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A B S T R A C T   

European legislation stated that electric vehicles’ sale must increase to 35% of circulating vehicles by 2030, and 
concern is associated to the batteries’ supply chain. This review aims at analysing the impacts (about material 
flows and CO2 eq emissions) of Lithium-Ion Batteries’ (LIBs) recycling at full-scale in Europe in 2030 on the 
European LIBs’ supply-chain. Literature review provided the recycling technologies’ (e.g., pyro- and hydro-
metallurgy) efficiencies, and an inventory of existing LIBs’ production and recycling plants in Europe. European 
production plants exhibit production capacity adequate for the expected 2030 needs. The key critical issues 
associated to recycling regard pre-treatments and the high costs and environmental impacts of metallurgical 
processes. Then, according to different LIBs’ composition and market shares in 2020, and assuming a 10-year 
battery lifetime, the Material Flow Analysis (MFA) of the metals embodied in End of Life (EoL) LIBs fore-
casted in Europe in 2030 was modelled, and the related CO2 eq emissions calculated. In 2030 the European LIBs’ 
recycling structure is expected to receive 664 t of Al, 530 t of Co, 1308 t of Cu, 219 t of Fe, 175 t of Li, 287 t of Mn 
and 486 t of Ni. Of these, 99% Al, 86% Co, 96% Cu, 88% Mn and 98% Ni will be potentially recovered by 
pyrometallurgy, and 71% Al, 92% Co, 92% Fe, 96% Li, 88 % Mn and 90% Ni by hydrometallurgy. However, even 
if the recycling efficiencies of the technologies applied at full-scale are high, the treatment capacity of European 
recycling plants could supply as recycled metals only 2%-wt of the materials required for European LIBs’ pro-
duction in 2030 (specifically 278 t of Al, 468 t of Co, 531 t of Cu, 114 t of Fe, 95 t of Li, 250 t of Mn and 428 t of 
Ni). Nevertheless, including recycled metals in the production of new LIBs could cut up 28% of CO2 eq emissions, 
compared to the use of virgin raw materials, and support the European batteries’ value chain.   

1. Introduction 

The European Green Deal (European Commission, 2019) committed 
to make Europe climate neutral by 2050, and 90% reduction in green-
house gas (GHG) emissions associated to transport, compared to 1990’s 
levels, was set as goal for 2050. European targets for electric vehicles’ 
(EVs) sales set 15% by 2025 and 35% by 2030 as benchmarks (IEA, 
2021), while recent legislation updates (European Commission, 2020a) 
established that EVs’ sale must increase to 55% by 2030. The forecasted 
growth of EVs’ market is causing concern about securing the raw ma-
terials’ supply chain, particularly for Lithium-Ion Batteries (LIBs). 
Commercial LIBs can be identified according to their cathodes’ chem-
istry as nickel manganese cobalt oxide (NMC), lithium cobalt oxide 
(LCO), nickel cobalt aluminium oxide (NCA), lithium manganese oxide 
(LMO) and lithium iron phosphate (LFP). Current bottlenecks of Euro-
pean LIBs’ value-chain are mostly related to the supply chain, with 

China, Africa and Latin America providing 74%-wt of all raw materials, 
and to cells’ production (China supplies 66% of finished LIBs) (European 
Commission, 2020a). LIBs’ composition includes metals having low 
supply risk in Europe as copper and aluminium (in anode and cathode as 
current collectors), and manganese and nickel (in NMC cathodes), but 
whose recycling could contribute to the concept of Sustainable Battery 
(European Commission, 2020b). LIBs are also made of Critical Raw 
Materials – CRMs, as cobalt (in cathodes), lithium (in cathodes and 
electrolyte) and graphite (in anodes), and they imply high supply risks in 
Europe (European Commission, 2020a). Electric mobility appears to be 
the main driver for cobalt and lithium global demand (Zhang et al., 
2021), and serious shortage is expected for the European and global 
(Mayyas et al., 2019) battery markets. The raw materials’ shortage can 
be addressed by decreasing CRMs’ content in new generation’s LIBs 
(Amici et al., 2022; Bella et al., 2021) and by improving the recycling 
infrastructure (Bruno and Fiore, 2023) to provide “secondary” raw 
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materials as alternatives to “primary” virgin raw materials. 
The LIBs’ supply chain creates concern also due to geopolitical un-

certainties (Habib et al., 2016), and to the high environmental impacts 
associated to mining activities (Azadi et al., 2020). Material Flow 
Analysis (MFA) is commonly used to examine supply networks and the 
recycling potential of critical raw materials, at different geographical 
and temporal scales (Zhang et al., 2023). From a global perspective, 
concerns arose because the rate of demand growth is outpacing the 
material supply capacity and the geographical distributions of mining 
reservoirs, manufacturing facilities, and market distribution for 
lithium-ion batteries are misaligned (Miao et al., 2023). In order to 
overcome this limitation, MFA acknowledged the fundamental role of 
recycling to supply the expansion of the LIBs market (Lähdesmäki et al., 
2023). China and the United States, where LIBs sales are expected to 
exceed 18 million by 2030, rely strongly on import of raw materials for 
LIBs manufacturing and would benefit from circular management of 
resources (Shafique et al., 2022). Given the foreseen shift in market 
shares of various LIB chemistries toward batteries with lower cobalt 
content (Tang et al., 2021), the deployment of circular economy stra-
tegies is likely to reach the worldwide circularity target between 60% 
and 85% for cobalt by 2040 (Dunn et al., 2021) and reduce the amount 
of lithium discarded as waste from 75 to 85% down to 7–47% 
(Lähdesmäki et al., 2023). Additionally, recycling LIBs can provide 
significant economic benefits by recovering secondary materials, indeed 
the copper, aluminium and manganese recovered through LIBs recycling 
will hold economic values of 7.9, 4.4 and 3.9 billion US dollars (Shafique 
et al., 2023). 

Life cycle assessment (LCA) was extensively applied to LIBs to 
evaluate the environmental performances of newly developed technol-
ogies (Raugei and Winfield, 2019), to compare their lifecycle impacts 
with other energy storage systems (Terlouw et al., 2019), and to 
compare different manufacturing (Qiao et al., 2017) or recycling (Gol-
roudbary et al., 2019) processes. The literature data describing the 
environmental impacts of the different items of LIBs’ chain are as fol-
lows. Material extraction, transport, and processing have been consid-
ered accountable for GHG emissions ranging 96–107 kg CO2/kWh (Hao 
et al., 2017), 110 kg CO2/kWh (Peters et al., 2017), 157 kg CO2/kWh 
(Ellingsen et al., 2017), and 150–200 kg CO2/kWh (Romare and Dahllöf, 
2017). While manufacturing is considered the most impacting phase in 
the whole battery lifecycle (Ahmadi et al., 2017), − 67% GHG emissions 
can be expected by relying on renewable energy (Delgado et al., 2019). 
The environmental impacts during battery use depend on the type of 
energy sources used for electricity production (Peters et al., 2017), with 
lower impacts related to renewable energy sources (Burchart-Korol 
et al., 2020). LIBs’ recycling has lower environmental impacts compared 
to manufacturing from virgin metals (Bruno and Fiore, 2023; Hao et al., 
2017), but higher energy demand and air emissions (Golroudbary et al., 
2019). The literature analysis highlighted some knowledge gaps, as the 
lack of detailed data regarding the recycling processes (Ellingsen et al., 
2017), and the fact that most studies focused exclusively on energy 
consumption and GHG emissions (Ellingsen et al., 2017; Golroudbary 
et al., 2019; Qiao et al., 2017) and rarely considered other aspects, as 
raw materials supply (Unterreiner et al., 2016) or metals’ criticality 
(Terlouw et al., 2019). 

