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Solubility of H2-CH4 mixtures in
brine at underground hydrogen
storage thermodynamic
conditions

Michel Tawil1*, Eloisa Salina Borello1, Sergio Bocchini1,
Candido Fabrizio Pirri1,2, Francesca Verga1, Christian Coti3,
Matteo Scapolo3, Donatella Barbieri3 and Dario Viberti1

1Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy,
2Center for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Torino, Italy,
3Snam-Stogit, Crema, Italy

Concerning the emerging power-to-gas technologies, which are considered the
most promising technology for seasonal renewable energy storage,
Underground Hydrogen Storage (UHS) has gained attention in the last few
years. For safe and efficient storage, possible hydrogen losses due to
dissolution into the aquifer must be estimated accurately. Due to safety
concerns, experimental measurements of hydrogen solubility in brine at
reservoir conditions are limited. In this study, a PVT cell is used to
characterize the solubility of hydrogen and its mixtures with methane in saline
water/brine. The experiments were carried out at 45, 50, and 55°C and from 1 bar
up to 500 bar, mimicking a significant range of possible reservoir conditions. Two
brine samples representative of two different reservoirs were tested. Two
mixtures of methane and hydrogen (10 mol% H2 and 50 mol% H2,
respectively) were considered, along with pure hydrogen, to account for the
presence of methane in the primary phase of hydrogen storage in a depleted gas
reservoir. In the current paper, a comparison of the experimental results with
literature models is provided. At the experiment conditions, the impact of the
differences in the composition of the two analyzed brines as well as the impact of
the analyzed range of temperatures was not significant. Conversely, a non-
negligible variation in terms of the slope of the solubility curve was observed
as a function of the gasmixture composition: the curve increasedmore steeply as
the percentage of hydrogen reduced.
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1 Introduction

Fossil fuels are the main contributor to Green House Gas (GHG) emissions in different
industrial sectors (Kumar et al., 2020). The global transition towards a sustainable future has
necessitated the exploration of alternative energy sources and storage solutions. There are
several types of hydrogen, depending on their production sources (Incer-Valverde
et al., 2023):

• Green hydrogen by electrolysis through renewables
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• Grey hydrogen by Steam Methane Reforming (SMR) without
the use of Carbon Capture Utilization and Storage (CCUS)

• Blue hydrogen by SMR or coal gasification, including Carbon
Capture Utilization and Storage.

• Turquoise hydrogen is produced from the pyrolysis
of methane.

Currently, the typical way of producing blue and grey is through
natural gas reforming (i.e., steam methane reforming; SMR) (Amid
et al., 2016).

In recent years, energy demand has been increasing
continuously. Hydrogen storage in underground reservoirs has
gained considerable attention as an alternative and viable
solution to minimize the gap between energy supply and demand
(Chapman et al., 2019; Benetatos et al., 2021; Zivar et al., 2021;
Muhammed et al., 2022; Raza et al., 2022; Ugarte and Salehi, 2022;
Buscheck et al., 2024; Salina Borello et al., 2024). Underground
reservoirs offer several advantages, including large storage capacities
(Carden and Paterson, 1979) and long-term stability. Moreover, the
geological formations that have historically served as repositories for
oil, gas, and other hydrocarbons may also prove suitable for
hydrogen storage (Tarkowski et al., 2021). Hydrogen produced
from electrolysis can be stored in saline aquifers, porous
formations, and oil and gas-depleted reservoirs (Bai et al., 2014;
Pfeiffer and Bauer, 2015; Amid et al., 2016; Sainz Garcia et al., 2017;
Ansari et al., 2022). Moreover, hydrogen has high reactivity and
could participate in microbial processes (Reitenbach et al., 2015;
Hagemann et al., 2016; Heinemann et al., 2021). Possible hydrogen
losses due to dissolution into the aquifer are of great importance and
therefore must be estimated accurately. Due to its extreme
flammability and corrosion ability, experimental measurements of
hydrogen solubility in brine are limited. Therefore, modelling is used
to estimate hydrogen solubility in pure and saline water. Modeling
consists of using an Equation of state (EoS) based on experimental
data. (Li et al., 2018; Lopez-Lazaro et al., 2019; Rahbari et al., 2019;
Chabab et al., 2020).

