of each input value on the score computed on the single 
patient. In conclusion, the model provides results also if the input 
feature set is not complete and indicates the relevance of the missing 
values. 

2. Methods 

NEAR design, development, and evaluation are described in this 
section. A schematic workflow of NEAR design is presented in Fig. 1. 

2.1. Computational framework design 

NEAR was developed using Python version 3.8.10, with an object- 
oriented approach aimed at obtaining a flexible and modular tool. 
NEAR was designed to be compatible with both scikit-learn [21] binary 
classifiers and Feed-Forward Neural Networks (FFNNs) based on Keras 
[22] or PyTorch [23] libraries. Compatibility was attained by devel
oping a custom “wrapper” class (see Section 3.1). In detail, here the 
SHAP library [20] was used to explain models, NumPy [24] and SciPy 
[25] to fit curves, pandas [26] to handle data, and plotly [27] to display 
graphics. 

2.2. SHAP application 

The SHAP tool was employed to obtain the so-called Partial 

Fig. 1. NEAR design can be summarized into three main steps: 1) Development 
of an Artificial Intelligence (AI)-based model, to generate a risk score predic
tion. 2) Analysis of the relation among the features and the output risk score to 
interpret the above-mentioned black box model. 3) Generation of NEAR, a 
reduced model built by combining the different features contributions 
(expressed in terms of simple equations) to produce the output risk score. 
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Dependence Plots (PDPs), i.e., representations of the impact of the single 
input features on the output score of the model (Fig. 1, step 2). First, the 
SHAP explainer object [28] and the expected output of the ML/DL 
model (the so-called baseline) were derived using 100 randomly 
selected samples from the training set (Section 2.5 explains how the 
training set was defined). Then, the SHAP explainer was used to obtain 
the marginal contribution, commonly known as SHAP value, of each 
input feature to the predicted score. This computation was performed for 
every sample of a subset of the validation set made of 200 entries 
(Section 2.5 explains how the validation set was defined). The PDPs 
were then derived by coupling marginal contributions and actual values 
of each considered feature, as obtained for the various samples. Addi
tionally, each feature was assigned a global importance score, defined as 
the average of the absolute values of the individual contributions over 
the 200 validation samples. The global feature importance was 
expressed in percentage terms, in this study. 

2.3. Partial dependence plots fitting 

PDPs were fitted by curves to estimate the mathematical relationship 
between the patient feature and its impact on the final score. Each pa
tient feature was first scaled to the [ − 1, 1] range. Then, the best fitting 
curve was identified among the ones included in the NEAR library 
(Table S1) which contains equations of several possible fitting curves (e. 
g., linear, polynomial, sigmoidal, exponential). For each patient feature, 
together with the fitting curve, uncertainty margins were also quanti
fied. More details on the best curve identification and quantification of 
uncertainty are given in Supplementary material, Sections 1 and 2. 

2.4. Risk score generation and calibration 

At the end of the curve selection step the original ML/DL model is 
reduced to a simpler and more easily interpretable model, NEAR, which 
uses the optimized curves for each feature and their respective margins 
of error. Specifically, given a value x for a feature, the output f(x; p) of 
the optimized curve is chosen to define the contribution (positive or 
negative) of that feature to the total classification score for the sample 
the feature belongs to. Furthermore, using the margins of error of the 
curve, it is possible to quantify the budget of uncertainty related to the 
input value x of the feature. In the presence of a missing value for the 
feature, the related uncertainty contribution to the final score can be 
estimated using its positive and negative average contributions to the 
PDP. The global score for a sample is obtained by summing up single 
contributions from each feature and the baseline extracted by SHAP. The 
margins of uncertainty for the final score are quantified summing up the 
budget of uncertainty evaluated for each feature (including the missing 
ones). 

