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Summary
This work proposes a higher-order unified shell finite element for the analy-
sis of cylinders made of compressible and nearly incompressible hyperelastic
materials. The nonlinear governing equations are derived employing the Car-
rera unified formulation (CUF), thanks to which it is possible to build shell
elements with the capability to capture three-dimensional (3D) transverse and
out-of-plane effects. The material and geometric nonlinearities are expressed
in an orthogonal curvilinear reference system and the coupled formulation of
hyperelastic constitutive law is considered. The principle of virtual work and a
total Lagrangian approach is used to derive the nonlinear governing equations,
which are solved by a Newton–Raphson scheme. The numerical investigations
deal with a curved arch and both thick and thin cylinders subjected to line and
point loadings. The obtained results are validated by comparing them with those
from the literature. They demonstrate the reliability of the proposed method to
analyze compressible and incompressible hyperelastic shell structures.

K E Y W O R D S

Carrera unified formulation, finite elements, geometrical nonlinearity, higher-order shell model,
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1 INTRODUCTION

Hyperelastic soft materials are widely adopted in different applications ranging in various engineering fields, from
biomedical to aerospace. In general, they are used when, under the presence of high loads, a high flexibility needs to be
guaranteed. Elastomeric pads in bridges, car door seals, rail pads, fluid seals and car tyres are some typical examples. For
instance, in the aerospace fields, hyperelastic materials are employed to build devices with unique elastic properties, such
as pressure flexible sensors.1 In the biomedical field, soft materials are used for the simulation of natural tissues, such as
sino-nasal tissue for neurosurgery simulation2 or for the description of the behavior of the arteries.3 The most commonly
adopted constitutive models are represented by the Mooney–Rivlin and neo-Hookean strain energy functions.4,5 They are
employed for the analysis of compressible and incompressible materials, which are the two main types into which the
nonlinear hyperelastic materials are classified. The static analysis of hyperelastic structures was the subject of extensive
research by a number of researchers, such as Basar and Ding,6 Tamadapu and DasGupta,7 and Kiendl et al.8

Shell formulations are typically used to model specific phenomena such as the deformation of biological tissues9,10

and wrinkling membranes.11–13 Since the first derivation of the theory by Love,14 the governing equations and the
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related numerical implementation of shells was a challenging task for scientists. Large deformations most likely appear
in thin shells, and a geometrical linear approach is not able to describe such phenomena. Therefore, thin shells are
often described using a geometrical nonlinear approach. Many studies have applied the St. Venant-Kirchhoff constitu-
tive model, which leads to reliable results when shells are subjected to large displacements, but not in the case of large
strains. Thus, for thin shells that undergo both large displacements and strains, the hyperelastic constitutive model must
be included to capture their static response.

In recent decades, a remarkable effort on soft and hyperelastic shell structures was dedicated by scientists and engi-
neers, due to their potential application to biomaterials. A few works are mentioned hereafter. Basar and Ding,6 starting
from a quadratic approximation over the thickness of thin shells and neglecting transverse shear effects, developed a
nonlinear model for incompressible hyperelastic material. Campello et al.15 introduce the Rodrigues rotation vector to
carry out the analysis of nonlinear hyperelastic shells using a neo-Hookean material model. Basar and Itskov16 propose
a numerical implementation of the Ogden material model via a variational procedure. The large strain and finite rota-
tion fields are analyzed by introducing a six parametric shells kinematic. The absolute nodal coordinate formulation was
adopted by Luo et al.17 to carry out the static and dynamic nonlinear analysis of thin shells. The proposed approach is
based on the Kirchhoff–Love hypotheses. Spherical and circular cylindrical shells were investigated by Song and Dai,18

using a finite-strain shell theory. They employed a high-order expansion from the 3D equations for compressible hypere-
lastic materials. An extensible director kinematic is used by Betsch et al.19 and Li et al.20 for the analysis of compressible
and incompressible hyperelastic shells, respectively. A nonlinear Lagrangian formulation was employed.