Few past studies have performed experiments to estimate the H2

solubility in water above 100 bar (Ipatiew et al., 1932; Wiebe and
Gaddy, 1934; Pray et al., 1952; Zoss, 1952; Schroder, 1973; Gillespie
and Wilson, 1980; Choudhary et al., 1982; Dohrn and Brunner,
1986; Kling and Maurer, 1991; Chabab et al., 2020). All the above-
mentioned studies focus on pure hydrogen.

The scope of this study is the quantitative assessment of
hydrogen that can dissolve in reservoir water during
underground storage in depleted gas reservoirs, currently used as
methane storage fields. This information is relevant for the
assessment of possible storage losses in formation water and for
the quantification of hydrogen available for participation in the
microbial process. For this reason, the current work aims to provide
an experimental estimation of the volume of hydrogen that might
dissolve in the formation water at reservoir conditions (pressure,
temperature, and salinity). Assuming that the hydrogen storage site
has been used for the storage of methane, the presence of a mixture
of methane and hydrogen is expected in the primary phase of
hydrogen storage.

In this study, a PVT cell usually used in the oil and gas industry,
is used to estimate the solubility of hydrogen and its mixtures with
methane in saline water. The experiments were carried out at 45, 50,

and 55°C and from 1 bar up to 500 bar, mimicking a significant
range of possible reservoir conditions. In addition, two brine
samples representative of two different reservoirs were
considered. Two mixtures of methane and hydrogen (10 mol%
H2 and 50 mol% H2, respectively) are considered along with
pure hydrogen.

A comparison with available literature experimental data of pure
hydrogen solubility in fresh water at 50°C (Wiebe and Gaddy, 1934;
Kling and Maurer, 1991; Torin-Ollarves and Trusler, 2021) is
provided along with the comparison with a literature correlation
developed for pure hydrogen (Torin-Ollarves and Trusler, 2021)
that allows accounting for brine salinity and different temperatures.
The model by Torin-Ollarves and Trusler (2021) was constructed
according to several experimental results from the literature (Wiebe
et al., 1932; Wiebe and Gaddy, 1934; Crozier and Yamamoto, 1974;
Gordon et al., 1977; Choudhary et al., 1982; Kling and Maurer, 1991;
Chabab et al., 2020; Torin-Ollarves and Trusler, 2021).

2 Materials and methods

2.1 Background insights

Solubility of gas mixtures in brine is defined as the upper limit
concentration of solute in a given amount of solvent at equilibrium
(Petrucci et al., 2017). The solution gas-water ratio (Rsw) is
calculated as the volume of dissolved gas at a given reservoir
temperature and pressure when brought to standard conditions
(15°C and 1 bar), divided by the volume of brine at stock tank
conditions:

Rsw � Vg p,T( ) |sc
Vw|sc (1)

Eq. 1 is dimensionless; it can be expressed in molality form (mol
of H2 per kg of water) dividing by factor α � ρw sc R

Tsc
psc

where water
density at standard conditions (ρw sc), gas constant (R), standard
temperature (Tsc) and standard pressure (psc) are all expressed in
the SI system.

The amount of gas dissolved in the water is primarily a function
of pressure and temperature. The concentration of a real gas in an
aqueous solution can be calculated from Henry’s law (Henry, 1803)
corrected for non-ideal behavior as follows (De Lucia et al., 2015):

Rsw � φg

KH
pp − psat( ) exp − vg

RT
pp − psat( )}{ (2)

where Rsw represents the concentration of the dissolved gas, pp is gas
partial pressure of the specific gas above the solution, psat is the
vapor pressure, vg the average apparent molar volume of gas in the
pressure range [psat, pp], KH the Henry’s constant, characteristic of
the particular gas, and φg the fugacity coefficient. The solubility of
gases increases as the equilibrium pressure of the gas above a
solution increases. Conversely, adding heat to the solution
provides thermal energy that overcomes the attractive forces
between the gas and the solvent molecules, thereby decreasing
the solubility of the gas.