While intensification of electric mobility is crucial to achieve de- 
carbonification target of reducing GHGs emissions by 37.5% set by EU 
(Tang et al., 2023), recycling has been found to further limit GHGs 
emissions associated with LIBs (Aichberger and Jungmeier, 2020; Lai 
et al., 2022). Previous research pointed out the necessity to combine 
material flow analysis for circularity evaluation with LCA to thoroughly 
investigate the environmental implications connected circular economy 
strategies for LIBs management (Picatoste et al., 2022). 

To our knowledge, there isn’t any previous study performing a sys-
tematic analysis of the environmental impacts of the overall LIBs’ supply 
chain at full-scale in a large context as Europe, considering 
manufacturing (comparing primary and secondary raw materials 

obtained from recycling), and accounting the impacts of LIBs’ produc-
tion based on secondary raw materials. This study has three main ele-
ments of novelty and aims: 1. a systematic and updated analysis of state- 
of-the-art recycling technologies applied at full-scale, emphasising the 
technological advancements and limitations; 2. the evaluation of the 
material flows involved in European LIBs’ supply chain, considering the 
raw materials’ demand for the LIBs needed in 2030 according to the 
legislation targets (35% EVs in the European vehicles’ fleet), compared 
to LIBs’ production and recycling capacities at full-scale; 3. the assess-
ment of the environmental impacts comparing the use of primary raw 
materials and of secondary raw materials deriving from LIBs’ recycling. 
This study will try to answer two key questions: (i) will the European 
LIBs’ supply chain be ready to provide raw materials for the 35% 
circulating EVs forecasted for 2030? And (ii) what will be the environ-
mental impacts associated to employing the secondary raw materials 
deriving from LIBs’ recycling, compared to primary raw materials, 
mostly mined and refined outside EU? This study was developed 
through consequent phases, as follows. Firstly, based on the assessment 
of up-to-date recycling technologies and on the inventory of LIBs’ pro-
duction and recycling plants existing in Europe in 2020, the requested 
material flows of valuable metals (aluminium, cobalt, copper, iron, 
lithium, manganese, and nickel) have been estimated. Secondly, the 
environmental impacts (global warming potential, acidification poten-
tial, eutrophication potential and human toxicity) associated to the 
mining activities of primary metals required by European production 
plants have been calculated. Finally, the treatment potential of Euro-
pean recycling plants compared to the raw materials’ demand estimated 
in the previous phases was assessed, and the environmental impact (as 
global warming potential) associated to the use of secondary metals 
obtained from recycling and of primary metals have been compared. 

2. Methodology 

This study was based on a four-phase methodology (Fig. 1). Initially, 
a literature review was conducted to identify the most applied LIBs 
recycling technologies at full-scale. Then, an inventory of LIBs recycling 
plants in Europe was compiled in order to assess the current European 
recycling capacity. Data from the literature review and from our in-
ventory were combined into a material flow analysis to calculate the 
amount of metals (Al, Co, Cu, Fe, Li, Mn, Ni) potentially recovered from 
end-of-life batteries in 2030 and compare it with the material demand 
set by EVs’ fleet in Europe in the same year. Eventually, the environ-
mental assessment of recycling processes applied at full-scale was per-
formed to calculate the GHGs emissions generated by recycling 
processes and the GHGs emissions avoided by recovery of secondary raw 
materials from recycling instead of primary raw materials mining. 

More in details, the four-phase methodology of this study was as 
follows.  

1. The literature review was conducted on Scopus using the keywords 
“lithium-ion battery recycling” AND “waste batteries characterisa-
tion”, “thermal treatment”, “pyrometallurgy”, “hydrometallurgy”, 
“mechanical treatment” in various combinations. Only research and 
review articles published in 2011–2023 have been considered. After 
a pre-screening based on abstract and highlights, the selected refer-
ences have been inventoried and categorized according to key 
research topics. The recycling technologies have been considered as 
sequence of discharge, disassembly, physic-mechanical/thermal pre- 
treatments, concluding with pyrometallurgy and hydrometallurgy as 
alternatives.  

2. The LIBs’ production and recycling plants existing in 2020 in the 27 
members of the European Union (EU), Switzerland and United 
Kingdom (UK) were inventoried. When battery production capacity 
was expressed as energy (kWh/y and GWh/y); a characteristic 
average energy density of 0.15 MWh/t (Stura and Nicolini, 2006) has 
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been accounted to estimate the amount (t/y) of produced and recy-
cled LIBs.  

3. The material flow analysis (MFA) of the metals (aluminium, cobalt, 
copper, iron, lithium, manganese, and nickel) involved by commer-
cial LIBs’ was electrodes based on the estimated EVs’ demand in 
Europe according to the targets set by the European legislation (35% 
of circulating vehicles in 2030) (IEA, 2021), and comparison with the 
estimated European LIBs’ capacity for production and recycling ob-
tained in phase 2. This study involved the above-mentioned metals, 
as they are recovered at full scale (Mossali et al., 2020). The MFA was 
based on market shares of different electrodes chemistries forecasted 
for 2030 and their composition (Gaines et al., 2018; Statista, 2021), 
and on the average efficiency of recycling processes obtained in 
phase 1. The metals’ recycling potential has been calculated for the 
recycling plants inventoried in phase 2, based on recovery effi-
ciencies obtained in phase 1 and on market shares in 2020 (Pillot, 
2021; Statista, 2021), considering that LIBs entering the recycling 
facilities were produced 8–10 years earlier (Bruno and Fiore, 2023).  

4. The environmental assessment of European LIBs’ supply chain was 
conducted, comparing the use of primary metals and of secondary 
raw materials deriving from LIBs’ recycling. The net GHG emissions 
(CO2 eq) associated to recycling were calculated considering the 
difference between the avoided emissions due to mining activities 
(calculated for metals’ demand related to LIBs’ market shares fore-
casted in 2030), and the emissions associated to recycling (calculated 
for metals’ amounts according to LIBs’ market shares in 2020). The 
specific environmental impacts accounted for mining activities for 
“primary” virgin metals’ extraction and refining (Supplementary 

Materials, table I) was based on data retrieved from LCA studies (e.g., 
global warming potential, acidification potential, eutrophication 
potential and human toxicity). The references in table I have been 
selected based on accounting all mentioned impact categories for the 
metals considered in this study. Lithium, nickel and copper mining 
and processing may involve different routes (Flexer et al., 2018); to 
apply a conservative approach, this study considered the route 
associated to the highest environmental impacts. The environmental 
assessment of recycling reported the GHG emissions -i.e., the global 
warming potential, the only impact category available in all selected 
references. GHG emissions due to recycling have been calculated by 
combining specific coefficients for energy demand and CO2 eq 
emissions (retrieved from literature) with the total energy demand of 
the full-scale recycling plants inventoried in phase 2. Specifically, the 
overall impact of recycling has been estimated, with a bottom-up 
approach, as sum of the impacts associated with the routes imple-
mented at full-scale (e.g., mechanical pre-treatments, pyrometal-
lurgy and hydrometallurgy) on LIBs sold in 2020 and recycled in 
2030, considering the material flows undergoing each treatment and 
the associated energy demand. An additional contribution of 1.65 t 
CO2/t has been accounted for pyrometallurgy, due to GHG emissions 
related to the combustion of batteries components (Hu et al., 2021a). 
The energy demand coefficients were: 4.50 kWh/t for mechanical 
pre-treatment (Wuschke et al., 2019), 1.08 kWh/t for pyrometal-
lurgy (Hu et al., 2021b), and 1.65 kWh/t for hydrometallurgy 
(Romare and Dahllöf, 2017). 