To the best of the authors’ knowledge, much more attention was focused on thin shells made of hyperelastic mate-
rials, rather than their thick counterparts. The latter would require the adoption of more refined theories, which could
eventually describe the through-the-thickness (both normal and shear) strains employing a refined approximation of
the displacement field. More in general, when the thickness deformation plays a crucial role in the mechanical behav-
ior of a structure, the adoption of higher-order theories is demanding. This is the case of thick shells and, in particular,
of biological and rubber-soft materials, as outlined in many review articles (21–24). Moreover, for biological applications,
multilayered structures are often adopted, and they represent typical cases when an accurate description of the trans-
verse components is mandatory. An important contribution for the analysis of shells with higher-order models is given by
Arbind and Reddy25 which employed a general polynomial interpolation of the displacement field to develop of a general
refined shell hyperelastic model. Moreover, Amabili et al.26 developed a geometrically nonlinear model for incompress-
ible cylindrical hyperelastic structures. By employing a 9-parameter theory, a higher-order description of the in-plane and
out-of-plane strain components was carried out.

It can be said that the main difficulties when dealing with hyperelastic shells are due to the complexity of the formu-
lation for a hyperelastic material and the derivation of the nonlinear governing equations for shells. In this context, the
Carrera unified formulation (CUF)27 represents a good framework. Due to its hierarchical nature, it is possible to build
higher-order shell models by means of the so-called fundamental nuclei which, opportunely expanded, compose the stiff-
ness matrix. The form of those does not depend on the theory order, which can be chosen by the user as input for the
analysis. CUF has already been applied for the analysis of shell structures in the geometrical nonlinear field (see Refer-
ences 28 and 29) and for hyperelastic structures (see Reference 30). In this article, CUF is further extended to deal with
hyperelastic thin and thick shell structures.

This work is organized as follows. An introduction to the geometric relation of shell structures is given in Section 2
in the curvilinear coordinate system. The hyperelastic constitutive law in the coupled form (following the Holzapfel31

terminology) is described in Section 3. Section 4 describes the kinematics of the proposed nonlinear shell formulation and
the derivation of the governing equations introducing the finite element method (FEM). The numerical results, proposed
in Section 5, involve the analysis of cylindrical thick and thin shells made of compressible and incompressible hyperelastic
materials. The article concludes by drawing the main conclusions. Also, appendix sections are provided, and they give
the components of the linear and nonlinear differential operators and the material Jacobian tensor.

2 GEOMETRICAL RELATIONS OF A SHELL IN AN ORTHOGONAL
CURVILINEAR COORDINATE SYSTEM

2.1 Reference configuration of a shell

Let us consider an arbitrarily curved shell as shown in Figure 1. The structure is considered to have a constant thickness
h. The shell lays within a curvilinear coordinate system 𝜉1, 𝜉2, 𝜉3, where 𝜉3 lays along n, which is the unit vector normal to
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PAGANI et al. 3 of 16

F I G U R E 1 Geometry of an arbitrary shell in an orthogonal curvilinear coordinate system.

the surface that is defined by the two in-plane parametric curves 𝜉1 and 𝜉2. It is clear that 𝜉3 ∈ [−h∕2; h∕2]. The relation
between the position vectors X (point P(0)) and 𝝆 (point P(0)0 ) can be expressed as follows:

X
(
𝜉1, 𝜉2, 𝜉3) = 𝝆

(
𝜉1, 𝜉2) + 𝜉3n

(
𝜉1, 𝜉2). (1)

Starting from the position vector X, the covariant base vectors gi and it dual counterpart base vectors gi can be derived as
follows:

gi =
𝜕X
𝜕𝜉i = X,i, gi ⋅ gj = 𝛿j

i ,

gij = gi ⋅ gj, gij = gi ⋅ gj,

(2)

where (i = 1, 2, 3). Moreover, the partial derivative within a curvlinear coordinate system of a generic vector A reads as
follows:

𝜕A
𝜕𝜉j = Ai

;jgi = Ai;jgi, (3)

where the spatial covariant derivative is conventionally expressed by the semicolon “;”, and it is defined as follows:

Ai
;j = Ai

,j + AmΓi
jm, Ai;j = Ai,j − AmΓm

ji . (4)

Equation (4) introduces the Christoffel symbols, whose components can be expressed in the following:

Γp
ij = gkpΓijk, Γijk = gklΓl

ij =
1
2
(

gik,j + gjk,i − gij,k
)
. (5)

If the directions 𝜉1 and 𝜉2 are considered to lay along the curvatures of the shell structure, then the coordinate system
results to be orthogonal, that is the considered case in the present study. Thus, gi and gi result to be orthogonal, and their
modules are defined as follows:

||gi
|| = Hi = 1∕|||g

i|||, (i = 1, 2, 3). (6)
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4 of 16 PAGANI et al.

with Hi being the Lamé parameters of an arbitrary parallel surface of the shell. They are defined as follows:

H1 = A
(
1 + 𝜉3∕R1

)
,

H2 = B
(
1 + 𝜉3∕R2

)
, (7)

H3 = 1,

where R1 and R2 are the principal curvature radii, whereas the mid-surface Lamé parameters are defined by A and B. In
this research, cylindrical shells are examined, and, as a result, constant curvatures are presumed. Thus, both R1 and R2
are constant.

2.2 Motion of a shell in the orthogonal curvilinear system

Consider the motion of a shell between two configurations, as depicted in Figure 2, where the position vector of the point
in the final configuration is given by x. The displacement vector u can be expressed in the total Lagrangian description
as follows:

u = x − X = uigi = uigi. (8)

Therefore, the deformation gradient tensor F is defined as follows:

F = ∇x = ∇(X+ u) = ∇X + ∇u = I + ∇u = 𝜕u
𝜕𝜉j ⊗ gj, (9)

where the ⊗ and ∇ symbols stand for the dyad operators and the gradient operator with respect to the reference
configuration, respectively.

A set of orthogonal normalization vectors ei is here introduced to simplify the analysis of physical problems, since gi
and gi are not necessarily unit vectors in an orthogonal curvilinear coordinate system (see Equation (6)).

ei = gi∕|||g
i||| = Higi. (10)

Then, the displacement vector can be re-written, in terms of ei, as follows:

u = ũiei, (11)

F I G U R E 2 Motion of an arbitrary shell in an orthogonal curvilinear coordinate system.
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PAGANI et al. 5 of 16

where ũi express the physical components. Introducing Equations (8) and (10) into (11), one has

ui = Hiũi. (12)

Thus, considering Equation (3), Equation (9) can be expressed as follows:

Fij = Iij +
[(

𝜕Hj

𝜕𝜉i ũj +Hj
𝜕ũj

𝜕𝜉i

)
ei

Hi
⊗

ej

Hj

]
−

3∑

m=1

[(
HmũmΓm

ij

) ei

Hi
⊗

ej

Hj

]
. (13)

In this work, we consider 𝜉1 and 𝜉2 as the arc-length coordinates, and in this work they are referred to as 𝛼 and 𝛽,
respectively (z for 𝜉3), and consequently, A = B = 1.

The 3 × 3 deformation gradient tensor F of Equation (9) is given by

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u𝛼,𝛼
H𝛼

+ uz

H𝛼R𝛼
+ 1

u𝛼,𝛽
H𝛽

u𝛼,z
u𝛽,𝛼
H𝛼

u𝛽,𝛽
H𝛽

+ uz

H𝛽R𝛽
+ 1 u𝛽,z

uz,𝛼

H𝛼

− u𝛼
H𝛼R𝛼

uz,𝛽

H𝛽

− u𝛽
H𝛽R𝛽

uz,z + 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

The Green–Lagrange strain tensor E can be expressed as follows:

E =
(
FTF − I

)
∕2 = 1

2
[
∇u + (∇u)T + (∇u)T ⋅ ∇u

]
= El + Enl, (15)

where the transpose is indicated by the superscript “T.” The linear El and nonlinear Enl components of the strain E in
Equation (9) can be written as follows:

El =
1
2
[
∇u + (∇u)T

]
= 1

2
(

ui;j + uj;i
)
gi ⊗ gj = 1

2

(
uj,i + ui,j − 2umΓm

ij

)
gi ⊗ gj, (16)

and

Enl =
1
2
(∇u)T ⋅ ∇u = 1

2
uk;iuk

;jg
i ⊗ gj

= 1
2

(
uk,iuk

,j − umΓm
kiu

k
,j + uk,iunΓk

nj − umΓm
kiu

nΓk
nj

)
gi ⊗ gj, (17)

Subsequently, Equations (16) and (17) can be rearranged in a matrix form as follows:

E = El + Enl = (bl + bnl)u, (18)

where u and E can be defined as

u(𝛼, 𝛽, z) =
{

u𝛼 u𝛽 uz

}T
, E =

{
E𝛼𝛼 E𝛽𝛽 Ezz E𝛼z E𝛽z E𝛼𝛽

}T
, (19)

The 6 × 3 linear and nonlinear differential operators bl and bnl in Equation (18) are given in Appendix A.

3 HYPERELASTIC CONSTITUTIVE LAW

In the present work, isotropic hyperelastic behavior is described adopting a neo-Hookean strain-energy function Ψ. In
general, the strain energy functionΨ can be written in terms of the invariants (I1, I2, I3) of the C = FTF right Cauchy–Green
tensor as follows:

Ψ = Ψ(I1(C), I2(C), I3(C)), (20)

 10970207, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7417 by Politecnico D
i T

orino Sist. B
ibl D

el Polit D
i T

orino, W
iley O

nline L
ibrary on [12/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 16 PAGANI et al.

where the invariants are defined as follows:

I1 = tr(C),

I2 =
1
2
((tr(C))2 − tr(C2)), (21)

I3 = det(C),

where tr(⋅) and det(⋅) represent the trace and the determinant operators.
The constitutive law is expressed as a differential relation between Ψ and the second Piola-Kirchhoff (PK2) stress

tensor as follows:

S = 2𝜕Ψ(C)
𝜕C

= 𝜕Ψ(C)
𝜕I1

𝜕I1

𝜕C
+ 𝜕Ψ(C)

𝜕I2

𝜕I2

𝜕C
+ 𝜕Ψ(C)

𝜕I3

𝜕I3

𝜕C
, (22)

where

𝜕I1

𝜕C
= 𝜕tr C

𝜕C
= 𝜕(I ∶ C)

𝜕C
= I,

𝜕I2

𝜕C
= 1

2

(
2tr C I − 𝜕trC2

𝜕C

)
= I1I − C, (23)

𝜕I3

𝜕C
= I3C−1.

Introducing Equation (23) into Equation (22), one has the final expression of the PK2 tensor,

S = 2𝜕Ψ(C)
𝜕C

= 2
[(

𝜕Ψ
𝜕I1

+ I1
𝜕Ψ
𝜕I2

)
I − 𝜕Ψ

𝜕I2
C + I3

𝜕Ψ
𝜕I3

C−1
]
. (24)

The material Jacobian tensor is given in Appendix B.