As the pressure is decreased from the initial reservoir pressure
(pr) to bubble point pressure (pb), the dissolved gas-water ratio
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(formation water is represented by brine) is constant, equal to the
maximum concentration. As the pressure falls below bubble point
pressure, free gas will continuously evolve. This leaves less gas
dissolved in the brine, therefore the solution gas brine ratio
steadily declines below the bubble point pressure. This decay is
linear, according to Henry’s law (Eq. 2).

Salinity of the liquid solvent may also have an effect: the
solubility of gases in water is usually decreased by the addition of
electrolytes, as described by the Sechenov equation (Hermann
et al., 1995)

log Rsw0/Rsw( ) � KSCs (3)
where Rsw is the concentration of gas in a salty water, Rsw0 is the
concentration in pure water, Cs is the salt concentration and KS is
the Sechenov constant, which depends on the salt, the gas, and the
temperature.

Thus, Eq. 2 can be extended as (Torin-Ollarves and
Trusler, 2021):

Rsw � φg

KH
p − psat( ) exp − vg

RT
p − psat( )} exp −KSCs( ){ (4)

According to Hala et al. (1967) and Prausnitz et al., 1986), the
fugacity coefficient of a pure gas can be related to the compressibility
factor (Z) as follows:

φg � exp ∫p

0

Z − 1
p

dp( ) (5)

We used the Spycher and Reed (1988) EoS for pure hydrogen,
valid in the range 25°C–600°C and up to 3,000 bar, which proved to
be very accurate (De Lucia et al., 2015):

Z � 1 + as
T2 +

bs
T
+ cs( )p + ds

T2 +
es
T
+ f s( )p2 (6)

where p is pressure in bar, T is the temperature in K and parameters
are reported in Table 1.

The vapor pressure in ordinary water substance at saturation can
be estimated in function of temperature from (Wagner and
Pruess, 1993):

psat � pc exp
Tc

T
a1τ + a2τ

1.5 + a3τ
3 + a4τ

3.5 + a5τ
4 + a6τ

7.5( )[ ]
(7)

where τ � 1 − T/Tc, T is in K, Tc � 647.096K, pc � 220.64 bar;
parameters in Eq. 7 are reported in Table 2.

For a solution of pure hydrogen in pure water, Henry’s constant
(KH) in MPa kg/mol, Sechenov constant (KS) in kg/mol and the
average partial molar volume of the gaseous solute (vg) in cm3/mol
can be obtained by empirical correlations with temperature (Torín-
Ollarves and Trusler, 2012):

KH � exp b0 + b1θ + b2θ
2 + b3θ

3( ) (8)
KS � c0 + c1θ + c2θ

2 + c3θ
3 (9)

vg � d0 + d1θ + d2θ
2 (10)

where θ � T
273.15 − 1, T is the temperature in K; parameters in Eqs

8−10 are reported in Table 3. The correlations of Eqs 8−10 provided
an estimate of Rs curves in good agreement with experimental data
reported in the literature by several authors (Wiebe et al., 1932;
Wiebe and Gaddy, 1934; Crozier and Yamamoto, 1974; Gordon
et al., 1977; Kling and Maurer, 1991, Choudhary et al., 1982).

In this work, the bubble point and the curve of Rsw vs p for a
given temperature (Tr) is obtained by an isothermal expansion
experiment: starting from a solution of liquid and gas at a given
pressure (p) and temperature (Tr), the pressure is gradually reduced
by steps and the volume of released gas is measured, after being
brought to standard conditions (psc, Tsc). More details are given in
Section 4. Eqs 4–10 were implemented as a validation for our
experiments for pure hydrogen.

2.2 Maximum dissolution assessment

The expansion experiment is similar to the conventional
Differential Liberation Expansion (DLE) test typically performed
on undersaturated oil samples to estimate PVT properties including
the solution gas-oil ratio (Rs) at reservoir temperature and at
different pressures representative of a depletion process starting
from initial reservoir pressure. However, in the reservoir oil case the
solution gas-oil ratio is measured directly from the experiment,
while in our problem, the maximum amount of gas that can be
dissolved in water had to be evaluated through preliminary
dissolution experiments with different brine to H2 ratios.

Having a liquid volume fixed at 100 mlsc (the maximum
available volume in the cell is 300 mL), an injection pressure
greater than 1 atm was needed to manage Rsw values greater
than 2. A summary is reported in Table 4, suggesting a volume
ratio of 3.65 H2 in brine for complete dissolution at the pressure and
temperature of interest, representative of a storage reservoir.

