
01 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Deep learning algorithms for detecting freezing of gait in Parkinson’s disease: A cross-dataset study / Sigcha, Luis;
Borzì, Luigi; Olmo, Gabriella. - In: EXPERT SYSTEMS WITH APPLICATIONS. - ISSN 0957-4174. - ELETTRONICO. -
255:A(2024). [10.1016/j.eswa.2024.124522]

Original

Deep learning algorithms for detecting freezing of gait in Parkinson’s disease: A cross-dataset study

Publisher:

Published
DOI:10.1016/j.eswa.2024.124522

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2990028 since: 2024-07-01T07:01:54Z

Elsevier



Expert Systems With Applications 255 (2024) 124522

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Deep learning algorithms for detecting freezing of gait in Parkinson’s disease:
A cross-dataset study
Luis Sigcha a,b,c,∗,1, Luigi Borzì d,e,1, Gabriella Olmo d

a Department of Physical Education and Sports Science (PESS), University of Limerick, V94 T9PX, Limerick, Ireland
b Health Research Institute (HRI), University of Limerick, V94 T9PX, Limerick, Ireland
c Data-Driven Computer Engineering (D2iCE) Group, Department of Electronic and Computer Engineering, University of Limerick, V94 T9PX, Limerick, Ireland
d ANTHEA Lab–Data Analytics and Technologies for Health Lab, Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy
e PolitoBIOMed Lab–Biomedical Engineering Lab, Politecnico di Torino, 10129 Turin, Italy

A R T I C L E I N F O

Dataset link: this link, this link, this link

Keywords:
Wearable sensor
Accelerometer
Machine learning
Deep learning
Cross-dataset test
Motor symptoms

A B S T R A C T

Freezing of gait is a complex and disabling symptom of Parkinson’s disease, which has a significant impact
on the patients’ quality of life and increases the risk of falls and related injuries. This study aims to evaluate
the generalization capability of deep learning algorithms in freezing of gait detection. To address this task,
various machine learning and deep learning algorithms were implemented, fine-tuned, and evaluated using
diverse data splitting and validation strategies. The experiments performed yielded mixed results. Although
the implementations demonstrated competitive performance in single-dataset settings (area under the curve
ranging from 0.77 to 0.94), all approaches showed limited robustness in cross-dataset tests and suboptimal
generalization across different datasets (area under the curve ranging from 0.65 to 0.84). These results highlight
the importance of standardized data collection procedures to ensure uniformity. The specification of sensor
settings and predefined sensor locations can foster homogeneity in datasets, even when dealing with diverse
subjects and environments. Such standardization efforts are crucial for advancing generalized methodologies
in the detection of freezing of gait, applicable to both research and clinical applications.
1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects
millions of people worldwide (Samii, Nutt, & Ransom, 2004). It is char-
acterized by the progressive degeneration of dopaminergic neurons in
the brain, leading to a wide range of motor and mental symptoms. The
main motor symptoms include resting tremor, bradykinesia (slowed
movements), muscle rigidity, and postural instability (Armstrong &
Okun, 2020). These have a major impact on mobility and general motor
function, leading to a gradual loss of autonomy and reducing quality of
life (QoL) (Zhang et al., 2020).

Current treatment approaches for PD mainly involve the admin-
istration of dopaminergic drugs, such as levodopa, to relieve motor
symptoms. However, the efficacy of drugs can vary from individual
to individual, and long-term use can lead to complications and motor
fluctuations (Reich & Savitt, 2019; Zhao et al., 2021).

Among the motor symptoms, freezing of gait (FoG) stands out as a
complex and debilitating phenomenon that has a significant impact on
the QoL of people with PD (PwPD) and increases the risk of falls and
related injuries (Gao, Liu, Tan, & Chen, 2020). FoG is characterized
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by sudden, transient episodes of gait disruption, in which individuals
experience the sensation of being ‘‘stuck’’ on the ground, unable to start
or continue walking (Nutt et al., 2011). FoG typically occurs during
complex motor activities, such as turning or traversing narrow spaces,
and under motor or cognitive dual tasks. It affects about 50%–80% of
PwPD, often in the advanced stages of the disease (Zhang, Gao, Tan, &
Chen, 2021).

Accurate, objective, and continuous monitoring of FoG is criti-
cal for effective management and treatment of PD. Traditional eval-
uation methods involve clinical assessments and subjective patient
reports (Kobylecki, 2020). However, these approaches have limita-
tions, as symptoms can fluctuate throughout the day, making it dif-
ficult to capture the full extent of motor disturbances (Bhidayasiri &
Martinez-Martin, 2017).

To address these challenges, wearable devices have emerged as a
promising solution for continuous monitoring of PD symptoms, includ-
ing FoG (Channa, Popescu, & Ciobanu, 2020; Del Din, Kirk, Yarnall,
Rochester, & Hausdorff, 2021). Advances in wearable technology have
recently paved the way for objective and non-intrusive monitoring of
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FoG in daily life (Pardoel, Kofman, Nantel, & Lemaire, 2019). Wearable
devices typically incorporate inertial sensors, such as accelerometers
and gyroscopes, that can capture movement and postural changes in
real-time. These sensors can be strategically placed on various parts
of the body, including the lower limbs, trunk, and wrists, to capture
relevant data related to gait patterns and FoG events (Rovini, Marem-
mani, & Cavallo, 2017). The number and location of sensors may vary
depending on the design of the device and the specific objectives of the
monitoring system (Sigcha et al., 2023).

In order to facilitate the detection of FoG episodes from sensor data,
machine learning (ML) techniques have been widely used. Traditional
ML algorithms, such as support vector machine (SVM) and random
forest (RF), have shown promise in detecting FoG episodes with rea-
sonable accuracy (Giannakopoulou, Roussaki, & Demestichas, 2022).
However, more recent advances in deep learning (DL), particularly
convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), have shown even greater potential for FoG detection (Sigcha
et al., 2023). DL models can automatically learn discriminative features
from raw sensor data, enabling a more robust and accurate detection of
FoG episodes (Alzubaidi et al., 2021). In this context, the integration of
wearable inertial sensors and DL techniques offers a novel and promis-
ing approach for the detection and monitoring of FoG. By providing
objective, real-time assessments, this technology has the potential to
enhance personalized therapy and improve the overall management of
PD, ultimately improving the QoL of PwPD.

The rest of this paper is organized as follows. Related works are dis-
cussed in Section 2, together with their limitations and the contribution
of this study. Section 3 describes the material and methods, includ-
ing the pre-processing procedures, the classic ML approaches and DL
architectures implemented, the experimental procedures, the datasets
used in this study, training and optimization processes, validation
method, and performance evaluation strategy. Results are reported and
discussed in Section 4, while the conclusions are drawn in Section 5,
along with future directions.

2. Related work

In the realm of FoG detection, existing research exhibits a notable
diversity in sensor settings and experimental protocols. One strik-
ing aspect of this diversity lies in the configuration of wearable sen-
sors. Studies have employed varying numbers of sensors, ranging from
single-sensor setups to complex multi-sensor arrays. This choice of-
ten reflects the trade-off between simplicity and comprehensive data
capture. As stated by O’Day et al. (2022), the optimal technical config-
uration for FoG detection comprised three sensors placed on the lumbar
region and both ankles. Moreover, these locations were considered
highly wearable by a cohort of 16 PwPD.

