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Abstract— The aim of this work is to utilize weather forecasts with a lead time from 6 h to 30 h as input 
data of a photovoltaic (PV) model to predict the AC power production. In order to always use the last 

forecasts, the inputs are updated every time there are new data, e.g., every 6 h. The ability of the model 
is tested on a residential PV plant for which global irradiance and electrical power are measured. The 

typical indicators of forecast accuracy in the PV applications are used: mean bias error and mean 
absolute error for both irradiance and power. However, they are normalized with respect to the standard 

irradiance and the PV rated power. Their values are generally adequate in clear sky and overcast 
conditions, remaining around the 10% limit. 

Keywords—Photovoltaic generation, weather forecast, prediction, PV system, measurements. 

I. INTRODUCTION 
Regarding the contribution of photovoltaic (PV) energy towards energy transition and 

decarbonization, in Italy the potential is noticeable with respect to many other European countries. 
Renewable sources have also disadvantages, the main one being undoubtedly the intermittency 
of the resource during the day (besides the obvious day-night cycle) with the consequent difficulty 
to predict the PV production profile in case of clouds passage on the skye [1].  

A. Weather Forecast Data Classification 
The main way in which predictions for PV generation can be classified is according to time 

horizon of weather data forecasts. Very short-term forecasts (intra-day) have a time base of 5÷60 
min, and the applications are adjustments/dispatching, market clearing and contingency analysis. 
Short range (or short-term, from 1 h to 6 h in advance) forecasts are used for resource scheduling 
and congestion management. Finally, medium-range forecasts have a time base of days, with 
applications to reserve scheduling, congestion management and energy trading [2]. 

B. Model Typologies for PV Predictions 
An important distinction among prediction models is made according to the type of model used. 

In particular, the models can be physical, statistical or hybrid. Physical models use exogenous 
data (temperature, wind speed and direction, irradiance, cloud cover, …), which may come from 
local measurements, satellites images, numerical weather prediction (NWP), values from other 
meteorological databases and neighbouring plants. Then, a PV performance model with its 
analytical equations is applied to generate PV power predictions. For these reasons, this 
approach is also referred as “white box” method [2, 3]. On the other side, statistical models rely 
primarily on endogenous past data to train models, with little or no reliance upon theoretical PV 
models. The statistical models are based on data to extract patterns from past records to predict 
future PV plant behaviour. The power output can be directly calculated without the need for 
meteorological predictions, with the sometimes called "direct method." Unlike physical models, 
statistical techniques result in a "black box" model. Therefore, high-quality historical data are 
necessary for reaching precise predictions. In contrast to the parametric approach, a large 
historical dataset is usually required, assuming that the PV plant has already been operational 
for a while. This approach has the advantage of correcting systematic errors related to input 
measurement. Selecting an appropriate training dataset is critical for achieving high accuracy in 



the resulting model. Finally, to increase the accuracy of the forecasts, hybrid models are used. 
They consist of the combination of the above-described methods. The hybrid approach can be 
divided into two subcategories: two or more statistical techniques (hybrid-statistical) can be 
combined, or a statistical technique is incorporated into a PV performance model (hybrid-
physical) [4]. 

Another classification can be made on the spatial basis. Forecasts can be made for a single 
PV system or for an ensemble of them. Normally, grid operators prefer regional forecasts since 
they are more useful to keep the balance between demand and supply in the electric system. 
Variability in power output is reduced when an ensemble of plants is considered, since the 
forecast error increases with the variability of the signal to forecast. 

For example, the approach used in [4] to predict regional PV power output is based on 
irradiance forecasts provided by the European Centre for Medium-Range Weather Forecasts 
(ECMWF) [5]. They evaluated the forecast error for the single site, an ensemble covering the 
area of 220x220 km and the whole area of Germany. A temporal averaging procedure was then 
applied. They tried different approaches; the best results were obtained combining the forecast 
data with a clear sky model, then correcting the systematic deviations with a bias correction. The 
evaluation of the PV power prediction scheme resulted in a root mean square error (RMSE) of 
0.11 kW/kWpeak for single systems. For the ensemble power prediction for an area of 220 km x 
220 km, an RMSE of 0.06 kW/kWpeak was found, and for a larger ensemble covering the area of 
Germany the RMSE was 0.05 kW/kWpeak [4]. 