GHG emissions associated to recycling have been calculated through 

Fig. 1. Outline of the applied methodology (EoL: End of Life, LIBs: Lithium Ion Batteries, EVs: Electric Vehicles).  

Fig. 2. Categorization of selected references according to year of publication and research topics.  
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eq. (1) considering the energy production specific impact (Ienergy) for 
each country (EEA, 2021) hosting the recycling facilities: 0.207 kg 
CO2/kWh for Belgium, 0.111 kg CO2/kWh for Finland, 0.054 kg 
CO2/kWh for France, 0.406 kg CO2/kWh for Germany, 0.013 kg 
CO2/kWh for Sweden and 0.250 kg CO2/kWh for United Kingdom; 
lacking more specific data for Switzerland and Norway, the average 
European value 0.275 kg CO2/kWh (EEA, 2021) was considered. GHG 
emissions due to recycling were accounted for as 1.65 t CO2/t of battery 
for pyrometallurgy (Hu et al., 2021b), and 1.46 kg CO2/t of battery for 
hydrometallurgy (Romare and Dahllöf, 2017). The GHG emissions 
associated to mechanical pre-treatment have been calculated accounting 
the GHG emissions associated to the energy mix of the country hosting 
the plant. As a comparison, the GHGs emissions had been calculated a 
second time using the emissions factors from Ecoinvent database v. 3.9.1 
(Ecoinvent 3.9.1, 2023) applying the LCIA method R eCiPe 2016 v1.03, 
midpoint (H).  

3. Results and discussion 

3.1. Overview of literature review 

264 references have been selected, out of 1069 found during the 
literature survey, according to phase 1 of the applied methodology, 94% 
scientific articles and 6% reviews, 71% published from 2019 to 2023. In 
overall, the scientific interest towards LIBs’ recycling increased expo-
nentially in the last decade. The results of the literature survey were 
categorized according to their main topic and the trend of different 
topics over time is displayed in Fig. 2. Besides, according to our survey of 
existing literature, the temporal evolution of recycling studies dedicated 
to a specific battery type is displayed in Fig. 3a and the intersection 
between the most studied battery types and the most popular recycling 
topics is displayed in Fig. 3b. The research was mostly focused on hy-
drometallurgy (53% of references), pyrometallurgy (9% references), 
pre-treatments (e.g., discharge, disassembly, physic-mechanical/ 
thermal processes) (16% of references) and general recycling (8% of 
references), while material flow analysis of virgin raw materials and of 
secondary raw materials for LIBs (6%), LCA studies (6%) and economic 
analysis (1 %) of battery recycling were less considered. Most studies 
(50%) evaluated the recycling of NMC cathodes (Fig. 3a), and less (24- 
18%) of LFP and LCO. Studies on pre-treatments (discharge and disas-
sembly) didn’t specify cathodes’ chemistries, while studies on hydro-
metallurgical (63%) or pyrometallurgical (15%) recycling involved 
specific cathodes’ types (Fig. 3b). It should be noticed that in the last 
decade the interest of the scientific community about LIBs’ recycling was 
primarily oriented towards the development and optimization of recy-
cling processes, particularly hydrometallurgy applied to NMC cathodes, 
while issues as material flow analysis and economic assessment 
remained rather unexplored. 

3.2. Waste electrodes’ features 

The market shares of different batteries resulting from phase 1 and 
applied in phase 3 were derived from literature (Lebedeva et al., 2017): 
26% LCO, 23% LFP, 12% LMO, 10% NCA and 29% NMC in 2020, and 
16% LCO, 16% LFP, 10% LMO, 10% NCA and 48% NMC in 2030. It may 
be observed that the market shares of different batteries significantly 
varied in 2020–2030, implying 66% increase in the demand of NMC 

cathodes and decrease for LCO (38%) and LFP (30%). According to the 
results of phase 1, LIBs’ composition exhibited high variability 
depending on cathode chemistry and manufacturer (Gaines et al., 2018) 
(Supplementary Materials, table II). The average weight of a LIB pack 
has been considered 318 kg (Iclodean et al., 2017). The average LIBs’ 
composition for different battery chemistries accounted for in phase 3 
was: 2.3–2.5% wt. for plastic compounds (polypropylene, polyethylene 
and polyethylene terephthalate), 14–22% wt. for electrolyte (LiPF6, 
ethylene carbonate and dimethyl carbonate), 2.7–3.6% wt. for binder 
(polyvinylidene fluoride), 29.5–38.9% wt. for anode (copper current 
collector and graphite) and 39–48% wt. for cathode (aluminium current 
collector, and Al, Co, Fe, Li, Mn, Ni and P). According to the electrodes 
chemistries and their market shares, this study considered the following 
materials demands: 7.94 kg/t of Al, 6.35 kg/t of Co, 15.65 kg/t of Cu, 
2.62 kg/t of Fe, 2.08 kg/t of Li, 3.43 kg/t of Mn and 5.81 kg/t of Ni in 
2020 and 7.97 kg/t of Al, 4.58 kg/t of Co, 15.69 kg/t of Cu, 1.82 kg/t of 
Fe, 2.16 kg/t of Li, 3.27 kg/t of Mn and 8.64 kg/t of Ni in 2030. 

3.3. Performances of lithium-ion batteries’ recycling processes applied at 
full-scale 

3.3.1. Discharge 
Discharge is a key pre-treatment for EoL LIBs, as residual energy may 

pose safety issues related to fire and explosion hazard (Wang et al., 
2022a). Existing literature on LIBs pre-treatments often neglects details 
about cell discharging, indeed experimental activities are carried out on 
cells already discharged (Sunil and Dhawan, 2019) or directly on 
separated cathodes (Dolotko et al., 2020; Vanderbruggen et al., 2021; 
Xie et al., 2021). Nonetheless, discharge processes, reducing residual 
voltage below the threshold of 2 V, ensure safe batteries handling during 
recycling. Discharge methods can be categorized into: physical 
discharge, by connection to an ohmic resistance (Ku et al., 2016; Pinegar 
and Smith, 2019; Widijatmoko et al., 2020a, 2020b), or chemical 
discharge, by soaking the cells in aqueous solutions, most commonly 
NaCl with concentration 5% mass for 48 h (Liu et al., 2021; F. Wang 
et al., 2018; Yu et al., 2018; G. Zhang et al., 2019, 2018b) or 10% mass 
for 24 h (Fu et al., 2021; Zhang et al., 2013). However, NaCl presents 
several drawbacks such as galvanic corrosion of the cell casing and 
potential release of chlorine gas (Kim et al., 2021; Rouhi et al., 2022). 
Corrosion occurring during discharge with halide salts or Na2S2O3, 
could be avoided or limited by recurring to different salt solutions such 
as NaOH, K3PO4 (Shaw-Stewart et al., 2019) or MnSO4, which prevent 
organic leakage, however presents only mild discharge rate (Xiao et al., 
2020). Corrosion effects are limited with zinc acetate as conductive 
solution for discharge (Fang et al., 2022). Eventually, metals salts, such 
as FeSO4 or ZnSO4 are less corrosive and increase the conductivity of the 
discharging solution, by release of metals ions (Ojanen et al., 2018). 
FeSO4 in particular has been found to be environmentally friendly so-
lution in terms of contamination of discharging solution and gaseous 
emissions (Yao et al., 2020). Ultrasounds improved chemical discharge 
(Torabian et al., 2022). 