In terms of experimental procedures, significant variability is ap-
parent. Although some studies primarily analyze gait during standard
walking tasks (Naghavi & Wade, 2022; Shi et al., 2022), others incor-
porate FoG-provoking activities designed to induce FoG episodes inten-
tionally (Bikias, Iakovakis, Hadjidimitriou, Charisis, & Hadjileontiadis,
2021; Reches et al., 2020; Zhang et al., 2020). These provocations
provide insights into the onset and characteristics of FoG but may differ
in their ecological validity (e.g., FoG patterns collected in real-world
settings). Furthermore, a subset of research explores gait patterns dur-
ing simulated activities of daily living (ADL), with the aim of assessing
gait in contexts that better mimic real-life scenarios (Rodríguez-Martín
et al., 2017).

As far as concerns available data, the limited availability of publicly
shared datasets is a notable challenge in FoG detection research. Most
studies designed the experimental procedures and collected proprietary
datasets (Sigcha et al., 2023). This scarcity hampers research progress,
limits benchmarking opportunities, raises generalizability concerns,
and hinders collaboration and innovation. Up to date, only a few
2

datasets are available to the research community, and they were col-
lected using a different sensor configuration. Specifically, three sensors
on the ankle, thigh and lower back of 10 PwPD (Bächlin, Plotnik,
Roggen, Maidan, J.M., Giladi, & Tröster, 2010); a single sensor on the
wrist of 18 PwPD (Mazilu et al., 2016); and six sensors on the feet,
shanks, and the lumbar and chest regions of 7 PwPD (O’Day et al.,
2022).

Diverse sets of features and ML techniques have been used to
detect FoG. ML algorithms include neural networks, decision trees, RF,
naïve Bayes, k-nearest neighbor, and SVMs. Among these algorithms,
SVM and RF implementations provided the best results, with 0.75–
0.99 sensitivity and 0.79–1 specificity, and 0.66–0.98 sensitivity and
0.66–0.99 specificity, respectively (Pardoel et al., 2019). DL algorithms
developed for FoG detection included CNNs, long short-term memory
networks (LSTM), and deep autoencoders, providing 0.63–0.95 sen-
sitivity and 0.67–0.99 specificity (Sigcha et al., 2023). Furthermore,
contextualization of gait patterns has been investigated to exploit the
inherent circumstances of FoG manifestations, aiming at reducing the
computational burden of FoG detection algorithms (Borzì & Sigcha &
Olmo, 2023; Pepa et al., 2020).

However, the comparison of performance between different ap-
proaches is not immediate, due to the diverse validation/test strategies.
Specifically, high performance was obtained when data from all pa-
tients were merged and randomly shuffled to generate training and
test sets (Ashfaque Mostafa, Soltaninejad, McIsaac, & Cheng, 2021;
Kim et al., 2018). However, this approach does not ensure subject
independence in the two sets and generates over-optimistic results.
To overcome this issue, most studies used a leave-one-subject-out ap-
proach (Naghavi & Wade, 2022; San-Segundo, Navarro-Hellín, Torres-
Sánchez, Hodgins, & De la Torre, 2019; Sigcha et al., 2022, 2020),
consisting of iteratively using a single subject as test and all the
remaining subjects for training. Finally, hold-out validation consists
of using a portion of subjects for training and the remaining part for
validation (Ashour, El-Attar, Dey, El-Kader, & Abd El-Naby, 2020; Noor,
Nazir, Wahab, & Ling, 2021; Shi et al., 2022). Since the validation set is
commonly used for model optimization, often an independent test set
is used as the final test to provide a realistic estimate of performance
in unseen data (Borzì, Sigcha, Rodríguez-Martín, & Olmo, 2023; Camps
et al., 2018).

Furthermore, in Borzì et al. (2023), a dataset of 21 PwPD was
used for training, validation, and test. To assess the model gener-
alization capability, further testing was performed on two external
datasets comprising 38 PwPD with FoG (Borzì & Olmo & Artusi &
Lopiano, 2020) and 59 PwPD without FoG (Borzì, Olmo, Artusi, Fabbri,
Rizzone, Romagnolo, Zibetti, & Lopiano, 2020). The results showed a
net reduction in sensitivity and a slight increase in specificity. This
represents the first evidence of how the performance of FoG detection
algorithms can vary across datasets. However, the external datasets
used as independent test sets included few (i.e., 50 FoG episodes) to
any FoG. A recent work (Klaver et al., 2023) merged data from four
separate studies and evaluated the performance of different predictive
models. The study confirmed the potential of CNNs to detect FoG in a
large (70 participants) and diverse dataset, achieving 0.85 sensitivity
and 0.68 specificity in an external dataset. In addition, performance
varied significantly from the training set to the test set to the external
dataset. These results highlight the difficulty in developing a general
FoG detection method. This is even more evident when considering that
the study consistently used the same motion-capture equipment in all
included datasets.

Although these studies have made significant progress in FoG detec-
tion, there are some limitations that still remain. Most studies have used
data recorded in controlled laboratory environments. This raises ques-
tions about the applicability of these models in real-world scenarios,
where contextual factors and varying environmental conditions may af-
fect the accuracy of FoG detection. Moreover, the sample size is reduced

in many studies, often consisting of fewer than 20 subjects. Even though
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these studies have provided valuable insights, the generalizability of
the developed DL models to larger populations remains uncertain.
In addition, few studies have conducted tests on different datasets
recorded from different subjects and settings. This scarcity of diverse
test data raises questions about the robustness and generalizability of
these models when employed in real-world scenarios.

Considering these limitations, the present study aims to address
the need to evaluate the generalization capability of DL algorithms
that have shown good performance on the original dataset, but whose
performance in different datasets has not been thoroughly evaluated.
Specifically, this study systematically evaluates ML and DL FoG de-
tection algorithms using a merged and harmonized dataset comprised
of heterogeneous data from three well-known reference datasets. By
integrating diverse data sources, this study provides a novel perspective
of the effectiveness of DL methods on heterogeneous data with main
goal of providing insights to improve the algorithm development and
identify potential challenges in the current FoG detection techniques.

By evaluating the performance of the models on different patients in
different situations, this research aims to determine the reliability and
robustness of these models in real-world settings, providing valuable
insights for the development of more effective FoG detection systems
in PD. The main contributions of this work are as follows. (a) Data from
a single sensor (i.e., accelerometer) on the lower back were used; this
aims to increase patient comfort and promotes continuous and long-
term monitoring of FoG in daily life; (b) Different ML and DL models
presented in the literature are reproduced, adapted, and appropriately
trained and evaluated; this allows the performance of different ap-
proaches in FoG detection to be compared; (c) Different datasets are
considered; this allows comparison of model performance with data
collected from different samples during different experimental settings;
(d) Appropriate validation and testing strategies are used to evaluate
FoG detection performance; ensuring subject independence in training
and test sets allows for robust and realistic performance estimates;
(e) Cross-dataset evaluations are investigated; testing the model on
datasets other than those included in the training phase provides a true
estimate of the generalization ability of DL models in FoG recognition;
(f) The contribution of features to model performance is compared
across datasets.

3. Materials and methods

This section describes the materials and methods used in this study.
More specifically, Section 3.1 provides an overview of the datasets used
in this study; Section 3.2 reports the data preprocessing procedures;
Section 3.3 describes the implemented ML and DL algorithms; the
methods used for data splitting and validation strategies are reported in
Sections 3.4 and 3.5; details on the optimization procedure and training
settings are provided in Sections 3.6 and 3.7; finally, Section 3.8 reports
the classification metrics used for performance evaluation.

3.1. Datasets

This study includes three different datasets, corresponding to differ-
ent numbers of PwPD who participated in different sets of activities.
Data from a single tri-axial accelerometer placed on the lower back
were used for the analysis. This choice was made to ensure the compat-
ibility of the data across various datasets. Furthermore, the lower back
is considered the most suitable and commonly adopted location for
placing a single sensor in the context of gait and FoG detection (Huang,
Li, & Huang, 2023). Additionally, in the study conducted by Keogh et al.
(2023), the placement of a wearable device on the waist for one week
was considered comfortable and acceptable by a cohort of 106 PwPD.
The combination of accuracy and comfort aims at providing a reliable
monitoring system that can be implemented in real-world settings.