4 TWO-DIMENSIONAL (2D) UNIFIED SHELL FINITE ELEMENTS

4.1 Unified shell finite element

In this work, the 2D shell finite element is built recalling the CUF. According to CUF, the 3D displacement field of
Equation (19) can be derived as a set of in-plane functions over the 𝛼 and 𝛽 directions and thickness functions over the
thickness domain z. 𝛼, 𝛽 and z are the physical coordinates. Specifically, u can be written as follows:

u(𝛼, 𝛽, z) = F𝜏(z)u𝜏(𝛼, 𝛽), (25)

where 𝜏 = 0, 1, … ,N, with N being the order of expansion functions F𝜏 . The repeated subscript 𝜏 indicates the
summation. In this article, cubic and quadratic expansion functions, based on three-point and four-point Lagrange poly-
nomials, are employed. Following the notation introduced by Carrera,32 they are recalled as Lagrange Displacement
LDo, which stands for Lagrange expansion with Displacement unknowns of order o (2 and 3 for quadratic and cubic
expansion, respectively). For the sake of completeness, the case of a LD2, namely a quadratic expansion, is reported
hereafter

u𝛼 = F1u𝛼1 + F2u𝛼2 + F3u𝛼3,

u𝛽 = F1u𝛽1 + F2u𝛽2 + F3u𝛽3, (26)

uz = F1uz1 + F2uz2 + F3uz3,
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PAGANI et al. 7 of 16

where

F1 =
1
2
(s2 + ss1),

F2 = −s2 + 1, (27)

F3 =
1
2
(s2 + ss3),

where s vary from 1 to -1, whereas s1 and s3 correspond to the position of the Lagrange points in the natural coordinate.
The relation between the natural and physical coordinates can be found in many books, see Reference 27. On the other
hand, for the 𝛼-𝛽 domain discretization, FEM is recalled. After discretizing the shell mid-plane in planar finite elements,
the generalized displacement vector u𝜏(𝛼, 𝛽) can be expressed in the following:

u𝜏(𝛼, 𝛽) = Ni(𝛼, 𝛽)q𝜏i, (28)

where i = 1, 2, … , p + 1, with p representing the order of the shape functions Ni. The vector of the FE nodal parameters
qsj is written as

q𝜏i =
{

q𝛼𝜏i q𝛽𝜏i qz𝜏i

}T
. (29)

Note that the finite element interpolation is expressed by using global coordinates in Equation (28). However, stiffness
terms as detailed in Section 4.2 are derived by integrating both the shape functions Ni and the theory approximation
expansions F𝜏 in the natural domain, as in classical FEM. In this work, nine-node bi-quadratic FEs (Q9) are adopted as
shape functions.

Figure 3 depicts the discretization of an arbitrary shell structure, where the expansion function F𝜏 and the shape
function Ni are highlighted in red and blue, respectively.

Note that, introducing CUF Equation (27) and FEM (28) into Equation (18), the resultant strain vector can be expressed
as follows:

E = (B𝜏i
l + B𝜏i

nl)q𝜏i, (30)

where B𝜏i
l and B𝜏i

nl are the linear and nonlinear algebraic matrices. Interested readers can find more details about B𝜏i
l and

B𝜏i
nl in Reference 28.

4.2 Nonlinear governing equations

In the present work, the derivation of the nonlinear governing equation is conducted recalling the PVDs. It can be written
as follows:

𝛿Lint = 𝛿Lext, (31)

F I G U R E 3 2D shell model. Shape function Nj in blue and expansion function Fs in red.
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8 of 16 PAGANI et al.

where 𝛿Lint and 𝛿Lext are the virtual variation of the internal strain energy and the external loads, respectively, with 𝛿
denoting the variation. The virtual variation of the internal work can be expressed as follows:

𝛿Lint = ∫V
𝛿ETS dV , (32)

where V is the volume of the body, and

𝛿E = 𝛿((B𝜏i
l + B𝜏i

nl)q𝜏i) = (B𝜏i
l + 2B𝜏i

nl)𝛿q𝜏i. (33)

Introducing Equation (33) into Equation (32), one has

𝛿Lint = ∫Ω 𝛿qT
𝜏i(B

𝜏i
l + 2B𝜏i

nl)
TS dV = 𝛿qT

𝜏i[∫V
(B𝜏i

l + 2B𝜏i
nl)

TSdV] = 𝛿qT
𝜏iF

𝜏i
int, (34)

where F𝜏i
int is the 3 × 1 fundamental nucleus of the internal forces vector:

F𝜏i
int = ∫Ω (B

𝜏i
l + 2B𝜏i

nl)
TSdV . (35)

The expression of the external load vector is computed from the definition of the virtual variation of the work made by
external forces. Omitting some mathematical derivations, we have

𝛿Lext = 𝛿qT
𝜏iF

𝜏i
ext. (36)

Finally, introducing Equations (34) and (36) into (31), the nonlinear equation holds

F𝜏i
int = F𝜏i

ext. (37)

Equation (37) represents a geometrically nonlinear systems, and it is typically computed adopting a linearization tech-
nique. In this article, the employed scheme is the Newton–Raphson method, according to which, the nonlinear governing
equations are expressed as follows:

𝝋res ≡ F𝜏i
int − F𝜏i

ext = 0, (38)

where the residual nodal forces vector is expressed in 𝝋res. One can use a known (q,p) solution to linearize Equation (38)
by expanding 𝝋res in Taylor’s series. Therefore,

𝝋res(q + 𝛿q,p + 𝛿p) = 𝝋res(q,p) +
𝜕𝝋res

𝜕q
𝛿q +

𝜕𝝋res

𝜕p
𝛿𝜆 pref = 0, (39)

where 𝜕𝝋res
𝜕q

= KT represents the tangent stiffness matrix. The external load is assumed to change directly with the vector
of the reference loadings pref with a variation rate expressed by 𝜆, defined as the load-scaling parameter, i.e. p = 𝜆 pref .
Since 𝜆 is a variable, an additional constraint equation is required and this is given by a relation constraining both 𝛿q and
𝛿𝜆). Finally, one has

{
KT 𝛿q = 𝛿𝜆 pref − 𝝋res,

c(𝛿q, 𝛿𝜆) = 0.
(40)

In this work, a path-following technique is adopted as the constraint equation. In particular, an arc-length method is
utilized in this work, see Criesfield33,34 and Carrera.35 It is important to underline that KT is derived from the linearization
of the equilibrium equations.36 This corresponds to the linearization of the virtual variation of the work made by internal
forces in the case of conservative cases, as follows

𝛿(𝛿Lint) = ∫V
𝛿ETS dV = 𝛿qT

𝜏iK
ij𝜏s
T 𝛿qsj, (41)
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PAGANI et al. 9 of 16

where Kij𝜏s
T represents the 3 × 3 fundamental nucleus, that is, the basic building block for the formulation of the total

tangent stiffness matrix.

5 NUMERICAL RESULTS

The numerical results concern three examples taken from the literature. Each of them is analyzed considering a
neo-Hookean strain energy function. In particular, the study cases involve a curved arch and both thick and thin cylinders
subjected to line and point load. For the thin cylinder subjected to a point load, both compressible and incompressible
material configurations are considered, and the obtained results are compared to those from literature, when available.

5.1 Curved arch

As a first example, the behavior of a compressible soft curved arch is investigated. Figure 4 shows the geometrical charac-
teristics and boundary condition of the structure, with ri and re equal to 9 and 10 mm, respectively, and a = 1 mm. Then,
the structure can be considered as thick (re/a= 10), and can be modeled using the proposed shell finite element thanks to
its higher-order capability. The structure is clamped and subjected to an external pressure oriented by 45◦ with respect to
the normal of the surface. The study case is taken from Hassani et al.,37 and the neo-Hookean material model is described
in the following strain energy function:

Ψ(C) = 𝜇

2
(I1 − 3) − 𝜇

2
log I3 +

k
2
(
√

I3 − 1)2 (42)

where 𝜇 and k are the shear and bulk modulus, respectively. Their values are 𝜇 = 80.194 N/mm2 and k = 120.291 N/mm2,
so that the material is compressible.

A preliminary convergence analysis is carried out, in order to establish a reliable mathematical model. Figure 5 shows
the results. Clearly, the 120 Q9 and 2 LD3 approximation can be considered a converged mathematical model. Its total
number of Degrees of Freedom (DOFs) is 11907. The nonlinear static equilibrium curve is reported in Figure 6, along
with some of the deformed configurations. A good match between the proposed model solution and the reference results
is guaranteed.