Physical discharge is based on discharge capacity of iron or graphite 
powders (Yao et al., 2020), but voltage rebound may happen, hindering 
safety (Rouhi et al., 2021; Yao et al., 2020). In conclusion, both physical 
and chemical discharge processes are applied, although an increasing 
interest for chemical discharge is happening; the existing knowledge 
gaps are related to solving safety and corrosion issues and investigating 
discharge behaviour and gas emissions. 

Σ GHGs emissions [t CO2 eq.] = { mechanical pre − treatment [t] ⋅ 4.50 [kWh/t] ⋅ emissions [t CO2 eq. / kWh]}
+{ pyrometallurgy [t] ⋅ 1.08 [kWh/t] ⋅ emissions [t CO2 eq. / kWh] + pyrometallurgy ⋅ 1.65 [t CO2 eq./t]}

+{ hydrometallurgy [t] ⋅ 1.46 [t CO2 eq. / kWh] }
(1)   
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3.3.2. Disassembly 
Disassembly is usually a manual operation entailing high operative 

costs, ranging from 32 €/kWh to remove a battery from a car to 76 
€/kWh for a complete disassembly of modules into cells (Rallo et al., 
2020). Compared with automatic shredding, manual disassembly pro-
vides higher purity in separated material streams, thus enhancing effi-
ciency and safety of the following recycling steps (Marshall et al., 2020; 
Werner et al., 2022) and economic benefits (Zhao et al., 2022). Battery 
disassembly requires removing the plastic casing: automatizing partial 
disassembly (e.g., casing removal and cells recovery from battery packs) 
gave positive costs-benefits trade-off (Alfaro-Algaba and Ramirez, 
2020); using a hybrid workstation (manually operated) resulted as best 
option for safety and costs (Tan et al., 2021). New battery designs are 
necessary to improve agile disassembly, as well as disassembly lines 
adaptable to different cells’ configurations (Stief et al., 2019). Recently, 
the application of artificial intelligence and sensors to identify battery 
types and components to improve disassembly and sorting received 
attention (Lu et al., 2022; Meng et al., 2022). In conclusion, disassembly 
in full-scale recycling plants is mostly carried out manually due to high 
variability of cells’ design, whereas recent literature explored (semi-) 
automatic processes. The existing knowledge gaps are related to the 
need of improving automation to reduce operating costs without 
affecting efficiency and safety of battery disassembly. 

3.3.3. Thermal and physic-mechanical pre-treatment processes 
Disassembled components undergo thermal and/or physic- 

mechanical processes depending on consequent recycling process (Kim 
et al., 2021), with the overall aim of separating active materials from 
current collectors and/or eliminating binder and electrolyte (Zhang 
et al., 2020a; Lombardo et al., 2021), and improving metals’ leaching in 
hydrometallurgy (Gu et al., 2022; Ahn et al., 2022; Ma et al., 2022a). 
Thermal pre-treatments have been applied in a wide range of tempera-
tures, from 200 ◦C (Li et al., 2022), to 700 ◦C (Nayaka et al., 2018). At 
550–600 ◦C, thermal pre-treatment has been combined with ball milling 
(Lombardo et al., 2021), or with ultrasounds (Yan et al., 2022), or froth 
floatation (Vanderbruggen et al., 2022; Zhan et al., 2021). At higher 
temperatures (600–1000 ◦C) carbothermal reduction increased cobalt, 
manganese, and nickel leaching (Pindar and Dhawan, 2020a). 

Physic-mechanical pre-treatments, applied to disassembled batteries 
to obtain the “black mass”, are crushing and ball milling (Peng et al., 
2018; Takahashi et al., 2020), followed by separation via sieving, 
centrifugation, floatation, magnetic, Eddy current or pneumatic classi-
fiers (Zhan and Pan, 2022; Zhang et al., 2018a). Ball milling was com-
bined with magnetic and densimetric separations (Da Costa et al., 2015), 
and with sieving (Pinegar and Smith, 2019). In overall, 
physic-mechanical pre-treatments as ball milling (Shen et al., 2019), 
pneumatic (Bi et al., 2019a; Bi et al., 2020; Zhong et al., 2020), magnetic 

(Huang et al., 2022a; Hu et al., 2022) and Eddy current separations (Bi 
et al., 2019b) improved the performances of metals’ leaching in hy-
drometallurgy. Magnetic separation is highly efficient to recover cobalt 
if preceded by thermal treatments (Li et al., 2022; Peng et al., 2021) or 
carbothermal reduction (Vishvakarma and Dhawan, 2019). 

Concerns about safety of thermal and physic-mechanical treatments 
have been raised (Lewandowski et al., 2020; Ross et al., 2020), partic-
ularly about the release of hazardous volatile components (Diaz et al., 
2019; Wuschke et al., 2019; Huang et al., 2022b), requiring adsorption 
on activated carbon (Stehmann et al., 2017). Energy required for 
physic-mechanical pre-treatments was 4.50 kWh/t (Wuschke et al., 
2019). 

Less energy-consuming pre-treatment processes have been devel-
oped, as exfoliation of active electrode components from current col-
lectors (Chen et al., 2017a; He et al., 2019, 2020), also based on 
hydrogen released from aluminium current collector put in contact with 
water (He et al., 2020). Conversely to recycling treatments, mostly 
focused on material recovery from cathodes, separation of active ma-
terials from current collectors recently drawn attention on both cathodes 
and anodes (Chen et al., 2017a; He et al., 2021). Effective separation of 
active materials is essential to ensure high performance standards in 
subsequent recovery steps; low amounts of manganese (Weng et al., 
2013), aluminium and copper (Peng et al., 2020; Zhang et al., 2020b) 
weren’t critical, however lithium impurities (Jo et al., 2018), aluminium 
in concentrations between 0.02 and 1.48 g/L (Krüger et al., 2014; Zhang 
et al., 2020c) and copper ranging 4.8 and 91.5 mg/g (Peng et al., 2020) 
severely hurdled the electrochemical performances of recycled mate-
rials. Hydrophobicity of graphite from LIBs’ anodes is often exploited by 
applying separation through froth floatation (Verdugo et al., 2022, 
2023). 

In conclusion, conventional thermal and physic-mechanical pre- 
treatments are still commonly applied, even if novel technologies based 
on exfoliation are gaining attention. The existing knowledge gaps are 
mostly related to the need of improving efficiency of the separation of 
active materials from current collectors and to lower energy demand. 