2.3 Experimental SetUp

The experimental set-up is composed by (Figure 1):

TABLE 1 Parameters in Eq. 6.

Parameter Value

as −12.5908

bs 0.25978

cs −7.24730e-5

ds 0.47194e-2

es −2.69962e-5

fs 2.15622e-8

TABLE 2 Parameters in Eq. 7.

Parameter Value Parameter Value

a1 −7.85952 a4 22.68074

a2 1.844083 a5 −15.9619

a3 −11.7866 a6 1.801225

Frontiers in Energy Research frontiersin.org03

Tawil et al. 10.3389/fenrg.2024.1356491

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1356491


TABLE 3 Parameters in Eqs 8–10.

Parameter Value Parameter Value Parameter Value

b0 4.6449 c0 0.2898 d0 19.615

b1 3.3252 c1 −1.4330 d1 −7.64

b2 10.901 c2 3.9584 d2 33.425

b3 8.0526 c3 −3.1666

TABLE 4 Summary of the series of solubility experiments of different volume ratios at 50°C.

Test# Brine to H2 volume ratio [ml/mL] Pi H2 [bar] VH2 tot [mlsc] Rsw [-] Bubble point range [bar]

1 280/20 ~2 50 0.106 5–10

2 250/50 ~9 ~450 1.85 150–100

3 150/50 ~8 ~400 2.39 160–140

4 100/50 ~8 ~360 3.65 180–210

5 50/50 ~8 ~400 No total dissolution No total dissolution

FIGURE 1
Schematic of the experimental setup.
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• PVT cell
• mass flow meter
• gasometer
• dry ice-cooling system

• volumetric pump

A volumetric pump was used in the calibration phase, before the
tests, to accurately measure the volume of liquid/gas entering the cell
and compare it with the one estimated using the PVT cell software.

The PVT cell (Figure 2A) is an instrument for the study of
thermodynamic properties and phase behavior of liquids and gases. It
is composed of a fluidmixermounted on the piston (depicted in red in
Figure 1), an accurate pressure transducer, and an electric heater for
temperature control. A digital camera system monitors the liquid/gas
interface through a sapphire window (depicted in blue in Figure 1), on
top of the cell visual head. The parts in contact with the fluids are
made of Hastelloy to be safely used with hydrogen. Specifications and
accuracy details of the instrument are listed in Table 5.

At the inlet, the flow of the injected gas is monitored using a
mass flow meter, specific for hydrogen and its mixtures.

At the outlet, the gas liberated at each pressure step is cooled
using a dry ice cooling system along the outlet line and it is then sent
to a gasometer (Figure 2B), where it expands and cools to room
temperature. The gasometer specifications are reported in Table 5.

2.4 Test procedure

Before running the tests, the PVT cell was calibrated within the
desired working pressure range (1 bar–500 bar) and temperature

FIGURE 2
(A) PVT cell; (B) gasometer.

TABLE 5 Instruments specifications and accuracy.

PVT cell Pressure range 1–700 bar

Temperature range 20°C–200°C

PVT cell volume 300 mL

Visual Volume 300 mL

Pressure Accuracy ±0.1 bar

Temperature Accuracy ±0.1°C

Liquid deposit 0.005 mL

Bubble/Dew point repeatability ±0.35 bar

Resisting corrosive abilities CO2 and H2S

Gasometer Volume 4000 mL

Pressure range Vacuum to 2 bar

Temperature Ambient

Volume accuracy ±0.1 mL

Pressure accuracy ±0.1 mbar

Temperature accuracy ±0.1°C

Mass flow Flow range 0–50 mL/min

Accuracy (incl. linearity) ±0.5% RD plus ±0.1% FS

Operating pressure Up to 200 bar

Operating Temperature −10 . . . +70°C

Pressure sensitivity 0.01% Rd/bar typical H2

Temperature sensitivity zero: <0.05% FS/°C; span: <0.05% Rd/°C
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range (20°C–100°C) to increase its accuracy on the volume
measurements.