The operation of the ML/DL scores conversion into probability 
values resembling the real occurrences of classes, is defined as score 
calibration. Applying score calibration, NEAR provides the clinician 
with a risk probability, because providing only the classification score 
generated by the prediction model would not be informative enough. 
Technically, before the calibration step probability scores are first 
transformed into their log-odds, as proposed in [29]. Then score cali
bration is performed adopting a regression model called calibrator, 
which is trained to fit the probability of a class given the score as an 
input feature. This step is performed on the validation set to prevent 
overfitting. Here the Platt’s logistic model [30] is adopted as the cali
brator to transform the score using the formulation: 

p(yi = 1|fi) =
1

1 + exp(Afi + B)
,

where yi is the true label of sample i, fi is the uncalibrated score provided 
by the classifier for the same sample, and A and B are real numbers that 
are identified using maximum likelihood estimation. The Platt’s logistic 

model creates a mapping between the scores and their probabilistic 
values, and it is applied to the outputs of the NEAR predictor to obtain 
the final risk probability. Moreover, to calibrate the contribution of the 
single features, the difference between the calibrated final score and the 
model baseline can be calculated and distributed to each feature pro
portionally to its contribution. 

2.5. Use case definition and evaluation 

NEAR is defined as a general framework that can be applied to binary 
classification tasks on tabular datasets using any ML/DL model. 

In this work, NEAR is evaluated on a cardiological use case to be 
intended as a proof of concept: the mortality prediction in patients who 
experienced Acute Coronary Syndrome (ACS) [7]. The aim of this 
evaluation is to highlight NEAR modularity, flexibility, and performance 
in a real clinical use case, presenting its intrinsic explainability, trans
parency, and utility for clinicians. 

To prove the flexibility of NEAR to adapt to different models, the 
application of three popular ML/DL classifiers is presented: Adaptive 
Boosting (AdaBoost) [31] implemented with scikit-learn library; FFNN 
[32], implemented with PyTorch; customized Naïve Bayes (NB) [33] 
classifier. The dataset used to build up the PRAISE score [7] has been 
used to train and evaluate the ML/DL algorithms. Since the goal of the 
present work is not the development of a novel risk prediction score, but 
rather of a supporting decision tool able to augment any risk prediction 
model, the dataset derivation and external validation cohorts used in [7] 
were merged and all missing values imputed by their median value. The 
definition of the variables used in the present study is detailed in the 
Supplementary material (Section 3). 

The aforementioned models are trained, evaluated, and compared to 
the corresponding simplified models explained using NEAR. Models’ 
performances are evaluated in terms of accuracy score, F2 score, and 
Area Under the Curve (AUC) of the Receiver Operating Characteristic 
(ROC). The best ML/DL model is also considered for a more detailed 
comparison with its NEAR-based simplification, performed in terms of 
ROC curve and Confusion Matrices (CMs). Statistically reliable perfor
mances are obtained splitting the dataset into training and test sets 
(proportion: 90/10 %), followed by a 5-fold cross-validation [32] 
applied during the training/validation phase of the model building. 
Finally, bootstrap [34] is applied over the test phase of the models. 

3. Results 

In this section, the presentation of the main technical characteristics 
of NEAR is followed by a presentation of the results of its application to 
the selected clinical real-world use case (mortality prediction in patients 
who experienced an ACS [7]). 

3.1. NEAR architecture 

The schematic architecture of NEAR is presented in Fig. 2 with 
implementation details. 

NEAR is composed of four main implementation blocks:  

a) SHAP-LOCK: this module checks (i) NEAR’s compatibility with 
different ML/DL models (scikit-learn, Keras/PyTorch, as well as 
customized models are accepted as inputs), (ii) the integrity of the 
provided input dataset, (iii) the presence of a scaler object, and ap
plies SHAP to the ML/DL model to generate the explainer object (as 
explained in Section 2.1).  

b) SHAP-EX: in this module, ML/DL model baseline and PDPs for each 
model feature are calculated by applying SHAP. The global ranking 
of features is provided as output (as explained in Section 2.2).  

c) Automatic VIrtual Sensor Calibration (AVISC): in this module, each 
PDP is automatically best fitted using curves in the NEAR library 
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(Table S1) and the error score over the single fit is provided (as 
explained in Section 2.3).  

d) RIsk, miSsing valuEs maNagement, and Calibration (RISEN-C): in 
this module, the final risk score probability is calculated together 
with its error score (considering the presence or absence of missing 
values). Then, the risk score and the associated error are calibrated 
(as explained in Section 2.4). 