3.3.4. Pyrometallurgy 
Thermal treatments can be applied not only as pre-treatments, but 

also to recover valuable metals such as cobalt, manganese and nickel (He 
et al., 2023; He et al., 2021) often without prior pre-treatments (Kar-
abelli et al., 2020). It should be mentioned that pyrometallurgy convert 
the black mass into metal oxides or alloys (Assefi et al., 2020), and that 
further hydrometallurgy (see section 3.3.5) is needed to obtain single 
metals. Smelting takes the black mass above the melting point of metals 
(1250–1500 ◦C), allowing to separate the reduced components (Makuza 
et al., 2021; Windisch-Kern et al., 2021). Recovery yields obtained from 
smelting are 98% for cobalt and nickel, and 85–92% for manganese (Hu 

Fig. 3. Categorization of selected references according to (a) cathodes’ chemistry and (b) research topics.  
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et al., 2021a, 2021b). Thermal treatments at lower temperatures 
(650–1000 ◦C) also happen, as pyrolysis (Makuza et al., 2021; Pindar 
and Dhawan, 2020b), and incineration (Lombardo et al., 2021). Pyrol-
ysis has been found to improve electrode active materials separation 
efficiency for 83–99% in cathodes, and for 88–97% in anodes (Zhang 
et al., 2022). High temperature pyrolysis (>950 ◦C) has been able to 
recover up to 99% nickel from NMC cathodes (Ebin et al., 2019). Py-
rolysis of black mass has different effects depending on cathodes’ 
chemistries: NMC are converted into oxides (Co3O4, NiO, Mn3O4) and 
Li2CO3, with release of CO, CO2, and HF from the binder (Lombardo 
et al., 2021); LCO into metallic cobalt and lithium carbonate (Lie et al., 
2020), releasing most lithium (64–97%) and phosphorous (68%) as 
gases (Windisch-Kern et al., 2021). Carbothermic reduction triggers 
volatilisation of corrosive gas due to decomposition of polypropylene 
separator and polyvinylidene fluoride binder (Lombardo et al., 2021). 
The temperature range 470–599 ◦C has been associated with highest 
material loss rates, while release of fluorine decreased with temperature, 
with no HF released above 470 ◦C (Yu et al., 2020). Few studies pre-
liminarily investigated lithium recovery through carbothermal reduc-
tion (Rostami et al., 2022; Zhang et al., 2022) or sulphation roasting 
(Biswas et al., 2023) followed by water leaching, and of lithium and 
phosphorous from gaseous emissions (Holzer et al., 2022). Energy 
required for pyrometallurgy was 1.08 kWh/t (Hu et al., 2021b). 

Recovery rates associated with pyrometallurgical processes resulting 
from literature (Table 1) are on average 99% for aluminium, 96% for 
copper, 86 ± 15% for cobalt, 88 ± 4% for manganese and 98 ± 1% for 
nickel, iron and lithium are not recovered. In conclusion, pyrometal-
lurgy allows recovery with high efficiency mostly NMC cathodes’ 
metals, with few references related to aluminium and copper from 
current collectors, while lithium and iron recovery are not involved. 
Production of gaseous corrosive and hazardous fractions during thermal 
processes should be carefully managed. 

3.3.5. Hydrometallurgy 
Hydrometallurgy consists in leaching valuable metals from cathodic 

active materials in acidic environment (Larouche et al., 2020), with 
various available routes (Ma et al., 2020). Leaching usually happens 
after mechanical (Diaz et al., 2020; Takahashi et al., 2020) or thermal 
(Chen et al., 2020; Fu et al., 2020; Vieceli et al., 2021; Zhang et al., 
2020b) pre-treatments, using acidic solvents at temperatures between 
40 ◦C (Chen et al., 2017a; He et al., 2017; Jian et al., 2020) and 100 ◦C 
(Chen et al., 2018, 2020; Musariri et al., 2019; Wu et al., 2020), and also 
at room temperature (20–25 ◦C) (Takahashi et al., 2020). Most common 
leaching agent is sulfuric acid (Chan et al., 2020; Chen et al., 2018; Diaz 
et al., 2020; Dutta et al., 2018; He et al., 2017; Sattar et al., 2019; 
Urbańska, 2020; Vieceli et al., 2021; Zhao et al., 2020), followed by 
hydrochloric acid (Guo et al., 2016; Jian et al., 2020; Xu et al., 2020), 
phosphoric acid (Chen et al., 2020; Meng et al., 2017; Zhuang et al., 
2019), and organic acids, mostly citric (Chabhadiya et al., 2021; Patil 

et al., 2020; Wu et al., 2020; Xing et al., 2021), alginic (Cai et al., 2022), 
benzenesulfonic (Fu et al., 2019), formic (Chen et al., 2021; Gao et al., 
2017), gluconic (Fan et al., 2020) and L-tartaric (Ma et al., 2022) acids. 
Leaching agent’s concentrations are 1–2 M for organic and inorganic 
acids except for sulfuric acid, occasionally exceeding 5M (Fan et al., 
2021; Zhao et al., 2020). Organic acids required higher process tem-
peratures and lower solid/liquid ratio compared to inorganic acids; 
contact time is similar (60–120 min) for all acids, while citric and 
ascorbic acids required longer times (Nayaka et al., 2018). Leaching is 
favoured when metals are oxidised, thereby reducing agents are often 
added to increase hydrometallurgy efficiency (Nicol, 2020). The most 
used is hydrogen peroxide, in concentration equal to 1.5–2% vol. 
(Chabhadiya et al., 2021; Musariri et al., 2019) and 4–5% vol (Chen 
et al., 2017b; Sattar et al., 2019; Shin et al., 2019). Other common 
reducing agents are glucose (Chen et al., 2018; Meng et al., 2017), starch 
(Jian et al., 2020), orange peel powder (Wu et al., 2020), ethanol (Zhao 
et al., 2020), citric acid (Zhuang et al., 2019) and glutaric acid (Jian 
et al., 2020). Full details about the experimental conditions (leaching 
agent, concentration, solid-to-liquid ratio, contact time, reducing agent) 
adopted in the selected references are in Supplementary Materials, table 
III. 

Post leaching, many routes have been explored to recover metals 
from the leachate: solvent extraction (Nadimi and Karazmoudeh, 2021; 
Shen et al., 2019b), also in multi-step processes (Nguyen and Lee, 2021; 
Yang et al., 2020), or followed by crystallization (Sattar et al., 2019; 
Djoudi et al., 2021); deep eutectic solvents (DES) (Tran et al., 2019; 
Wang et al., 2019; Schiavi et al., 2021; Zante et al., 2020), supercritical 
extraction in water (Lie et al., 2020) or carbon dioxide (Rothermel et al., 
2016); ion-exchange resins (Virolainen et al., 2021) and sequential 
application of chelating and cation-exchange resins (Chiu and Chen, 
2017); ionic liquids (Zante et al., 2020; Schaeffer et al., 2020); precip-
itation (Zhang et al., 2020b; Chu et al., 2020; Yang et al., 2020; Peng 
et al., 2019b), and co-precipitation (Zhao et al., 2020; Swain, 2018; Guo 
et al., 2017; Beak et al., 2021). Recovery of Li and Co proved to be 
effective in recovering materials with purity grades appropriate to 
ensure electrochemical performances comparable to commercially 
available electrodes (Jo et al., 2018). Impurities (0.05–0.006 mol/L) of 
iron and copper improved cobalt leaching efficiencies (Peng et al., 
2019a). The energy required for hydrometallurgy was accounted 1.65 
kWh/t (Romare and Dahllöf, 2017). 

In conclusion, compared to pyrometallurgy (Table 1), hydrometal-
lurgy average efficiencies calculated from literature (Table 2) are 
extremely high (71 ± 34% for Al, 91.7 ± 12% for Co, 91.5 ± 13% for Fe, 
96.2 ± 5% for Li,88.4 ± 19% for Mn and 90.1 ± 15% for Ni), and more 
metals are involved (i.e., iron, lithium). However, critical issues are 
significant energy required, numerous post-leaching phases, and appli-
cation of toxic solvents. Recent literature is shifting towards more 
environmentally friendly leaching agents and downstream processes, 
adopting lower temperatures and milder (possibly organic) acids in safe 
conditions. 

