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ONBOARD PROCESSING CAPABILITIES OF AN EARTH OBSERVATION COMPRESSIVE
SENSING PAYLOAD

Tiziano Bianchi, Martina Cilia, Enrico Magli, Andrea Migliorati, Nicola Prette, Diego Valsesia

Politecnico di Torino - Torino, Italy

ABSTRACT

In this paper, we explore the onboard processing capa-
bilities of an optical Earth observation instrument op-
erating under the principles of compressed sensing, cur-
rently under preliminary study. In particular, we focus
on two main aspects for onboard operations: i) how to
process measurements in a computationally-efficient way
to obtain previews of the reconstructed image that can
be easily used by downstream inference algorithms; ii)
the possibility of having simultaneous compression and
encryption by proper management of the pseudorandom
patterns used for the sensing matrix and measurements.

Index Terms— Compressed sensing, onboard pro-
cessing.

1. INTRODUCTION

Since its introduction more than a decade ago, compres-
sive sensing (CS) has established itself as a radically dif-
ferent imaging paradigm that combines compression and
sensing. CS relies on the hypothesis that real images
have a sparse nature, i.e., they can be compactly repre-
sented with few nonzero coefficients in some transform
domain, and this allows to sample them at rates lower
than what the Nyquist criterion would dictate. The
single-pixel camera [1] has demonstrated the idea that
imaging hardware exploiting CS principles may require
much fewer detectors than conventional designs. This
has recently raised interest for the development of a novel
generation of payloads for Earth observation missions [2].
Key to the CS theory is the acquisition of measurements
of the light field obtained via spatial light modulation
(SLM) with pseudorandom masks. Programmable mi-
cromirror devices are typically used to implement this
behavior by driving each micromirror by means of the
corresponding value of the pseudorandom mask.

Measurements are then used to estimate the imaged
scene by means of a non-linear reconstruction process.
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Early reconstruction methods relied on solving opti-
mization problems, typically minimizing the ℓ1 norm
of the transform coefficients of the reconstructed image
[3], or the total variation norm [4], or, alternatively,
using greedy techniques such as Orthogonal Matching
Pursuit [5]. A common issue with those early techniques
was the need to define a handcrafted prior about the
image to be reconstructed. For instance, total varia-
tion minimization implicitly assumes that the image is
well-described by a spatially piecewise-smooth signal.
Such handcrafted prior have limited the performance of
reconstruction algorithms due to their simplistic mod-
elization of the complexity of real images. More recently,
deep learning techniques [6] have been used for compres-
sive sensing reconstruction, significantly outperforming
optimization-based techniques thanks to the more so-
phisticated priors that can be learned by neural networks
in a data-driven fashion.

Nevertheless, the reconstruction process remains a
computationally expensive operation. In the context of
an Earth observation mission, the satellite would directly
acquire compressive measurements by means of a suit-
able optical instrument and then transmit them to a
ground station for reconstruction. However, there is a
growing need in current and future missions for onboard
processing capabilities. In fact, the total latency of the
acquisition-transmission-reconstruction pipeline can be
in the order of hours to days depending on many design
factors. This hampers a whole range of time-sensitive
applications such as monitoring for environmental disas-
ters, surveillance and many more, which call for the rapid
solution of inference problems directly onboard the satel-
lite. This is not trivial to achieve in a design employing
compressive sensing because only measurements rather
than image data are available to the satellite.

In this paper, we explore the onboard processing ca-
pabilities of a compressive Earth observation instrument
currently under preliminary study. In particular, we fo-
cus on two main aspects: i) how to process measurements
in a computationally-efficient way to obtain previews of
the reconstructed image to be easily used by downstream
inference algorithms for some problems of interest; ii) the
possibility of having simultaneous compression and en-



cryption by proper management of the pseudorandom
mask patterns and measurements.

2. PROPOSED METHOD

In this section, we are presenting the two main opera-
tions of interest to be performed onboard, namely fast
reconstruction methods, and simultaneous sensing and
encryption.

2.1. Fast Onboard Reconstruction

CS reconstruction is typically driven by highly non-linear
methods, ranging from optimization-based techniques to
deep learning. Such methods are needed in order to ex-
ploit the most sophisticated image priors for the regular-
ization of the inverse reconstruction problem. However,
their computational complexity is generally high. While
some progress has been made in recent years, thanks
to the shift from iterative optimization methods to neu-
ral networks, which may only require one single forward
pass, the amount of floating point operations required is
still too large to suit low-complexity onboard implemen-
tations. At the same time, providing an estimate of the
reconstructed image directly onboard would be benefi-
cial to address a number of inference problems. As a few
examples, problems of interest can range from the detec-
tion of fires, ships, extreme atmospheric events, etc. In
fact, it is desirable to reuse highly optimized and vali-
dated algorithms for such problems, but this poses the
requirement of producing an image as input to the infer-
ence method, rather than compressive measurements.

