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The automotive field is undergoing significant technological advances, which includes making the next 
generation of autonomous vehicles smarter, greener and safer through vehicular networks, which are 
often referred to as Vehicle-to-Everything (V2X) communications. Together with V2X, centralized maneuver 
management services for autonomous vehicles are increasingly gaining importance, as, thanks to their complete 
view over the road, they can optimally manage even the most complex maneuvers targeting L4 driving and 
beyond. These services face the challenge of strictly requiring a high reliability and low latency, which are 
tackled with the deployment at orchestrated Multi-Access Edge Computing (MEC) platforms. In order to properly 
manage safety-critical maneuvers, these services need to receive a large amount of data from vehicles, even 
though the useful subset of data is often related to a specific context on the road (e.g., to specific road users or 
geographical areas). Decoding and post-processing a large amount of raw messages, which are then for the most 
part filtered, increases the load on safety-critical services, which should instead focus on meeting the deadlines 
for the actual control and management operations. On this basis, we present an innovative open-source, 5G & 
MEC enabled service, called Server Local Dynamic Map (S-LDM). The S-LDM is a service that collects information 
about vehicles and other non-connected road objects using standard-compliant messages. Its primary purpose 
is to create a centralized dynamic map of the road that can be shared efficiently with other services managing 
L4 automation, when needed. By doing so, the S-LDM enables these services to widely and precisely understand 
the current situation of sections of the road, offloading them from the need of quickly processing a large 
number of messages. After a detailed description of the service architecture, we validate it through extensive 
laboratory and pilot trials, involving the MEC platforms and production 5G networks of three major European 
network operations and two Stellantis vehicles equipped with V2X On-Board Units (OBUs). We show how it can 
efficiently handle high update rates and process each messages in less than few tenths of microseconds. We also 
provide a complete scalability analysis with details on deployment options, providing insights on where new 
instances should be created in practical 5G-based V2X scenarios.
1. Introduction

In recent years, the automotive industry has been increasingly fo-

cusing on providing high levels of automation to customers, developing 
more and more enhanced Automated Driving Systems (ADS) towards 
the deployment of the so-called Society of Automotive Engineers (SAE) 
Level 4 (L4). This level of automation treats the driver almost as a 
passenger of the car, being able to manage autonomous driving and 
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perform, in case of necessity, an automatic ADS fallback [1]. A cru-

cial role in enabling fully automated driving is played by the exchange 
of data between vehicles and centralized services, as well as between 
vehicles themselves. Different telecommunications standards, including 
IEEE 802.11p (the automotive version of “Wi-Fi”) and 3GPP C-V2X (rep-

resenting the application of cellular networks to the vehicular field), 
facilitate said data exchange, commonly known as V2X (Vehicle-to-

Everything).
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C-V2X enables, in particular, Ultra Reliable Low-Latency Commu-

nications (uRLLC), both between vehicles (through the PC5 interface) 
and towards the infrastructure (through the Uu interface), thanks to the 
emergence of 5G.

With the availability of low-latency and high-throughput connectiv-

ity, it becomes feasible to create and implement centralized services 
that can obtain the latest information about the road situation, and pro-

vide timely instructions to safely perform highly automated maneuvers, 
up to SAE L4.

High levels of automation are difficult to attain by solely rely-

ing on Vehicle-to-Vehicle (V2V) distributed paradigms, as vehicles are 
equipped with limited computational capabilities and a restricted per-

spective of the road (indeed, every pure V2V technology has a limited 
communication range). It becomes thus crucial to develop and deploy 
5G-enabled, real-time, centralized services for highly automated ma-

neuver management, able to build an efficient dynamic map of the 
road, and provide this data either to the vehicles or to other central-

ized services, with the aim of centrally coordinating L4 maneuvers, 
such as centralized automated lane changes. These services, and the 
way they receive data from vehicles and interact with other infrastruc-

ture components thanks to 5G, are still an open research topic, which is 
currently being addressed by several H2020 European Projects, such as 
5G-CARMEN [2].

Furthermore, centralized services for automated maneuver manage-

ment, up to SAE L4, may require the reception of a large amount of 
data from vehicles. However, most of the times only a subset of pre-

processed data is really required, related to a limited set of vehicles 
and/or to a limited portion of the road, i.e., a “map” of a section of 
the road. The provision of data to both centralized services and vehi-

cles should also be performed in a timely manner, guaranteeing high 
reliability and low latency.

To tackle this challenge, this paper presents a centralized Local 
Dynamic Map (LDM) service, called Server Local Dynamic Map (S-

LDM), developed as part of the 5G-CARMEN project [2], designed as 
a 5G-enabled Multi-Access Edge Computing (MEC) component. The S-

LDM features a custom memory-efficient database containing the latest 
kinematic information plus path history data of all vehicles and non-

connected objects, traveling in a given geographical area. In this way, 
it can effectively provide other MEC services with a filtered, processed 
version of the stored data they require for the execution of highly auto-

mated maneuvers.

The information about connected vehicles is gathered through the 
reception of standardized messages such as Cooperative Awareness 
Messages (CAMs) [3], from where valuable information can be ex-

tracted, such as their geographical position, speed, heading angle, steer-

ing and exterior lights state. For detected objects instead, information 
gathered by the vehicle onboard sensors can be sent to the S-LDM 
encoded as Virtual CAMs. The Virtual CAM, called in this way to distin-

guish it from the actual connected vehicles CAMs, has been chosen as 
a preliminary implementation anticipating the target Collective Percep-

tion Message (CPM). Instead of sending a list of objects as in a CPM, the 
absolute position of the detected object is calculated based on sensed 
data and encoded as a standard CAM. Besides Virtual CAMs, support to 
standardized CPMs (defined in [4]), is currently being developed and it 
is expected to be released in the next version of the S-LDM.

Our work focuses not only on the deployment of the S-LDM on 
the 5G-CARMEN infrastructure, but also on extensive evaluation cam-

paigns. These campaigns involve performance tests in the laboratory as 
well as measurements carried out on MEC platforms of real network 
operators, both domestically and cross-border, using V2X-equipped ve-

hicles provided by Stellantis.

Indeed, the S-LDM can be configured to support high scalability and 
cross-border operations, which are a focus of the 5G-CARMEN project. 
Being a centralized service, the goal of the S-LDM is to serve an elevated 
2

number of vehicles for a richer and more extensive vision of the road. 
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To this end, an extensive scalability study of the service has been carried 
out for this work.

It should also be highlighted how the management of a broader vi-

sion of the road is critical as it allows for more accurate traffic flow pre-

diction, which necessitates the collection and analysis of vast amounts 
of data from various sources. Hence, the data collected and processed 
by the S-LDM may enable centralized services to anticipate and mitigate 
traffic congestion and road incidents more effectively. Finally, the man-

agement of traffic flows enabled by centralized services, connected to 
the S-LDM, can lead to reduced vehicle idling and stop-and-gos, which 
are in turn related to lower fuel consumption and emissions.

A first overview of the S-LDM has been presented in our confer-

ence paper [5]. Nevertheless, the content presented here substantially 
extends the one in [5] as outlined below:

1. It extensively describes the 5G-CARMEN and C-Roads architecture 
with details on the Quadkey algorithm used for efficient message 
filtering;

2. It provides results of an extensive database evaluation, with a com-

parison showcasing the capabilities of the in-memory database in-

tegrated in the S-LDM;

3. It presents an analysis of the featured REST API, evaluating the 
latency introduced when transferring context data to other MEC 
services;

4. It provides results of new on-road tests performed cross-border.

5. It proposes new scalability and deployment options with a com-

plete outline of the results obtained from an extensive scalability 
study;

6. It presents new critical features available within the S-LDM, includ-

ing a dedicated interface for efficient on-demand data retrieval.

The rest of the paper is organized as follows. Section 2 summarizes 
the existent related works and projects. Section 3 provides a thorough 
description of the service architecture, as well as a complete description 
of each of the S-LDM modules, and the proposed deployment options. 
Section 4 outlines the results of the extensive pre-deployment evalua-

tions. Section 5 describes the on-road test performed with the service 
deployed on a commercial MEC infrastructure. Section 6 provides a 
complete scalability analysis of the S-LDM for the different deployment 
options. Finally, Section 7 draws some concluding remarks and possible 
future work and research directions.

2. Related works and other projects

Since the introduction of the concept of the Local Dynamic Map 
(LDM) studied by the SAFESPOT Project [6], entities such as the Eu-

ropean Telecommunications Standards Institute (ETSI) and the Interna-

tional Organization for Standardization (ISO) have pursued its standard-

ization. ETSI defines the LDM in [7], as a facility storing information 
about vehicles, enabling Intelligent Transport Systems (ITS) applica-

tions to retrieve it on demand.

In the vision of ETSI, the LDM, running on an ITS Station (ITS-S) 
(e.g., a vehicle or a Road-Side Unit – RSU –), relies on information 
from onboard sensors to interpret the surroundings, combining static 
and dynamic data. Moreover, an interface is defined for the LDM to 
leverage other facilities services, such as the Cooperative Awareness 
Service [3] and the Decentralized Environmental Notification Service 
[8], enabled to act as LDM data providers, enhancing the view of the 
road with information from other ITS-S. Indeed, information found on 
received Cooperative Awareness Messages (CAMs) and Decentralized 
Environmental Notification Messages (DENMs) from other ITS-S can be 
stored in the LDM as LDM Data Objects, which can then be accessed by 
other applications that might be registered as data consumers of such 
LDM Data Objects, e.g., information of a given vehicle or road event.

Even though onboard perception systems found in modern vehicles 

provide rich context data, limited perception range and occlusion of 
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objects in Non-Line-Of-Sight (NLOS) bring huge challenges for the cor-

rect execution of certain applications, such as Decentralized Intersection 
Management where a given vehicle may be occluded by another one 
in front, failing to detect a pedestrian crossing the road. Furthermore, 
as the market penetration rate of V2X-enabled vehicles increases, the 
presence of legacy vehicles constitutes an elevated number of highly dy-

namic objects to be tracked by a given ITS-S. With the aim of tackling 
the local perception limitations of vehicles, many works have studied 
the concept of Collective Perception [9–12], on which vehicles share 
their gathered sensor information through the exchange of Collective 
Perception Messages (CPMs), currently being standardized by ETSI. In-

deed, the exchange of CPMs enables vehicles to expand the vision of 
their surroundings, including objects beyond sensor range and in NLOS. 
However, the reception of redundant sensor data from neighboring ve-

hicles comes not only at an elevated channel utilization as addressed 
in [13] but at an elevated computational burden as well. In [14], an 
analysis on the effects of storing objects coming from different vehicles 
in the LDM, at high market penetration rates, shows the impact on the 
computational load and ultimately on the delay introduced on the LDM 
update pipeline.

The advent of the MEC paradigm has given rise to the possibility 
of deploying several services to cover multiple use cases by providing 
computing power at the edge. Thanks to the availability of computing 
power near the end-user, several works have explored the implemen-

tation of centralized LDM services running on a MEC architecture. In 
[15], a LDM module is proposed where the information from received 
CAMs and DENMs is stored in a SQL-based database and processed for 
the detection of possible collisions in order to notify involved vehicles 
by issuing DENMs. With a more modular LDM service approach, the so-

lution presented in [16] stores received CAMs with the goal of providing 
information to an intersection control application. Other works, such as 
[17], store the received information with a prior change of format to 
JavaScript Object Notation (JSON) enabling the forwarding of serial-

ized CAMs and DENMs towards other entities using the MQTT protocol. 
These works exclusively use SQL-based databases to store data, without 
exploring possible alternate approaches that could enhance the effi-

ciency of data management. The most centralized LDM architectures, 
like the one presented in [16], are often designed to support specific 
applications and detect triggering events only relevant to these appli-

cations, without considering making the stored information available 
to other services. On the contrary, the S-LDM supports a more general 
triggering mechanism for latency-critical MEC services, and includes an 
on-demand data retrieval interface.