In the papers [6] and [7], the prediction of alternating current (AC) power for PV plants (with 
rated power of 1 MW) in Southern Italy (latitude of 40° North) was performed thanks to weather 
forecasts based on Meteosat images [8] from 1 to 3 days ahead. The weather forecasts were 
compared with the measurements (1 min profiles) provided by two meteorological stations in the 
neighbourhood of the PV systems. The papers confirmed that the 1-day ahead forecast of solar 
irradiance was the best, providing normalized root mean square errors lower than 120 W/m2, and 
that the improvement with respect to 2 or 3 days ahead forecasts was more relevant in days with 
variable weather rather than clear sky ones. A PV conversion model permits to evaluate the AC 
production: the errors of predicted AC power, exceeded by 5% of the number of quarters of hour 
in one year, were lower than ±13% of the rated PV power for the two systems analysed. 

In this paper, the model used is deterministic, i.e., it uses as inputs all the meteorological data 
of the analysed location and the physical parameters of the PV system. The output is an hourly 
power profile that is compared with the measured electrical power. 

This paper is organized as follows. Section II contains the description of the physical model 
used to calculate the photovoltaic production profiles. In Section III, the methodology to obtain 
the profiles of measured irradiance and electrical load profiles, as well as the forecast 
meteorological data, are described. Section IV shows the results on two time scales – on a daily 
basis to compare the predicted and actual PV profiles; on the whole simulation period to estimate 
the global performance of the model. Finally, the conclusions summarise the main findings of the 
paper. 

II. MODELLING OF PV POWER GENERATION 
The irradiance G and air temperature Ta profiles (mean hourly data) are the inputs used in this 

paper for calculating the output power of a PV generator. In particular, the active power production 
at the AC side is proportional to the product of the power at the direct current (DC) side by the 
inverter efficiency ηconv. The DC/AC inverter losses can be modelled as a quadratic function of 
the output power [9], which considers the losses in the DC/AC conversion and transformation, 
including the consumption of the auxiliary circuits (control, measurement, and cooling). 

 𝑃𝑃𝐴𝐴𝐴𝐴 = 𝑃𝑃𝐷𝐷𝐴𝐴 ∙ 𝜂𝜂𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 =  (𝑃𝑃𝑆𝑆𝑆𝑆𝐴𝐴 ∙ 𝜂𝜂𝐺𝐺 ∙ 𝐶𝐶𝑆𝑆 ∙ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚) ∙  𝜂𝜂𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 (1) 
Regarding the calculation of the DC power output of the PV systems PDC (kW), it is proportional 

to the product of: 
• The nominal power of the plant PSTC (power calculated at Standard Test Conditions, STC [9]). 



• The parameter ηG= (G-G0)/GSTC is the ratio of the global irradiance G (reduced by a low 
threshold of irradiance G0 [10], and the standard irradiance of 1000 W/m2. 

• The thermal coefficient CT= 1+γT·(Tc-25°C) depends on the thermal coefficient of power (γT ≈-
0.5%/°C) and on the temperature Tc of the PV modules, calculated as a function of G and Ta, 
according to the NOCT formula [11, 12]. 