A brief description of the datasets is provided in Table 1, in terms
of number of subjects, total amount of data, number of FoG episodes,
and total amount of FoG.
3

Table 1
Description of the datasets used in this study.

Dataset Rempark Daphnet Oday

Number of subjects 21 10 7
Total data (hours) 11.7 8.3 1.4
Number of FoG episodes 1075 272 211
Total FoG duration (minutes) 73.6 28.9 22
FoG percentage 10.5% 5.8% 26.2%

The Rempark dataset (Rodríguez-Martín et al., 2017) comprises data
from twenty-one PwPD. The sample consisted of three women and
eighteen men, with an average age of 69.3 ± 9.7. The participants had
a disease duration of 9 ± 4.8 years, Hoehn and Yahr (H&Y) score of
3.1 ± 0.4, freezing of gait questionnaire (FoG-Q) score of 15.8 ± 4.1,
mini-mental state examination score (MMSE) of 27.8 ± 1.9, and a
total unified Parkinson’s disease rating scale (UPDRS) part-III score of
16.2 ± 9.7 ON and 36.3 ± 14.4 OFF therapy. An inertial measurement
unit (IMU) was attached to the left side of the waist using an elastic
band to record three-axis acceleration data. The experiments were
conducted in the participant’s home, and data were collected both
while the participants were ON and OFF dopaminergic therapy. The
tasks performed included gait tasks such as walking outdoors, the stand-
up-and-go test, and showing the participant’s home. Additionally, false
positive analysis tasks such as cleaning windows, brushing teeth, and
painting/drawing/erasing on a sheet of paper were considered for the
study.

The Daphnet dataset (Bächlin et al., 2010) comprises data from ten
PwPD. The sample consisted of seven men and three women, with an
average age of 66.4 ± 4.8 years, disease duration of 13.7 ± 9.7 years,
and H&Y score of 2.6 ± 0.65 in ON condition. During the experiments,
data were recorded from three accelerometers placed on the shank,
thigh, and lower back. Participants were asked to complete three
walking tasks that aimed to represent different aspects of daily walking.
These tasks included walking back and forth in a straight line along the
lab hallway and random walking in a reception hall space with initiated
stops and 360-degree turns. In addition, walking while simulating ADL
was considered in the protocol, including entry and exit of rooms and
walking to the lab kitchen, getting a drink, and returning to the starting
room with a cup of water. The experiments were carried out in the
morning during the OFF stage of the medication cycle, which was more
than 12 h after their last drug intake.

The dataset described in O’Day et al. (2022), hereafter referred to
as Oday, comprises data from seven PwPD. The sample consisted of
four men and three women, with an average age of 58.4 ± 5.1 years
and disease duration of 10.1 ± 2.4 years. Six IMUs were strapped on
the tops of both feet, the lateral side of both shanks, and the lumbar
(L5) and chest regions. Each participant provided different walking
sessions through the turning and barrier course specifically designed to
elicit FoG. Each walking trial (walk) consisted of two ellipses and two
figures of eight around tall barriers. Participants completed all trials
OFF medication and OFF deep brain stimulation. A video of each walk
was synchronized with the IMU system. The experiments were carried
out over 2 to 6 clinic visits separated by up to 44 months.

3.2. Data preprocessing

Sensor settings were different in the datasets used in this study, as
reported in Table 2. To standardize the different sensor configurations,
data were scaled by converting the unit of measurement to g units,
where g is the value of earth acceleration. In addition, the order and
directions of the axes were adjusted so that the x, 𝑦 and z axes pointed
vertically (downward), posteriorly and mid-laterally (to the right).
Finally, the data were resampled to 32 Hz. The latter value allows for
a good representation of the frequency components of the acceleration
signals during gait (0–3 Hz) and FoG (3–8 Hz) (Bächlin et al., 2010;
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Fig. 1. Three-axis acceleration readings from different datasets. Gray zones identify
FoG episodes.

Moore, MacDougall, & W.G., 2008) while removing high-frequency
noise (Li et al., 2020).

A visual representation of the resulting acceleration signals is pro-
vided in Fig. 1, where gray areas identify FoG episodes. From Fig. 1,
different gait and FoG patterns are clearly visible, differing between
datasets in amplitude and frequency content.

The resampling strategy consisted of down-sampling the original
signals using linear interpolation. A finite impulse response (FIR) anti-
aliasing low-pass filter with a Kaiser window (𝛽=5) was applied, com-
pensating for the delay introduced by the filter. Information loss due
to resampling was calculated using the mean absolute error (MAE) be-
tween the resampled and the original signal. The average MAE during
FoG is reported in Table 2, expressed as an average over the three
acceleration axes. For comparison, the average signal range during FoG
is also reported. Overall, the resampling error was found to be two
orders of magnitude less than the original signal, thus demonstrating
a small loss of information.

Acceleration data were segmented into 2-second windows with 50%
overlap. The data were then rescaled to be centered on zero, remov-
ing the mean value of each acceleration component in each window
separately, as done in Borzì and Sigcha and Olmo (2023), Borzì et al.
(2023).

On the one hand, raw accelerometer data were used in all ex-
periments to evaluate the performance of DL approaches including a
well-known and low-complexity CNN architecture (Bikias et al., 2021),
used as a baseline DL approach. On the other hand, to obtain baseline
results using a classical ML approach, the set of temporal and spectral
features proposed by Mazilu et al. (2012) was extracted and used
as input of a predictive the model. This set of features was selected
due to its excellent trade-off between complexity and performance, as
evidenced in previous studies (Camps et al., 2018; San-Segundo et al.,
2019; Sigcha et al., 2023).
4

Table 2
Sensor orientation, unit of measurement, and sampling frequency in different datasets.
MAE: mean absolute error.

Dataset Rempark Daphnet Oday

Unit of measurement m
s2

mg m
s2

Sampling frequency (Hz) 40 64 128
𝑋-axis anterior anterior vertical (↓)
𝑌 -axis vertical (↑) vertical (↓) lateral (→)
𝑍-axis lateral (←) lateral (→) posterior
Resampling MAE (mg) 2.7 6.5 3.3
Average signal range (g) 0.41 0.54 0.34

3.3. Machine and deep learning methods

Diverse classification algorithms were implemented and evaluated
using different data-splitting strategies. A classic ML processing pipeline
is described in Section 3.3.1, while the implementation of the DL-based
algorithms is reported in Section 3.3.2.

3.3.1. Machine learning methods
Classic ML pipelines require the extraction of discriminative features

from raw signals. In this study, the set of features proposed in Mazilu
et al. (2012) was considered. The extracted features include time
and frequency domains, namely: mean, standard deviation, variance,
entropy, energy, freezing index (freezing band power 3–8 Hz divided
by locomotor band power 0.5–3 Hz), and the sum of the freezing
band and locomotor band power. The seven features were extracted
from each component of the 3-axis acceleration signal, thus leading
to a total number of 21 features. These were input of an RF algo-
rithm (Breiman, 2001). RF represents a well-known and widely used
classification algorithm that has provided top performance in FoG de-
tection (Giannakopoulou et al., 2022; Pardoel et al., 2019; Zhang, Sun,
Huang, et al., 2024) while maintaining low computational complexity.
Moreover, it has been used as baseline evaluation model in previous
research studies (Mazilu et al., 2012; San-Segundo et al., 2019; Sigcha
et al., 2022, 2020).