Several different works have studied the inclusion on the LDM of 
information not only about connected vehicles, but also about detected 
objects. In [18], the authors present a centralized service aiming to com-

bine the perceptions received from different vehicles, offloading the 
computational load from the vehicles themselves. The proposed solu-

tion considers the exchange of raw sensor data instead of CPMs, as in 
our case, which compromises the scalability of such a service. Raw sen-

sor data is indeed much larger than the post-processed data encoded in 
CPMs. On the other hand, the work presented in [19] considers the stor-

age of detected objects information from received CPMs, working with a 
Neo4j database instead of a SQL-based one for a graph-based approach. 
Although this work proposes a scalability study, the considered rate of 
V2X messages is 10 Hz instead of 20 Hz, as in our case. Specifically, 
we consider 20 Hz in accordance with the update rate of modern, high-

rate, vehicle on-board sensors for Adaptive Cruise Control (ACC) [20]. 
This requirement is aligned with pilot vehicles used in 5G-CARMEN 
which have been obtained enhancing a production highway assist sys-

tem (ACC plus lane centering). Such frequency has been chosen for our 
project with the aim of studying safety-critical automated maneuvers 
executed in challenging conditions. Finally, of all works presented here, 
ours is the only one showcasing results of on-road tests with the service 
3

deployed in a commercial MEC infrastructure.
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3. Service architecture and deployment options

The idea behind the proposed Server Local Dynamic Map can be 
summarized as follows.

5G-enabled MEC services are gaining growing interest and impor-

tance in the automotive and autonomous vehicle field. These services, 
in order to properly enable innovative use cases (such as collision avoid-

ance, centralized platooning, Vehicular Edge Cloud [21], and many 
others), require the reception of a large amount of data from vehicles 
and other road users. Despite receiving a significant amount of informa-

tion through messages such as CAMs, really useful data often include 
only a subset of post-processed information related to a specific context 
on the road. This context can correspond, for instance, only to data of 
vehicles and other non-connected road users involved in a highly auto-

mated maneuver, or only to one or more given geographical areas.

MEC services may be thus overloaded during the reception and 
information filtering phases, especially under a high number of sub-

scribers and/or connected vehicles, reducing the amount of resources 
available to perform the actual safety-critical tasks. These tasks may in-

clude Vehicular Edge Cloud [21] or centralized platooning coordination 
[22].

There is thus a strong necessity for the deployment of a “middle-

ware” service able to receive data from a large number of vehicles, 
process it in an optimal way to store an efficient map of the road, and 
provide a post-processed and filtered version of such data to other MEC 
services (e.g., centralized automated maneuver management services) 
when needed.

To fill this gap, we propose the S-LDM. Our service offers a broad 
set of capabilities, much wider than what ETSI foresees for its LDM [7]. 
Furthermore, it focuses on a centralized approach, with the following 
features:

• Storage of decoded and pre-processed data of messages from a large 
number of vehicles in a custom efficient database for fast data stor-

age.

• Enhanced view of the road, extending the coverage that would be 
achievable with decentralized solutions.

• Maintenance of historical data, in addition to real-time data, about 
both vehicles and detected objects.

• Option to store road events (for instance through the reception of 
event-based DENMs).

• On-demand availability of a filtered and pre-processed version of 
the stored information.

• Detection of traffic conditions for triggering the transfer of relevant 
context data to other safety-critical MEC services.

• Compatibility with MEC and container orchestration systems, such 
as Kubernetes.

• Graphical User Interface for human monitoring of road traffic.

• Support to the C-Roads architecture for advance message dissemi-

nation and delivery, as described in Section 3.1.

• Multi-threaded Advanced Message Queuing Protocol (AMQP) 
client for message reception with support for multiple broker sub-

scriptions, enabling cross-border use cases.

These outlined features enable offloading both vehicles and other 
services from the necessity of quickly processing a large number of mes-

sages, which could reduce the performance of actual latency-critical 
algorithms (e.g., control algorithms for centralized automated lane 
merge).

Finally, a full C++ implementation of the S-LDM has been released 
under an open-source GPLv2 license, and it is available on GitHub.1

The next sub-Sections detail first the architecture for ITS foreseen 
by the 5G-CARMEN and C-Roads projects, as part of which the S-LDM 
1 https://github .com /francescoraves483 /S -LDM.

https://github.com/francescoraves483/S-LDM
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has been developed (Section 3.1), then the architecture of our service 
(Section 3.2) and finally how it is designed to be deployed in real-world 
scenarios (Section 3.3).

3.1. 5G-CARMEN and C-Roads architecture

The S-LDM has been developed as part of the 5G-CARMEN project 
architecture, which is based in turn on the architecture standardized in 
the C-Roads project [23]. The architecture foreseen by C-Roads inves-

tigates the usage of messaging protocols for the efficient transmission 
of messages from/to centralized MEC services, thanks to V2I and V2N 
communications for Cooperative ITS (C-ITS). The output of the project 
is a standard architecture for the transmission of ETSI C-ITS messages 
over the Advanced Message Queuing Protocol (AMQP) version 1.0, a 
platform-independent messaging protocol, which can be used both for 
peer-to-peer communication, or for communication with an intermedi-

ate centralized entity. This entity, called message broker, is in charge of 
receiving messages from vehicles and it acts as message collector and 
dispatcher. Messages are collected in broker queues (or topics, referring 
to the definition given by Apache [24]), which are addressed through 
their name (which can be hierarchical).

Vehicles and other road users can send their messages to the bro-

ker (such as CAMs and CPMs), and they subscribe to specific queues or 
topics for the reception of warning, road signage and maneuver man-

agement messages.

Conversely, MEC services can subscribe to the broker to receive mes-

sages from a set of vehicles of interest, based on the queue or topic they 
subscribe to, or on specific message properties, which can be embed-

ded as additional information in the header of each AMQP message. 
These properties, called application properties correspond to an arbitrary 
number of key-value couples, in which the key is a string defining the 
property name, and the value can be any simple type (mainly string 
or number). Thanks to these application properties, additional informa-

tion, normally not available in standard ETSI C-ITS messages, can be 
transmitted to the broker and to centralized MEC services (e.g., country 
and string ID of the originating vehicle).

According to C-Roads, the properties should also include the Quad-

key of the location the vehicle is traveling in. In short, Quadkeys are a 
way to refer to squared geographical areas through hierarchical base-4 
strings and were originally defined by Microsoft2 [25]. More details are 
provided below.

Properties can be used by subscribing services to efficiently filter the 
messages at an AMQP broker level. Indeed, other than selecting a proper 
topic, a client subscribed to the broker can choose to receive only the 
messages with certain property values (e.g., only messages with orig-
inatingCountry=“DE”). The broker will then forward to the MEC 
service only the messages matching an SQL-like filter on the properties 
provided by the client itself. This filter can be arbitrarily complex and 
include both logical operators and wildcards. It is worth mentioning 
that all the operations performed by the AMQP broker, such as message 
filtering, are executed transparently at an AMQP level and they are in-

dependent from the type of payload carried (i.e., independent from the 
Facilities Layer message type).

Furthermore, MEC services can also send messages such as DENMs 
and IVIMs to the broker for dissemination to relevant road users (or 
to all users traveling in a given geographical area) subscribed to the 
same broker. Communication between different MEC services through 
the broker is also possible.

As foreseen by C-Roads, the S-LDM receives ETSI-compliant mes-

sages through one or more AMQP 1.0 brokers [26]. The ETSI C-ITS 
messages, including the Facilities [3], GeoNetworking [27] and Basic 
Transport Protocol [28] layers, are further encapsulated into AMQP 

2 https://docs .microsoft .com /en -us /bingmaps /articles /bing -maps -tile -
4

system.
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1.0 for the transmission to the S-LDM according to the C-Roads spec-

ifications. As soon as CPMs are fully standardized, their reception and 
management support is also planned.

Being platform-independent, one of the advantages of AMQP is its 
independence on the lower layers of the stack. Indeed, the S-LDM can 
receive messages encapsulated into AMQP and transmitted to the broker 
either via IEEE 802.11p/IEEE 802.11bd, or via C-V2X and 5G, to guar-

antee high reliability. In addition, the approach foreseen by C-Roads 
and adopted by the S-LDM easily provides cross-OEM compatibility, as 
the vehicle OBU manufactures just need to include a client compliant 
with AMQP 1.0 [29] and the C-Roads specifications [30], which are 
both publicly available.

Furthermore, 5G-CARMEN extends the C-Roads architecture by fore-

seeing an underlying 5G network, as a fundamental enabler for latency-

critical automotive use cases, such as decentralized maneuvers. For in-

stance, the 5G-CARMEN project addressed the use case of decentralized 
cooperative automated maneuvers, which was enabled by an extended 
perception service (collective perception through sensor sharing) [31]. 
Indeed, 5G is able to guarantee the reliability and low latency required 
by components such as the S-LDM or other maneuver management ser-

vices, which is not always guaranteed by 4G [32].

Fig. 2 shows how the S-LDM is integrated with the overall 5G-

CARMEN architecture for C-ITS, considering a single broker scenario. 
As can be seen, the AMQP broker of choice is Apache ActiveMQ, being 
a reliable open source software.

With the aim of enabling the reception of messages via AMQP, the S-

LDM includes an open-source library for AMQP message reception (i.e., 
Apache Qpid Proton) and a custom ETSI ITS decoding stack, developed 
to be as efficient as possible with the aim of enabling very high update 
rates of the internal dynamic map.

The S-LDM has been designed to be flexibly deployed in a wide 
range of MEC platforms, both Virtual Machine-based and container-

based. With the aim of testing it in the field in real V2X scenarios, it 
has been integrated as a container inside the MEC platforms of three 
network operators participating in the 5G-CARMEN project (i.e., TIM 
of Italy, Magenta Telekom of Austria and Deutsche Telekom AG of Ger-

many), as shown in Fig. 2. Each MEC platform runs a local AMQP broker 
to reduce the latency experienced by the vehicle-to-AMQP-broker com-

munication, and in turn executes a Kubernetes-based orchestrated edge 
platform, developed by 5G-CARMEN [33], and designed to run and 
orchestrate 5G-enabled applications and services for Cooperative and 
Automated Driving (CAD).

The orchestrated mobile edge platform is designed and developed by 
following the cloud-native principles and is inline to the standardization 
frameworks provided by ETSI MEC, ETSI Network Function Virtualiza-

tion (NFV), and 3GPP [33]. This design enables collaboration between 
5G edges, thereby extending the range of the services/applications run-

ning on top of these edges, and allowing them to collaborate with 
peering service/application instances in different domains, to enable 
service continuity. The orchestrated edge platform includes several key 
design features, including coupling of 5G and MEC/NFV, end-to-end 
mobile data plane control, and application-specific support for orches-

tration operations.

It should be mentioned that the S-LDM has been tested in the field 
as part of this container-based scenario to investigate its usage within 
a challenging and real-world V2X 5G-enabled architecture. However, it 
is flexible enough to be integrated into virtually any Linux-based MEC 
platform, requiring only the subscription to one or more AMQP 1.0 
brokers for the reception of messages from vehicles.

3.1.1. Quadkeys for vehicle localization

As mentioned earlier, each ETSI C-ITS message sent to a broker fol-

lowing C-Roads specifications should include the Quadkey property. 
The latter is also of particular relevance for the S-LDM, which can ef-

ficiently filter messages coming only from vehicles traveling in a given 

area, defined by a set of Quadkeys. Even though the S-LDM can prop-

https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system
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Fig. 1. S-LDM service internal architecture.
erly process messages without this property, its use can improve the 
overall performance of the service when filtering messages of vehicles 
traveling outside its coverage area, as detailed in Section 3.3. There-

fore, the main aim of this Section is to briefly present the Quadkeys to 
the reader, as defined by Microsoft in [25].