• The parameter ηmix, which includes different sources of losses, e.g., dirt, reflection, mismatch, 
joule losses in cables, and MPPT accuracy [13]. 
Irradiance data are available on the horizontal plane; therefore, they are calculated for the 

plane of PV array by means of the Equation (2) from the ASHRAE model. This model refers to 
clear sky conditions and calculates the global irradiance components as a function of the 
geographical coordinates and the time of the year [14]: 

𝐺𝐺 = 𝐵𝐵𝐵𝐵𝐵𝐵
cos(𝜃𝜃𝑧𝑧) ∙ cos(𝜃𝜃) + 𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝐹𝐹𝐴𝐴𝑆𝑆 + 𝜌𝜌 ∙ 𝐺𝐺𝐷𝐷𝐷𝐷 ∙ (1 − 𝐹𝐹𝐴𝐴𝑆𝑆) (2) 

In (2), BHI is the direct (or beam) horizontal irradiance, i.e., the irradiance component reaching 
the ground on a horizontal plane without being reflected nor absorbed by atmosphere. To 
calculate the contribution of direct component, the solar zenith angle 𝜃𝜃𝑧𝑧 is used; it is the angle 
between the Sun’s rays and the Zenith axis (perpendicular to the ground). On the other hand, θ 
is the sun rays’ angle of incidence, namely, the angle between the perpendicular to the plane of 
array and the Earth-Sun line. In the first term of G, the ratio of the two cosine functions is normally 
higher than unity, making the global irradiance on the tile angle higher than the horizontal 
irradiance. The second component is the diffuse horizontal irradiance (DHI), i.e., the component 
reaching the ground on a horizontal plane after being reflected by the atmosphere. In this case, 
the parameter used to calculate it is the Earth-sky view factor Fcs. The last contribution is the 
irradiance reflected by the surrounding ground (usually with negligible contribution). It depends 
on the albedo coefficient ρ. 

III. IRRADIANCE VS. POWER MEASUREMENTS AND PROCESSING OF WEATHER DATA FORECAST 
In the present work, measurements are performed to obtain irradiance profiles and electrical 

power production data in a case-study site. For the same site, weather data forecasts are 
downloaded, and applying the PV model, AC power is predicted. All these profiles are used for 
two purposes: first, to calculate the deviation between measured and forecast irradiance. 
Secondly, to calculate the deviation between the PV model output and the measured AC 
production. 

A. Irradiance and AC Power Measurement 
The case study presented in this work is related to a PV system installed in 2015 with nominal 

power PSTC=4.25 kW and polycrystalline silicon modules. The plant is installed 20 km far from 
Turin, in Northern Italy. It is equipped with irradiance sensors and monitored by an AC measuring 
system. The solar irradiance is measured by using a calibrated monocrystalline PV cell. The 
Spektron 210 cell provides a voltage proportional to the intensity of the solar irradiance, 
approximatively 75 mV at 1000 W/m², with a sensor accuracy of ±5% (annual mean). The PV cell 
is connected to a data acquisition system ICP DAS I-7017, with 16-bit resolution and sampling 
rate up to 10 Hz. Then, data are accessed by a PC with a monitoring software. It allows to 
remotely control the DAS and store data in a database. The AC power output is measured by an 
HT Solar300. It is a multifunction device for verification of single-phase and three-phase PV 
system efficiency and power quality analysis. The accuracy is 5% for AC power, while the 
timestep of data measurements is selected equal to 1 minute. The measurements refer to the 
period between December 2021 and February 2022. 

B. Weather Data Forecast Acquisition  
Meteorological variables that influence PV energy production (solar radiation, wind speed, 

temperature…) at the Earth’s surface can be accessed in three forms: measurements from 
ground-based instruments (e.g., irradiance sensors, anemometers, or thermometers), remote-
sensing retrievals (e.g., satellite image processing), and output of dynamical weather models. 



These three forms of information, though describing the same quantities, should be regarded as 
complementary, rather than substitutive [15]. In the present work, forecast weather data profiles 
are calculated by the ECMWF. They perform combination of the above-mentioned techniques 
and further data elaboration. 

NWP forecasts only stay online for a few days, therefore forecast data are automatically 
downloaded multiple times per day with an Application Programming Interface (API) made by the 
authors in MATLAB® and stored in a server, to avoid the loss of the forecasts. 

To compute predictions of PV generation, the main weather profiles are irradiance components 
(for the correction to the array plane described in Section II) and air temperature. Additionally, the 
other parameters useful to calculate the PV production using other models are the wind speed 
[m/s], and the cloud covers. Cloud covers are levels of coverage of the sky by the presence of 
clouds at different altitudes [15]. 