For these reasons, we study a fast method to gener-
ate “previews”, i.e. coarse estimates of the reconstructed
image, directly onboard. This is done via the use of an
optimized linear reconstruction operation. This operator
acts directly on the measurements vector to recover an
estimate of the image. Instead of relying on the simple
pseudoinverse of the sensing matrix, which would mini-
mize the least squares criterion in the measurements do-
main, we seek to optimize the linear reconstruction op-
erator in a data-driven fashion so that it can learn the
typical autocorrelation pattern of the class of images of
interest. In particular, the linear reconstruction operator
Q is computed as:

Q = argmin
Q

Ex∼D,y=Φx[∥U(Qy)− x∥22], (1)

being x a vectorized image sampled from the training
dataset, D and U a fixed upsampling operation (e.g.,
bilinear interpolation), while y and Φ respectively denote
the measurements vector and the sensing matrix. The
fast preview is then generated from the measurements

as

x̂ = Qy. (2)

It is interesting to notice that we can further reduce
the computational complexity of this operation by tar-
geting a lower resolution than the one of the original x
that has generated the measurements, thus reducing the
number of rows of matrix Q, at the cost of a degraded
quality of image x̂.

2.2. Onboard Encryption

Let us now discuss how the CS acquisition process as de-
scribed in Equations (1) and (2) can effectively be seen as
a symmetric-key encryption system. Specifically, given
a vectorized image x and a sensing matrix Φ such that
y = Φx, where y denotes the measurements vector, it
is possible to achieve secrecy by randomizing the ma-
trix Φ, assuming it is kept secret and known only to the
hardware used for the CS acquisition. In such a fashion,
the image reconstruction can be seen as the process of en-
crypting a payload x by means of an encryption key Φ to
obtain the encrypted message y. In the proposed frame-
work, we employ binary sensing matrices generated inde-
pendently and changed for each different CS acquisition.
In particular, we employ very efficient,cryptographically-
secure pseudo-random generators to generate the binary
entries for the sensing matrices. As demonstrated in
[7] and further illustrated in Section 4, despite the fact
that random binary sensing matrices do not offer per-
fect secrecy, they nonetheless ensure that, when the size
of Φ grows, the advantage of a hypothetical attacker in
attacking the proposed system compared to a theoreti-
cally secure one is negligible. Hence, practical security is
achieved.

3. EXPERIMENTAL RESULTS

3.1. Onboard reconstruction

We investigate the performance of the proposed onboard
reconstruction method by comparing the reconstruction
error achieved by the fast preview method and that of
a full reconstruction method, namely the ISTA-Net neu-
ral network. For this experiment, we used a subset of
the DFC2020 dataset [8] composed of Sentinel 2 multi-
spectral images. A training partition has been used to
optimize the linear reconstruction operator and to train
ISTA-Net, while a disjoint test partition is used for nu-
merical tests. The CS acquisition process uses binary
random matrices with ±1 entries with a block size of 32×
32 pixels. We study three compression ratios, i.e., the
number of measurements acquired for each block, namely
75%,50%,25% (768,512,256 measurements, respectively).



Table 1. Quality of Fast Preview methods - Root Mean Squared Error
Compression ratio

25% 50% 75%
Full reconstruction 66.85 43.56 26.91
Full-resolution preview 79.01 51.33 30.47
Half-resolution preview 84.30 69.69 64.61
Quarter-resolution preview 104.53 100.96 100.09

Table 2. Complexity of Fast Preview methods - FLOPs
Compression ratio

25% 50% 75%
Full reconstruction ∼ 4× 109 ∼ 4× 109 ∼ 4× 109

Full-resolution preview 5.2× 105 1.0× 106 1.6× 106

Half-resolution preview 1.3× 105 2.6× 105 3.9× 105

Quarter-resolution preview 3.3× 104 6.5× 104 9.8× 104

Table 1 shows the root mean square error of the test im-
ages generated by the fast preview method and the full
reconstruction by means of the ISTA-Net neural network
[6] for various system design parameters. On the other
hand, Table 2 shows the computational complexity of the
methods, measured in FLOPs. It can be noticed that
the fast preview is an order of magnitudes less expen-
sive than the full reconstruction, and could reasonably
be implemented on dedicated hardware onboard. At the
same time, the degradation in quality with respect to
ISTA-Net is not too severe and enables the solution of
inference problems. Fig. 1 shows a visual comparison of
the reconstructions.