Quadkeys are a way to identify rectangular areas on a map, and can 
be used to represent the geographical position of vehicles as compact 
strings with base 4 digits. These strings are then transmitted as message 
properties and can be used for geographical message filtering.

The concept of Quadkey is based on a bi-dimensional Mercator pro-

jection of the Earth. Specifically, the projected map can be divided into 
rectangular tiles, corresponding to rectangular areas. Each of these tiles 
can then be uniquely identified by a Quadkey, with the following logic: 
the map is divided into four parts, which are assigned, clockwise from 
top-left, four digits (0, 1, 2 and 3). These digits represent the level 1 
Quadkeys, corresponding to very large areas. Each rectangular tile can 
be further divided in four parts, defining the level 2 Quadkeys. Each 
of these parts will keep as first digit the one of the parent tile (i.e., 
the tile from which it originates) and add a second digit again from 
top-left to bottom-right. The process can be iteratively repeated defin-

ing progressively higher level Quadkeys. For instance, the area defined 
by Quadkey 2 contains the one defined by 21, which contains the one 
defined by 212, and so on.

Quadkeys are thus hierarchical strings which define progressively 
smaller areas as the level increases, as depicted in Fig. 3.

Microsoft also defines a convenient algorithm for translating a lati-

tude and longitude value into a Quadkey [25]. Given as input the level 
of detail (𝐿) and the coordinates of a point, the algorithm returns the 
level 𝐿 Quadkey of the area which contains that point.

This algorithm is composed by few simple steps, which can be ef-

ficiently executed by the OBU of a vehicle to compute, given 𝐿, the 
Quadkey of the area comprising the current location. The size of this 
area (directly linked to how precise the localization of the vehicle is) 
is defined by 𝐿. This value can then be transmitted via AMQP 1.0 as a 
message property.

Quadkeys are crucial for efficient message filtering inside the S-LDM 
[32].

Indeed, each S-LDM instance can subscribe to receive all messages 
from a certain large area by generating a filter on the quadkeys

property with one or more low level Quadkeys (with wildcards) cor-

responding to the desired area. For instance, if the filter contains the 
string “321%” (% is just a wildcard meaning “zero or any number of 
other digits”), the service will receive all and only the messages from 
vehicles sending (higher level) Quadkeys such as “3211210012” and 
5

“3210012111” (i.e., all messages from vehicles traveling inside the area 
corresponding to the level 3 Quadkey “321”). Vehicles can thus send a 
high level, more precise, Quadkey, and the S-LDM can easily receive and 
filter all messages from a large area by specifying a low-level Quadkey. 
This approach is particularly useful as all the filtering operations occur 
in the AMQP broker, after the S-LDM generates and sends the proper fil-

ter to the broker. In presence of a large number of vehicles, the S-LDM 
can thus focus on decoding only the messages coming from the area of 
interest, without the burden of decoding each single message and then 
filtering afterwards based on the information received in the Facilities 
or GeoNetworking layers [27].

3.2. S-LDM description

The S-LDM has been designed with a modular architecture, and it is 
composed of several sub-modules interacting with each other, from the 
reception of a message through the AMQP client, to the generation of 
the context data for other MEC services.

The internal architecture of the S-LDM and its sub-modules is 
schematized in Fig. 1, and described in the following sub-sections.

Before delving into the details of our service, we present a brief 
walk-through of the S-LDM operations from the reception of a message 
via AMQP 1.0 to the provision of data to other MEC services, with ref-

erence to Fig. 1. First, messages can be transmitted to the S-LDM via 
one or more AMQP brokers, compliant with the latest 1.0 version. If 
the C-Roads standard is implemented, Quadkeys can be used to pre-

filter the messages, such that only messages of vehicles traveling in the 
S-LDM coverage area will be received by the S-LDM AMQP client (Sec-

tion 3.2.1).

Messages are then decoded based on their type and thanks to a cus-

tom, efficient ETSI-compliant message decoder. Supported and planned 
message types include CAMs, virtual CAMs, CPMs, DENMs and IVIMs. 
Furthermore, the S-LDM supports messages both with and without the 
BTP and GeoNetworking layers (Section 3.2.2).

After being decoded, messages are passed through an efficient area 
filter module, that precisely filters only the messages of road users in-

cluded in the current S-LDM instance coverage area (Section 3.2.3).

The filtered messages are then processed and used to store the kine-

matic and dynamic information of vehicles and other road users into a 
highly-efficient custom database (Section 3.2.4), that has been proved 
to be more efficient than other commonly-used databases in state-of-

the-art solutions. This database represents the core component of the 
S-LDM, and it can provide information to other MEC services or directly 
to vehicles in three different ways:

• Section 3.2.5: a special condition on the road is detected by the S-
LDM that will read the content of the database, extracting the data 
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Fig. 2. The S-LDM as part of the 5G-CARMEN architecture, in turn based on C-Roads standards.
Fig. 3. Logic for the definition of Quadkeys on a Mercator projection of the 
world, as defined by Microsoft [25].

for the involved vehicles and transmitting it to other maneuver 
management services, thanks to a dedicated REST API;

• Section 3.2.6: MEC services query the S-LDM, requesting the most 
recent information related to specific vehicles in a given geograph-

ical area thanks to a simple, yet efficient, JSON-over-TCP interface;

• Section 3.2.8: depending on the application, the S-LDM may also 
provide a filtered and summarized version of the database content 
to the vehicle themselves, to update their local LDMs with pre-

cise centralized information related to objects on the road; this is 
enabled thanks to dedicated messages transmitted to subscribed ve-

hicles via AMQP.

Finally, the content of the S-LDM can be leveraged to perform real-

time monitoring by one or more road operators, thanks to a web-based 
GUI (Section 3.2.7).

3.2.1. AMQP client and quadkey-based filtering

The S-LDM can receive messages from vehicles thanks to a multi-

threaded AMQP client. In case of a single connection to a single AMQP 
broker, a single thread is used for the reception of messages. How-

ever, each S-LDM also supports, optionally, subscribing to more than 
one broker. In this case, a new thread is created for each broker, to 
independently manage each AMQP connection in parallel.

The AMQP client within the S-LDM has been developed by inte-

grating the Apache Qpid Proton library, which can quickly, efficiently 
handle the reception of messages from a broker compliant with AMQP 
1.0.

When an S-LDM instance is created, the most important parameter 
is represented by its coverage area. Each S-LDM instance is indeed de-

signed to cover a configurable geographical area, whose size can be 
configured depending on the final deployment and target use case man-
6

aged by the MEC services connected to the S-LDM.
The S-LDM thus filters out all messages coming from vehicles outside 
its coverage area. As mentioned earlier, the S-LDM employs, if possible, 
pre-filtering with Quadkeys, with the aim of improving the efficiency of 
the filtering mechanism, and avoid wasting CPU resources in decoding 
each single ETSI message to detect whether the original vehicle is inside 
the coverage area.

Currently, rectangular coverage areas are supported, as they match 
well the shape of areas that can be defined with a set of Quadkeys. It 
is planned, however, to add support for circular and elliptic areas in 
future versions of the S-LDM.

With the aim of setting up a proper filter, to be later sent to the 
AMQP broker for filtering, the S-LDM takes as input the minimum and 
maximum latitude and longitude corresponding to the vertices of a rect-

angular coverage area. These values are then converted to the minimal 
list of Quadkeys covering the smallest area greater or equal than the 
input one, given a maximum level 𝐿𝑓𝑖𝑙𝑡𝑒𝑟.

In order to generate a filter of the smallest possible size, the mini-

mal list of Quadkeys is computed (e.g., instead of sending “quadkeys 
LIKE ’320% OR 321% OR 322% OR 323% OR 311%’”, the S-LDM 
will generate the smaller-size equivalent filter “quadkeys LIKE ’32% 
OR 311%’”, thanks to the hierarchical properties of Quadkeys). The 
usefulness of this approach is twofold. First, it makes the initial connec-

tion with the AMQP broker faster. Second, it makes it feasible to send 
filters corresponding to large areas, as there is a size limit (depending on 
the actual AMQP settings) in the SQL-like filter string that can be trans-

mitted to the broker for filtering. Indeed, as the S-LDM default value 
for 𝐿𝑓𝑖𝑙𝑡𝑒𝑟 is 16, large areas may correspond to a very large number of 
level-16 Quadkeys, resulting in a very long filter. This filter can always 
be, however, rewritten to an equivalent form by “merging” higher-level 
Quadkeys making up a lower-level Quadkey. As an example, the set 
of level-3 Quadkeys “320”, “321”, “322” and “323” can always be re-

ferred to just by the level-2 Quadkey “32”, thus significantly reducing 
the length of the corresponding SQL-like filter.

Fig. 4 shows an example of input and output from the algorithm 
generating the set of Quadkeys for message filtering, with 𝐿𝑓𝑖𝑙𝑡𝑒𝑟 = 11.

The algorithm pseudocode is reported in Algorithm 1, where the in-

put values are (i) the minimum and maximum latitude of the input 
area 𝐿𝑎𝑡𝑚𝑖𝑛 and 𝐿𝑎𝑡𝑚𝑎𝑥, (ii) the minimum and maximum longitude of 
the input area 𝐿𝑜𝑛𝑚𝑖𝑛 and 𝐿𝑜𝑛𝑚𝑎𝑥 and (iii) 𝐿𝑓𝑖𝑙𝑡𝑒𝑟. Δ𝐿𝑎𝑡𝐿𝑜𝑛 (line 7) is 
an additive factor to be progressively summed up to the 𝐿𝑎𝑡𝑚𝑖𝑛 and 
𝐿𝑜𝑛𝑚𝑖𝑛 values, to compute the corresponding Quadkeys covering the 
whole area up to 𝐿𝑎𝑡𝑚𝑎𝑥 and 𝐿𝑜𝑛𝑚𝑎𝑥. Since, to avoid generating dupli-

cated Quadkeys, it depends on the level of detail 𝐿𝑓𝑖𝑙𝑡𝑒𝑟, it is computed 

through a lookup table, defined here as 𝜏(𝐿𝑓𝑖𝑙𝑡𝑒𝑟). 𝜇(𝐿𝑎𝑡, 𝐿𝑜𝑛, 𝐿) is in-
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Fig. 4. Example of input and output to the Quadkeys filter generation algorithm, as part of the S-LDM, with 𝐿𝑓𝑖𝑙𝑡𝑒𝑟 = 11. As input, the latitude and longitude of 
the two points corresponding to red circles are given. As output, the minimum set of Quadkeys fully covering the specified area is provided. The set, in this case, 
corresponds to 12 level-11 Quadkeys and 2 level-10 Quadkeys.
stead the Microsoft algorithm to obtain the 𝐿𝑓𝑖𝑙𝑡𝑒𝑟 level Quadkey a point 
is located in, given its latitude and longitude [25].

The algorithm defines as 𝐿𝑉 (line 17) a counter which starts from 
𝐿𝑓𝑖𝑙𝑡𝑟 and is decreased each time, to consider for each iteration pro-

gressively lower-level Quadkeys to be merged together, if possible. 
Notice how the for loop inside the while loop (line 20) merges all 𝐿𝑉
level Quadkeys into 𝐿𝑉 − 1 “low level” level Quadkeys if possible, re-

placing each four 𝐿𝑉 level Quadkeys with the corresponding 𝐿𝑉 − 1
Quadkey inside 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠 (lines 26-27). This is done iteratively, con-

sidering one level of detail at a time, starting from the highest level 
(i.e., 𝐿𝑉 =𝐿𝑓𝑖𝑙𝑡𝑒𝑟, on line 17) until either no more merges are possible 
(if clause on line 31), or when the lowest possible level (i.e., level 1) is 
reached (while loop condition on line 18).