The test procedure is the following:

1) Water injection: Fill the cell with 100 mL of brine
2) Gas injection:
a) Flush the connection tubes with the working gas to remove the

air and avoid any contact between the gas mixture and the air at
high pressure and temperature.

b) Set the inlet injection pressure to 8 bar.
c) Move the cell from 100 mL to 150 mL and simultaneously

record the flow injected into the cell with the Mass flow meter
to inject exactly 50 mL.

e) Verify the volume of the liquid (Vw|sc) and the gas (Vg|sc) at
ambient temperature and atmospheric pressure using the
PVT cell software.

3) Pressure and temperature setting:
f) Compress the cell at ambient temperature to reach the

complete dissolution (300–500 bar depending on the gas
mixture and working temperature). A maximum pressure
ramp limit equal to 1 bar/s is imposed to avoid
sapphire rupture.

g) Increase the temperature to the desired value (T = 45C°, 50°C,
or 55°C). The temperature is not changed during the
compression to avoid exceeding the maximum pressure
ramp limit.

4) Mixing: start the stirring. An hour or two is needed to solubilize
the gas into the brine solution, depending on the type of gas
mixture. This process is associated with a pressure drop, which
is compensated by piston movement to maintain the
pressure constant.

5) Solubility test: expand the solution in pressure steps, until the
cumulative released gas volume matches the injected value or
the atmospheric pressure is reached:

h) Expansion: induce a pressure drop by expansion (30 bar, less
near the bubble point)

i) Gas separation: If one or more bubbles are observable during the
expansion step (i.e., the bubble point is reached), turn on the
stirring to liberate the dissolved gas. The gas leaving the brine
solution causes a slight pressure increase. The stirring is kept on
until the pressure is stabilized.

j) Gas measurement: measure the released gas volume with
the gasometer.

i) To avoid a high pressure drop into the cell when sending the
gas bubble to the gasometer, the pressure in the cell is
maintained by rapid compression. In all the experiments,
the pressure drop during the release of the gas was
around 2 bar.

ii) Gas expansion is allowed within the tubes between the cell and
the gasometer so that the gas entering the gasometer is at
atmospheric pressure.

iii) The gas leaving the cell is cooled along the line between the
PVT cell and the gasometer; possible aqueous vapor in the gas
is condensed using dry ice to avoid the uncertainty of the
measurement in the gasometer and to prevent its corrosion.

2.4.1 Samples and testing conditions
The presence of a mixture of methane and hydrogen is expected

in the primary phase of hydrogen storage in a depleted gas reservoir.
Thus, mixtures of methane and hydrogen were considered along
with pure hydrogen. Solubility tests were carried out for four
different gas samples:

• 10 mol% H2 and 90 mol% CH4.
• 50 mol% H2 and 50 mol% CH4.
• pure hydrogen (100 mol% H2).

Three temperature values were considered, representative of the
reservoir conditions: 45°C, 50°C, and 55°C. A working pressure range
of 1–500 bar was adopted.

The solubility tests were conducted each with two synthetic
brine solutions, representative of real reservoir brine in place.
Composition and pH details are summarized in Table 6. The
complete set of tests is summarized in Table 7.

TABLE 6 Concentration of brine 1 and brine 2.

ID NaCl [g/L] CaCl2 [g/L] pH

Brine 1 B1 14.99 13.56 ~7

Brine 2 B2 22.49 1.2 ~7

TABLE 7 Summary of the performed solubility tests.

Test ID Gas mixture Brine Temperature [°C]

B1_H100_T45 100 mol% H2 Brine 1 45

B1_H100_T50 50

B1_H100_T55 55

B2_H100_T45 Brine 2 45

B2_H100_T50 50

B2_H100_T55 55

B1_H50_T45 50 mol%H2 50 mol%CH4 Brine 1 45

B1_H50_T50 50

B1_H50_T55 55

B2_H50_T45 Brine 2 45

B2_H50_T50 50

B2_H50_T55 55

B1_H10_T45 10 mol%H2 90 mol%CH4 Brine 1 45

B1_H10_T50 50

B1_H10_T55 55

B2_H10_T45 Brine 2 45

B2_H10_T50 50

B2_H10_T55 55
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TABLE 8 Test results.