The NEAR object, that encapsulates the above-mentioned four 
blocks, can process any dataset, deal with any ML/DL model, and 
implement different splitting techniques. Once fitted, NEAR provides a 

detailed analysis of each single sample in terms of contribution of the 
single features, errors, calibrated and not calibrated output risk score. 

3.2. NEAR evaluation 

A real-world clinical use case was considered for NEAR evaluation: 
the mortality risk prediction in patients who experienced an ACS. As 
described in the Methods Section 2.5 NEAR prediction performances 
were compared against the performances of ML/DL models upon which 
NEAR was built: AdaBoost, FFNN, and customized NB classifier. Results 
reported in Table 1 show accuracy, F2, and AUC scores with associated 

Fig. 2. NEAR architecture is depicted as a sequence of operations, grouped into four main blocks: a) SHAP-LOCK, b) SHAP-EX, c) Automatic VIrtual Sensor Cali
bration (AVISC), and d) RIsk, miSsing valuEs maNagement, and Calibration (RISEN-C). In the workflow, square boxes represent actions, while circle boxes represent 
objects. If an arrow is represented behind a box, it means that it is skipping that action. STD: standard deviation, OPT: optimal, IQR: interquartile range. Note that the 
workflow shows NEAR operations performed on one single dataset split. The workflow is extendable to a cross-validation setting, in which the process is repeated 
multiple times, as in the NEAR development phase. 

Table 1 
NEAR performances in terms of accuracy, F2, and Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) scores are reported and compared with 
the ones of the scikit-learn-based classifier (namely, Adaptive Boosting, AdaBoost), the ones of the PyTorch-based classifier (namely, Feed-Forward Neural Networks, 
FFNN), and the ones of the customized model (namely, Naïve Bayes, NB) used to compute the NEAR reduced model. The results are shown for multiple dataset splits 
into validation (val) and test sets. The statistical variance given by the cross-validation and bootstrap applied during the training phase and NEAR generation is also 
shown as Interquartile Range (IQR) over the performance results.  

Data split Accuracy F2 score AUC Accuracy F2 score AUC Accuracy F2 score AUC 

AdaBoost FFNN NB 

Val 0.80 (0.00) 0.36 (0.02) 0.80 (0.03) 0.84 (0.01) 0.38 (0.05) 0.81 (0.00) 0.82 (0.01) 0.35 (0.03) 0.79 (0.01) 
Test 0.81 (0.00) 0.40 (0.02) 0.84 (0.00) 0.85 (0.02) 0.41 (0.00) 0.84 (0.01) 0.82 (0.01) 0.38 (0.00) 0.82 (0.00)   

Data split Accuracy F2 score AUC Accuracy F2 score AUC Accuracy F2 score AUC 

NEAR-AdaBoost NEAR-FFNN NEAR-NB 

Val 0.79 (0.01) 0.35 (0.02) 0.81 (0.01) 0.88 (0.01) 0.37 (0.02) 0.82 (0.01) 0.86 (0.01) 0.37 (0.04) 0.80 (0.02) 
Test 0.81 (0.01) 0.37 (0.07) 0.83 (0.04) 0.88 (0.00) 0.43 (0.09) 0.84 (0.04) 0.86 (0.01) 0.39 (0.06) 0.82 (0.04)  
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Interquartile Ranges (IQRs) over multiple dataset splits. Table 1 eluci
dates the comparative performance metrics of the models employed in 
this study. Reading the upper part of the Table one can observe, e.g., 
how the AUC of the three different ML/DL tested models is comparable, 
both on the validation and on the test set (AdaBoost reached a value of 
0.80 and 0.84 on the validation and test set, respectively, FFNN of 0.81 
and 0.84, and NB of 0.79 and 0.82). Reading the lower part of the Table, 
and comparing it with the upper part, one can observe, e.g., that NEAR 
performances are comparable with the ones of the complex models upon 
which it was built. As an example, when compared to AdaBoost, which 
has an AUC of 0.80 and 0.84, respectively on the validation and test set, 
NEAR shows an AUC of 0.81 and 0.83. 