The final sorting step (line 36) places first the shorter Quadkeys, cor-

responding to larger areas, in which it should be more probable to have 
a greater number of vehicles (i.e., more messages are probably coming 
from these areas). Since the AMQP 1.0 filter is an OR between all the 
Quadkeys, having first the Quadkeys with a possibly greater number of 
vehicles may slightly improve the broker-side filtering performance (as 
the match may be found earlier when the broker is “scanning” all the 
Quadkeys in the filter).

After the proper set of Quadkeys has been generated, it is converted 
to an AMQP filter and transmitted to the AMQP broker during the S-

LDM instance start-up phase. The latter also includes setting up the 
connection to all the brokers, with all the needed AMQP parameters 
(e.g., username, password, authentication mechanism, idle timeout).

As computing the proper minimal set of Quadkeys can be computa-

tionally expensive for large areas, after the first time the result is cached 
into a file, to significantly speed up the process if the same S-LDM in-

stance is restarted with the same coverage area parameters. If the area 
parameters change, the cache file is updated accordingly.

Thanks to Quadkey pre-filtering, each AMQP client of each S-LDM 
instance can be set to receive only the messages of vehicles traveling in 
an area slightly larger than the coverage area (e.g., the blue area de-

fined by the Quadkeys in Fig. 4, which fully covers the input red area), 
limiting the number of messages discarded at the Area Filter module 
and improving the performance of the S-LDM itself.

3.2.2. Message decoder

After being successfully received by the AMQP Client each message 
is decoded thanks to a custom ETSI C-ITS stack, developed to be as 
much efficient as possible with the goal of enabling very high update 
7

rates of the internal database. This stack currently supports reception 
of CAMs and DENMs (even though the S-LDM focuses on CAMs, the 
latter can be received from road operators to further enrich the internal 
map with road traffic and hazardous event information). Support for 
CPMs and IVIMs is currently planned for future versions of the service, 
to enable further enhancing the database of the S-LDM. This additional 
information may include, for instance, position of road signs received 
thanks to IVIMs [34].

The message decoder can efficiently receive and decode ETSI C-ITS 
messages comprising the GeoNetworking [27], Basic Transport Proto-

col (BTP) [28] and Facilities layers [3,8], further encapsulated inside 
AMQP 1.0, as foreseen by C-Roads. However, as messages are trans-

mitted via AMQP 1.0, which does not strictly require the presence of 
additional Transport and Network layers, the S-LDM message decoder 
also supports reception of standardized messages without the GeoNet-

working and BTP layers (e.g., “pure” CAMs). The detection whether 
a message includes the ETSI Network and Transport layers is per-

formed transparently and automatically on a per-message basis. This 
enables different implementations (i.e., sending both “pure” ITS mes-

sages and “full” ITS messages including BTP and GeoNetworking, as 
recommended by C-Roads) to be supported out-of-the-box by the S-

LDM. As mandated by the ETSI standards, the Facilities Layer messages 
are encoded with Abstract Syntax Notation One (ASN.1), used by many 
communications protocols, thanks to its cross-platform nature. An open-

source tool called asn1c [35] has been leveraged to generate the files 
needed to decode the messages in ASN.1 format into an equivalent 
C/C++ structure. Once the Facilities Layer message is decoded into 
its corresponding C/C++ structure, all the fields of interest (from the 
ones specified in [3, Annex A] for CAMs and [8, Annex A] for DENMs) 
can be extracted to be saved in the main database, as further detailed 
in 3.2.4.

As mentioned previously, the S-LDM has the capability to gather 
information from both connected and non-connected vehicles, as well 
as other road users like pedestrians. These non-connected entities, de-

spite lacking direct communication capabilities, are still relevant to 
autonomous vehicles as they may occupy the roadway or its immedi-

ate surroundings. Specifically, the S-LDM has been designed to receive 
CAMs and perceived objects information from a multitude of connected 
vehicles. It is worth noting that the S-LDM supports the reception of 
CAMs from each vehicle at a frequency of up to 20 Hz, surpassing the 
maximum frequency limit of 10 Hz set by ETSI, to facilitate precise 
and detailed updates for highly automated maneuver management. It 
should also be noted that the 5G-CARMEN project is experimenting 

with a transmission rate of 20 Hz over a mobile network. This high 
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Algorithm 1 Quadkey filter generation algorithm for the S-LDM.

1: Parse the input parameters

2: Read cache file is it exists

3: if Parameters (𝐿𝑎𝑡𝑚𝑖𝑛 , 𝐿𝑎𝑡𝑚𝑎𝑥 , 𝐿𝑜𝑛𝑚𝑖𝑛 , 𝐿𝑜𝑛𝑚𝑎𝑥, 𝐿𝑓𝑖𝑙𝑡𝑒𝑟) are the same as 
stored in the cache file then

4: Read Quadkey filter from cache file

5: Terminate execution

6: end if

7: Δ𝐿𝑎𝑡𝐿𝑜𝑛 ← 𝜏(𝐿𝑓𝑖𝑙𝑡𝑒𝑟)
8: Define empty set of 𝐿𝑓𝑖𝑙𝑡𝑒𝑟 level Quadkeys 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠
9: for 𝐿𝑎𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =𝐿𝑎𝑡𝑚𝑖𝑛; 𝐿𝑎𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤𝐿𝑎𝑡𝑚𝑎𝑥 ; 𝐿𝑎𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡+ =Δ𝐿𝑎𝑡𝐿𝑜𝑛 do

10: for 𝐿𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =𝐿𝑜𝑛𝑚𝑖𝑛 ; 𝐿𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤𝐿𝑜𝑛𝑚𝑎𝑥; 𝐿𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡+ =Δ𝐿𝑎𝑡𝐿𝑜𝑛 do

11: 𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘 ← 𝜇(𝐿𝑎𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐿𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐿𝑓𝑖𝑙𝑡𝑒𝑟)
12: Add 𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘 to 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠
13: end for

14: end for

15: Remove possible duplicated Quadkeys from 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠
16: Sort 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠 in increasing order (e.g., “321” goes after “320” and before 

“322”) ⊳ This steps helps looking for mergeable Quadkeys as they will be 
located in the set one after the other

17: 𝐿𝑉 ←𝐿𝑓𝑖𝑙𝑡𝑒𝑟
18: while 𝐿𝑉 > 0 do

19: 𝑚𝑒𝑟𝑔𝑒𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒 ⊳ This flag remains set to 𝐹𝑎𝑙𝑠𝑒 is no Quadkeys 
could be merged at the current level and we should terminate the loop

20: for 𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 = 0; 𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 < 𝐿𝑒𝑛𝑔𝑡ℎ(𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠); 𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 ←
𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 + 1 do

21: 𝐿𝑜𝑤𝐿𝑒𝑣𝑒𝑙𝑞𝑢𝑎𝑑𝑘[0] ← first 𝐿𝑉 − 1 digits of 𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘]
22: 𝐿𝑜𝑤𝐿𝑒𝑣𝑒𝑙𝑞𝑢𝑎𝑑𝑘[1] ← first 𝐿𝑉 −1 digits of 𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘+1]
23: 𝐿𝑜𝑤𝐿𝑒𝑣𝑒𝑙𝑞𝑢𝑎𝑑𝑘[2] ← first 𝐿𝑉 −1 digits of 𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘+2]
24: 𝐿𝑜𝑤𝐿𝑒𝑣𝑒𝑙𝑞𝑢𝑎𝑑𝑘[3] ← first 𝐿𝑉 −1 digits of 𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘+3]
25: if 𝐿𝑜𝑤𝐿𝑒𝑣𝑒𝑙𝑞𝑢𝑎𝑑𝑘[𝑖] are all the same for 

𝑖 = 0, .., 3 and 𝐿𝑎𝑠𝑡_𝐷𝑖𝑔𝑖𝑡(𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘]) =
0 and 𝐿𝑎𝑠𝑡_𝐷𝑖𝑔𝑖𝑡(𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 + 1]) = 1
and 𝐿𝑎𝑠𝑡_𝐷𝑖𝑔𝑖𝑡(𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 + 2]) = 2 and 
𝐿𝑎𝑠𝑡_𝐷𝑖𝑔𝑖𝑡(𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 + 3]) = 3 then

26: Remove 𝐶𝑢𝑟𝑟𝑞𝑢𝑎𝑑𝑘[𝐼𝑛𝑑𝑒𝑥𝑞𝑢𝑎𝑑𝑘 + 𝑖] from 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠 for 𝑖 = 0, .., 3
27: Add 𝐿𝑜𝑤𝐿𝑒𝑣𝑒𝑙𝑞𝑢𝑎𝑑𝑘[0] to 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠
28: 𝑚𝑒𝑟𝑔𝑒𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 ← 𝑇 𝑟𝑢𝑒 ⊳ Set to true if any Quadkeys have been 

merged at the current 𝐿𝑉
29: end if

30: end for

31: if 𝑚𝑒𝑟𝑔𝑒𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then

32: Break

33: end if

34: 𝐿𝑉 ←𝐿𝑉 − 1
35: end while

36: Sort 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠 by Quadkey length

37: Generate SQL-like filter with all Quadkeys inside 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠
38: Cache parameters (𝐿𝑎𝑡𝑚𝑖𝑛 , 𝐿𝑎𝑡𝑚𝑎𝑥 , 𝐿𝑜𝑛𝑚𝑖𝑛 , 𝐿𝑜𝑛𝑚𝑎𝑥 , 𝐿𝑓𝑖𝑙𝑡𝑒𝑟) and 𝑆𝑒𝑡𝑄𝑢𝑎𝑑𝑘𝑒𝑦𝑠

into cache file

transmission frequency value allows for fine-grained information to be 
conveyed. The decision to adopt this value is based on the typical up-

date rate of high-resolution on-board sensors for automotive [36] such 
as the ones used in the vehicle prototypes. Sharing information between 
vehicles at this rate allows the vehicle to extend its field of view utiliz-

ing the perception of the vehicle in front as an extension of its own 
sensors (in this case up to 20 detection updates per second), preventing 
bottlenecks possibly given by the communication link.

In order to guarantee a timely, low-latency delivery of high-rate 
messages, it becomes evident how the S-LDM should be part of a proper 
5G network, such as the one deployed and tested as part of 5G-CARMEN 
[32].

Concerning instead the non-connected objects, the S-LDM is ex-

pected to make use of CPMs, as soon as they are fully standardized. 
However, since the standardization process is still in progress at the 
time of writing, we developed the so-called Virtual CAMs, carrying in-

formation about detected objects. These messages are sent by connected 
8

vehicles that can detect these objects through their on-board sensors. 
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These special messages have been chosen as a preliminary implemen-

tation before CPMs are standardized. Indeed, remote objects can be 
detected by vehicle sensors, and this information can be provided to 
the V2X OBU through the vehicle CAN bus. The OBU can then encode 
this data in Virtual CAMs used for tracking remote objects, as if the 
non-connected object were connected and sending CAMs. Indeed, in-

stead of sending a list of objects as would be required by CPMs, the 
absolute position of the detected objects is calculated based on sensed 
data and encoded as a standard CAM. These fabricated Virtual CAMs 
are sent to the AMQP broker(s), to which the S-LDM is subscribed, by 
connected vehicles. Regarding the non-connected objects, the S-LDM is 
expected to make use of CPMs, once their standardization is finalized. 
However, since the standardization process was still ongoing at the time 
of writing, we developed a solution called Virtual CAMs to convey the 
information about detected objects. These messages are sent by con-

nected vehicles that can detect remote objects through their on-board 
sensors. The latter estimate the relative position of detected objects and 
classify their types, such as vehicles, trucks and pedestrians. The object 
data are then communicated to the V2X OBU via CAN bus. Thanks to a 
precise positioning reference of the ego vehicle, the OBU can calculate 
the absolute position of the detected objects and encode this data along 
with object attributes into frames conforming to the standard CAM for-

mat, creating a Virtual CAM. These fabricated Virtual CAMs are sent as 
normal CAMs to the AMQP broker(s), to which the S-LDM is subscribed, 
by connected vehicles. The result is that the S-LDM perceives also the 
non-connected objects as if they were transmitting their own CAMs to 
the cloud service. As said before, these dedicated messages were imple-

mented as an interim solution prior to the standardization of CPMs. The 
approach here is different from the one of the CPMs, where objects are 
listed in a single message. Indeed, using Virtual CAMs, each object has 
its own message. At the receiving unit (S-LDM and other connected ve-

hicles), once decoded, the V2X objects are managed in the same way, 
independently of the type of C-ITS message.