3.3.2. Deep learning methods
Three different DL algorithms were implemented, fine-tuned and

evaluated. All consisted of different types of CNNs. These DL algorithms
excel at extracting intricate features and abstract patterns from ex-
tensive datasets through convolution operations applied to input data.
CNNs capitalize on three key principles: sparse interactions, parameter
sharing, and equivariant representations (LeCun, Bengio, & Hinton,
2015). They possess the ability to autonomously discern features from
images and signals, leading to cutting-edge performance in various
classification tasks. In domains such as time series classification, CNNs
offer notable advantages over alternative models, particularly in terms
of capturing local dependencies and maintaining scale invariance (Jin-
dong, Yiqiang, Shuji, Xiaohui, & Lisha, 2019). Among DL classification
algorithms, CNNs have been the most widely used in PD and also in
FoG recognition problems. Moreover, they have demonstrated superior
FoG recognition performance compared to RNNs and LSTMs (Sigcha
et al., 2023).

To create a baseline based on DL, the CNN multilayer perceptron
(CNN-MLP) architecture proposed in Bikias et al. (2021) was repro-
duced. Moreover, this study evaluated the potential of ConvMixer
(Trockman & Kolter, 2022) adapted for inertial signals as a mechanism
to reduce the computational burden. Finally, an architecture adapted
from a previous work (Borzì et al., 2023) that employs three different
convolutional heads was adapted and evaluated. In this work, we refer
to this architecture as Wide-CNN, due to the adaptation performed in
the number of input heads. The detailed implementation of these DL
architectures is described in the following.
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C

CNN-MLP: A network that uses CNN with max-pooling and MLP was
adapted and evaluated using a data representation based on
raw signals (Bikias et al., 2021). Although the principal settings
(number of CNN layers and their parameters) of this architecture
are similar to those reported in the corresponding article (Bikias
et al., 2021), the present reproduction differs in the number of
sensors and signals. Specifically, the output layer was adapted to
perform a binary prediction using a dense layer with a sigmoid
activation function, which outputs the probability of a FoG event.
The implemented algorithm is shown in Fig. 2.
The input of the CNN-MLP model has a size of 64 × 3, where
64 corresponds to the window size (i.e., 2 s with a sampling
rate of 32 Hz) and 3 refers to the three-dimensional acceleration
signal. The two convolutional layers have 100 and 40 filters,
respectively, and a kernel size of 10. A max-pooling layer with
pool size of 2 was included between the two layers to reduce the
feature map size. A dropout regularization technique was applied
to the CNN layers (value of 0.3) and dense layer (value of 0.5)
to avoid over-fitting. Next, a global average pooling (GAP) layer
was used to reduce the CNN feature maps to a one-dimensional
(1D) vector. Finally, this layer was connected to an output layer
that with a single neuron with sigmoid activation.

onvMixer: An adapted version of a ConvMixer (Trockman & Kolter,
2022) was implemented to determine its performance in FoG de-
tection. The ConvMixer is a novel architecture proposed for image
recognition. It consists of a patch embedding stage followed by
isotropic convolutional blocks. This architecture aims to achieve
competitive results with much lower complexity and computa-
tional cost. In more detail, the patch embedding stage divides
the input signals into non-overlapping patches and projects the
data from a multichannel sliding window into another dimension
that can be exploited by classification algorithms. This patching
strategy is achieved through a single convolution operation using
kernel and stride parameters of the same dimension, generating
non-overlapping patches in raster-scan order. Unlike traditional
CNNs that rely on convolution and pooling layers, or Trans-
formers networks that use self-attention layers, ConvMixer blocks
employ processing blocks with deep separable convolutions, a
common feature in modern CNN architectures. Furthermore, in
the ConvMixer, the feature size remains consistent throughout
the layers unlike traditional CNN architectures, where the feature
size decreases. The implemented ConvMixer algorithm is shown
in Fig. 3.
The input of the ConvMixer has size 64 × 3 as in the CNN-MLP
model. The input is connected to the Patch embedding block.
The extracted patches are connected to a gaussian error linear
units (GELU) activation and batch normalization (BatchNorm)
layer. After this, a ConvMixer section consisting of two ConvMixer
blocks is used. Each ConvMixer block uses a depthwise separable
convolution that consists of a depthwise convolution followed by
a point-wise convolution with a residual connection; moreover,
GELU and BatchNorm are applied after each convolution. Finally,
the ConvMixer section is connected to a GAP and the output layer
with a single neuron and sigmoid activation.

Wide-CNN: An adapted version of the multi-head CNN proposed in
Borzì et al. (2023) was implemented and evaluated. This model
uses different spatial resolutions to enhance the classification
performance. The reproduction of this architecture differs from
the original implementation in the use of a single input head
instead of using a multi-head approach. In the Wide-CNN the
input is copied to three different branches; however, the main
idea of using three different spatial resolutions is held in order
to capture useful features from the local to the global level (Borzì
et al., 2023). Finally, the output layer was adapted to perform
a binary prediction using a dense layer with sigmoid activation.
The implemented Wide-CNN algorithm is shown in Fig. 4.
5

In specific, the input of the Wide-CNN is connected to three
branches. Each of them comprises two convolutional layers with
16 filters and two max-pooling layers with a pool size of 3.
The kernel size is different in each head and reduces in size
in deeper layers. Specifically, kernel sizes of 6 and 3, 12 and
6, and 18 and 9 were used in each CNN branch, respectively.
In addition, a dropout strategy was applied in each CNN layer
and the dense layer, the values of each dropout were optimized
for each experiment (see Section 3.6) with values ranging from
0.1 to 0.4. The resulting feature maps generated by each branch
were flattened and concatenated with those of the other branches.
Subsequently, a dense layer with 16 neurons and a rectified linear
unit (ReLU) activation function was used. Finally, the output layer
with a single neuron and sigmoid activation provides the class
probability.

3.4. Data splitting and validation method

To comprehensively evaluate the performance of the models and
accurately assess their robustness, several data-splitting strategies and
validation methods were used. Fig. 5 summarizes the evaluation meth-
ods and the results obtained in this study.

In more detail, the datasets were independently evaluated using
a single dataset validation to generate baseline results for both ML
and DL approaches. After this, the datasets were consolidated into a
unified dataset and evaluated using an all-in-one validation approach
to develop a generalized model. Finally, cross-dataset validation was
performed using only the data from a single dataset as a test subset.

A detailed overview of these methods is given in the following
sections. It is worth noting that all validation strategies were performed
by ensuring the independence of the subjects in the different sets,
i.e., training, validation, and testing. In particular, data from the same
subject belong only to a single subset, thus avoiding overfitting and
providing more realistic estimates of model performance in unseen
data.

3.4.1. Single dataset evaluation
Fig. 6 schematically reports the validation method at the single

dataset level. This represents the most common validation approach,
in which a single dataset is divided into training, validation, and
test subsets. This validation approach was used to obtain baseline
results, allowing to compare the performance of the different models
implemented in this study. Additionally, these results allow for a com-
parison of the performance of our reproductions with state-of-the-art
approaches proposed in similar studies.

Subjects were assigned to the training, validation, and test sets
according either to the H&Y stage (Rempark and Daphnet datasets)
or the percent time spent with FoG (Oday dataset), with a proportion
of subjects of 0.5, 0.25 and 0.25 in the three sets. The distribution of
subjects and the mean H&Y for each subset are provided in Table 3.
This settings were used in subsequent experiments to create different
subsets of training, validation and testing.

3.4.2. All-in-one evaluation
Fig. 7 describes the all-in-one dataset evaluation. For this task, the

three datasets were combined to form a single one. This was done by
combining each of the three subsets (e.g., training, validation, test).
In this case, the different subsets include data from all datasets, but
they are independent because they include data from different subjects.
This validation approach aims to test whether increasing the size
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Fig. 2. CNN-MLP architecture. f: number of filters; k: kernel size.
Fig. 3. ConvMixer architecture adapted for inertial signals. GELU: gaussian error linear unit; BatchNorm: batch normalization.
Fig. 4. Wide CNN. f: number of filters; k: kernel size.
and heterogeneity of the dataset is beneficial to the performance and
robustness of the model.