3.3.6. Challenges and future opportunities 
There are still many challenges associated with LIBs recycling. First 

of all, the complexity of accurately sorting different battery chemistries 
during collection limits the technological feasibility of materials re-
covery. Moreover, safety concerns arise from the initial process of 
discharge, due to the potential release of harmful gasses and potential 
hazards posed by voltage rebound, which may limit safety during the 
subsequent disassembly step. During disassembly, the presence of haz-
ardous chemicals in batteries’ electrolytes and binders, as well as the 
ignition risk caused by residual voltage, pose a risk to workers’ safety. 
Following dismantling and separation of the batteries’ casings, the 
electrodes are subject to pre-treatments aimed at concentrating the 
black mass from other less valuable components. Pre-treatments 
consume a lot of energy demand and have still limited efficiency. 
Metallurgical recycling of LIBs is usually performed by 

Table 1 
Recovery efficiencies of pyrometallurgy processes applied to Lithium-Ion 
Batteries.  

Co Mn Ni Al Cu Reference 

97.90% 91.50% 97.70% – – Hu et al. (2021a) 
98.20% 85.30% 98.40% – – Hu et al. (2021b) 
68.00% – – – – Pindar and 

Dhawan (2020b) 
– – – 99.34% 96.25% Zhong et al. 

(2019) 
81.30% – – – – Ruismäki et al. 

(2020) 
– – 99.00% – – Ebin et al. (2019) 
95.6%     Li et al. (2022) 
86.35% ±

15% 
88.40% 
± 4% 

98.37% 
± 1% 

99.34% 96.25% average valuesa  

a Standard deviation was detailed when at least 3 values were available. 
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Table 2 
Recovery efficiencies of hydrometallurgy processes applied to Lithium-Ion Batteries.  

Leaching agent Co Mn Ni Al Li Fe Reference 

Hydrochloric acid     99.4  Guo et al. (2016)     
97  Yang et al. (2020) 

97.25    97.72  Xing et al. (2021)     
95 95 Liu et al. (2022)     
98  Ilyas et al. (2022) 

Phosphoric acid 99      Chen et al. (2017b) 
98    100  Meng et al. (2017)     

94.29 97.67 Yang et al. (2020) 
91.63 92.35 83.1  100  Zhuang et al. (2019)     

93.51 97.96 Wang et al. (2022b)     
97.72 98.24 Li et al. (2022) 

98.9 97.3 99.1  99.6  Zhou et al. (2023) 
Sulfuric acid 70    99.1  Jha et al. (2013) 

66.2 50.2 96.3  93.4  Meshram et al. (2015) 
74 65 68    Tanong et al. (2016)     

96.85  Huang et al. (2022b) 
99.7 99.7 99.7  99.7  He et al. (2017) 
96    86  Pagnanelli et al. (2016) 
96 94 68    Tanong et al. (2017) 
97    99  Dutta et al. (2018) 
79.4 91.9 66.2   68.5 Sobianowska-Turek (2018) 
98    96  Chen et al. (2018) 
93.8    95.7  Peng et al. (2018) 
94.63    98.62  Jiang et al. (2018) 
93.2 90.3 91.5  80.2  Cheng et al. (2019) 
68 34.8   92  Sattar et al. (2019) 
99      Zhao et al. (2020) 
99.29 99.91 98.62  99.78  Wang et al. (2020) 
98.91    92.67  Ghassa et al. (2020) 
100 100 100  100  Chan et al. (2021) 
92.84 90.18 93.11    Wang et al. (2018) 
23.2 18.3 25.6  100  Fan et al. (2021) 
70 70 70  70  Vieceli et al. (2021) 
99    99  Aboulaich et al. (2022) 
90    90  Partinen et al. (2022)  

98.13   99.62  Chang et al. (2022) 
99    99  Kong et al. (2022) 
88.6    99.9  Jiang et al. (2022)   

99.9    Permatasari et al. (2022) 
97.24 96.88 99.46  99.79  Li et al. (2022) 
95 92 95  98  Jian et al. (2020) 
98.7 99.5   99.9  Natarajan et al. (2018) 
91.7 97.3 99.1  99.6  Zhou et al. (2023) 

Acetic acid 94.61 97.97 96.39 94.7 98.56  Wang et al. (2022b) 
90    99  Prasetyo et al. (2022) 

Alginic acid 97.58    98.59  Cai et al. (2022) 
Ascorbic acid 94.8    98.5  Li et al. (2012) 

90      Nayaka et al. (2018) 
99.56 99.87 99.6  99.69  Chen et al. (2018) 
96.53    99.58  Fu et al. (2019) 

Benzenesulfonic acid 95 94 97  99  Fu et al. (2019) 
Citric acid 96    99  Gao et al. (2019)     

92  Golmohammadzadeh et al. (2017) 
95    99  Chen and Zhou (2014) 
95    95  Musariri et al. (2019)    

47.24 94.83  Kumar et al. (2020) 
90 98 98  94  Pindar and Dhawan (2020b) 
90 89 94  91  Meng et al. (2017) 
96  96  100  Esmaeili et al. (2020) 
96.1  97.2  94.1  Nakajima et al. (2022)  

94   94  Wang et al. (2022b) 
95.6 94.9 90.7  98.3  Choi et al. (2022) 
85    85  Patil et al. (2020) 

DL-malic acid 94.3 96.4 95.1  98.9  Sun et al. (2018) 
90    90  de Oliveira Demarco et al. (2019) 
97.6 97.3 97.8  98  Ning et al. (2020) 
98.86    98.13  Zhou et al. (2021) 
90.58 98.66 90.14  98.53  Wang et al. (2022b) 
97.1 97.6 96.2  98.1  Cheng et al. (2022) 
95 95 95  95  Sidiq et al. (2022) 

Formic acid     99.93  Gao et al. (2017) 
Gluconic acid 95 95 95  95  Ersha Fan et al., 2020 
L-tartaric acid 98.5 98.5 98.5    Ma et al. (2022) 
Maleic acid 98 98 98  95  Fan et al. (2020) 

(continued on next page) 
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pyrometallurgical processes, which aim primarily to recover Co, Ni and 
Mn as metals alloys and requires careful management of corrosive gases 
and hazardous fractions released during thermal processes. Alongside 
pyrometallurgy, novel recycling plants operate hydrometallurgical 
recycling in order to expand material recovery also to lithium, which is 
lost as slag during pyrometallurgy. However, the use of hazardous 
chemicals and the numerous post-leaching phases, raise environmental 
issues and render waste management challenging. 

Safety and environmental sustainability could be improved along the 
whole LIBs recycling process and research should focus on achieving this 
target. For instance, the use of non-corrosive discharge solutions could 
limit the release of gaseous emissions and by avoiding galvanic corro-
sion they could increase the amount of metals recovered from batteries’ 
casings, however the research on the topic is still limited. Automation of 
disassembly could reduce operative costs while minimizing workers’ 
exposure to hazards, however improvements are still required to achieve 
efficiency comparable to manual disassembly. Pre-treatments are often 
overlooked by research, despite their importance in determining effi-
ciency of following metallurgical processes. Eventually, future research 
should improve environmental sustainability of hydrometallurgical 
processes by limiting operative temperature, using milder organic 
leaching agents and simplifying materials recovery after leaching. 