3.2.3. Area filter

Each message, after being decoded, is provided as input to the Area 
Filter module, which checks the originating vehicle position (gathered 
either from the GeoNetworking layer, if available, or from the CAM 
message itself) and discards messages from road users located outside 
the coverage area. Despite the Quadkey pre-filtering mechanism, the 
presence of this module is required for two main reasons:

• The S-LDM performance can greatly benefit from the pre-filtering 
mechanism, but the service is designed to be as much flexible as 
possible, and it can thus support the reception of messages without 
the Quadkey property. In this case, all filtering should occur in the 
Area Filter module.

• Given any input area and 𝐿𝑓𝑖𝑙𝑡𝑒𝑟 value (i.e., 16, considering the 
default value in the S-LDM), the corresponding Quadkeys are likely 
to cover an area slightly larger than the input one, as shown in 
Fig. 4 by the difference between the red and blue areas. A very 
small portion of messages will thus be received anyway even if 
they do not belong to the desired input coverage area.

3.2.4. Main database

The received information is processed (extracting the relevant data 
from each standardized message) and used to update a custom, highly-

efficient, in-memory, thread-safe database, storing the content of the 
centralized local dynamic map. It thus represents the core component 
of the S-LDM service, and should be able to support fast insertion and 
lookup operations.

The choice of an in-memory database comes from its higher per-

formance when compared to a database writing to the disk. The latter 
would provide the advantage of being able to recover previously stored 
data in case of a service failure or forced restart, at the price of an in-
creased INSERT execution time. However, recovering previously saved 
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data would provide little to no advantage, as objects in V2X scenarios 
are usually characterized by a high mobility, and, by the time the ser-

vice is restarted, they would have likely changed their kinematic and 
dynamic status quite significantly.

The choice for a custom database, instead of proposing the usage of 
already existing solutions, comes from an extensive evaluation covering 
four main database solutions:

• SQLite saved in main memory

• SQLite saved on disk with a Write-Ahead Log (WAL) mechanism

• WhiteDB (NoSQL database on shared memory) [37]

• Custom thread-safe database in main memory, described more in 
details below

Our custom solution leverages multiple hash tables saved in main 
memory, using sections of the vehicle station IDs as keys, and it has 
been implemented in C++. The code of the custom database solution is 
available as part of the S-LDM GitHub repository.3

More specifically, the database is composed by a main upper hash 
table and several lower hash tables, implemented as efficient unordered 
maps. The main hash table uses as key the first half of the station ID, and 
each entry is represented by a pointer to a lower data structure. Each 
lower data structure, in turn, uses as key the second half of the station 
ID, and each entry represents the actual data stored in the S-LDM for 
that specific road user.

The main advantage of using a hierarchical structure is that this 
enables the protection against concurrent reads and writes only of the 
lower hash tables. This allows the S-LDM to write read and write to 
the database at the same time, provided that the data that is being 
retrieved is not located in the same lower hash table that is currently 
being updated. Especially when managing a large number of nodes, this 
can provide significant performance gains, since parallel read and write 
operations are expected to occur relatively often. Indeed, protecting 
the whole database would result in the S-LDM being prevented from 
reading the database every time a new message is received and the map 
should be updated.

After a message has been decoded, the following main information 
is stored in the database, taking as a reference a connected or detected 
vehicle:

• the full road user station ID;

• the up-to-date position in geodetic coordinates;

• the up-to-date position as a Quadkey, as included by the sender, if 
available;

• the altitude;

• the speed;

• a set of timestamps, including the timestamp related to when the 
message was received, when the entry of the database was last 
updated, and the ITS PDU Header and GeoNetworking timestamps 
in the formats foreseen by ETSI [3,27];

• the vehicle width and length, if available; if not available, default 
values are used and a flag is set to store that they were not com-

municated;

• the type of road user and whether it is connected or detected;

• if available, additional information such as the exterior lights and 
turn indicators status.

It should be mentioned how the data listed above is the main set of 
information stored in the database, but additional data can be included 
depending on the type of message and on the sending entity.

Additionally, the received data is used to update, for each vehicle, 
its Path History (PH), i.e., the history of all the vehicle data, considering 

3 https://github .com /francescoraves483 /S -LDM /blob /main /src /LDMmap .
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cpp.
Vehicular Communications 49 (2024) 100819

the last 𝐷𝑙𝑖𝑚𝑖𝑡 meters traveled, with 𝐷𝑙𝑖𝑚𝑖𝑡 being a configurable value, 
taking a default value of 300 m. The PH is stored in the database along-

side the other information mentioned earlier, as PH points. Each “point” 
contains not only the position and timestamp, but also all the related 
information, as detailed above. Furthermore, only significant PH points 
are stored, to optimize memory usage. Indeed, before storing a new PH 
point, the S-LDM checks whether the vehicle moved for more than 𝐷𝑃𝐻

𝑚𝑎𝑥

meters. If yes, the new point is stored. If not, the S-LDM further checks 
whether the vehicle moved for more than 𝐷𝑃𝐻

𝑚𝑖𝑛
meters or changed its 

heading of more than 𝐻𝑃𝐻
𝑚𝑖𝑛

degrees with respect to the last point stored. 
𝐷𝑃𝐻
𝑚𝑎𝑥

, 𝐷𝑃𝐻
𝑚𝑖𝑛

and 𝐻𝑃𝐻
𝑚𝑖𝑛

are configurable thresholds, tunable depending 
on the specific S-LDM deployment. If not explicitly set, they take the de-

fault values respectively of 20 meters, 1 meter and 10 degrees, that we 
proved being a good comprise between optimizing the memory usage 
by storing only a limited number of points, and providing sufficiently 
detailed historical data for each road user in the database. This allows 
us to store, for instance, a single PH point when the vehicle is standing 
still, avoiding to store a new point, without much useful content, every 
time a new CAM from the same vehicle is received.

The custom database, even though not based on an SQL model, sup-

ports all the main operations that are supported by SQL-based solutions, 
such as INSERT, DELETE, lookup of one or multiple entries based on 
their station IDs, in addition to geographical lookup of entries related 
to vehicles located within a given area.

The evaluation of the aforementioned database solutions has been 
performed on two different devices, with the aim of analyzing the im-

pact of the available resources on the performance of the database 
solutions. The characteristics of the two devices are reported below:

• Device 1, high performance desktop PC: Intel Core i5-10600 K (6 
cores, 12 threads), NVMe SSD

• Device 2, medium performance laptop: Intel Core i7-8550U (4 
cores, 8 threads), SATA HDD

The main metric for the database evaluation is the average compu-

tation time, in microseconds, required by four fundamental operations:

• INSERT of a single vehicle (performed by the S-LDM each time new 
data is available for connected or non-connected objects)

• Lookup of a single vehicle (performed by the S-LDM when retriev-

ing the information on a single object with its station ID identifier)

• Geographical lookup and extraction of the context (i.e., extraction 
of all vehicles within a certain radius around a reference point, to 
simulate the condition when a triggering condition is detected and 
context data should be sent to other MEC services)

• DELETE of a single vehicle (performed by the S-LDM to periodically 
clean up old entries of vehicles which are not detected for longer 
than 7 seconds)

Each operation has been performed 5000 times with sample data, 
always under the same conditions, and the obtained computation times 
have been averaged.

Figs. 5 and 6 show the obtained results as a function of the number 
of elements already inserted in each database. 95% confidence intervals 
are shown, even if most of the time they are very small.

Looking at the obtained results, the following take-way messages 
could be drawn:

• Latency-critical MEC services for high levels of automation, which 
require a maximum end-to-end latency as low as 10 ms, should 
not rely on databases writing their data to the disk or to secondary 
memory in general, unless strictly needed, during the operations of 
the service itself. Indeed, SQLite on disk always resulted to be the 
worst-performing, according to ours tests, with geographical area 
lookup times up to 6 ms, even when few vehicles are stored in the 

S-LDM. Indeed, if compared to our in-memory solution, writing to 

https://github.com/francescoraves483/S-LDM/blob/main/src/LDMmap.cpp
https://github.com/francescoraves483/S-LDM/blob/main/src/LDMmap.cpp
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Fig. 5. Database operation average execution time, as a function of the total number of elements already inserted in the database. Plots on the left refer to device 1 
(high-end desktop PC), while plots on the right to device 2 (mid-end laptop). (a) INSERT time, (b) Single vehicle lookup time.
disk with a WAL mechanism can cause up to a 57825x INSERT de-

lay increase for a mechanical hard drive (increasing the INSERT 
time from the 0.48 microseconds of our solution to around 27 mil-

liseconds of SQLite with WAL), and up to a 3705x increase for an 
SSD.

• NoSQL databases relying on unordered lists of entries, such as 
WhiteDB, have an operation time which is almost linearly de-

pendent, in the worst case, on the number of stored items (i.e., 
vehicles and road objects) stored in the database. This is true for 
all operations requiring a search inside the database (i.e., all tested 
operations but for INSERT). This may not be ideal for the scalabil-

ity of the MEC component, even though a solution like WhiteDB 
appears to be the best when performing geographical lookup oper-

ations, being slightly faster than the custom solution.

• When performing an INSERT operation, all tested databases (except 
SQLite when writing to the disk) proved to be quite efficient and 
well-suited to a service like the S-LDM. SQLite on main memory 
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has an INSERT time of around 5 microseconds (almost independent 
of the size of the database itself), while WhiteDB and our custom 
solution can perform the insertion of new entries in less than 1 
microsecond.

• Between SQLite in main memory and the custom database, devel-

oped specifically for the S-LDM, the best-performing appears to be 
the latter. Even though both can perform the needed operations in 
much less than 10 ms (in the order of few microseconds when the 
number of vehicles managed by each S-LDM instance is limited, 
as it is for real deployments), choosing the best performing one is 
preferable especially when developing 5G-enabled automotive ser-

vices. Moreover, even though not shown here, the custom C++ 
database has been developed to support efficient locking mecha-

nism when a thread attempts to read from the database and another 
tries to write to the database to perform, for instance, an INSERT 
operation. This situation is expected to occur almost every time a 
triggering condition is detected. SQLite, instead, according to the 

official documentation, performs a less-efficient full database-level 
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Fig. 6. Database operation average execution time, as a function of the total number of elements already inserted in the database. Plots on the left refer to device 1 
(high-end desktop PC), while plots on the right to device 2 (mid-end laptop). (a) Geographical lookup time, (b) DELETE lookup time.
locking when more threads attempt to access the same database at 
the same time.

• The oscillations in the INSERT and DELETE average times with 
respect to the number of vehicles in the database, when employing 
SQLite with WAL, are likely due to the internal operation of WAL 
and to the disk usage at the time of testing.

• By comparing the plots on the left (for device 1) with the ones on 
the right (for device 2), one can also observe how the usage of a 
high performance CPU and disk can greatly improve the overall 
computation times. When centralized MEC services like the S-LDM 
are in place, it is thus crucial to invest not only in the underlying 
infrastructure (which is in any case fundamental to guarantee a 
sufficiently low latency and high reliability) but also on the 5G 
core and on the support to efficient MEC platforms, able to provide 
enough resources to time critical services.

In conclusion, the custom database solution appears to be the best 
performing option for the S-LDM, especially when considering scenarios 
11

where a large number of vehicles need to be stored in the database. In-
deed, our solution is able, on average, to perform a single INSERT opera-

tion in less than one microsecond when no other operations are pending 
on the same database. It also outperforms other existing databases com-

monly used in state-of-the-art LDM solutions, such as SQL-based ones 
[38] as well as non-SQL-based solutions [19], showcasing insertion 
times under a microsecond compared to values over a millisecond for 
the two counterparts.