3.5. Cross-dataset evaluation

A cross-dataset evaluation strategy was adopted to evaluate whether
the combination of different datasets in the training and validation sets
provides consistent performance in the test dataset.
6

Fig. 8 schematically shows the cross-dataset evaluation methodol-
ogy. In this case, a single dataset is used as a test subset (e.g., combining
train, validation, and test subsets), while the other two datasets were
combined to create the training and validation subsets. In specific,
the train subset was created by combining the 2 remaining train
subsets plus the remaining 2 test subsets, while the validation subset
was created with the 2 remaining validation subsets. This procedure
was iterated for each dataset under test. This allows us to assess
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Fig. 5. Schematic representation of the datasets, validation methods, and results. ML: machine learning; DL: deep learning.
Fig. 6. Single dataset evaluation.

Table 3
Characteristics of the training, validation and test subsets in each dataset.

Subset Rempark Daphnet Oday

Number of subjects
Train 12 5 3
Validation 4 3 2
Test 5 2 2

Mean H&Y
Train 3.1 2.5 –
Validation 2.8 2.5 –
Test 3.2 2.6 –

Mean Age
Train 69.5 66.6 56.2
Validation 66.5 63.7 63.5
Test 72.2 70 57

how effectively models, trained on diverse datasets, can extend their
generalization to a new and entirely unknown dataset.

3.6. Hyperparameter optimization

Training DNNs is an iterative process that aims to find a satisfactory
solution to a given problem. During training, hyperparameters such as
batch size, number of epochs, layer type and their parameters remain
constant. Therefore, the precise optimization of these hyperparame-
ters has a significant impact on the performance of the model and
computational efficiency during training (Glorot & Bengio, 2010).

In this study, classification algorithms were subjected to hyper-
parameter optimization using the Hyperband method (Li, Jamieson,
DeSalvo, Rostamizadeh, & Talwalkar, 2017). This method achieves
an effective balance between performance and speed, particularly in
problems characterized by high-dimensional space. It aims to efficiently
allocate resources (i.e., computation time, number of iterations) to
different hyperparameter configurations, with the goal of finding the
best-performing configuration within a limited budget. A successive
halving strategy is used to allocate resources. Specifically, the algorithm
starts by training all configurations for a fixed number of iterations.
Then, it discards the worst-performing half of the configurations and
allocates additional resources (e.g., more iterations) to the remaining
half. This process continues until only one configuration remains or the
budget is exhausted. Given the multitude of experiments and configura-
tions required for testing various data splitting strategies and evaluated
DL models, this method allowed the implementation of an efficient
optimization process.
7

Table 4
Range of values and steps used for the optimization of the machine and deep learning
approaches. CNN: convolutional neural network; MLP: multi-layer perceptron; RF:
random forest.

Architecture Parameter Range (Step)

learning rate 1 ⋅ 10−5 to 1 ⋅ 10−1

CNN-MLP weight decay 1 ⋅ 10−6 to 1 ⋅ 10−2

batch size [32, 64, 128, 256, 512, 1024]

learning rate 1 ⋅ 10−5 to 1 ⋅ 10−1

ConvMixer weight decay 1 ⋅ 10−6 to 1 ⋅ 10−2

batch size [32, 64, 128, 256, 512, 1024]
patch size [4, 5, 16, 32]
ConvMixer blocks 1 to 5 (step=1)
kernel size [3, 5, 7, 9, 10]
number of filters [8, 16, 32, 64, 128]

learning rate 1 ⋅ 10−6 to 1 ⋅ 10−1

Wide-CNN weight decay 1 ⋅ 10−6 to 1 ⋅ 10−2

batch size [32, 64, 128, 256, 512, 1024]

number of estimators 40 to 80 (step=10)
RF max depth [5, 6, 7, 10]

max features [5, 7, 9, 10]

As part of this optimization process, an emphasis was placed on fine-
tuning the parameters of learning rate, the weight decay and batch size.
The data used for the optimization processes correspond to the test and
validation subsets that were generated for each validation experiment.
In specific, for the CNN-MLP architecture, the learning rate, weight
decay and batch size were fine-tuned, while the type of layers and
layer parameters were kept as in the original study (Bikias et al., 2021).
For the ConvMixer, the learning rate, weight decay, the number of
ConvMixer blocks and their parameters, including the number of filters
and kernel size, were fine-tuned. For the Wide-CNN, the learning rate,
weight decay and batch size were tuned, while the parameters used
within the CNN layers in the three branches were kept as in the original
publication (Borzì et al., 2023). For the RF algorithm, the number of
estimators, maximum depth, and maximum number of features were
optimized. A minimum sample split of 2, minimum sample leaf of
1, and a split criterion based on the Gini impurity were set. The
range of values used for parameter optimization are shown in Table 4.
The parameter range were selected considering studies focusing on
developing FOG detection algorithms (Borzì & Sigcha & Olmo, 2023;
Camps et al., 2018; Sigcha et al., 2022).

3.7. Training settings

DL models were trained using the backpropagation algorithm and
the adaptive moment estimation with weight decay (AdamW) opti-
mizer (Loshchilov & Hutter, 2017). The training protocol used the
binary cross-entropy loss function, a batch size ranging from 512 to
1024 according to the experiment, and maximum number of epochs of
300.

In addition, an early stopping strategy was used that terminates
training when the validation loss shows no improvement over a span
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Fig. 7. All-in-one data splitting. Val: Validation subset.
Fig. 8. Cross-dataset evaluation. Val: Validation subset.
of 10 consecutive epochs. This prevents over-fitting and minimizes
unnecessary computational overhead (Shen, Gao, & Ma, 2022).

Tables 12–14 (Appendix) provide a summary of the hyperparam-
eters utilized in training of the different ML and DL approaches and
experiments.

3.8. Performance evaluation

To calculate and evaluate classification performance, the following
metrics are defined. True positives (TP) are true samples (FoG) cor-
rectly identified by the model. False positives (FP) represent negative
samples (non-FoG) incorrectly predicted as positive. False negatives
(FN) correspond to positive samples that were not detected by the
model. Finally, true negatives (TN) represent correctly classified neg-
ative instances. Sensitivity (Eq. (1)), also known as true positive rate
or recall, measures the proportion of actual positive instances (FoG
windows) that are correctly identified by the detection algorithm. High
sensitivity indicates that the algorithm can effectively identify most of
the actual FoG events. Specificity (Eq. (2)) measures the proportion
of actual negative instances (non-FoG windows) that are correctly
identified as negative by the detection algorithm. High specificity
indicates that the algorithm can effectively distinguish between FoG
and normal activities. Precision (Eq. (3)) measures the proportion of
detected positive instances (identified as FoG) that are indeed positive
events. High precision indicates a high confidence in detecting FoG.
It is worth noting that the precision metric is often not reported in
studies related to FoG detection. However, it is used in this study to
assess the false alarms rate. Finally, the area under the curve (AUC)
measures the ability of a classifier to distinguish between classes and is
used as a summary of the receiver operating characteristic (ROC) curve.
While the AUC is independent of the classification threshold (Hanley &
McNeil, 1982), sensitivity, specificity, and precision highly depend on
this. The threshold was selected according to the minimum equal error
8

rate (EER) calculated on the training set. Then, it was applied to the
validation and test set.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(1)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(3)

4. Results and discussion

This section reports and discusses the experiments and results
obtained with the different evaluation methods and algorithmic ap-
proaches. All experiments were repeated six times to mitigate variabil-
ity due to stochastic processes in the training procedure. The reported
results correspond to the mean values over multiple iterations.