Since the performances (in terms of F2 score, that we chose as the 
most informative parameter) of AdaBoost and FFNN are comparable and 
slightly better than those of NB (as proved in Tables 1 and 2), we 
selected one of them, namely AdaBoost, as illustrative example to better 
investigate NEAR performances in terms of ROC curves and CMs (Fig. 3). 

Table 2 illustrates that the NEAR-modified models maintain robust 
performance metrics, evidencing no significant deterioration when 
benchmarked against the ML/DL models from which they are derived. 
For instance, an analysis of the AdaBoost and its NEAR-AdaBoost 
counterpart (specifically in the lower left quadrant of the table) re
veals that the majority of p-values, derived from statistical tests on ac
curacy, F2 score, and AUC measures, exceed the threshold of statistical 
significance. 

The ROC curves and the CMs for the other two ML/DL classifiers are 
reported in the Supplementary material (Figs. S2 and S3). Fig. 3 presents 
a detailed analysis of NEAR proficiency when built upon the AdaBoost 
model. In detail, in Fig. 3 (left panel) is reported that NEAR built upon 
AdaBoost (both on the validation and test set) exhibits the same level of 
performance (in terms of ROC curve) of the AdaBoost model. In the 
figure right panel, we can observe the CMs corresponding to each ROC 
curve on the left panel. If we compare the CM built using AdaBoost on 
the test set and the one built using NEAR on the test set, we can observe 
how NEAR maintains the same level of performance in terms of true 
negatives (81.36 % vs 81.13 %) with a slight degradation over the true 
positives (74.33 % vs 71.89 %). 

3.3. NEAR functionalities 

In this section, we present the main functionalities provided by 
NEAR when compared to the state-of-the-art ML/DL models:  

• The possibility of calculating a local features importance (for the 
single patient) with a relative uncertainty over the importance itself, 
which is then propagated to the final risk score probability provided 

by NEAR (Fig. 4 and methodological Section 2.4). All the scores are 
calibrated.  

• The possibility of treating missing values in the prediction phase, 
providing a relative error over the presence/absence of specific 
features and their effect on the risk probability associated error 
(Fig. 5 and methodological Section 2.4).  

• The possibility of inspecting the explainable model (NEAR) in terms 
of its set of building equations and of comparing it with the clinical 
domain knowledge. 

An example of NEAR functionalities applied to a single patient (fe
male, 81 years old, deceased) is presented in Fig. 4, where: the 
personalized final risk score (32.10 %), obtained summing up the con
tributions of all the single features, is reported with upper and lower 
uncertainty margins (46.28 % and 17.92 %, respectively; Fig. 4, first 
row). The overall risk uncertainty for this patient is thus 46.28 %–17.92 
% = 28.36 %. Then, the contribution to the final score of single features 
is reported as a positive or negative score (identifying increasing or 
decreasing risk of death contribution, respectively; Fig. 4, second row) 
and the final risk can be derived by adding each feature contribution to 
the model’s baseline (1.96 %). Finally, the relative error of each feature 
is reported (in Fig. 4, third row, for an age value equal to 81 the relative 
error is 34 %, which represents about one-third of the overall risk 
uncertainty). 

NEAR provides indications about the impact that the presence of 
missing values might have on the final risk score increasing the error 
over the final prediction, also providing in which relative percentage, 
with respect to other features. In the specific example in Fig. 5 (male, 54 
years old, survived), even if the contributions of missing variables Prasu, 
Vascular_access, and CKD_EPI (the complete features description can be 
found in the Supplementary material, Section 1) are equal to 0, they still 
increase the prediction error of 14 %, 9 %, and 14 %, thus making the 
final score less reliable. 

The NEAR pilot version (an interactive visualization interface that 
enables NEAR tests on real patients’ data) can be tested at the following 
link: https://neardashboard.pythonanywhere.com/. 