Composition Brine 1 Brine 2

Temperature 45°C 50°C 55°C 45°C 50°C 55°C

Pressure [bar] Rsw [-]

100 mol% H2 300 4.039802 3.853755 3.839061 4.165003 4.085745 4.080864

270 4.039802 3.853755 3.839061 4.165003 4.085745 4.080864

240 4.039802 3.853755 3.839061 4.165003 4.085745 4.080864

210 4.039802 3.853755 3.839061 4.165003 4.085745 4.080864

185 3.525935 3.409016 3.182728 3.551041 3.202209 3.394537

150 2.917452 2.787948 2.752682 3.004697 2.743356 2.851723

120 2.300174 2.334392 2.434312 2.322345 2.186874 2.383107

90 1.63757 1.7721 2.062063 1.752114 1.728021 1.893989

60 0.995454 1.286708 1.591854 1.119272 1.278931 1.396085

30 0.550882 0.879683 0.969806 0.466203 0.673635 0.790789

15 0.154634 0.703354 0.695518 0.203241 0.400276 0.439327

1 0 0 0 0 0 0

50 mol% H2 50 mol% CH4 350 4.104058 4.519523 4.085398 4.170221 4.440883 4.196915

325 4.104058 4.519523 4.085398 4.170221 4.440883 4.196915

300 4.104058 4.519523 4.085398 4.170221 4.440883 4.196915

270 4.104058 4.519523 4.085398 4.170221 4.440883 4.196915

240 4.104058 4.519523 4.085398 4.170221 4.440883 4.196915

210 4.104058 4.519523 4.085398 4.170221 4.440883 4.196915

185 3.756702 3.57378 3.657173 3.457022 3.919285 3.681028

150 3.31662 3.113557 2.894106 3.119395 3.436441 3.039175

120 2.738957 2.439278 2.376765 2.464283 2.733922 2.49507

90 2.072753 1.894405 1.847011 1.88127 2.057593 1.773119

60 1.507156 1.353522 1.236771 1.410831 1.441765 1.055823

30 0.767686 0.921905 0.582312 0.768659 0.881798 0.502311

15 0.486493 0.488439 0.234282 0.437844 0.478977 0.196464

1 0 0 0 0 0 0

10 mol% H2 90 mol% CH4 500 4.336515 4.505496 4.185322 4.392972 4.459751 4.207239

400 4.336515 4.505496 4.185322 4.392972 4.459751 4.207239

300 4.336515 4.505496 4.185322 4.392972 4.459751 4.207239

270 4.336515 4.505496 4.185322 4.392972 4.459751 4.207239

240 4.336515 4.505496 4.185322 4.392972 4.459751 4.207239

210 4.094738 4.284544 3.973553 4.219184 4.238208 4.004364

180 3.780427 3.867618 3.551941 3.98457 3.800902 3.579293

150 3.301709 3.360389 3.048316 3.620581 3.29906 3.067275

120 2.791365 2.698494 2.693315 3.091687 2.626726 2.737072

90 2.181797 2.00778 2.16293 2.448478 1.859032 2.121299

60 1.511591 1.436187 1.631583 1.670295 1.350447 1.397035

30 0.784325 0.682069 0.912531 0.846733 0.703157 0.822126

1 0 0 0 0 0 0
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3 Results

In the experiments carried out with pure hydrogen all the gas
injected was completely dissolved at 300 bar during compression and
stirring. Complete dissolution was not achievable without stirring
(several minutes of stirring were required). During decompression,
the first bubble of the gas appeared at 210 bar. The first step at which
the gas was released from the PVT cell was around 185 bar (±2 bar
due to the pressure drop created by the opening of the valves).

In the experiments carried with a gas mixture of 50 mol%methane
and 50 mol% hydrogen, compressing to 300 bar and stirring was not
enough to dissolve the gas into the brine. For the experiments at 45°C
and 50°C, compressing to 350 bar and stirring for a longer amount of
time was capable of dissolving the gas in the brines. For 55°C, a higher
pressure (up to 500 bar) and higher stirring velocity were needed to
dissolve the gas into B1 and B2. During decompression, the first bubble
of the gas appeared at 210 bar. The first step at which the gas was
released from the PVT cell was around 195 bar.

