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Abstract—Sleep Disorders are the most common and disabling
non-motor manifestations of Parkinson’s Disease (PD), signifi-
cantly impairing the quality of life. Monitoring sleep disturbances
in PD is a complex task, given the lack of objective metrics and the
infrequent neurological assessments. This study proposes a frame-
work for the detection of PD sleep patterns from data collected
from 40 subjects (12 PD) through a wearable inertial measurement
unit (IMU) during sleep, as well as the automatic assessment of
sleep quality. Several features describing overnight motility are
proposed and employed in Machine Learning (ML) models to
carry out the classification. The best model achieved a 96.2%
Accuracy and 93.4% F-1 score in detecting PD subjects from
controls, in a Leave-One-Subject-Out cross-validation approach.
Sleep quality was assessed with an average accuracy of 79.7% ±
4.4 across the three tested classifiers, and 75% ± 5.25 F-1 score.
This suggests the feasibility of characterising overnight motility in
PD and effectively monitoring the symptoms’ progression through
lightweight technology, in a pervasive, e-Health scenario.

Index Terms—Parkinson’s Disease, Sleep Disorders, Machine
Learning, Telehealth, Wearables

I. INTRODUCTION

The growing incidence of neurodegenerative disorders is
gaining an impressive social and healthcare role worldwide, due
to their challenging management and the increasing numbers in
the aging population. Parkinson’s Disease (PD) is the second-
most common chronic neurodegenerative disorder, and the
fastest growing of the category [1], with a prevalence of up
to 10 million people worldwide; this number is projected to
double by 2040 [2], as the global population ages.

Nowadays, symptomatic treatment protocols aim at mitigat-
ing the motor manifestations, with the support of physical
rehabilitation. However, identifying an optimal approach to
treatment is challenging, given the unpredictable nature of the
disease, as well as the diversity in its symptomatic manifesta-
tions, which usually worsen as the disease progresses. PD cardi-
nal features include motor symptoms, such as tremor, rigidity,
and bradikynesia [3]. However, non-motor symptoms (NMS)
are also highly preponderant in people with PD, and dominate
the clinical scenario in advanced PD [4]; they are often poorly
recognised and not treated adequately. They entail a broad
spectrum, including autonomic disorders, cognitive impairment,
behavioural symptoms (such as depression), speech alterations
and sleep dysfunctions.

These latter are acknowledged as the most common NMS,
with a prevalence up to 90% [5]. Among these, nocturnal

hypokinesia – i.e., reduced motility during the night – and
morning akinesia affect up to 50% of the subjects already in
the earliest stages of the disease [6]. Sleep disorders in PD have
also been acknowledged among the most disabling symptoms,
with significant effects on the quality of life (QoL) [4].

Nowadays, a critical issue in the management of PD lies in
the infrequent neurological assessments, usually scheduled on
a 6- to 12-month basis, leading to potential loss of information
about daily and monthly fluctuations. Besides, clinical evalua-
tion scales mainly rely on subjective, self-reported metrics [7].

Additionally, diagnosing and monitoring sleep disorders is a
lengthy and challenging task. The gold standard is polysomnog-
raphy (PSG), a diagnostic test performed in a sleep laboratory,
which consists in recording biosignals during sleep through nu-
merous electrodes. Though very precise, this technique presents
with some disadvantages (i.e., unfamiliar sleeping environment,
cumbersome instrumentation), that may significantly hinder
diagnosis and follow-up [8].

This introduces the need for effective monitoring of the
symptoms’ fluctuations by means of objective parameters, pos-
sibly through lightweight, pervasive and continuous solutions
[9]. Sleep actigraphy represents a possible, minimally invasive
solution [10]; it encompasses the use of an inertial device worn
on the wrist, that records movements overnight, and enables
objective metrics to evaluate sleep.

This work proposes a framework for the automatic detection
of PD sleep patterns, as well as classification of good or bad
sleep quality (SQ), based on objective and reproducible metrics.
The study exploits motility data collected through a wearable,
inertial device during sleep on healthy and PD subjects, and
Machine Learning (ML) methods to carry out the classification
task.

II. MATERIALS

A. Study Participants

The study involved both PD subjects and healthy controls, to
assess the ability of the proposed system to characterise motility
during sleep, and support follow-up procedures in PD.