4. Discussion 

A growing number of CDSSs [9] enhanced by AI algorithms [10] 
have been reported in the literature in recent years, paving the way to 
more and more personalized medicine strategy. A robust and affordable 
clinical system supports healthcare providers to make decisions and 
improve patients care. In this sense, a CDSS that uses knowledge man
agement and enables integrated workflows to obtain clinical advice on a 
specific patient based on many parameters provides support at the time 
of care and personalized care plan suggestions [11]. Increasingly 

Table 2 
To better investigate the statistical differences among the three Machine Learning/Deep Learning (ML/DL) models tested in the present study and among each NEAR 
model and the ML/DL model from which it was derived, a Mann Whitney U test was performed [35]. More in detail, AdaBoost and FFNN, which are the best performing 
ML/DL models, does not show any statistical difference. Moreover, NEAR maintains the same level of performances with respect to each ML/DL models. Due to the 
small number of folds, the p-value resolution is reduced. As a result, few p-values are equal to one, nonetheless verifying the hypothesis of NEAR and ML/DL model 
performance comparability.  

Data split Accuracy F2 score AUC Accuracy F2 score AUC Accuracy F2 score AUC 

AdaBoost-FFNN FFNN-NB AdaBoost-NB 

Val p = 0.15 p = 0.22 p = 0.55 p = 0.15 p = 0.15 p = 0.10 p = 0.01 p = 0.42 p = 0.55 
Test p = 0.15 p = 0.69 p = 0.42 p = 0.15 p = 0.01 p = 0.06 p = 0.02 p = 0.01 p = 0.15   

Data split Accuracy F2 score AUC Accuracy F2 score AUC Accuracy F2 score AUC 

NEAR-AdaBoost NEAR-FFNN NEAR-NB 

Val p = 0.03 p = 0.55 p = 1 p = 0.01 p = 0.84 p = 1 p = 0.01 p = 0.31 p = 0.42 
Test p = 0.84 p = 0.42 p = 1 p = 0.01 p = 0.84 p = 1 p = 0.01 p = 0.69 p = 0.69 

A p-value presented in bold denotes statistical significance, indicating a value below the threshold of 0.05. 
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complex models (e.g., Deep Neural Networks) [12], have been imple
mented as main core in CDSSs since they repeatedly proved to outper
form alternative approaches [2–7]. However, such systems present 
unique challenges in healthcare applications, since they are often in the 
form of black box, with little or no understanding of how and why the 
tool suggested a particular action [8]. 

In this scenario, an AI-based modular framework (NEAR) able to 
circumvent the opaqueness of ML/DL algorithms by turning complex 
models into explainable and transparent ones (as shown in Figs. 4 and 5, 
providing an explanatory example of how clinicians can be informed on 
the contribution of single variables to the final risk score) without 
relevant loss of information (as shown in the comparative Table 2, in 
which the computed p-values show no significant difference in perfor
mance between each tested ML/DL model and NEAR), is here proposed 
leveraging the functionalities of the SHAP tool [21]. The methodology 
implemented in NEAR is analogous to the concept of “knowledge 
distillation”, which was first introduced as model compression in year 
2006 to condense complex models (e.g., ensembles) into a single model 
that is simpler and less computationally expensive [37] and then 

generalized in 2015 [38]. The idea behind “knowledge distillation” is to 
train a small model to match the predictions of the large one. NEAR 
relies on SHAP to (i) decouple the marginal contributions of the features 
on the large model outputs, and (ii) capture the relationship between 
SHAP and feature values. In this way, a reduced, computationally more 
efficient, transparent, and reliable model can be built from the complex 
one, enabling relevant properties and making more clear cause-effect 
relationships. In this regard, one NEAR key asset is that it provides not 
only a binary classification but also a risk score that represents the 
likelihood of a clinical condition to occur. The score is obtained through 
calibration, and it is easily interpretable as the sum of the contributions 
of the single features. As a result, NEAR fulfils the fundamental re
quirements of explainability (in terms of, e.g., medical interpretability, 
model limitations, and description of the medical decision-making 
process) [16]. Moreover, NEAR allows for the identification of the 
most important features that constitute the final risk, indicating to the 
clinicians which patient parameters might be most critical. The presence 
of missing variables with their relevance in the composition of the risk 
might also be a crucial suggestion for the clinicians in understanding 

Fig. 3. NEAR performances in terms of the Receiver Operating Characteristic (ROC) curves, the Area Under the ROC Curve (AUC), and the Confusion Matrices (CM) 
are reported and compared with the ones of the selected ML-based classifier (namely, AdaBoost) used to compute the NEAR reduced model. Both the ROC curves and 
the CM report the statistical variance given by the cross-validation and the bootstrap applied during the AdaBoost’s training phase and NEAR generation. The 
performances are shown in the case of validation (figure’s first row) and test (figure’s second row) sets of the clinical use case. 
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which data is needed to be collected first, and NEAR provides a measure 
of the impact of missing values on the final risk score. Finally, NEAR’s 
versatility, here proved by its compatibility with different imple
mentation frameworks (scikit-learn, Keras/PyTorch, and customized 
models) makes the framework suitable for a large class of applications. 