5.2 Cylindrical shell subjected to line loading

The hyperelastic cylindrical structure shown in Figure 7 is considered as the second analysis case. The geometric
properties are r = 9 cm and L = 15 cm. Both thick and thin configurations are considered, with thicknesses t and t2 equal

F I G U R E 4 Geometric properties of the curved arch. Study case taken from Hassani et al.37
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10 of 16 PAGANI et al.

F I G U R E 5 Convergence analysis of the arch subjected to an external pressure.

F I G U R E 6 Nonlinear static equilibrium curve of the arch subjected to an external pressure. Some deformed configurations are
reported. Reference results from Hassani et al.37

F I G U R E 7 Study case of the cylinder under line load.
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PAGANI et al. 11 of 16

F I G U R E 8 Nonlinear analysis of the cylinder under line load. Thickness equals to 2 cm. Reference result from Luo et al.17

F I G U R E 9 Nonlinear analysis of the cylinder under line load. Thickness equals to 0.2 cm. Reference result from Büchter et al.38

to 2 and 0.2 cm, respectively. A neo-Hookean material model is adopted with the same strain energy function Φ adopted
in Reference17 with shear modulus 𝜇 = 6000 kN∕cm2 and bulk modulus k = 280,000 kN∕cm2. For symmetry reasons,
only one quarter of the structure is considered (depicted in blue in 7). A 4 × 10 Q9 mesh is adopted, along with one LD2
on the thickness direction, resulting in a total of 1701 DOFs. The thick cylinder was analyzed as the first case, and the
results are compared to reference ones from Luo et al.17

The nonlinear equilibrium curve is shown in Figure 8, proving a perfect match with the reference solution. Moreover,
the thin cylinder is considered. The available reference solution is from Büchter et al.,38 where a single equilibrium state
in the force vs displacement graph is provided (see Figure 9). The solution obtained with the present model is reported
in the same graph, and a consistent match with literature results is demonstrated. In the same figure, the deformed
configuration at maximum vertical displacement equals 16 cm is provided.

5.3 Cylindrical shell subjected to pinching loading

As the final case, a cylindrical shell with rigid end diaphragms is subjected to pinching point load P, as shown in
Figure 10. This example was studied in References 39 and 40 by using different approaches, whereas the results chosen
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12 of 16 PAGANI et al.

F I G U R E 10 Study case of the cylinder under pinching point load.

F I G U R E 11 Convergence analysis of the cylinder under pinching point load. For each model one LD2 is adopted over the thickness
direction.

here as reference are from Luo et al.17 The radius, length, and thickness of the cylindrical shell are r = 100 mm,L =
200 mm, and t = 1 mm, respectively. The boundary condition of rigid diaphragms is enforced on the two edges of
the cylindrical shell. This means that the displacements of the edges of the cylindrical shell are constrained except
along the longitudinal direction. Thanks to the symmetrical property of the problem, only one octant of the shell
is studied.

A convergence analysis is carried out as a preliminary investigation to assess the mathematical model, and the results
are shown in Figure 11. Clearly, the 40 × 40 Q9 mathematical model can be considered as converged, and is used for the
subsequent investigations. The number of DOFs is 59049. Both compressible and nearly incompressible neo-Hookean
material models are considered here, with Poisson’s ratios 𝜈 = 0.3 and 𝜈 = 0.499, respectively.

The obtained results in terms of nonlinear equilibrium curve are shown in Figure 12 and, in the compressible case,
they match well with the reference solution from Luo et al.17 Moreover, Figure 13 depicts some of the deformed shapes of
the cylindrical shell at the nonlinear static load steps of maximum vertical displacement equals to 57, 76, 86, and 96 mm,
respectively.
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PAGANI et al. 13 of 16

F I G U R E 12 Nonlinear analysis of the cylinder under pinching point load. Reference solution from Luo et al.17 for compressible case.