3.4. Analysis of European lithium-ion batteries’ supply chain 

3.4.1. Inventory of plants producing and recycling lithium-ion batteries 
From selected literature (Lebedeva et al., 2017; Transport and 

Environment, 2019; Danino-Perraud, 2020; Larouche et al., 2020; 
Mossali et al., 2020; Romare and Dahllöf, 2017; Winslow et al., 2018), a 
list of European LIBs’ production and recycling full-scale plants (existing 
and forecasted in 2016–2025) was compiled. 14 production plants 
(Supplementary Materials, table IV), initially corresponding to 2.5 GWh 
in 2016 (foreseen to reach 378 GWh also considering plants forecasted 
by 2025) were inventoried. In overall, European production plants 
display production capacity (2,525,893 t/y) adequate for the expected 
2030 needs (2,257,800 t/y). LIBs’ production capacity evolved in recent 
years; while in 2016 it was entirely concentrated in United Kingdom 
(2030) will see Germany (52.5%), Poland (20%), Sweden (12.7%) and 
Norway (8.4 %) as key players (Supplementary Materials, fig. I), ac-
counting in overall for 2,433,333 t/y out of the 2,525,893 t/y of total 
European production capacity. 

Considering LIBs’ recycling capacity (Supplementary Materials, 
table V), 14 recycling facilities were identified, accounting in total for 
55,810 t/y (Bruno and Fiore, 2023). In 2016, four countries were 
responsible for 93% of total European recycling capacity: Belgium 
(13%), France (37%), Germany (30%) and Norway (13%). Three key 
technologies have been identified: mechanical treatment, pyrometal-
lurgy and hydrometallurgy. These can be combined, also with 
pre-treatments, as happens in plants managed by Umicore in Belgium 
and Accurec in Germany. Pyrometallurgy, eventually preceded by 
pre-treatment, is applied in 4 plants out of 14 (SNAM and Eramet in 
France, Akkuser in Finland, and Duesendeld in Germany). Hydromet-
allurgy, preceded by pre-treatment, is applied in 4 plants out of 14 
(Redux and Lithorec in Germany, Batrec Industrie in Switzerland, AEA 
Technologies in the United Kingdom). Only two plants (Pilagest in 
Spain, and uRecycle in Sweden) apply a purely mechanical treatment. In 
conclusion, pyrometallurgy provides 35 % of European recycling ca-
pacity while hydrometallurgy 28%, their combination 21%, and 

mechanical treatment the remaining 16%. 

3.4.2. Comparison of European lithium-ion batteries’ production and 
recycling capacity with electric vehicles’ demand 

The demand of metals involved by commercial LIBs’ cathodes based 
on the estimated EVs’ demand - 35% of EVs in European vehicles’ fleet 
by 2030 - in Europe was calculated according to average composition 
and market shares (Section 3.2). Being nickel the main component of 
NMC cathodes (5.81 kg of nickel/t of battery in 2020) (Gaines et al., 
2018) and considering the forecasted market shares for 2030, its de-
mand is expected to grow up to 8.64 kg/t of battery. LCO and LFP re-
quests expected to decrease by 2030, and related amounts of cobalt and 
iron are expected to drop for cobalt (from 6.35 in 2020 to 4.58 kg/t of 
battery in 2030) and iron (from 2.62 in 2020 to 1.82 kg/t of battery in 
2030). Changes in market share and composition from 2020 to 2030 are 
key issues, implying that LIBs produced in 2020 and reaching the 
recycling facilities in 2030 will be able to provide metals for a higher 
number of batteries. According to the results of this material flow 
analysis, the amount of different metals reaching the recycling infra-
structure in 2030 and treated by pyrometallurgical and hydrometallur-
gical plants, is displayed in Fig. 4a; whereas, the amount of recovered 
metals, which could re-enter the LIBs supply chain in Europe as sec-
ondary raw materials, is displayed in Fig. 4b. 

Among LIBs’ components, lithium, cobalt, nickel, and manganese 
present the highest supply risk in Europe (European Commission, 
2020b). While refining and manufacturing mainly happen in China, 
their mining activities are geographically diversified, mostly occurring 
outside Europe (Sun et al., 2019). Lithium is mainly extracted in 
Australia, Chile, and Argentina (106,200 t/y in total) (U.S.G.S., 2023), 
while in Europe it happens in Portugal (800 t/y) (Oliveira et al., 2015). 
Finland provides cobalt to Europe (2100 t/y) (European Commission, 
2018), and the world leading producer is the Democratic Republic of 
Congo (130,000 t/y), followed by Indonesia (10,000 t/y) and Russia 
(8900 t/y)(U.S.G.S., 2023).Manganese is supplied by South Africa, 
Gabon, Australia and Ghana (16,400 t/y in total) (U.S.G.S., 2023), and 
by Ukraine, Hungary and Romania in Europe (700,200 t/y in total) 
(European Commission, 2018). Indonesia, Russia and the Philippines 
supply nickel (2,159,000 t/y in total) (U.S.G.S., 2023),and the United 
Kingdom, France, Italy, Finland, Poland and Greece (228,340 t/y in 
total) (European Commission, 2018); 50% of globally extracted 
aluminium (40,000 t/y out of 69,000 t/y globally) is mined in China, 
and 3% in Europe, in Norway and Iceland (2.150 t/y) (U.S.G.S., 2023). 
Global reservoirs of iron are located in Australia, Brazil, China and India 
(196,000 t/y), while in Europe mining of iron ore is concentrated in 
Turkey and Ukraine (57,000 t/y) (U.S.G.S., 2023). Copper is mostly 
mined in Russia, China, Congo, Peru and Chile (12,500 t/y in total), and 
less than 2% in Europe, in Poland (390 t/y) (U.S.G.S., 2023). In 
conclusion, metals’ demand matching European EVs’ fleet target for 
2030 (IEA, 2021) is for lithium 2.16 kg/t of battery (4885 t/y in total), 
for cobalt 4.58 kg/t (10,338 t/y in total), for nickel 8.64 kg/t (19509 t/y 
in total), for manganese 3.27 kg/t (7393 t/y in total) and for iron 1.82 
kg/t (17,986 t/y in total). 

The plants producing the highest amounts of recycled metals (e.g., 
Eramet in France, Redux in Germany, and Umicore in Belgium) make 
the host countries key players of the game. In 2030, the European 
recycling capacity will allow to recover each year 278 t of aluminium 
(out of 17,986 t necessary to supply European EVs’ market in 2030 (IEA, 
2021)), 468 ± 69 t of cobalt (out of 10,338 t necessary), 531 t of copper 

Table 2 (continued ) 

Leaching agent Co Mn Ni Al Li Fe Reference 

Oxalic acid 97    98  Zeng et al. (2015)     
98.9  Rouquette et al. (2023) 

Trifluoroacetic acid 91.8 89.8 93  99.7  Zhang et al. (2015) 
Average 91.7 ± 12% 88.4 ± 19% 90.1 ± 15% 71.0 ± 34% 96.2 ± 5% 91.5 ± 13%   
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(out of 17,986 t necessary), 114 ± 13 t of iron (out of 7393 t necessary), 
95 ± 5 t of lithium (out of 4885 t necessary), 250 ± 35 t of manganese 
(out of 7393 t necessary) and 428 ± 43 t of nickel (out of 19,509 t 
necessary).In total, the recycled metals provided by European recycling 
infrastructure will supply about 2165 t out of the 99,658 t of metals 
required by EVs’ demand forecasted for 2030, corresponding to 2% of 
the demand. 