In the context of the existing literature, NEAR has the potential to 
expand the body of knowledge for practitioners and researchers, as 
indicated by comparisons with established risk prediction scores 
[7,39–42]. In Table 3, NEAR is described and compared with five 
literature examples of popular risk predictors in the context of cardiol
ogy. In detail, in the mentioned Table, the model type and the predicted 
event are reported for each prediction score. The scores are compared 
based on their main characteristics, such as confidence, interpretability, 
usability, and explainability. Explainability is discussed at population 
(global) as well as at individual patient (local) level. 

Referring to Table 3, it is observed that NEAR effectively addresses 
certain limitations hampering the adoption of more complex models 
such as ensemble and DL models which, despite offering high perfor
mance, compromise on interpretability and often lack confidence at the 
individual (patient-level) and exhibit low explainability [43]. In 
contrast NEAR, while still achieving high performance, aligns more 
closely with rule-based and graphical models by offering an inherently 
transparent structure that facilitates confidence on a local level. The 
comparison with the five selected literature examples of risk predictors 
in the context of cardiology, detailed in Table 3, showcases NEAR as a 
tool marked by its usability (enabled through a dedicated web platform), 
flexibility (due to its capability to be trained on any ML/DL model), 
interpretability (with a minimal loss in AUC, under 2 %), and the ability 
to provide local confidence and explainability for individual predictions. 
These features collectively support practitioners by enhancing their 

Fig. 4. NEAR explanations on the single patient’s features contributions: in the first row, an improved version of the so-called SHAP waterfall plot [36] is shown. The 
plot is presented in its cumulative version, to highlight how each single feature contribution and its relative error are summed up to the other ones to contribute to the 
final risk score. A positive contribution (increasing the risk of death) is depicted as an arrow pointing upward, while a negative contribution (decreasing the risk of 
death) is depicted as an arrow pointing downward. The results are reported for a single patient (using the Adaptive Boosting model to build the NEAR reduced 
model), considered here as an example. In the second row, the local feature importance, in its absolute value, for the single patient is shown. In the third row, the 
relative error for every single feature is shown. For visual clarity, only the 22 most important features are reported in the figure. 

Fig. 5. NEAR capability of handling potential missing features. The above plot is similar to Fig. 5, with the addition of missing values (represented by a cross 
symbol). Thus, the missing value error is propagated to the final risk score. For visual clarity, only the 18 most important features are reported in the figure. 
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decision-making processes. 
Furthermore, NEAR distinguishes itself from many explainable arti

ficial intelligence (XAI) methodologies by creating parametric models 
that leverage insights from the input complex model. This approach is 
particularly beneficial in scenarios where computational resources are 
limited, as it integrates seamlessly without the need for specific libraries, 
thereby offering potential compatibility across various IT development 
environments. 

The usability, flexibility, interpretability, and explainability of NEAR 
significantly facilitate practitioners’ interactions with the tool, 
enhancing their decision-making capabilities. These attributes support 
practitioners to correlate patient characteristics with pathology risks 
and foresee individual responses to personalized treatments based on 
their impact on clinical variables. Consequently, future versions of 
NEAR could serve as instrumental design aids for clinical trials or in the 
analysis of real-world patient data. Simultaneously, researchers could 
utilize NEAR in various domains to better understand the mechanisms of 
disease progression or identify contributing factors that trigger patho
logical events. It allows for the examination of the connections between 
features and outcomes across multiple scenarios and on a sample-by- 
sample basis. 