In the experiments with a gas mixture of 90 mol% methane and
10 mol% hydrogen, for all the temperatures, a pressure of 500 bar was

needed, accompanied by stirring to completely dissolve the gas
mixture. During the decompression phase, the first bubble of gas
appeared at 220 bar for 45°C while at 230 for 50°C and 55°C. The first
step at which the gas was released from the PVT cell was 10 bar below
the bubble point for each experiment.

Experimental data are summarized in Table 8. The obtained
isothermal solubility curves as a function of pressure are
reported in Figure 3 and Figure 4 in the form of volume
ratio and molar concentration, respectively. A comparison in
terms of the slope of the linear part of the Rs curve is given in the
form of boxplots in Figure 5. A comparison with literature
results for the pure hydrogen case (Wiebe and Gaddy, 1934;
Kling and Maurer, 1991; Torin-Ollarves and Trusler, 2021) is
given in Figure 6.

In all cases maximum Rs value is about 4, as it is expected
consequently to the injected gas volumes (Section 2.2); small
differences observed in the reached maximum Rs values are
probably related to uncertainties on the initial gas volume at
standard conditions. The 50 mL of gas at injection conditions
corresponds to slightly different volumes at standard conditions

FIGURE 3
Experimentally obtained isothermal solubility curves, expressed in terms of solution gaswater volume ratio (Rsw) as a function of pressure: sensitivity
to (A) gas mixture, (B) brine salinity (see Table 6), and (C) temperature.

FIGURE 4
Experimentally obtained isothermal solubility curves, expressed in terms of the molar concentration of total gas as a function of pressure: sensitivity
to (A) gas mixture, (B) brine salinity (see Table 6), and (C) temperature.
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because the ambient temperature can vary, and the initial pressure
setting is subject to a little uncertainty.

4 Discussion

In all the cases, very similar curves were obtained (Figures 3–5).
Methane-hydrogen mixtures dissolve more easily in formation water
(i.e., higher slopes were observed) when a low percentage of hydrogen is
considered. The result is coherent with the technical literature since
puremethane is known to bemore soluble than pure hydrogen in water
(Kaye and Laby, 1986). At the experiment conditions, the impact of the
chemical composition of the two analyzed brines was not significant
and the effect of temperature was extremely limited. As a consequence,
the possible temperature changes over the years during storage
operations should not have a significant effect on solubility phenomena.

The obtained values are comparable with literature experimental
values for pure hydrogen in pure water (Wiebe and Gaddy, 1934;
Kling and Maurer, 1991; Torin-Ollarves and Trusler, 2021) and
correlations for pure hydrogen at the desired salinity (Torin-
Ollarves and Trusler, 2021) (Figure 6). Some discrepancies can

FIGURE 5
Sensitivity of the slope of the experimentally obtained isothermal solubility curves to brine salinity, temperature, and gas mixture.

FIGURE 6
Experimental data of solubility curves for pure hydrogen in brine
(salinity as in Table 6) at 50°C compared with literature values: model by
Torin-Ollarves and Trusler 2021 at the same salinity (dashed lines);
experimental data in pure water by Wiebe and Gaddy 1934 (squares),
KlingandMaurer 1991 (crosses), andTorin-OllarvesandTrusler2021 (asterisk).

FIGURE 7
Scenario of pure H2 in brine 1 at 45°C: (A) Rsw and Bg; (B) percentage of gas in solution.
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be recognized, but the associated uncertainty does not have an
impact on the results for UHS purposes.

The obtained Rsw curves can be used to estimate the quantity of
gas that dissolves in formation water during a storage cycle (a
simplified analytical calculation is provided in the Appendix),
thus allowing an estimate of the quantity of hydrogen available
for possible participation in microbial processes. It is pointed out
that in the absence of microbial activities, the gas quantity that
dissolves as the pressure increases during the injection period is not
lost. It is released as the pressure is gradually reduced during the
withdrawal phase. Furthermore, it has to be pointed out that the
volume of gas dissolving in the formation water is extremely limited.