4.1. Single dataset evaluation

Table 5 reports a summary of the FoG detection performance of
the DL and ML models. The results refer to the test set. More detailed
results obtained in the train, validation and test subsets are reported
in Tables 8–11 (Appendix). All models provided the best performance
on the Rempark dataset, followed by the Daphnet and Oday datasets.
This reflects the dataset size, in terms of total amount of data, num-
ber of subjects, and number of FoG episodes. As expected, a large
amount of data and FoG instances seems to promote performance and
generalization capability.

From Table 5, it is evident that the DL models performed better
than the ML approach in all datasets. Specifically, an improvement
in AUC of 8.8–11.2%, 8.4–10.0%, and 3.1–5.6% was observed on
the Rempark, Oday, and Daphnet datasets, respectively. This indicates
that automatically extracted features from the CNN models perform
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Table 5
Classification performance of different models in the different datasets. The results refer
to the test set. CNN: convolutional neural network; MLP: multi-layer perceptron; RF:
random forest; AUC: area under the curve of the receiver operating characteristic.

Model Dataset Sensitivity Specificity Precision AUC

CNN-MLP
Rempark 0.836 0.883 0.566 0.934
Oday 0.836 0.509 0.301 0.770
Daphnet 0.632 0.949 0.602 0.852

ConvMixer
Rempark 0.798 0.865 0.519 0.914
Oday 0.744 0.670 0.366 0.785
Daphnet 0.599 0.933 0.521 0.827

Wide-CNN
Rempark 0.829 0.899 0.598 0.938
Oday 0.848 0.557 0.330 0.786
Daphnet 0.587 0.955 0.616 0.844

RF
Rempark 0.923 0.729 0.383 0.826
Oday 0.711 0.662 0.346 0.686
Daphnet 0.799 0.793 0.346 0.796

better than hand-crafted features used to feed the classic ML model.
Although RF is one of the best choices among ML models for FoG
detection (Pardoel et al., 2019), the DL networks outperformed the RF
algorithm.

The results reported in Table 5 are consistent with those reported
in related studies. As far as concerns the Rempark dataset, accuracy
of 0.89 was obtained using a CNN (Camps et al., 2018). AUC of
0.94 was achieved using a combination of CNN and LSTM (Sigcha
et al., 2020), 0.95 with a CNN (Borzì et al., 2023), and 0.96 with a
Transformer-CNN (Sigcha et al., 2022). However, in the latter study, a
LOSO validation was used.

As for the Oday dataset, an AUC of 0.75 was obtained when using
a single sensor placed on the lower back, increasing up to 0.83 when
combined with two additional sensors on the ankles (O’Day et al.,
2022).

Regarding the Daphnet dataset, the performance varied based on
the number of sensors included in the analysis. When using the three
available sensors, an accuracy of 0.83 was obtained with an LSTM
network (Ashour et al., 2020), 0.92 with a combination of CNN and
LSTM (Li et al., 2020), 0.93 with a CNN (San-Segundo et al., 2019), and
an AUC of 0.77 with a convolutional denoising autoencoder (CDA) (Mo-
hammadian Rad, Van Laarhoven, Furlanello, & Marchiori, 2018). Fur-
thermore, an accuracy of 0.79 was achieved using a single inertial
sensor placed on the thigh by using a CDA (Noor et al., 2021).

Overall, the results suggest that the implemented DL models align
with state-of-the-art approaches for FoG detection, with similar perfor-
mance and generalization capability (see Appendix).

Finally, the Wide-CNN model provided the best results in two out
of three datasets (Rempark and Oday), while the CNN-MLP model
outperformed the other DL algorithms when evaluated on the Daphnet
dataset.

4.2. All-in-one dataset evaluation

Table 6 reports the FoG detection performance of different DL
and ML algorithms using the all-in-one evaluation strategy. The best
results were obtained using the Wide-CNN model, which provided
the best AUC in the train, validation, and test subsets. In addition,
the Wide-CNN outperformed the other models in three out of four
metrics (specificity, precision, and AUC), while the best sensitivity was
obtained using the RF model.

The comparison of Tables 5 and 6 allows for assessing the effect
of merging different datasets. As for the classic ML model, the perfor-
mance recorded when merging all datasets (AUC of 0.798) is in line
with that obtained in the Daphnet dataset (AUC of 0.796), superior
to that recorded in the Oday dataset (AUC of 0.686), and lower than
the results obtained in the Rempark dataset (AUC 0.826). As for the
9

DL models, the AUC in the range 0.872–0.912 (test results in Table 6)
Table 6
Classification performance of different models when evaluated on the combination of
all datasets. Results are reported separately for the train, validation and test sets. CNN:
convolutional neural network; MLP: multi-layer perceptron; RF: random forest; AUC:
area under the curve of the receiver operating characteristic.

Model Subset Sensitivity Specificity Precision AUC

CNN-MLP
Train 0.827 0.827 0.385 0.911
Validation 0.788 0.788 0.217 0.874
Test 0.765 0.874 0.513 0.907

ConvMixer
Train 0.812 0.812 0.361 0.897
Validation 0.797 0.797 0.226 0.880
Test 0.743 0.805 0.401 0.872

Wide-CNN
Train 0.861 0.861 0.449 0.935
Validation 0.810 0.810 0.241 0.892
Test 0.759 0.891 0.548 0.912

RF
Train 0.827 0.827 0.386 0.914
Validation 0.800 0.799 0.229 0.876
Test 0.870 0.727 0.361 0.798

Table 7
Cross-dataset evaluation with an independent test subset. AUC: area under the receiver
operating characteristic.

Test data Subset Sensitivity Specificity Precision AUC

Rempark
Train 0.879 0.879 0.510 0.947
Validation 0.828 0.828 0.300 0.908
Test 0.532 0.871 0.315 0.829

ODAY
Train 0.890 0.890 0.516 0.955
Validation 0.859 0.859 0.283 0.928
Test 0.129 0.921 0.362 0.654

Daphnet
Train 0.877 0.877 0.503 0.947
Validation 0.833 0.833 0.307 0.911
Test 0.522 0.881 0.320 0.839

is significantly better than the best results obtained in the Oday and
Daphnet datasets (Table 5). However, performance is lower than that
registered in the Rempark dataset. The latter represents the largest
dataset in terms of the number of subjects and number of FoG episodes.
In addition, it is the only one collected in the home environment.
Based on the results presented in Table 6, subsequent experiments were
performed only using the WideCNN model.

4.3. Cross-dataset evaluation

Table 7 reports the FoG detection performance of the Wide-CNN
model when training iteratively on two datasets and testing on the
remaining one. According to Table 7, it is evident that performance
is impaired in all cases, with AUC in the range 0.654–0.839 for the
test subsets. By comparing the results of the train, validation, and
test subsets, a clear performance gap is observed moving from the
validation to the test set.

Specifically, a significant decrease in AUC of 7.9%, 27.4%, and
7.2% is observed when comparing the test and validation subsets
for the Rempark, Oday, and Daphnet dataset, respectively. Moreover,
sensitivity represents the most affected metric, showing substantial
impairment. The worst results were obtained when training the model
on the Rempark and Daphnet datasets and testing on the Oday dataset.
This is somehow surprising, as the former datasets comprise 31 PwPD
manifesting a total of 1347 FoG episodes. Moreover, they include differ-
ent activities and walking tasks, properly defined to represent common
ADL and generate possible false-positive events. On the contrary, the
Oday dataset includes only 7 subjects and pre-defined gait tasks. The
results of the cross-dataset evaluation on the Rempark and Daphnet
datasets are similar in terms of AUC (0.829 and 0.839). This suggests
that the two datasets are somehow similar, in terms of the contribution
of gait patterns, activities, and FoG manifestations.