The innovative contribution of the NEAR approach to support the 
process of clinical decision-making lies in its unique methodology. 
Instead of focusing on explaining an existing model, NEAR seeks to 
construct a new parametric model that harnesses the knowledge 
embedded in the complex model it takes as input. This approach not 
only facilitates a deeper understanding of the model’s insights but also 
significantly broadens the accessibility of clinical decision support sys
tems. By ensuring that NEAR can be implemented on platforms with 

Table 3 
Comparison between NEAR and five Clinical Decision Support Systems (CDSSs) 
adopted in cardiology, each one applying a different Machine Learning/Deep 
Learning (ML/DL) approach, except for the Framingham Risk Score, associated 
with a rule-based system and broadly acknowledged as a benchmark in the 
domain of cardiovascular risk prediction. The five CDSSs have been trained and 
validated on specific datasets as described in related references (indicated in 
column Model Type). The approaches used include Framingham Risk Score 
(FRS), Support Vector Machine (SVM), Neural Networks (NNs), Adaptive 
Boosting (AdaBoost), and Bayesian Networks (BNs). For each approach, the 
predicted event and the main characteristics, such as the confidence (at the level 
of the overall model, global, or at the single prediction level, local), the 
explainability (at the level of the overall model, global, or at the single predic
tion level, local), the interpretability, and the usability are reported.  

Model type Predicted event Main characteristics 

Framingham Risk 
Score (Rule-based 
Model) [39] 

Development of 
Coronary Heart Disease 
(CHD) 

The FRS is a widely known 
cardiovascular risk predictor 
for the general population, 
with several versions 
published over the years. 
Among them, a particularly 
user-friendly version employs 
a rule-based system founded 
on a scoring methodology. 
The inherent interpretability 
of this score, stemming from 
its straightforward structure, 
facilitates both global and 
local explanations. 
Additionally, the availability 
of multiple web-based 
platforms further enhances its 
accessibility for calculation. 

Support Vector 
Machine (Machine 
Learning Model) 
[40] 

Prediction of medication 
adherence in heart 
failure patients 

Son et al. created a predictive 
model for medication 
adherence in heart failure 
patients using an SVM. The 
robustness of the proposed 
methodology lies in the 
model’s predictive efficacy, 
coupled with its potential 
utility as a CDSS for patient 
stratification. This approach 
not only offers global 
explainability but also global 
confidence in the predictions. 

Neural Networks 
(Deep Learning 
Model) [41] 

First cardiovascular 
event (over 10 years) 

The contribution by Weng 
et al. is in the construction of a 
cardiovascular risk predictor 
based on NNs, surpassing the 
efficacy of alternative ML 
models. This score not only 
enhanced the performance of 
existing cardiovascular risk 
predictors but also 
underscored the substantial 
performance capabilities 
inherent in DL methodologies. 
It affords a comprehensive 
confidence level and 
explainability on a global 
scale. 

AdaBoost (Machine 
Learning Ensemble 
Model) (PRAISE) 
[7] 

Mortality prediction in 
patients with ACS 

The PRAISE score proposed 
by D’Ascenzo et al., operating 
as a CDSS, adopts the 
AdaBoost methodology, 
demonstrating excellent 
performance and global 
confidence. It supplies a 
comprehensive elucidation of 
the most important clinical 
variables pivotal to 
predictions on a global scale. 
Furthermore, its accessibility 
to practitioners is facilitated  

Table 3 (continued ) 

Model type Predicted event Main characteristics 

through a user-friendly web- 
based platform. 

Bayesian Networks 
(Machine Learning 
Graphical Model) 
[42] 

Cardiovascular risk 
prediction based on 
variables relationships 

Ordovas et al. introduced a 
Bayesian network model 
designed for cardiovascular 
event prediction in the 
general population. The 
system can be used as a CDSS. 
The efficacy of this method is 
underscored by the inherent 
explainability of the model, 
both globally and locally. The 
Bayesian model facilitates the 
exploration of interrelations 
among cardiovascular risk 
factors, enabling in-depth 
inferences about these factors. 
Moreover, the work is 
complemented by freely 
available software enhancing 
its utility for practitioners. 