The spatial resolution can be up to 0.0012° (~90 m at European latitudes). The temporal 
resolution is 1 h, and the updates of the forecasts occur 4 times per day (at 00:00 AM, 06:00 AM, 
12:00 AM, and 06:00 PM), because the time required to perform all the forecast calculations is 6 
h. 
C. Weather Forecast Data Organization 

As written before, forecasts are updated every 6 h. For each query, the downloaded forecast 
data consist of an hourly data profile up to 72 h in the future. In this work, the first 30 values, i.e., 
one day plus six hours in advance, are analysed. The lead time of a forecast is the time difference 
(in hours) between the time of the query and the moment in which the NWP models started the 
simulation. For example, at 00:00 on 15th Feb, the forecasts are available and immediately 
downloaded. The data vector contains 30 values, in which the first one is the weather data at 
00:00 on 15th Feb and the last values refers to 06:00 AM on 16th Feb. Thus, the first value is that 
one corresponding to the moment of the download, but having a simulation time of 6 h to calculate 
weather forecasts, all this profile came from calculations started at 18:00 on 14th Feb. The profile 
with 30 values in advance is disassembled to create 5 different profiles with lead time of 6h, 12h 
,18h, 24h and 30h. For the sake of clarity, the example of the creation of the forecast profiles for 
the 15th Feb is shown in Fig.1 with only the most and the less recent forecast. 
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Fig. 1. Creation of forecast profiles: example referring to 15th Feb. 

To create the profile with always the last available forecast (lead time = +6h, bottom of Fig.1), 
data are downloaded at 6:00 AM on 15th Feb for the morning, and at 12:00 AM on 15th Feb for 
the afternoon. In the same way, to create the profile for the 15th Feb with always a lead time = 
+30h (top of Fig.1) data are downloaded at 6:00 AM on 14th Feb for the morning, and at 12:00 
AM on 14th Feb for the afternoon. The same procedure is repeated for lead times of 12h, 18h and 
24h. The software automatically performs this operation every 6h updating the five profiles. 

Regarding the lead time for each of the five profiles, it is not constant. Referring to the previous 
example, the data corresponding to 02:00 AM on 15th Feb is the result of the elaboration started 
at 18:00 on 14th Feb, thus the lead time is 8 h. In the same way the data corresponding to 05:00 
AM on 15th Feb is the result of the elaboration started at 18:00 on 14th Feb, thus the lead time is 
11 h. Table I summarises the lead time variation. The second column includes data downloaded 
6 h in advance, where the lead time can be between 6 and 11 h. As general rule, the lead time is 
equal to query time plus a maximum of five hours. 

TABLE I.  FORECAST LEAD TIME FOR THE FIVE TIME-HORIZON PROFILES. 

 Query Time 
Actual time  6 h 12 h 18 h 24 h 30 h 

06:00 

Le
ad

 ti
m

e 
(h

) 

+6 +12 +18 +24 +30 
07:00 +7 +13 +19 +25 +31 
08:00 +8 +14 +20 +26 +32 
09:00 +9 +15 +21 +27 +33 
10:00 +10 +16 +22 +28 +34 
11:00 +11 +17 +23 +29 +35 
12:00 +6 +12 +18 +24 +30 
13:00 +7 +13 +19 +25 +31 
14:00 +8 +14 +20 +26 +32 
15:00 +9 +15 +21 +27 +33 
16:00 +10 +16 +22 +28 +34 
17:00 +11 +17 +23 +29 +35 