Eligible subjects were recruited at the Parkinson Unit (Dept.
Neurology, AOU Città Della Salute e della Scienza, Turin), and
at the patients’ association Associazione Amici Parkinsoniani
ONLUS, in Turin, Italy. Inclusion criteria for patients were



TABLE I: Demographic characteristics of the population in
the study. HC: healthy controls, PD: subjects with Parkinson’s
Disease.

Sample Age sPSQI SLEEPS

HC 28 (10 females) 38 ± 10.7 years 6.55 ± 1.27 2.55 ± 1.02
PD 12 (5 females) 68 ± 4.1 years 9.42 ± 4.06 3.68 ± 2.21

defined together with an expert neurologist, specialised in PD
and sleep disorders (M.Z.), and included: combined diagnosis
of PD and sleep-related disorders, both motor (e.g., nocturnal
akinesia, bradykinesia) and non-motor (e.g., excessive daytime
sleepiness, low level of activity). Controls were selected on
a voluntary basis, among patients’ spouses, family members,
and respondents to the University’s data collection campaign;
inclusion criteria required absence of (or familiarity for) Parkin-
sonisms and other neurodegenerative diseases, absence of di-
agnosed sleep disorders. Data were collected remotely and
data processing was carried out offline; all recordings were
conducted at home, in unsupervised settings.

As commonly employed in the clinical practice, participants
were asked to fill in two validated questionnaires (further
detailed in Section III-A), to investigate on sleep quality and
circadian health, and correlate self-reported items with objective
metrics. For future analysis, vocal recordings were collected
through a smartphone, following the method implemented in a
previous work [11].

Data collection was carried out in accordance with the
Declaration of Helsinki and approved by the Ethics Committee
of the A.O.U. Città della Salute e della Scienza di Torino
(Approval Number: 00384/2020); written informed consent for
observational study was obtained from all participants. A total
of 40 subjects (12 PD) enrolled in the study and took part in the
data collection; demographic data are summarised in Table I.

B. Experimental Protocol: Data Acquisition, Sensor Placement

The experimental protocol involved remote collection of
motion data during sleep, to characterise sleep motility in
Parkinson’s Disease. To ensure a successful data acquisition,
given the unsupervised approach of the study, all participants
were instructed in the use of the device (activation, positioning)
and the sleep questionnaires. A user guide, including the com-
plete experimental protocol and information about the device,
was also provided to each participant.

Data were collected during the night through a lightweight,
commercially-available inertial measurement unit (IMU)
(Shimmer3, ShimmerSensing). The device includes the follow-
ing triaxial sensors: accelerometer, gyroscope, magnetometer,
which record variations in linear acceleration, angular velocity,
and magnetic field, respectively, along the three axes in space
(x, y, z). The sampling frequency was 128 Hz, and the average
duration of recordings in this population was of 7.13 ± 0.07
hours. The IMU was worn on the chest through an elastic strap
(Figure 1), in order to properly collect motion data from the

trunk and characterise whole-body movements [12], which fail
to be described in traditional wrist actigraphy.

III. METHODS

A. Assessment of Sleep Quality and Sleep Metrics

Two clinically validated questionnaires were employed in the
study in order to retrieve self-reported metrics for sleep quality
and information on circadian habits.

First, the shortened Pittsburgh Sleep Quality Index (sPSQI)
[13] was administered to all study participants, as ground truth
for the assessment of overall sleep quality. This survey consists
in a shortened (13-item survey), self-reported version of the
PSQI survey, commonly employed in the clinical practice to
assess sleep quality. The selected 13 questions evaluate sleep
health over the following five axes: Sleep Latency, Duration,
Efficiency, Disturbances and Daytime Dysfunction, each yield-
ing a relative score. The obtained global score – i.e., the sum of
all relative scores – is used to differentiate between good and
bad sleep quality, and is defined in the range (0, 15), with 15
indicating the negative extreme. In the population under study
a global score of 7.59 ± 5.13 was obtained; values for the two
separate groups are reported in Table I. Following the approach
adopted in [11], and after statistical evaluations on the current
population, a value of 6.0 was chosen as cut-off between good
and bad sleep quality, thus yielding 22 bad sleepers and 18
good sleepers, overall.

Finally, the SLEEPS [11], a validated, 21-item survey was
administered to investigate circadian health. The survey covers
the following four areas: (i) General Health, (ii) Work/Study
Habits, (iii) Leisure Time Habits, (iv) Sleep Habits, providing a
numerical score for each, as well as an overall score (Table I), to
be later employed as features in the Machine Learning pipeline
(cf. Section III-B2).