From the comparison of Tables 5 and 7 it is evident that per-

formance is impaired when testing DL models on datasets different
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from those used in the training and validation stage. These results
are very relevant, as it seems that DL models showing good perfor-
mance on an adequate dataset, do not ensure similar performance
on a different dataset. It is worth noting that the wearable devices
used for data collection were different in the three datasets. However,
technical requirements (e.g. full-scale, sensitivity, sampling frequency)
were set to ensure proper data representation during ADL and FoG.
In addition, the different datasets underwent a pre-processing stage
aimed at uniforming signal scale and sampling frequency. On the
other hand, the sensor location is slightly different in the datasets,
but this should not significantly affect the performance of robust DL
algorithms. Additionally, the sensor orientation was adjusted to ensure
uniformity among datasets. In a previous work (Borzì et al., 2023),
we trained a DL model similar to the Wide-CNN using the Rempark
dataset, and we tested on a dataset (Borzì & Olmo & Artusi & Lopiano,
2020) including 38 PwPD that manifested a total of 52 FoG episodes.
Despite the difference in the type of wearable device, its position and
orientation, the algorithm exhibited similar performance in terms of
AUC, while a reduction in sensitivity and an improvement in specificity
were observed.

In recent decades, a lot of effort has been devoted to the de-
velopment of accurate FoG detection algorithms. However, most of
the studies collected proprietary datasets, using different prototype
or commercial wearable inertial sensors and specific technical data
acquisition settings. Some FoG datasets are available to the research
community (Bächlin et al., 2010; Mazilu et al., 2016; O’Day et al., 2022;
Rodríguez-Martín et al., 2017), however, they were collected using
different sensor settings. The results of this study suggest that some
kind of agreement is necessary to provide uniform data. The indication
of sensor settings (i.e., range, sensitivity, sampling frequency), along
with pre-defined sensor locations can help create homogeneous datasets
in terms of data acquisition, but still including different subjects mon-
itored in different environments.

In contrast to classical ML processing pipelines, data-driven DL
models have demonstrated excellent performance on diverse datasets.
However, the ability to generalize to external datasets is an important
limitation to be considered with caution. Regardless of the training
dataset, testing on a different dataset leads to an evident reduction
in performance. Moreover, even with a small dataset, augmenting
the training set with samples from different datasets does not lead
to improved performance in the test set. This is surprising, as DL
models are expected to exploit the size and heterogeneity of the dataset
to provide more robust results. Finally, it is worth considering the
precision metric, which represents the false alarm rate. Although it is
desirable for most FoG episodes to be detected (high sensitivity), an
excessive number of false positives (low precision) makes the algorithm
inapplicable in real-world practice. Therefore, the trade-off between
sensitivity and precision should be carefully selected when developing
wearable applications oriented to real-life scenarios.

4.4. FoG manifestation in different datasets

To further investigate the possible differences in FoG recorded in the
different datasets, analysis of variance (ANOVA) tests were performed
on each extracted feature in the Mazilu feature set. Fig. 9 shows the
histogram of some features in the three datasets. As can be seen,
the distribution of feature values such as standard deviation, entropy,
energy, and power is different among the datasets (p < 0.001).

Differences were observed in both time and frequency domains,
uggesting different FoG characteristics in each dataset. This may be
ue to the great heterogeneity of FoG manifestation, which is influ-
nced by intra- and inter-subject variability. It is worth noting that the
ifference between the Daphnet and Oday datasets is most obvious,
hile the Rempark dataset lies between them. This may be due to the

arger number of subjects, greater heterogeneity in task performance,
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nd higher number of FoG episodes recorded in the Rempark, compared t
to the other datasets. The large number of FoG windows collected from
each dataset (more than a thousand) lends statistical significance to
the results. Because subjects are independent in each dataset and the
sample size is small (maximum 21 subjects), it appears that each dataset
was not able to capture sufficient variability in FoG manifestation to
ensure adequate generalization to a larger population.

To further assess inter-subject variability, the distribution of the
freezing index (FI) values was compared between subjects included in
the same dataset. The FI represents the most common and well-known
FoG characteristic that allows to distinguish FoG from normal gait.
Fig. 10 shows the histogram of FI values across multiple datasets. For
each dataset, the distribution for each subject is represented in different
colors.

As evident, there is inter-subject variability, with distributions for
some subjects that are significantly different from the others. This
further confirms that FoG manifestations are subject-dependent. It is
worth noting that the distributions are similar in the Rempark dataset
(Fig. 10(b)). This may be due to the large number of FoG episodes
collected from each subject. On the other hand, some subjects from the
Daphnet (Fig. 10(a)) and Oday dataset (Fig. 10(c)) differ significantly
from the others. Moreover, the distribution of some subjects from the
Oday dataset are not represented in the other datasets, and this may
hinder adequate cross-dataset accuracy.

Shapley additive explanations (SHAP) analysis (Lundberg & Lee,
2017) was performed to better understand the reduction in perfor-
mance observed in cross-dataset evaluation experiments. SHAP analysis
allows for a consistent and objective explanation of the impact of each
feature on model prediction. The RF model was considered and SHAP
values were calculated on the test set.

Detailed SHAP plots for each dataset can be found in Figs. 12,13,14
(Appendix). The results are summarized in Fig. 11, where the average
absolute SHAP value of different features in each dataset are reported.
Results refer to the test set, and features with low contribution in all
datasets were not reported.

As expected, the freezing index proves to be the most significant
feature in FoG detection. In general, spectral features have a larger
contribution compared to temporal characteristics. In addition, features
related to amplitude, intensity, and regularity of the acceleration signal
were extracted from the 𝑥-axis (vertical acceleration). On the other
hand, the freezing index computed from the 𝑦-axis (anterior–posterior
acceleration) shows the strongest impact on the model output. How-
ever, significant heterogeneity is evident, with some features having a
strong impact on some datasets but not on others.

In more detail, the sum of spectral power along the 𝑥-axis has a high
ontribution in the Daphnet and Rempark datasets, but not in Oday.
he standard deviation along the 𝑥-axis has a significant impact in the
aphnet and Oday datasets, but not in Rempark. The freezing index
long the 𝑧-axis has a significant impact on the Daphnet and Oday
atasets, but not on Rempark. Overall, these differences in individual
eatures help to explain why ML models trained on one dataset cannot
eneralize well to the other datasets.

.5. Limitations

This study has some limitations that provide directions for future
esearch. First, the performance and generalization capability of sta-
istical and mathematical models that do not require ML were not
onsidered. Such approaches showed lower performance than the ML
nd DL approaches (Giannakopoulou et al., 2022; Mancini et al., 2019;
ardoel et al., 2019). However, despite performing worse on a single
ataset, they may show a more consistent performance in cross-dataset

ests.
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Fig. 9. Histogram of feature values in different datasets.
Fig. 10. Histogram of freezing index values for each subject in the different datasets.
Fig. 11. Average shapley additive explanations (SHAP) values of different features in
each dataset. Values represent the average contribution on the model output.

Despite the large number of FoG episodes (>200) recorded in each
dataset, all datasets are relatively small and include 7 to 21 subjects.
This might prevent the models from learning meaningful representa-
tions of the data that can be robust in tests on multiple datasets.

The datasets used were different in terms of recording device, envi-
ronment, and experimental procedures. Cross-tests performed among
11
datasets collected with the same device under different conditions
could provide additional insights for the development of a generalizable
method.

Finally, only one wearable device was considered, positioned near
the center of mass of the body. It is not entirely clear whether similar
results can be obtained using lower-limb sensors, which better capture
leg dynamics during gait and FoG.