3.2.5. Triggering conditions and context creation

One of the most important functionalities of the S-LDM is its abil-

ity to detect when a certain triggering condition occurs, i.e., either a 
situation on the road which requires the intervention of a MEC service 
or a vehicle performing some action to signal that a maneuver with a 
high level of automation has been requested. Once one of these con-

ditions is detected, the S-LDM computes a context around a reference 
vehicle or object, containing all the information on vehicles and other 
non-connected objects within a certain configurable radius around the 

reference node. This context is then made available to other MEC ser-
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vices, managing automated maneuvers in a centralized way, thanks to 
the capabilities of the underlying 5G network architecture.

One of the most important features of the S-LDM is its capability 
to detect the occurrence of “triggering conditions”, i.e., either a vehi-

cle performing some action to signal that a maneuver with a high level 
of automation has been requested, or a situation on the road which po-

tentially requires the intervention of a centralized latency-critical MEC 
service. When the S-LDM detects one of these conditions, it efficiently 
reads the database and computes a context around a reference vehicle 
or other object. This context includes all the information on vehicles 
and other non-connected objects within a certain configurable radius 
around the reference node. The triggering condition detection is cur-

rently performed in a deterministic way, by analyzing a set of fields in 
the received messages (mainly, CAMs). For instance, the intention of 
performing a lane merge is detected when a vehicle switches on one of 
its turn indicators, encoding this information in the Exterior Lights field 
of the CAMs it sends to the S-LDM.

Alongside the deterministic CAM-based trigger, an AI/ML-based 
trigger based on traffic and vehicle kinematics prediction is currently 
under development. When it is integrated, both the output of the CAM-

based trigger module and the one of the AI/ML-based module are going 
to be used to determine whether a triggering condition is occurring.

3.2.6. REST API to other MEC services and JSON server

After the creation of a context, the latter is made available to other 
MEC services through a dedicated main REST API, which encodes the 
pre-processed and filtered data into an easily manageable JSON for-

mat. This REST API expects the other services to expose a simple REST 
server, to which the S-LDM can connect as a client. Data is then pe-

riodically transmitted to the other services (with a configurable JSON 
message periodicity, usually lower than the update rate of the database) 
until a specific JSON reply is received.

Specifically, the S-LDM expects from the other services a JSON reply 
containing at least a field called rsp_type, which should be set to (i)
“ERROR” in case errors occurred while parsing the POST request from 
the S-LDM, (ii) “OK” to indicate that the service could successfully use 
the information received from the S-LDM, and more information should 
be periodically sent, or (iii) “STOP” for correctly parsed information, 
after which no more information is needed from the S-LDM.

The S-LDM also foresees the possibility of retrieving the informa-

tion on demand from the database through a separate on demand, 
lightweight JSON-over-TCP interface. Specifically, the S-LDM exposes 
a TCP server, called JSON server, and expects other services to perform 
requests specifying a location (i.e., latitude and longitude) and a radius, 
or a specific station ID. Requests are performed by sending, as TCP pay-

load, proper JSON files containing the request parameters (i.e., latitude, 
longitude, radius or station ID(s)). Upon reception of a correct request, 
the S-LDM will then return a list of vehicles and other non-connected 
objects as a reply, either matching the station ID(s), or currently located 
within the specified area. This list is returned as a JSON file stored in 
the payload of a TCP packet.

3.2.7. Web GUI

The S-LDM also includes a web-based Graphical User Interface 
(GUI), enabling users and road operators to monitor the situation on 
the road in real time. This GUI shows the content of the local dynamic 
map stored inside the database and allows users to interact with the 
map to display additional information about each vehicle and other 
non-connected object (e.g., showing the ID and current heading).

Furthermore, thanks to the Station Type field of CAM messages, the 
S-LDM can properly classify and display with different icons several 
types of vehicles (such as passenger cars or heavy trucks).

3.2.8. Vehicle local dynamic map updates

Other than relying on a centralized LDM such as the S-LDM, vehi-
12

cles may be equipped with a ETSI-compliant Local Dynamic Map [7], 
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keeping track of all the objects and other connected vehicles perceived 
by the local communication and sensing capabilities.

On this basis, the S-LDM also foresees the (optional) possibility of 
periodically updating the information available to each vehicle, with 
wide, precise centralized information related to objects on the road. 
The updates to the single vehicle LDMs occur periodically through one 
or more AMQP brokers, thanks to dedicated AMQP messages contain-

ing the most relevant information for each vehicle. A separate AMQP 
client, running on a dedicated parallel thread, is expected to manage 
this process.

We highlighted this additional feature in the bottom part of Fig. 1

with dotted boxes, as it is not yet fully available in our S-LDM imple-

mentation. Nevertheless, it is planned to be deployed soon.

3.3. Deployment and scalability options

As mentioned earlier, with the aim of tackling scalability and sup-

porting cross-border use cases, each S-LDM instance has been specif-

ically thought to cover a limited portion of the road, and filter out 
all the messages of vehicles coming from outside this coverage area. 
Cross-border is a particularly challenging scenario, due to the need of 
covering the road without interruptions when moving between the MEC 
platforms (in turn running different instances of the S-LDM) of different 
network operators, belonging to different countries.

As investigated by 5G-CARMEN, 5G can help to reduce the inter-

ruption time and experienced latency when crossing the border, thanks 
to solutions such as local breakout and fast network reselection based 
on Equivalent Public Land Mobile Network (E-PLMN) [32]. However, 
MEC services should also be designed to support cross-border use cases 
in a scalable way, foreseeing multiple instances interacting with each 
other, or gathering the same set of messages to extensively cover the 
road on both sides of a border, and scale in presence of a large amount 
of connected vehicles.

On this basis, with the aim of extensively covering the road, several 
S-LDM instances should be created and deployed, each covering an area 
starting from where the previous S-LDMs areas end. The overall areas 
covered by neighboring S-LDMs should also be overlapping, in order 
to let each instance store a complete view of the road, even when the 
context generation involves a vehicle traveling near the border of the 
coverage area. This can be done during the instantiation phase within 
a MEC platform, thanks to the possibility of easily configuring the cov-

erage area. A simple 2D representation of this mechanism is shown in 
Fig. 7.

As can be seen, thanks to the overlapping areas, some stretches of 
road are covered by more than one S-LDM instance. This enables a 
proper context generation even when a vehicle, like the highlighted 
car, is traveling near the coverage area border, and needs to be in-

formed about all nearby road users, including the preceding red car 
already traveling inside the S-LDM instance 4 area.

The full coverage area, including the portion overlapping neighbor-

ing S-LDM instances, is called extended area (red area for instance 3 in 
Fig. 7), while the area covered by a single instance without the over-

lapping portions is called base area (area between the two dotted black 
lines for instance 3 in Fig. 7). When a triggering condition is detected 
and a triggering vehicle is located in a common area, two scenarios may 
be considered:

• In-country: only the S-LDM with the triggering vehicle inside its 
base area will send the data to the other MEC services.

• Cross-border (e.g., if instance 3 is in Italy, and instance 4 is in Aus-

tria): both S-LDMs will send the data to the respective MEC services 
(e.g., to the MEC services located both in Italy and Austria). This 
ensures that vehicles connected to either one or the other operator 
and located in the common area can be reached by the output of 

the MEC services.
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Fig. 7. Multiple S-LDM architecture for cross-border and in-country scalability.
This mechanism further highlights the importance of an efficient fil-

tering mechanism as part of each S-LDM instance, i.e., the Quadkey 
filtering described in Section 3.2.1, which is set to cover the extended 
area for each instance. Indeed, receiving all messages from all vehi-

cles on the road, and then filtering them inside the Area Filter module 
(which requires decoding each single message) could be a computation-

ally expensive operation, especially under high traffic conditions.

With the aim of properly tackling cross-border scenarios, the S-LDM 
multi-broker subscription is used, with the only requirement that the 
AMQP broker on one side of the border should be reachable from 
the other side, and vice-versa (as deployed and tested in 5G-CARMEN, 
thanks to 5G inter-operator connectivity). Each cross-border S-LDM in-

stance belonging to each operator can thus receive messages coming 
from both vehicles attached to the operator on one side of the border, 
and from the ones already connected to the second operator belonging 
to the country on the other side of the border.

Moreover, to increase robustness on cross-border use-cases, the S-

LDM includes the so-called ageCheck feature. This feature, as part of 
the message decoding sub-module (described in Section 3.2.2), reads 
the GeoNetworking timestamp [27] to check the age of the data stored 
inside the database before updating it with the new received data. This 
allows our service to discard potentially outdated messages received 
after crossing the border, due to out-of-order packets. Specifically, out-

of-order messages may be received due to the jitter of the inter-operator 
connectivity when leveraging the multi-broker subscription.

When a set of S-LDM instances has been created to cover either an 
in-country or cross-border section of the road, their coverage area can 
also be regulated at runtime, creating new instances in case of a sud-

den increase in either vehicular or network traffic, or in resource usage 
from a single instance. Thanks to the native support for configurable 
coverage areas in the S-LDM, this can be managed by the underlying or-

chestrated edge platform scaling and life cycle management features. As 
an example, concerning cross-border S-LDM orchestration, the orches-

trated edge platform developed by 5G-CARMEN [33] provides seamless 
service continuity and on demand scaling according to service resource 
and traffic requirements.

Thanks to its modular structure and to the flexible deployment op-

tions, the S-LDM can enable several centralized use cases, efficiently 
providing filtered and processed information when needed. Examples 
of these use cases include:

• Centralized maneuver management, in which the S-LDM can 
provide the maneuver management services with real-time infor-

mation related only to the most relevant vehicles, letting such 
safety-critical services focus on the control task. In this use case, the 
S-LDM can be deployed in the MEC platforms of MNOs providing 
connectivity services to the vehicles, or on MEC servers available at 
the road operator premises. This enables the efficient provision of 
information to the actual maneuver coordination services, that can 
be interfaced with the S-LDM and be developed by the car manu-
13

facturers;
• Smart traffic light control, in which the S-LDM can be deployed in 
the MEC or cloud of a city mobility center, and interfaced with their 
own services to provide useful information, used then to control in 
a smart way the traffic light phases along one or more intersec-

tions, to reduce traffic and, consequently, emissions. The S-LDM 
could also prove to be useful for distributed virtual traffic light ap-

proaches such as the one presented in [39], thanks to the possibility 
of providing a broader view of the road to vehicles, by updating 
their local LDMs.

• Centralized Platooning, in which the S-LDM provides all the in-

formation relevant to a specific platoon of vehicles necessary for 
the Cooperative Adaptive Cruise Control (CACC) algorithm exe-

cuted by a controller running on a MEC platform [40]. For this 
specific maneuvering management use case, the S-LDM could fur-

ther improve the platoon maneuvers’ safety with additional infor-

mation about interfering vehicles in the platoon’s vicinity. Indeed, 
including detected object information within the available context 
enables the development of safer platooning algorithms resilient to 
legacy non-connected vehicle intruders [41].

3.4. Security and privacy management

One of the main challenges of C-ITS revolves around ensuring the se-

curity and privacy of communications between C-ITS actors. In Europe, 
Cooperative Intelligent Transport Systems (C-ITS) rely on a centralized 
security model based on a Public Key Infrastructure (PKI) as outlined 
in [42]. This model covers both vehicle-based and road infrastructure-

based stations, establishing a unified C-ITS trust domain between all 
ITS-S. Each ITS-S must adhere to the ETSI standards for digital certifi-

cates [43] and employ GeoNetworking for networking layer security 
[27]. While signed messages and digital certificates are enough for 
broadcast scenarios, IP-based communications (over protocols such as 
AMQP 1.0) demand additional security considerations, such as the use 
of TLS protocols [44].