B. Data Analysis

Data processing, feature extraction the subsequent analysis
were carried out through custom-written MATLAB® (R2022b)
and Python code.

1) Data Pre-Processing: Inertial IMU data were pre-
processed prior to feature extraction; for the purpose of this
work, only data from the triaxial accelerometer and gyroscope
were included in the analysis, as they provide enough infor-
mation regarding body position, axial movements, and overall
motility.

Fig. 1: Sensor placement adopted in the study, along with
proper axes of reference.



Raw accelerometry data (acquired as m/s−2) were pre-
processed by means of a moving-average filter, with a 1-
second sliding window; this method acts as a finite-impulse
response (FIR) lowpass filter, to cut out high-frequency noise
and lower the effect of abrupt movements. Likewise, data
acquired through the gyroscope (deg/s) were pre-processed
with a FIR lowpass filter (cutoff frequency: 35 Hz, order: 21),
to ensure a reliable detection of turns and velocity of rolling-
over.

2) Feature Extraction: As previously introduced, various
features were extracted from the available experimental data,
with the aim of characterising axial movements and motility in
bed.

Given the fact that, up to date, no standardised set of features
to characterise Parkinson’s Disease sleep patterns is available
in the literature, a combination of clinical (polysomnography-
related) parameters and motility features was employed in this
study. These latter included both novel features, and features
previously proposed in night-accelerometry or actigraphy stud-
ies [8], [12].

Features related to motion in bed included the reclining
angle, the time spent in each sleeping position, the number
of turns in bed, and the velocity of turns, and are described in
the following paragraphs.

First, sleeping position was assessed in 30-second epochs
(following PSG scoring standards), through the inspection of
accelerometry data, by taking into account the tilt angle (θ,
i.e., the reclining angle in bed) and the mean acceleration in
the three directions.

Subsequently, turning events (i.e., turning in bed) were
identified. Any detected change in sleeping position is first
marked as turn-candidate. The event is then labelled as a true
turning event if the same sleeping position is maintained for
2 minutes before and after its occurrence, therefore ensuring
accurate detection of axial rolling-over. Finally, the number of
events (Nturns), and the time interval between events (Rint)
were extracted.

In addition, from the inspection of the angular velocity along
the longitudinal axis (y, gyroscope), information regarding the
velocity of turns was retrieved. A preliminary peak detection
was carried out, by selecting all peaks with amplitude above
85% of the standard deviation of the signal; this threshold
was heuristically selected. Then, for each turning event, a 50-
second window was chosen as search range for the actual
angular velocity peak corresponding to the selected rolling-over
(Figure 2). Finally, peak height (velocity of turning, ω-turns)
and peak width (duration of turns, Tturns) were computed.

To characterise overall night motility, the Activity Index (AI)
[14], accounting for variance across the three accelerometry
axes (x, y, z), was computed (Equation III-B2). Given that the
employed IMU includes a wide-range accelerometer, systematic
noise removal was performed prior to the AI computation. The
systematic noise (σsys) was evaluated as the triaxial variance
measured when the sensor is in a still, horizontal position, and
is averaged across 30-second epochs; for the employed IMU,
σsys measured 27.5 ms−2.

Fig. 2: Angular velocity in the longitudinal axis (y). Peak
detection method for computing the velocity and duration of
turnover events.

AI =

√
1

3
[(σ2

x − σsys) + (σ2
y − σsys) + (σ2

z − σsys)],

σsys = σx + σy + σz

(1)

In addition, a novel metric derived from the AI was proposed
and employed in this study, as a descriptor of motility trends.
This metric is the Average Motility (AM) and it is computed
as the moving average of the AI in a 2-minute window, a time-
frame considered appropriate for movements during the night,
and later mapped to a continuous value in the range [0, 1].
Values of 1 (or close to) represent high overnight activity; its
trend is displayed in Figure 3.

Table II displays the set of computed features; for each
Motility parameter, various statistics (mean, standard deviation,
maximum value, minimum value, 25th and 75th percentiles,
kurtosis, skewness) were computed and employed as separate
features.