European policies encourage the electrification of transportation 
networks to reduce GHGs emissions from transportation, while also 
requiring material circularity in the battery sector. However, our study 
indicates that the present European recycling infrastructure is still 
insufficient to satisfy the EU’s collection and recovery targets. Similarly, 
the mandatory minimum levels of recycled content, which are set at 
16% for cobalt, 6% for lithium and 6% for nickel could not possibly be 
met considering secondary raw materials provided exclusively from 
European recycling facilities. Increasing European recycling capacity 
will be essential in meeting regulatory requirements whilst securing the 
supply chain of critical raw materials mined outside of Europe and 
frequently connected with geopolitical tensions. 

3.4.3. Environmental assessment 
The environmental assessment was based on the comparison of 

environmental impacts of LIBs’ production in Europe in 2030 according 
to two scenarios: 1. Production based entirely on primary metals; 2. 
Production based on secondary metals provided by European recycling 
infrastructure (section 3.4.2), topped up with primary metals. Even if 
the share of recycled metals supplied by European plants is 2% (corre-
sponding to 2165 t of metals out of 99,658 t of metals required by Eu-
ropean EVs fleet in 2030) of the necessary amount, investigating the 
environmental outcomes of such a contribution is interesting. 

The calculation of environmental impacts (GWP: global warming 
potential, AP: acidification potential, EP: eutrophication potential, HTP: 

human toxicity potential) associated to mining activities providing the 
metals required by LIBs’ manufacturing was based on specific impact 
coefficients retrieved from literature (Supplementary Materials, table I). 
Among several impact categories, GWP, AP, EP and HTP were selected 
due data availability for every metal considered in this study. To have a 
reference for comparison with GWP associated with European LIBs’ 
supply chain, the GWP (along with AP, EP and HTP) ascribable to pri-
mary metals employed in global LIBs’ production have been calculated 
(Supplementary Materials, fig. II). Total GWP associated to global LIBs’ 
production in 2030 is equal to 491.07 t of CO2 (36% due to aluminium, 
20% to copper, 19% to nickel, 15% to cobalt and 7% to lithium), cor-
responding to 4,910,000 km by car (fed by gasoline) (European Envi-
ronmental Agency, 2023). China, the leading LIBs’ producer, is 
unsurprisingly responsible for the highest (44%, 16.5 kt of CO2) share. 
Copper mining is the main contributor to the impact categories of 
eutrophication and human toxicity potential, whereas Nickel and 
Aluminium mining are mostly accountable for impacts related to global 
warming potential and acidification potential. 

The amount of GWP generated by the recycling of 1 t of LIBs, with 
state-of-the-art full-scale recycling processes according to the results of 
our inventory, and the potential saving of emission from mining activ-
ities, based on the amount of secondary raw materials recovered from 
the recycling of 1 t of LIBs, is displayed in Fig. 5. Specifically considering 
the European supply chain, GWP due to mining of primary metals 
required by LIBs’ production in 2030, based on specific impact co-
efficients retrieved from literature (Supplementary Materials, table I) 
and on results of phases 1–3 of the applied methodology, was calculated. 
GWP of recycling (1053.10 kg CO2 eq/t) was decreased by avoiding CO2 
eq emissions (315.76 kg CO2 eq/t) related to the mining of primary 
metals corresponding to the share of recycled metals calculated in sec-
tion 3.4.2. GHG emissions balance showed that introducing recycled 
metals in European LIBs’ supply chain could avoid 28% of GHGs 

Fig. 4. Material flow analysis of European lithium-ion batteries’ recycling infrastructure in 2030: (a) input and (b) output streams (red: total; yellow: pyrometal-
lurgy; blue: hydrometallurgy). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. GHG emissions associated to (a) lithium-ion batteries’ recycling in Europe in 2030 and (b) avoided by employing the recycled metals (instead of primary 
metals) in the production of new batteries. 
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emissions. The trade-off was achieved by plants applying hydrometal-
lurgy (1.46 kg CO2/t of battery) (Romare and Dahllöf, 2017), as pyro-
metallurgy entails significant CO2 eq emissions (1.65 t CO2/t of battery) 
(Hu et al., 2021b) due to graphite incineration, and hydrometallurgy 
allows to recover lithium. Emissions associated with metals’ mining and 
potentially saved by secondary materials exiting from recycling plants in 
2030 have been calculated (data referred to 1 ton of recycled LIB): 3.34 
17 kg CO2 eq. for Al, 4.04 ± 0.8 kg CO2 eq. for Co, 6.37 17 kg CO2 eq. for 
Cu, 0.95 ± 0.16 kg CO2 eq. for Fe, 1.17 ± 0.06 kg CO2 eq. for Li, 2.86 ±
0.4 kg CO2 eq. for Mn and 7.62 ± 0.5 kg CO2 eq. for Ni. The highest 
saving is associated with Nickel, whose recycling avoids significant GWP 
impact and presents a high recovery rate. 

In conclusion, the environmental benefits of electric vehicles, when 
compared to traditional internal combustion engines, are frequently 
overshadowed by the environmental impacts associated with mineral 
processing to extract the critical raw materials for LIBs manufacture. 
Recovery of secondary raw materials from LIBs recycling will pose an 
additional contribution to GHGs emissions throughout the whole life 
cycle. Nonetheless, recycling processes avoid mining of primary raw 
materials, which in the specific context of Europe, will reduce supply 
risks for raw materials required by future LIBs manufacturing. 

4. Conclusions 

The growing interest for LIBs recycling is driven by the necessity of 
securing the supply chain, affected by extensive employment of critical 
raw materials. LIBs recycling at full-scale needs to be carefully optimized 
across all phases. Further research related to pre-treatments should 
explore ionic solutions able to avoid galvanic corrosion, and the opti-
mization of trade-off between higher precision of manual dismantling 
and lower costs of automatic disassembly systems. Metallurgical re-
covery of valuable metals was extensively investigated, obtaining high 
recovery efficiencies via pyrometallurgy (99% for Al, 86 ± 15% for Co, 
96% for Cu, 88 ± 4% for Mn and 98 ± 1% for Ni), as well as hydro-
metallurgy (71 ± 34% for Al, 91.7 ± 12% for Co, 91.5 ± 13% for Fe, 
96.2 ± 5% for Li, 88.4 ± 19% for Mn and 90.1 ± 15% for Ni), which 
allows to recover a wider range of metals, including Li and Fe. Future 
research should minimize their environmental impacts and economic 
costs, assuring the high technical performances. 

Despite hydrometallurgy attracts most attention of the scientific 
community, pyrometallurgy still represents the dominant technology in 
current industrial plants. Considering the 14 recycling facilities inven-
toried in Europe by this study (55,810 t/y total recycling capacity), 35%- 
wt of EoL LIBs is destined to pyrometallurgy and 21%-wt to combined 
pyrometallurgy and hydrometallurgy. In 2030, European LIBs’ produc-
tion capacity will be adequate for forecasted needs. However, EU recy-
cling plants will provide only 2%-wt of needed metals (278 t of Al, 468 
± 69 t of Co, 531 t of Cu, 114 ± 13 t of Fe, 95 ± 5 t of Li, 250 ± 35 t of 
Mn and 428 ± 43 t of Ni). This will avoid mining primary metals and 
considering the GHGs emissions associated with recycling (1053.10 kg 
CO2 eq/t of battery), the net GHG emissions will be cut by 28%–737.34 
kg CO2 eq/t battery. In conclusion, further research should aim at 
decreasing the environmental impacts of full-scale recycling processes 
through revamping existing facilities based on processes associated to 
lower energy demand and GHG emissions. However, while the scientific 
community should put effort in overcoming the mentioned bottlenecks, 
the reinforcement and development of European recycling infrastruc-
ture is highly needed to secure the LIBs’ supply chain. 
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