5. Conclusions

This study aims to evaluate the generalization capability of DL
algorithms in FoG detection. For this purpose, different FoG datasets
were used. In addition, the performance of DL models was compared
with that of classical ML approaches, which involved the extraction of
hand-crafted features. DL models showed better results than shallow
ML algorithms, both in terms of performance on a single dataset and
in terms of generalization capability. However, all approaches did not
perform robustly in cross-dataset tests. Despite using the same type
of sensor and similar location on the body, the models trained on
one dataset failed to generalize well to other datasets. The insights
provided by inter-dataset and inter-subject evaluation suggest that the
peculiar characteristics of FoG differ significantly in different datasets.
Moreover, within each dataset, the FoG pattern of some subjects is very
different from that of others. From the model’s perspective, the contri-
bution of each feature to the final prediction varies significantly across
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s
i

datasets, and this is reflected in a clear reduction in performance in
cross-dataset tests. All together, these results suggest that personalized
models (i.e., models specifically trained on each subject) or fine-tuning
strategies are needed that adapt to specific FoG patterns and enhance
the recognition capability. Future works should evaluate the general-
ization capability of other DL algorithms. In addition, more complex
optimization methods (e.g., evolutionary and metaheuristics optimiz-
ers (Abdel-Basset, Abdel-Fatah, & Sangaiah, 2018)) can be exploited
to further improve performance and robustness of DL models (Revin,
Potemkin, Balabanov, & Nikitin, 2023). Finally, future studies should
further investigate the effect of different wearable devices used for
data collection. Other datasets should be collected using the same
recording device under different conditions and environments. These
can further demonstrate the true generalization capability of ML and
DL algorithms and can contribute to the development of generalized
methodologies for FoG detection strategies, useful for both research and
clinical applications.
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See Tables 8–14 and Figs. 12–14.
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Table 8
Classification performance of the CNN-MLP network in single dataset experiments.

Dataset Subset Sensitivity Specificity Precision AUC

Rempark
Train 0.876 0.876 0.442 0.949
Validation 0.870 0.870 0.336 0.946
Test 0.836 0.883 0.566 0.934

Oday
Train 0.776 0.777 0.663 0.839
Validation 0.736 0.736 0.372 0.809
Test 0.836 0.509 0.301 0.770

Daphnet
Train 0.857 0.857 0.476 0.933
Validation 0.790 0.790 0.125 0.859
Test 0.632 0.949 0.602 0.852

Table 9
Classification performance of the ConvMixer network in single dataset experiments.

Dataset Subset Sensitivity Specificity Precision AUC

Rempark
Train 0.869 0.869 0.428 0.945
Validation 0.871 0.871 0.340 0.943
Test 0.798 0.865 0.519 0.914

Oday
Train 0.903 0.903 0.841 0.965
Validation 0.710 0.711 0.343 0.780
Test 0.744 0.670 0.366 0.785

Daphnet
Train 0.899 0.899 0.574 0.964
Validation 0.820 0.820 0.148 0.894
Test 0.599 0.933 0.521 0.827

Table 10
Classification performance of the Wide-CNN network in single dataset experiments.

Dataset Subset Sensitivity Specificity Precision AUC

Rempark
Train 0.888 0.888 0.471 0.955
Validation 0.869 0.869 0.335 0.944
Test 0.829 0.899 0.598 0.938

Oday
Train 0.837 0.838 0.745 0.909
Validation 0.719 0.719 0.352 0.788
Test 0.848 0.557 0.330 0.786

Daphnet
Train 0.868 0.868 0.501 0.940
Validation 0.804 0.805 0.136 0.883
Test 0.587 0.955 0.616 0.844

Table 11
Classification performance of the RF algorithm in single dataset experiments.

Dataset Subset Sensitivity Specificity Precision AUC

Rempark
Train 0.827 0.827 0.350 0.911
Validation 0.812 0.812 0.247 0.893
Test 0.923 0.729 0.383 0.826

Oday
Train 0.867 0.867 0.786 0.947
Validation 0.611 0.609 0.249 0.641
Test 0.711 0.662 0.346 0.686

Daphnet
Train 0.828 0.827 0.421 0.914
Validation 0.749 0.749 0.101 0.815
Test 0.799 0.793 0.346 0.796

https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
https://github.com/stanfordnmbl/imu-fog-detection/tree/main/data
https://github.com/Lu1g1n0/Freezing-of-gait-detection-and-prediction
https://github.com/Lu1g1n0/Freezing-of-gait-detection-and-prediction
https://github.com/Lu1g1n0/Freezing-of-gait-detection-and-prediction
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Table 12
List of hyperparameters used to train machine and deep learning models in the single dataset experiments. CNN: convolutional
neural network; MLP: multi-layer perceptron; RF: Random Forest.

Model Dataset Learning rate Weight decay Batch size Other parameters

CNN-MLP
Rempark 9 ⋅ 10−3 9 ⋅ 10−4 512
Oday 4 ⋅ 10−4 1 ⋅ 10−4 64
Daphnet 7 ⋅ 10−4 4 ⋅ 10−4 512

ConvMixer
Rempark 9 ⋅ 10−3 7 ⋅ 10−4 128 patch size: 4
Oday 9 ⋅ 10−3 7 ⋅ 10−4 32 ConvMixer blocks: 2
Daphnet 8 ⋅ 10−3 7 ⋅ 10−4 32 filters (size): 128 (9)

Wide-CNN
Rempark 7 ⋅ 10−3 5 ⋅ 10−3 512
Oday 8 ⋅ 10−3 7 ⋅ 10−4 64
Daphnet 7 ⋅ 10−3 7 ⋅ 10−4 1024

RF
Rempark n. estimators: 60
Oday maximum depth: 10
Daphnet maximum n. features: 7
Table 13
List of hyperparameters used to train machine and deep learning models for the all-in-one dataset experiments. CNN:
convolutional neural network; MLP: multi-layer perceptron.

Model Learning rate Weight decay Batch size Other parameters

CNN-MLP 1 ⋅ 10−2 3 ⋅ 10−3 512

Convmixer 9 ⋅ 10−3 8 ⋅ 10−4 512
patch size: 4
ConvMixer blocks: 2
filters (size): 128 (9)

Wide CNN 1 ⋅ 10−3 7 ⋅ 10−4 256

RF
n. estimators: 60
maximum depth: 10
maximum n. features: 7
Table 14
List of hyperparameters used to train the deep learning model for the cross-dataset experiments.
CNN: convolutional neural network.

Model Dataset Learning rate Weight decay Batch size

Wide-CNN
Rempark 7 ⋅ 10−3 7 ⋅ 10−4 256
Oday 6 ⋅ 10−3 7 ⋅ 10−4 256
Daphnet 7 ⋅ 10−3 7 ⋅ 10−4 1024
Fig. 12. Shapley additive explanations (SHAP) values of different features in the
Daphnet dataset. Features are sorted in order of importance from top to bottom. Red
and blue points indicate high and low feature values, respectively. Positive and negative
SHAP values indicate positive (FoG) and negative (non-FoG) contribution on the model
output.
13
Fig. 13. Shapley additive explanations (SHAP) values of different features in the
Rempark dataset. Features are sorted in order of importance from top to bottom. Red
and blue points indicate high and low feature values, respectively. Positive and negative
SHAP values indicate positive (FoG) and negative (non-FoG) contribution on the model
output.
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Fig. 14. Shapley additive explanations (SHAP) values of different features in the Oday
dataset. Features are sorted in order of importance from top to bottom. Red and
blue points indicate high and low feature values, respectively. Positive and negative
SHAP values indicate positive (FoG) and negative (non-FoG) contribution on the model
output.
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