3) Feature Inspection and Selection: Given that the set of
engineered features included both novel and non-novel features,
and that early fusion was performed among features of different
categories (Table II), statistical tests were performed on the
features to test for their relevance. All statistical analyses
were carried out through the open-source tool Jamovi [17].
First, feature normality was assessed through the Shapiro-Wilk
test; then, distribution testing was carried out by means of
the Student’s t test and the non-parametric Mann-Whitney
U test for normally- and non-normally distributed features,
respectively.

First, the two following configurations were tested: (i) HC vs
PD, (ii) Good vs Bad SQ. Second, with the aim of investigating
a possible influence of the disease on overall SQ, two additional

Fig. 3: Portion of the Average Motility variable (trunk move-
ments) for a PD patient.



TABLE II: Features employed in the study, along with their
category and proper reference. ⋄: adapted from cited study; ⋆:
first proposed in this study.

Feature Description Reference

Clinical

Sleep Onset Latency (SOL) The amount of time required
to fall asleep (min)

various

Wake After Sleep Onset
(WASO)

The amount of time the sub-
ject is awake during the night
(min)

various

Total Sleep Time (TST) Total hours of sleep various
Time in bed (TIB) Lights-off to lights-on inter-

val (h)
various

Sleep Efficiency (SE) The percentage of time spent
asleep while in bed (%)

various

SLEEPS score Perceived sleep health and
quality

[11]

Motility

Tilt Angle (θ) Reclining angle in bed ⋆
Sleeping position Minutes spent in each sleep-

ing position (supine, prone,
left-side, right-side)

⋆

Number of turns (Nturns) Number of turns in bed ⋄ [15]
Rotation interval (Rint) Interval between turning

events (min)
⋄ [15]

Rotation velocity (ω-turns) Velocity of turning in bed
(deg/s)

⋄ [16]

Rotation acceleration (α-
turns)

Acceleration of turning in
bed (deg/s2)

⋄ [16]

Turning duration (Tturns) Duration of each turn (s) ⋄ [16]
Stand/Sit Duration (SSD) Total time spent standing or

sitting during the night (min)
⋆

Activity Index (AI) Level of activity during the
night. Range: [0, 1]

[15]

Average Motility (AM) Overnight motility trend. ⋄ [14]

configurations were tested: (iii) HC with good SQ vs HC with
bad SQ (HCgood vs HCbad), (iv) HC with bad SQ vs PD with
bad SQ (HCbad vs PDbad). No comparison between PD with
good SQ and PD with bad SQ was carried out, due to the scarce
numerosity of the former group.

For the sake of completeness, correlation between the sleep
features and the sPSQI score – i.e., the clinical indicator of SQ
– was also tested through Spearman’s Correlation; likewise,
correlation to the presence of PD was investigated.

Feature selection was carried out by means of the ReliefF
algorithm [18], in the configurations (i) and (ii) (the two
explored classifications); this step allowed for the reduction of
the dataset to be employed in the classification step. The top-K
features relevant for the task were kept; the parameter K was
heuristically chosen by identifying the elbow on the feature
importance scores yielded by the algorithm. For classification,
only the selected features were employed in the ML models.
Prior to the feature selection process, z-score normalisation
was adopted to prevent outliers from affecting the subsequent
analysis.

C. Classification

Supervised ML models were employed to automatically
discriminate between: (i) HC and PD (to test the capability

TABLE III: Summary of the employed classifiers and the
searched hyperparameters, (parameter and range).

Model Searched Hyperparameters

SVM
Kernel function: linear, polynomial, radial basis, sigmoid
Penalty (C): [0.1, 1, 10, 100, 1000]
γ: [1, 0.1, 0.001, 0.0001]

KNN
Minkowski Distance order (p): [1, 2, 3, 4, 5]
Number of neighbours (K): [3, 5, 7]
Weights (W): uniform, distance-based

XGBoost
Number of trees: [25, 50, 100]
Depth: [3, 5, 7]
Learning rate: [0.001, 0.01, 0.1]

of the system to detect PD from night-motility data), and (ii)
Good vs Bad SQ.

Three different models were tested in both configurations;
namely, a Support Vector Machine (SVM), a K-Nearest Neigh-
bour (KNN), and eXtreme Gradient Boosting (XGBoost) – this
latter being an ensemble method based on decision trees.

Hyperparameters were optimised with a Grid Search ap-
proach (50 iterations, Table III), to increase model robustness;
within the optimisation process, the F-1 score was elected as
metric for model comparison, due to the imbalanced class
cardinality in the adopted dataset.