4. SECURITY EVALUATION

As explained in Section 2, we employ binary sensing ma-
trices generated independently and changed at each dif-
ferent CS acquisition. A perfectly secure encryption sys-
tem ensures that x and y are statistically independent,
i.e. p(x|y) = p(x), or, in other words, the mutual infor-
mation between x and y is zero (I(x,y) = 0). Under
the assumption that the sensing matrices are generated
independently and changed for each reconstruction, as
known from [7], perfect secrecy can be obtained if two
conditions are met: (i) the sensing matrix is generated
from Gaussian variables identically distributed and in-
dependent of each other; (ii) the energy of the acquired
signal is constant. As said, our design employs random
binary matrices. Hence, theoretical security is not guar-
anteed. However, it is possible to precisely measure the
advantage of an attacker in attacking the proposed sys-
tem compared to a perfectly secure one. In particular,
we can show that the advantage is negligible for growing
block sizes in the CS acquisition process. For this mea-
surement, we employ the concept of θ-distinguishability.

Given two signals x1 and x2, a ciphered signal y, and a
decision function D(y), we measure the capacity of D(y)
to correctly understand whether y has been obtained
from x1 or x2. Hence, given Pc and Pw, respectively
the probability of a correct decision and the probabil-
ity of making a wrong one, x1 and x2 are defined as
θ-distinguishable if, for every D(y):

Pc − Pw ≤ θ. (3)

The θ parameter measures the advantage for the deci-
sion function D(y) in picking the correct signal, i.e. ef-
fectively decipher y, with respect to a random guess be-
tween the two signals x1 and x2. Specifically, the proba-
bility that D(y) picks the correct signal is Pc ≤ 1/2 + θ.
The smaller the θ value is, the smaller the advantage of
the attacker becomes. Straightforwardly, θ = 0 in the
case of a perfectly secure encryption framework. Fig.
3 collects the θ-distinguishability results as a function
of the macro-pixel size n. The curves are obtained un-
der the assumption that an independent CS acquisition
is done for contiguous macro-pixels. We evaluate two
scenarios in which the acquired signals are k-sparse in
the DCT-2D domain and in the original pixel domain,
respectively. The sparsity is set to 1/8 of the number
of micro-pixels in the block. Considering for example
n = 32, corresponding to a macro-pixel composed of 1024
micro-pixels, the probability for an attacker to decipher
the encrypted signal y is greater than the probability of
randomly guessing the correct payload x1 or x2 only by
a negligible 10−5.

It is also worth noticing that our security analysis
refers to the single macro-pixel attack, while in prac-
tice the attacker would try to infer the entire original
image. For this reason, the complexity of the proposed
encryption framework is comparable to the complexity
of a brute-force attack to obtain the encryption key.



Fig. 1. Reconstructions comparisons. Left to right: ground truth, ISTA-Net, full-resolution preview, half-resolution
preview, quarter-resolution preview.

Fig. 2. Examples of CS reconstructions when the sensing
matrix Φ, i.e. the encryption key, is not known.

As a matter of example, let us consider a 128 × 128
micro-pixels image composed of 1024 macro-pixels of size
4 × 4. In this scenario, the probability for an attacker
to infer the original image by observing the encrypted
measurements y can be estimated as (1/2 + 0.01)1024 =
3.5634e−300. To put things in perspective, the proba-
bility of brute-force guessing a 256-bit encryption key is
equal to 1/2256 = 8.6362e−78. Hence, it would be more
advantageous for an attacker to try to infer the encryp-
tion key used to generate the random binary sensing ma-
trix, instead of devising an attack based on the specific
properties of the binary matrices employed in our secure
framework.

5. CONCLUSIONS

This paper presented a study of the onboard process-
ing capabilities of an optical payload working under the
principles of compressed sensing. We showed how it is
possible to obtain high-quality reconstructions directly
onboard with modest computational requirements and
how the sensing process can be leveraged to achieve si-
multaneous encryption.

Fig. 3. θ-distinguishability as a function of the macro-
pixel size n. Even for small values of n, i.e. n = 4, θ
takes significantly small values (θ ≃ 0.01).
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