The formation water in an underground gas reservoir is saturated
with natural gases since the fluids are in equilibrium at the reservoir
thermodynamic conditions. The amount of gas dissolved into the
formation water is described, in typical reservoir simulation
numerical models, adopting the Rsw vs. pressure curve. In
conventional reservoir engineering and in conventional UGS, the
composition of the gas is almost constant in time. In UHS, the
composition of the reservoir fluid changes over time and should be
characterized by an increasing percentage of hydrogen over the
injection/withdrawal cycle and over the years. Similarly, the relative
amount of hydrogen dissolved in the formation water will increase. It
has to be pointed out that the process of solubility is reversible, i.e. the
amount of gas dissolved during injection periods (when pressure
increases) is not lost but liberates during the withdrawal periods.

The obtained experimental solubility results might represent a
slight overestimation of dissolved gas at reservoir conditions due to
the assisted stirring during compression. It is also important to point
out that within the reservoir, the direct contact area between the gas
and the brine is smaller compared to the PVT cell.
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Appendix A An estimate of gas volume
dissolving within a storage cycle

The obtained Rsw curves can be used to estimate the quantity of
gas that dissolves in a storage cycle, as the storage pressure increases
from a starting pressure p0 (e.g. empty storage), to the pressure pn

(e.g. full storage).
The volume of gas at a pressure p, brought to standard

conditions (15°C and 1 bar), is the sum of the gas in the pore
volume and the gas dissolved in water at that pressure:

Vg p,T( ) |sc � SgVp

Bg p( ) + Rsw p( ) SwVp

Bw
(A1)

where, considering a biphasic system of gas and water, Sg is
the saturation of the gas, Sw is the saturation of water, Bw is the
formation volume factor of water, Bg(p) is the formation
volume factor of gas at pressure p, Vp is the pore volume,
Rsw(p) represents the volume of dissolved gas at a given
reservoir temperature and pressure p when brought to
standard conditions divided by the volume of brine at stock
tank conditions.

The volume of injected gas from a starting pressure po to pn can
be expressed as:

ΔVgsc � Vgsc pn( ) − Vgsc po( )
� SgVp

1
Bg pn( ) −

1
Bg po( )[ ]

+ 1 − Sg( )Vp

Bw
Rsw pn( ) − Rsw po( )[ ] (A2)

Thus, the volume ratio of injected gas that dissolves is:

gs �
1

Sg 1
Bg pn( )− 1

Bg po( )[ ]
1−Sg( )
Bw

Rs pn( )−Rs po( )[ ]
+ 1

(A3)

By way of example, the scenario of pure H2 in brine B1 at 45°C is
considered; p0 is fixed to 60 bars and pn to 210 bar; Sg =0.8 and Bg =
1 are assumed. Bg curves vs. p at different temperatures were
obtained by previous Constant Mass Expansion (CME) tests
within the PVT cell. In Figure 7A, the orange curve corresponds
to Rsw vs pressure while the blue curve corresponds to the Bg versus
pressure: full dot values are experiment data, while empty dots
represent the values interpolated to the pressure value of Rsw curve.
Figure 7B shows the percentage of H2 entering brine B1 at 45°C
versus pressure (orange) calculated using the Eq A3, compared with
Rsw (orange).
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Nomenclature

Bg formation volume factor of gas [−]

Bw formation volume factor of water [−]

Cs salt concentration [mol/kg]

gs volume ratio of injected gas that dissolves [−]

KH Henry’s constant [Pa m3/mol]

KS Sechenov constant [kg/mol]

p pressure [Pa]

pc water critical pressure (220.64e5 Pa)

pp gas partial pressure above the solution [Pa]

psat vapor pressure [Pa]

psc standard pressure (1e5 Pa)

ρw sc water density at standard conditions [kg/m3]

R gas constant (8.314 J K−1 mol-1)

Rsw solution gas-water ratio [−]

Rsw0 solution gas-water ratio in pure water [−]

Sg gas saturation [−]

Sw water saturation [−]

T temperature [K]

Tc water critical temperature (647.096 K)

Tsc standard temperature (288.15 K)

vg average gas apparent molar volume [m3/mol]

Vg(p,T) |sc volume of dissolved gas at a given reservoir temperature and pressure when brought to standard conditions [m3]

Vw |sc volume of brine at standard conditions [m3]

Z compressibility factor [−]

φg fugacity coefficient [−]
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