IV. ANALYSIS OF WEATHER DATA FORECASTS AND PV PRODUCTION PREDICTIONS 
A. Comparison of Irradiance Profiles 
Fig. 2 shows the example of a day which was at first forecasted as a sunny day and it turned 

out to be very cloudy (or overcast). It displays the five forecast profiles (GHIfore) described in 
section II (in terms of hourly average power) and the actual measurements GHImeas (with 1-min 
time step). This is a day which perfectly represents the benefits of updating the forecast more 
times per day, because each update corresponds to a forecast value closer to the actual one. In 
the literature, a parameter commonly used to compare the profiles is the RMSE. Nevertheless, 
as indicated in [7], the mean bias of the error (MBE) works better for the accuracy evaluation of 
forecasts, because the AC power generated from PV plants is not a square function of irradiance 
and MBE represents the systematic part of the error. Considering N values: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐶𝐶
∑ �𝐺𝐺𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐺𝐺𝐷𝐷𝐷𝐷𝑚𝑚𝑓𝑓𝑚𝑚𝑚𝑚�𝑚𝑚
𝐶𝐶
𝑚𝑚=1  (3) 

Another parameter is the mean absolute error (MAE), which is more sensitive to high-value 
errors, useful in those applications insensitive to minor error. It is calculated as: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐶𝐶
∑ ��𝐺𝐺𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐺𝐺𝐷𝐷𝐷𝐷𝑚𝑚𝑓𝑓𝑚𝑚𝑚𝑚�𝑚𝑚�
𝐶𝐶
𝑚𝑚=1  (4) 

According to [8], the MBE index is reported per unit with respect to GSTC=1 kW/m2 in case of 
irradiance profiles, while MBE is divided by the nominal power of the PV generator PSTC. In case 
of power profiles, the equations are the same, but instead of irradiances GHI, power values are 



compared. The parameters for the profiles in Fig. 2 are shown in Table II, in which GHIavg is the 
average measured irradiance. 

 
Fig. 2. Improvement in GHI forecast for a cloudy day (15th Feb 2022). 

TABLE II.  COMPARISON BETWEEN FORECAST AND MEASURED IRRADIANCE PROFILES – EXAMPLE OF A CLOUDY DAY 
 GHIavg [kW/m2] MBE/GSTC [-] MAE/GSTC [-] 

Measured 0.040 - - 
t+6 0.088 0.051 0.052 

t+12 0.093 0.057 0.058 
t+18 0.111 0.076 0.077 
t+24 0.144 0.111 0.111 
t+30 0.159 0.128 0.128 

The day shown in Fig. 2 is used as an example, because it well represents the average 
situation for the cloudy days. The differences between MBE and MAE are negligible, because the 
predictions almost always overestimate the production. Regarding sunny days, there is no large 
variation of forecasts, with the result that the profiles are almost overlapped. Thus, for sake of 
clarity, in Fig. 3 only the most recent and the less recent forecasts are shown.  

 
Fig. 3. Progressive improvement in irradiance forecasts for an almost clear-sky day (10th Jan 2022). 
TABLE III.  COMPARISON BETWEEN FORECAST AND MEASURED IRRADIANCE PROFILES – EXAMPLE OF AN ALMOST CLEAR-

SKY DAY 
 GHImeas [kWh/m2] MBE/GSTC [-] MAE/GSTC [-] 

Measured 0.165 - - 
t+6 0.203 0.042 0.044 

t+12 0.207 0.043 0.045 
t+18 0.207 0.044 0.046 
t+24 0.208 0.046 0.047 
t+30 0.208 0.048 0.049 

As shown in Table III, in this day (that well represents all the sunny days in the period under 
analysis), the indicators are always lower than 5%. 

As in the previous case, also MBE indicators are always positive, because the predictions 
overestimate the production. 
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B. Comparison of PV production profiles 
Fig. 4 shows the comparison between the less recent prediction Pfore(+30h), the most recent 

prediction Pfore(+6h), and measurements (Pmeas) of AC production from the PV plant in a cloudy 
day in February. The AC power predictions are obtained by using the PV model with weather 
data forecasts as inputs. In the graph, predicted and measured AC profiles are hourly average 
powers (AC power measurements with 1-min step are averaged to obtain hourly values). In this 
case, there is a remarkable improvement in the last prediction compared to the initial prediction 
that led to an important energy overestimation. In fact, MBE/PSTC decreases from 12% to 3%, while 
MAE/PSTC decreases from 19% to 11%. Table IV summarizes the comparison of the plotted 
profiles on a daily basis, where Pavg is the average measured power. 