Moreover, given the scarce numerosity of the dataset, a
Leave-One-Subject-Out cross-validation (LOSO-CV) approach
was adopted for model evaluation and performance comparison
across models, to allow for better generalisation capability of
the tested classifiers and to limit the effect of overfitting.

Within this framework, at each iteration, one subject is held-
out for testing, and the remaining (N − 1) subjects are used
in the training process. The procedure is repeated for a total
of N iterations (where N equals the number of subjects in the
dataset). Hence, a total of N − 1 models are trained. Finally,
model performance metrics, namely Accuracy, Recall, and F-1
score (harmonic mean of Precision and Recall) were used to
evaluate results.

The complete analysis pipeline is displayed in Figure 4.

IV. RESULTS

A. Statistical Analysis

Several of the variables proposed to describe overnight
motility, and employed in this study, proved their discriminative
power in characterising PD sleep patterns, as well as sleep
quality (cf. Section III-B3, configurations (i), (ii)).

Fig. 4: Overall analysis pipeline of the proposed framework.



Table IV displays the tests results. As appreciable, when
testing the HC vs PD configuration, statistical significance
was observed in various features characterising overnight body
position (θmean, θp75), whole-body movements (ω-turnsp25, ω-
turnsskew), and overall motility (AIskew, AMmean). Moderate
correlation, in terms of Spearman’s ρ, with the presence of the
disease was also observed for the listed features, with θmean

featuring a value of 0.54; a negative correlation, as expected,
was observed with features describing the velocity of turns in
bed.

Regarding the Good vs Bad SQ configuration, statistical
significance was observed in the variables describing the dura-
tion of turns (Tturns,std, Tturns,skew), and overnight motility
(AIp25, AMmean); these latter also showed a moderate negative
correlation with the sPSQI score, with values of -0.46 and -0.44,
respectively.

Finally, to carry out a proper population inspection, and to
counteract the possible effect of bias, the initial population was
stratified according to sleep quality and the presence of PD, and
the other two configurations ((iii) and (iv) in Section III-B3)
were investigated.

In particular, in the configuration HCgood vs HCbad, the
features Tturns,std and ω-turnsp25 (turn velocity) resulted sig-
nificant (p<0.005 and p<0.05, respectively), with Spearman’s
ρ values (with sPSQI) of 0.45 and -0.64, respectively. Fi-
nally, when testing HCbad vs PDbad, body position (θmean),
velocity of turns (ω-turnsp75, ω-turnsmean) and overall motility
(AImean, AMmean) resulted significant (p<0.001). These also
presented with moderate-to-high correlation with sPSQI, with
ρ of 0.64 for θmean, and -0.51 for AMmean. As for velocity
of turns, Spearman’s ρ was of -0.41 and -0.35 (ω-turnsp75 and
ω-turnsmean, respectively).

These results, prior to the feature selection process, suggest
that whole-body motility is a good descriptor of nocturnal
patterns, both for sleep quality and characterisation of sleep
in PD.

TABLE IV: Independent Sample statistics of the features em-
ployed in the classification, along with their correlation with
the target (PD or sPSQI). Mark ∗: high statistical significance.

HC vs PD

Feature Independent Sample Test Correlation (ρ)

θmean <0.005* 0.54
θp75 <0.001* 0.45
Rint,p25 <0.05 -0.31
ω-turnsp25 <0.001* -0.41
ω-turnsskew <0.005* -0.39
AIskew <0.001* 0.31
AMmean <0.001* 0.32

Sleep Quality

Feature Independent Sample Test Correlation (ρ)

ω-turnsp75 <0.05 0.32
Tturns,td <0.005* 0.49
Tturns,skew <0.001* 0.55
AIp25 <0.05 -0.46
AMmean <0.05 -0.44

TABLE V: Classification task: Healthy Controls vs PD Sub-
jects. Performance metrics of the optimised classifiers, employ-
ing a LOSO-CV.

SVM KNN XGBoost

Accuracy 96.2 % 90.4 % 80.7 %
Recall 95.0 % 72.3 % 85.2 %
F-1 93.4 % 80.6 % 70.0 %

TABLE VI: Classification task: Good vs Bad Sleep Quality.
Performance metrics of the optimised classifiers, employing a
LOSO-CV.