F I G U R E 13 Deformed shapes of the cylinder under pinching point load.

6 CONCLUSIONS

This article proposed a unified 2D shell finite element for the analysis of hyperelastic structures. The model is based on
the CUF, which, combined with the finite element method (FEM), allows to generate higher-order shell models. The
deformation gradient and the Green–Lagrange strain tensors are derived in an orthogonal curvilinear coordinate system,
whereas the Jacobian material matrix is expressed in its coupled formulation of hyperelastic constitutive law. The principle
of virtual displacement (PVD) is recalled to generate the nonlinear governing equations which are finally solved using
an algorithm based on the Newton–Raphson linearization and the arc-length methods. The proposed model was used
to analyze a curved arch and cylinders (both thick and thin) with a Neo-Hookean strain energy function. The results
obtained from this study are compared to existing literature, proving that the proposed higher-order model is a viable
choice for simulating solid shells. These are traditionally modeled using three-dimensional (3D) solid elements, resulting
in a high number of degrees of freedom and geometric inconsistencies. Furthermore, as no locking or stability issues were
encountered in the simulations, the use of these higher-order models holds the potential to mitigate such problems.
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14 of 16 PAGANI et al.

Future work will deal with the extension of the present model to deal with fully incompressible materials, eventually
exploring mixed or hybrid formulation to contrast volumetric locking, anisotropic soft materials and multi-physics.
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APPENDIX A. LINEAR AND NONLINEAR DIFFERENTIAL OPERATORS

The 6 × 3 linear and nonlinear differential operators bl and bnl in Equation (18) are reported here.

bl =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝛼

H𝛼

0 1
H𝛼R𝛼

0 𝜕𝛽
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1
H𝛽R𝛽

0 0 𝜕z

𝜕z − 1
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H𝛼

0 𝜕z − 1
H𝛽R𝛽
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H𝛽
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0

⎤
⎥
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⎥
⎥
⎥
⎦

, (A1)

and

bnl =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
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𝛼

[
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𝛼
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1
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, (A2)

in which 𝜕𝛼 = 𝜕(⋅)∕𝜕𝛼, 𝜕𝛽 = 𝜕(⋅)∕𝜕𝛽, and 𝜕z = 𝜕(⋅)∕𝜕z.
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APPENDIX B. MATERIAL JACOBIAN TENSOR

The material Jacobian tensor, in its most generic form, which is recalled as coupled formulation in Reference 31, is
expressed in terms of principal invariants as follows:

 = 2𝜕S(C)
𝜕C

= 𝜕S(E)
𝜕E

= 4 𝜕2Ψ
𝜕C𝜕C

= 4

(
𝜕2Ψ
𝜕I2

1
+ 2I1

𝜕2Ψ
𝜕I1𝜕I2

+ 𝜕Ψ
𝜕I2

+ I2
1
𝜕2Ψ
𝜕I2

2

)

I⊗ I

− 4

(
𝜕2Ψ
𝜕I1𝜕I2

+ I1
𝜕2Ψ
𝜕I2

2

)

(I⊗ C + C⊗ I)

+ 4
(

I3
𝜕2Ψ
𝜕I1𝜕I3

+ I1I3
𝜕2Ψ
𝜕I2𝜕I3

)
(I⊗ C−1 + C−1 ⊗ I)

+ 4𝜕
2Ψ
𝜕I2

2
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− 4I3
𝜕2Ψ
𝜕I2𝜕I3

(C⊗ C−1 + C−1 ⊗ C)

+ 4

(

I3
𝜕Ψ
𝜕I3

+ I2
3
𝜕2Ψ
𝜕I2

3

)

C−1 ⊗ C−1

− 4I3
𝜕Ψ
𝜕I3

C−1 ⊙ C−1

− 4𝜕Ψ
𝜕I2
 (B1)

where  is function of the fourth-order unit tensor.
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