 
Fig. 4. Progressive improvement in the AC power predictions for a cloudy day (6th Feb 2022). 

TABLE IV.  COMPARISON BETWEEN PREDICTION AND MEASUREMENTS OF PV POWER PRODUCTION – EXAMPLE OF A 
CLOUDY DAY 

 Pavg [kW] MBE/PSTC [-] MAE/PSTC [-] 
Measured 0.343 - - 

t+6 0.460 0.032 0.110 
t+30 0.802 0.125 0.192 

Fig. 5 shows an example of comparison between actual PV production and predicted profiles 
in case of a clear sky day. The prediction profiles are accurate also 30 h in advance and the 
related profile is overlapped with the most recent profile (lead time of +6 h). In both cases, 
MBE/PSTC is negligible and MAE/PSTC is less than 3%. Table V summarizes the comparison of the 
plotted profiles on a daily basis. 

 
Fig. 5. Example of progressive improvement in AC power predictions for a clear sky day (15th Jan 2022). 

TABLE V.  COMPARISON BETWEEN PREDICTION AND MEASUREMENTS OF PV POWER PRODUCTION – EXAMPLE OF A 
CLEAR-SKY DAY 

 Pavg 
[kW] 

MBE/PSTC 
[-] 

MAE/PSTC 
[-] 

Measured 0.711 - - 
t+6 0.706 0.003 0.025 

t+30 0.705 0.004 0.025 
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Finally, Table VI presents the MAE parameter calculated for the whole three months under 
analysis (Dec 21 – Feb 22). The first row refers to irradiance, while the second one is related to 
power profiles. The results are close to a clear sky day, because even though it was winter, rains 
have been very scarce due to the drought period occurring in the last years in Northern Italy. For 
this reason, there are negligible differences between t+6 and t+30 profiles. 

TABLE VI.  COMPARISON BETWEEN PREDICTIONS AND MEASUREMENTS DEC 21 – FEB 22 
 t+6 t+12 t+18 t+24 t+30 

MAE/GSTC 5.2% 4.8% 4.7% 4.8% 4.8% 
MAE/PSTC 2.8% 2.6% 2.5% 2.5% 2.3% 

V. CONCLUSIONS 
In this paper, a double comparison of irradiance forecasts vs. irradiance measurements, and 

power forecasts vs. power measurements, has been presented for a PV system located in 
Northern Italy. A medium-range forecast with a lead time from 6 h to 30 h, within a maximum 
duration of 72 h ahead forecast, has been used to provide the most accurate forecasts. 

The results are aligned with the analysis in the literature, demonstrating that forecasts of 
irradiance and predictions of power are adequate in case of both clear sky and cloudy days. 

Indeed, in the clear sky days, the typical indicators, both mean bias error and mean absolute 
error, with respect to GSTC, are less than 5%. These parameters do not change from 30 h to 6 h 
in advance; thus, the less recent forecast is already adequate. On the contrary, in case of cloudy 
days, the same indicators can increase reaching ≈13% by using a 30 h ahead forecast. However, 
these indicators can go back to ≈5%, if the 6 h ahead forecast is used. 

Then, regarding PV power profiles in the clear sky days, the mean bias error is negligible, and 
the mean absolute error can be lower than 3%. In a way similar to irradiance forecasts, it has 
been quantitatively shown how much more recent power predictions can provide better results. 
In a typical cloudy day, the mean bias error with respect to PSTC decreases from 12% to 3%, and 
the mean absolute error with respect to PSTC decreases from 19% to 11%. 

In future works, the authors will extend this analysis to a higher numbers of PV plants, with 
different nominal power and a longer timeframe for the comparison of the profiles. Moreover, the 
data will be separated and analysed according to the level of cloud coverage. With these results, 
the authors will optimize the parameters of the PV production model to minimize the energy 
deviations resulting from the use of the forecasts. 
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