Specifically, services such as the CA and DEN Basic Service, require 
authentication, authorization and integrity but not confidentiality [45]. 
ETSI defines the security profiles of both services, where the mecha-

nisms for signing with an authorization ticket are specified. To comply 
with this mechanism, each ITS-S should be capable of constructing a 
certificate chain from the ITS-S that generated the message to the trust 
anchor such as a Root Certificate Authority (Root CA) that is known 
by the receiving ITS-S. Additionally, in order to ensure that an ITS-S 
is able to send CAMs and DENMs without disclosing its identity but 
being still accountable for their transmission, ETSI mechanisms support 
pseudonymity by using temporary identifiers in all messages. Moreover, 
to avoid the possibility of CAM or DENMs messages of a given ITS-S to 
be tracked, ETSI outlines strategies for limiting the amount of static in-

formation that is included in such messages, achieving unlinkability.

As described in Section 3.1, the S-LDM has been designed to follow 
the C-Roads specifications, including the standards related to security 
and privacy for the exchange of messages over AMQP 1.0. In particu-
lar, all communication between the S-LDM AMQP client and a given 
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AMQP broker are expected to use Transport Layer Security (TLS) with 
mutual authentication using standard X.509 certificates when establish-

ing the connection as mandated in the requirements for the so-called 
Basic Interface (BI) [46]. With this mechanism, in addition to C-ITS 
message signing and authentication with the use of certificates accord-

ing to [43], IP-based communication is expected to be secured by X.509 
certificates according to IETF RFC 5280. Furthermore, all ETSI C-ITS 
messages supported by the S-LDM are expected to follow the header 
and certificate formats outlined in [43] as well as the structure defined 
in [27] for GeoNetworking secured packets, in the case of messages 
containing GeoNetworking and BTP headers. It should be mentioned, 
however, that it is up to the vehicles to include proper certificates and 
use TLS, and the S-LDM itself, since it acts as a middleware between 
the vehicles and other MEC services, can flexibly support non-secured 
messages too.

Finally, to protect the privacy of users, and depending on the use 
case, the S-LDM GUI, described in Section 3.2.7, can be configured 
to show different levels of information. Even though the information 
stored inside the S-LDM is designed to be viewed with full details only 
by road operators for real-time road monitoring, some applications may 
require some data to be hidden due to privacy laws or concerns. It is 
thus possible to selectively hide, for instance, the vehicle IDs or road 
user types, so that more anonymous information is displayed, while 
still storing internally (and locally to the S-LDM) the more detailed in-

formation required by other centralized V2X MEC services.

4. Laboratory pre-deployment evaluation

The S-LDM has been extensively evaluated first in a laboratory set-

ting, and then in the field, thanks to the deployment on the 5G in-

frastructure managed by the 5G-CARMEN project. For the latter, two 
connected vehicles provided by Stellantis have been used, sending their 
messages to the S-LDM instances located respectively on the MEC plat-

forms of TIM, Magenta Telekom and Deutsche Telekom AG, though the 
5G New Radio (NR) Uu interface.

Before the deployment as a MEC service on the 5G-CARMEN archi-

tecture, a series of in-lab tests have been performed on a local instance 
of the S-LDM. This testing campaign was mainly aimed at evaluating 
the performance of the S-LDM, connected to a local instance of an Ac-

tiveMQ broker, on well-known hardware running Ubuntu 20.04 LTS.

During the development and in-lab pre-deployment tests, we re-

sorted to a realistic vehicle emulation and simulation framework, called 
ms-van3t[47]. ms-van3t is a full-fledged V2X framework, available on 
GitHub with an open-source license [48]. It couples SUMO4 and ns-3,5

to provide at the same time simulation and emulation features. The first 
lets users simulate large scale scenarios with different access technolo-

gies (IEEE 802.11p, C-V2X, LTE, NR-V2X), while the second enables the 
emulation of an arbitrary number of vehicles, after setting up a realistic 
scenario on a given road topology.

The emulation mode of ms-van3t provides two main options. One 
option is to directly broadcast messages generated by vehicles over a 
physical Network Interface Card (NIC) of the device running the frame-

work, while the second provides for the transmission of messages via 
UDP from the simulated vehicles to an external server. We relied on 
this last possibility, combined with a custom AMQP 1.0 client relaying 
UDP messages to ActiveMQ, to emulate the presence of vehicles sending 
their messages to an AMQP broker. Concerning the emulated scenario, 
we configured ms-van3t to emulate vehicles traveling on a stretch of 
the A22 motorway, between Trento Nord and San Michele all’Adige, on 
which the 5G-CARMEN project focused for most of the in-country pi-

lots. It is worth highlighting that, since the S-LDM receives messages 
directly from the AMQP broker, its behavior will be exactly the same, 

4 https://sumo .dlr .de.
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5 https://www .nsnam .org/.
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Fig. 8. Testbed setup with ms-van3t [47] for the laboratory pre-deployment 
performance tests.

Fig. 9. S-LDM pre-deployment sub-modules performance tests.

no matter whether these messages originate from a simulated scenario 
or from real vehicles.

The testbed setup for the in-lab tests is depicted in Fig. 8.

4.1. S-LDM sub-modules

The main aim of in-lab tests was to assess the S-LDM performance, in 
terms of needed average computation time, focusing on three main sub-

modules (with reference to Fig. 1): (i) Message Decoder (Section 3.2.2), 
(ii) Area Filter (Section 3.2.3) and (iii) Main Database (Section 3.2.4).

All in-lab measurements have been performed by setting a local in-

stance of the S-LDM to cover an area around the chosen stretch of road. 
It should be noted that the number of vehicles in simulation is limited 
by the hardware used for the tests. Indeed, a non-negligible single-core 
computational effort is required by ms-van3t, when the number of ve-

hicles increases beyond a certain amount. The device used for the tests, 
running an Intel Core i7-10750H CPU, was able to properly emulate 
up to 25 vehicles without slowing down the S-LDM or any other pro-

cess running on it. This justifies why we chose to test up to 25 vehicles 
during the initial in-lab evaluation. A more extensive scalability study, 
performed after the S-LDM deployment on the 5G-CARMEN architec-

ture, is described in Section 6.

The most relevant results are depicted in Fig. 9, together with the 
main ms-van3t emulation parameters. Notice vehicles can travel at a 
maximum speed of 130 km/h, in accordance with the speed limits of 
the selected stretch of road. It is evident that the S-LDM maintains a 
consistent level of performance up to at least 25 vehicles, with only 
minor fluctuations between different numbers of vehicles. These slight 

variations, which do not exceed 3 microseconds, may be attributed to 

https://sumo.dlr.de
https://www.nsnam.org/
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Table 1

Results of the S-LDM REST API one-way and RTT latency measurements. Average and standard 
deviation (𝜎) values are reported over 6 independent tests.

Average 
one-way 
latency

Maximum 
one-way latency

Maximum 
one-way latency 
(excluding the 
first request)

Average RTT

Average over 6 tests [ms] 0.9950 2.2047 1.4942 2.2900

𝜎 over 6 tests [ms] 0.0196 0.0744 0.4457 0.0715
small kernel scheduling time oscillations. Overall, this suggests that the 
S-LDM is capable of scaling effectively, at least when dealing with a 
limited number of subscribers.

Furthermore, in comparison to the solution presented in [19], the 
S-LDM, when serving 20 vehicles, demonstrated superior performance 
with a total message processing time of just 24 microseconds, signifi-

cantly lower than the 950 microseconds recorded for its counterpart.

Furthermore, the results show how the most demanding sub-module 
is the Message Decoder, further justifying the Quadkey-based filtering 
approach described earlier, which enables filtering without the need of 
decoding each single received message.

Finally, all the measured times are much lower than 10 ms: this 
is considered as an upper bound to the end-to-end latency in the 5G-

CARMEN project [49]. Indeed, the measured values reveal how few tens 
of microseconds are needed to fully process each message. This proved 
to be also noticeably lower than the latency contribution introduced by 
other components in the 5G-CARMEN architecture, demonstrating how 
the S-LDM can be an efficient low-latency 5G enabler for high levels of 
automation.

4.2. REST interface

After the evaluation of the performance of the main modules up to 
the database update, we performed a second set of laboratory test, fo-

cused on the REST interface used to transfer the context to other MEC 
services. Specifically, we analyzed the time needed to transfer the con-

text data through the dedicated REST API, as depicted in Fig. 1.

Six independent tests have been performed, each under the same 
configuration, by transmitting the context data to a Python Tornado 
sample server,6 acting as MEC service receiving the information from 
the S-LDM. 100 POST requests have been performed for each test, with 
a periodicity of 1 second. The results are reported in Table 1.

The Table reports the average and standard deviation values calcu-

lated over the six tests, focusing on the average and maximum one-way 
latency of each test, the average RTT (i.e., from the POST request to the 
reception of the reply from the other MEC service), and the maximum 
one-way latency after the exclusion of the first POST request. Better re-

sults are obtained in this case, since the first request usually requires 
more time due to the need of establishing the connection.

As can be seen, the results show that the average one-way delay is 
slightly less than 1 ms, with a fairly low standard deviation and with few 
maximum peaks up to around 2 ms. When sending context data to other 
MEC services, this added delay can be deemed completely acceptable, 
while ensuring, at the same time: (i) a standardized and interoperable 
REST interface for communication between containerized components 
in the 5G-CARMEN MEC platforms and (ii) the objective of keeping 
a full-chain latency under 10 ms [49]. Furthermore, an average RTT 
of around 2.3 ms ensures that periodic context updates can be sent to 
other MEC services with a periodicity as low as 3 ms.

6 Available here. https://github .com /francescoraves483 /S -LDM /tree /main /
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tester /Python -REST -server
5. On-road evaluation

After the first in-lab measurements, the S-LDM has been integrated 
as a container inside the 5G-CARMEN orchestrated edge platform [33], 
in turn executed on the MEC platforms of the three network operators 
participating in the project. It is worth mentioning how the S-LDM can 
be easily containerized and configured for deployment thanks to a ded-

icated Dockerfile available in the GitHub repository.

The deployment of our service on actual MEC platforms allowed us 
to begin a number of road test campaigns, letting us validate the S-LDM 
capabilities in real-world V2X scenarios. During each test, a 5G Non-

Standalone (NSA) Uu link enabled the continuous reception of data on 
both connected and non-connected objects via AMQP 1.0.

As mentioned in Section 4, all measurements have been performed 
with two Stellantis vehicles equipped with V2X OBUs. The OBUs in-

stalled in the connected and automated vehicles are based on L3 Pilot 
[50] Maserati prototypes that were further enhanced with a percep-

tion system for High Automated Driving (HAD) in the 5G-CARMEN 
project. The V2X OBUs can communicate via Uu for 5G communica-

tion with the edge, and PC5 for short-range communication. The Uu

network connectivity is enabled by a 5G New Radio (NR) modem, en-

suring the required data rate performance and taking advantage of the 
5G-CARMEN cross-border features. The connectivity towards the S-LDM 
has been configured to ensure that the data transfer matches the on-

board detection frequency, at a higher rate (i.e., 20 Hz) than what is 
normally foreseen by the standards for V2V communication [3], while 
also guaranteeing continuous service, and utilizing the shortest possi-

ble path to reach the MEC services and the S-LDM itself. The OBUs use 
a dedicated AMQP client for exchanging V2N packets, which include 
CAMs and virtual CAMs, with the AMQP broker.

The two main aims of the road tests can be summarized as follows:

• Evaluate the S-LDM capability of receiving CAMs (and virtual 
CAMs) at a very high rate, i.e., 20 Hz, through AMQP 1.0 and with 
the support of a 5G network.

• Evaluate the performance of the S-LDM when dealing with real-

world connected vehicles and other non-connected objects.