SVM KNN XGBoost

Accuracy 78.1 % 75.2 % 85.7 %
Recall 74.0 % 73.3 % 78.6 %
F-1 72.0 % 70.8 % 82.5 %

B. Feature Selection

Feature selection was carried out by means of the ReliefF
algorithm, in order to find the subset of most discriminative
features for each classification task – i.e., HC vs PD and Good
vs Bad SQ. The features selected for the classification are
shown in Table IV; after inspecting the scores provided by the
ReliefF algorithm and identifying the elbow, a subset of K = 7
and K = 5 was chosen for the two tasks. As appreciable, for
both classification tasks, the most relevant features were those
related to trunk or whole-body movements. This suggests that
the sensor placement proposed in this experimental study is
suitable to describe overnight motility and sleep quality in PD.

C. Classification Performance

Table V displays the results obtained by the tested clas-
sifiers in the configuration HC vs PD; performance metrics
are obtained by means of the LOSO-CV and displayed as
Accuracy, Recall and F-1 score. As appreciable, all classifiers
feature moderately high accuracy, with an average of 89.1%
± 6.39. The same trend is observed for the F-1 score (81.3%
± 9.57), suggesting good classification performance. The opti-
mised SVM (C=1, kernel: linear) emerged as best model, with
overall accuracy above 96%, accuracy of 95%, as well as an F-1
score of 93.4%. Notably, given the unbalanced cardinality of the
dataset (higher number of HC), a high F-1 score ensures model
robustness against both false positives and false negatives, thus
implying the good predictive power of the employed features
in detecting PD from overnight motility patterns.

Likewise, performance metrics for the Good vs Bad SQ
classification task are shown in Table VI. Though featuring a
slight decrease in performance, the employed models yielded an
overall accuracy of 79.67% ± 4.43, which is indicative of fairly
good classification performance. The best scores were attained
through a XGBoost classifier (Ntrees=50, depth=5, learning
rate=0.1), featuring an accuracy of 85.7%, 78.6% recall, and F-
1 score of 82.5%. These results are strongly suggestive of good
classification performance, and reflect the good discriminative
power of the features employed in the task.



V. CONCLUSIONS AND FUTURE WORK

This study investigated the capability of a lightweight system
of monitoring sleep disorders in PD, thus exploring the feasibil-
ity of e-Health applications in the scenario of disease manage-
ment and follow-up. The results attained by the explored ML
algorithms proved the efficiency of the objective parameters
in the automatic detection of PD subjects, as well as good or
bad sleep quality, based on overnight motion patterns recorded
through wearable sensors.

Indeed, the proposed system proved effective in detecting
PD subjects from motility parameters, with the best ML model
attaining an accuracy and F-1 score of 96.2% and 93.4%,
respectively. This also reflects the importance of whole-body
motion features, rather than relying on traditional wrist-based
assessment. To the best of the Authors’ knowledge, this is the
first study that tackles automatic PD detection from overnight
motility patterns through ML.

Finally, automatic classification of sleep quality has also been
addressed, based on the same metrics; the best model (XG-
Boost) achieved an overall accuracy of 85.7%, and a F-1 score
of 82.5%. The performance compares well with the literature,
though a direct comparison is impractical, as most studies are
based on wrist actigraphy and healthy cohorts. Virtually, the
results are in line with [19], which reports an average accuracy
and F-1 score of 87.9% and 81.9%, respectively. However, the
cited study only includes data from young, healthy subjects,
and employs deep learning models – therefore, more complex
than the one proposed in this work. Comparably, in [20], the
Authors exploit ML models though and obtaining poorer results
than this study, through a 8-fold CV (accuracy: 72.5%, F-1
N/A), on a young, healthy cohort.

Future work will address the limitations of this study, such as
including a larger PD population and stratification according to
different disease progression levels, to improve the generalisa-
tion capability of the tested models and enhance performance.
Future investigations will also include the analysis of muscle
activations during sleep and vocal recordings [11], to provide
a multi-modal approach for the evaluation of motor and NMS
in PD, allowing for personalised treatment. To conclude, this
study, though preliminary, provided a framework for minimally
invasive sleep studies in unsupervised settings, supporting per-
vasive, continuous monitoring solutions, thus counteracting the
limitations of infrequently scheduled outpatient assessments
and possibly improving the QoL of people with PD.
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