NEAR Mortality prediction in 
patients with ACS 

NEAR acts as a CDSS 
approximating ML/DL models 
with a concise set of 
equations. This system not 
only sustains a consistent 
level of performance but also 
embodies an inherently 
interpretable form. Its 
architectural design facilitates 
model interpretability on both 
global and local scales, 
concurrently offering global 
and local prediction 
confidence. Additionally, 
NEAR is complemented by a 
web-based platform, 
augmenting its user-friendly 
interface.  
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limited computational resources, it democratizes the use of advanced 
analytical tools in clinical settings, making sophisticated decision sup
port accessible to a wider range of healthcare providers. 

In the evolving field of clinical practice, the integration of tools like 
NEAR offers a forward-thinking approach to augmenting patient care. 
NEAR aims to address the inherent challenges of clinical guidelines, such 
as their resource-intensive development, the complexities involved in 
their updates, and the integration of expert knowledge. By facilitating 
personalized patient assessments, NEAR enhances the adaptability and 
application of clinical guidelines to individual patient needs, making 
these guidelines more dynamic and data-informed. 

NEAR’s role is to complement existing clinical guidelines by 
providing an additional layer of decision support, enabling risk evalu
ations and treatment plans at individual level, thus ensuring that the 
care delivered is tailored to the unique circumstances of each patient. 
This method maintains the relevance of clinical guidelines and in
troduces a new dimension to the evaluation of therapeutic options. The 
capability of NEAR to adapt to cases where patient data may be 
incomplete or not fully aligned with guideline requirements is particu
larly valuable. It uses predictive analytics to fill gaps in patient infor
mation, enabling clinicians to apply guidelines more effectively to the 
patient’s condition. 

Currently, NEAR operates independent of direct guideline recom
mendations, offering clinicians a supplementary tool for decision- 
making. This approach is designed to support, not supplant, the clini
cian’s judgment and the use of clinical evidence in patient care. 

Future developments of NEAR are anticipated to foster closer inte
gration with clinical guidelines. The intention is to use guideline 
frameworks (such as specific recommendations and threshold values) as 
a contextual filter for NEAR’s outputs. This evolution will align NEAR’s 
analytical capabilities more directly with guideline-based recommen
dations, enhancing the personalization and relevance of patient care. 

NEAR seeks to deepen the analysis available to clinicians, helping to 
tailor interventions more closely to patient needs and ensuring practices 
align with the highest standards of care. This approach represents a 
commitment to advancing healthcare delivery through innovation, 
ensuring it remains patient-centered, precise, and informed by the latest 
in clinical intelligence. 

This study faces possible limitations. First, NEAR is currently only 
applicable to tabular data and binary classification tasks. Second, NEAR 
assumes that the dataset’s features are uncorrelated. Third, applying 
NEAR on large amounts of data may become unfeasible due to SHAP’s 
long execution time. Furthermore, it is crucial to stress that NEAR is 
intended to be a support tool in the healthcare setting, with the last 
decision always left to the human expert. However, methods also pro
cessing patient-specific correlated input features can be easily imple
mented in the future, making NEAR even more and more usable in the 
clinical setting. 

5. Conclusions 

In this work, we presented NEAR, a breakthrough clinical decision 
support system which challenges main drawbacks related to the day-by- 
day medical practice supported by clinical guidelines. NEAR leverages 
AI techniques to provide a personalized, flexible, modular, transparent, 
explainable, and trustworthy solution with potential applications in 
healthcare. In this sense, the NEAR framework has the capability of 
simplifying and explaining black box models, with high versatility in 
processing a variety of datasets and ML/DL models. The core idea 
behind NEAR is to fit the PDPs generated by SHAP for each model’s 
variable with a curve. The fitted curve is then used to calculate the 
contributions of the input variables, and the sum of all contributions 
yields the final score. This approach has several advantages: first, the 
final reduced (NEAR) model becomes transparent, explainable, and 
trustworthy; second, missing variables can be ignored while providing a 
prediction reliability score; third, the overall error score over the final 

risk probability can be provided. NEAR fits the case of explainable 
CDSSs where the risk score provided by the system needs to be unfolded 
by the patient features and may improve the current clinical guidelines 
making them more flexible and patient tailored. 
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