5.1. In-country evaluation

The primary focus of this Section is the results of the most significant 
tests involving the MEC platform managed by TIM in Italy. Section 5.2, 
related to cross-border tests, involves instead both the edge platform in 
Italy and the one managed by Magenta Telekom (MTA) in Austria. It is 
also to be noted that the S-LDM deployed in Germany has been used for 
several additional test campaigns, which yielded similar results as the 
ones presented here.

Fig. 10(a) reports the Cumulative Distribution Function (CDF) of the 
overall messaging processing times, for each message received by the S-

LDM during the whole duration of a test performed on the Italian side 
of the E45 motorway (i.e., the A22 motorway). This test has been per-

formed between Sterzing-Vipiteno and Brennerpass, and the reported 
values are related to the two Maserati Prototypes (herein labeled as 
“Vehicle 1” and “Vehicle 2”). As can be seen, most message decoding 
and database update operations occurred in less than 50 microseconds, 

with very few spikes up to around 0.5-0.7 ms. It should be noted that 

https://github.com/francescoraves483/S-LDM/tree/main/tester/Python-REST-server
https://github.com/francescoraves483/S-LDM/tree/main/tester/Python-REST-server
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Fig. 10. Empirical Cumulative Distribution Functions results of the in-country on-road tests. The plots show the results related to each vehicle, during the whole 

road test duration.

these peaks are always caused by a single message among thousands of 
processed messages.

The outcome, in terms of performance, is thus good. Furthermore, 
despite the numbers are slightly different (due to the different resources 
assigned to the S-LDM process), the orders of magnitude are consistent 
with the pre-deployment results, as the great majority of messages are 
decoded and processed in a few tens of microseconds.

It was also possible to measure how much time occurs between two 
consecutive database updates for the same connected vehicle or de-

tected object. This metric (which we named Instantaneous Update Rate) 
was gathered to understand how often the database was actually be-

ing updated, considering the processing times and network conditions 
on the A22 motorway. It is indeed crucial to be able to update the local 
dynamic map as quickly and promptly as possible, since it provides data 
to other 5G-enabled latency-critical services. The Instantaneous Update 
Rate is computed as the time difference between when the information 
about a given road user is received and when the data about the same 
user was last updated in the database.

The results are plotted in Fig. 10(b).

It can be observed that the database is updated on average every 50 
ms for each road user, which is in line with the high-frequency genera-

tion of CAMs at 20 Hz. Although with a very low probability, few spikes 
were observed. These peaks are likely due to the jitter and delay caused 
by the underlying network architecture, as no significant performance 
issues were detected throughout the whole test duration, as reported in 
Fig. 10(a). They are nevertheless occasional and affect single packets, 
and they should not cause any noticeable issue in the services relying 
on the S-LDM to gather an up-to-date map of the road.

By examining the CDF, it is also possible to determine how, in more 
than 95% of cases, the database can be updated in under 70 ms after 
the previous update. As this periodicity is highly affected by the jitter 
of the underlying network architecture, which is based on 5G NSA, this 
result can be considered quite promising. This is especially true when 
considering that, according to ETSI, the standard highest CAM trans-

mission frequency is set to 10 Hz [3]. According to the tests presented 
here, a network-intensive transmission of messages at 20 Hz is viable 
and can lead to tangible advantages, enabling the creation of an over-

all map of the road with update rates higher than what is currently 
foreseen nowadays.

5.2. Cross-border evaluation

The S-LDM can handle cross-border scenarios thanks to the subscrip-

tion to multiple AMQP brokers as described in Section 3.3, which, in the 
5G-CARMEN architecture, is in turn enabled by a dedicated inter-MEC 
communication infrastructure. With the aim of testing how the S-LDM 
performs in cross-border scenarios, several test runs were performed 
16

with two Maserati vehicles (as described in Section 5.1) along the Bren-
nerpass border, on the E45/A22 motorway between Austria and Italy. 
For these tests, two S-LDM instances were deployed respectively in the 
MEC platforms managed by TIM in Italy and MTA in Austria. The same 
instances were then configured as subscribers to two AMQP 1.0 brokers, 
one deployed on the Italian MEC platform, and one on the Austrian 
MEC platform. Both S-LDM instances were set to cover overlapping ar-

eas around the border, in such a way that the whole border area was 
well-covered by both S-LDMs instances. In addition to evaluating the 
S-LDM performance when deployed in different MEC platforms, the dis-

connection time due to the MNO network reselection time at the border, 
from the S-LDM point of view, has been evaluated as well.

The tests reported here have been performed on the E45 stretch of 
road between Nößlach (Austria) and Brennerpass (Italy), focusing on 
the Austria to Italy direction as a significant setting. The path followed 
by one of the Maserati vehicles is depicted in Fig. 11. The map takes as 
reference the S-LDM instance in Italy, and shows, in blue, the positions 
recorded through messages received from the Italian broker, and, in red, 
the ones gathered thanks to the CAM messages received from the Aus-

trian broker (thanks to the multi-broker subscription for cross-border 
scenarios). Additionally, this plot shows how the S-LDM can be used, 
as an additional feature, to understand under which network a vehicle 
is connected to, given its geographical position. Indeed, thanks to the 
multi-broker subscription, it is possible to distinguish which messages 
are coming from which broker (and, consequently, which messages are 
coming from which network).

The overall outcome of the cross-border tests was positive, since our 
service was able to receive real-time information to track connected 
vehicles and detected objects on both sides of the border, by processing 
the messages from the respective AMQP brokers. Even though several 
runs have been performed, only one of them is reported (being the most 
significant) in order to make a more descriptive outline of the results.

Fig. 12 shows the normalized message delay as a function of the 
time since the beginning of the test, taking as reference the S-LDM 
instance running on the TIM MEC platform. The normalized message 
delay represents a measurement of the delay between message trans-

mission from vehicles and reception by the S-LDM, minus the minimum 
observed during the whole test. If 𝑑𝑖 is the delay measured for packet 𝑖, 
then the normalized message delay for the same packet is computed as:

𝑑𝑖 = 𝑑𝑖 −min
𝑖
𝑑𝑖 (1)

The minimum normalized delay thus corresponds to a value of “0”. 
Using a normalized delay value was necessary as the time synchro-

nization between the MEC platforms of the different MNOs was not 
guaranteed, thus not ensuring consistent measurements in case of abso-

lute delay values.

As can be seen, the normalized delay remains mostly stable dur-

ing the whole test duration, with few sparse peaks, whose duration 

in time is always relatively short and under a second. These spikes 
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Fig. 11. Path followed by one of the two Stellantis vehicles during the cross-border road tests from Austria to Italy. The messages received by the S-LDM from the 
TIM network and AMQP broker are depicted in blue, while the messages from the MTA network and broker are depicted in red.

Fig. 12. Normalized message delay (i.e., a measurement of the delay between message transmission from vehicles and reception by the S-LDM, normalized to the 
minimum observed during the whole test) along the duration of a single test run, for a single vehicle. The S-LDM instance running on the TIM MEC platform has 
been taken as reference.
are probably due to the jitter and delay caused by the underlying 5G 
NSA network, and are expected to be noticeably reduced when moving 
to a full-fledged 5G SA architecture. Furthermore, it is possible to ob-

serve how the average normalized delay for the MTA broker is, overall, 
slightly higher. This is expected, as the data shown in Fig. 12 is taken 
from the S-LDM instance in Italy, with respect to which all messages 
from the MTA broker in Austria experience an additional inter-MEC 
communication delay.

Finally, it was possible to observe a disconnection interval of only 
13 seconds, when moving from Italy to Austria, which remained quite 
stable for all the test runs along the border. Indeed, focusing on the di-
17

rection from Austria to Italy, we measured an S-LDM average disconnec-
tion time, due to fast network reselection, of 13.3729 s, with a standard 
deviation of 2.0203 s, and a 95% confidence interval of ±0.7062 s.

The CDFs of the Instantaneous Update Rate of the S-LDM, concern-

ing both the TIM and MTA instances and during the most significant 
Austria-to-Italy cross-border test, are reported in Fig. 13. As can be 
seen, and in line with the in-country tests, it is possible to observe how 
around 80% of the time, for a given vehicle, the database is updated 
with a periodicity of 50 ms or less (lower values are possible due to the 
underlying network jitter). As in the previous case, this is in accordance 
with the 20 Hz CAM frequency. Very similar results could be observed 
concerning both the S-LDM instance deployed to the TIM MEC plat-
form, and the one deployed to the MTA MEC platform, proving how the 
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Fig. 13. Cumulative Distribution Function of the time between consecutive database updates for each of the Maserati vehicles during the most significant Austria-

to-Italy cross-border test.

Fig. 14. Cumulative Distribution Function of the message processing times for each of the Maserati vehicles during the most significant Austria-to-Italy cross-border 
test.
S-LDM can efficiently store and provide a real-time map of the road in 
cross-border scenarios.

Finally, it was possible to evaluate the overall message processing 
times during the whole duration of the same cross-border test. The CDFs 
related to both S-LDM instances are depicted in Fig. 14.

Similarly to the in-country case, 90% of messages are processed in 
under 72 microseconds on the instance at the TIM MEC, and 50 mi-

croseconds on the instance at the MTA MEC. The difference between 
the two, given the microsecond-scale of all values, can be explained 
by the different hardware configurations supporting the two MEC plat-

forms. Furthermore, the average processing time proved to be around 
35 microseconds for the S-LDM deployed in Italy, and 28 microseconds 
for the one instantiated in Austria. These values are consistent with the 
in-lab and in-country road tests, and show how the S-LDM can perform 
very well under different circumstances, including cross-border scenar-

ios.

Furthermore, all the results presented in this Section, and in the pre-

vious one, allowed us to validate our component in the field, showing 
its effectiveness in processing messages with very low latency, storing a 
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highly efficient map of the road and providing a filtered and processed 
context to other MEC services when needed, thanks to a dedicated REST 
interface.

6. Scalability features and analysis

Scalability represents one of the major challenges for most V2X MEC 
services, especially considering the increasing market penetration rate 
resulting in a higher connected vehicle density. As each S-LDM instance 
is designed to cover a limited portion of the road to tackle scalability, 
multiple instances are expected to be deployed in future practical sce-

narios covering a whole motorway or urban road, possibly adapting the 
coverage areas in real-time, depending on the number of active message 
producers (i.e., vehicles) and/or on resource usage.

A series of scalability tests have been performed measuring the per-

formance of the service in terms of computational time and resource 
utilization in order to validate its capability of (i) storing real-time data 
and (ii) providing it to other services, when an elevated number of ve-

hicles are being served.

It should be mentioned how, to the best of our knowledge, this is 
the first study to extensively study the scalability of a system like the 

S-LDM.
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Fig. 15. (Top): CPU consumption of S-LDM and AMQP broker pods in milliunits as a function of the number of vehicles being emulated. (Bottom): Instantaneous 
Update Rate of a reference vehicle (i.e., reference stationID) as the total number of vehicles managed by a single S-LDM instance increases.
6.1. Real-time data storage scalability

As described in Section 3.3, in order to extensively cover the road, 
S-LDM instances are envisioned to be created such that each one covers 
an area starting from where the previous instance area ends. When con-

sidering cross-border scenarios, there is a need for every coverage area 
to overlap nearby ones. Therefore, in the case of overlapping areas at 
the border between two countries, the respective S-LDM instances are 
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expected to receive messages from multiple AMQP brokers.
Furthermore, with the aim of evaluating the architecture perfor-

mance between the S-LDM and the AMQP broker services, three sce-

narios have been considered for the tests:

1. One S-LDM instance subscribed to a single AMQP broker.

2. One S-LDM instance subscribed to two AMQP brokers.

3. Two S-LDM instances subscribed to a single AMQP broker.

All the tests have been performed leveraging the testbed depicted 

in Fig. 16, deployed on an OpenStack platform, running Ubuntu Server 
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Fig. 16. Testbed setup for S-LDM laboratory scalability performance tests.
20.04 LTS. A Kubernetes-orchestrated cluster was deployed, using the

kubeadm toolbox in the S-LDM VM, in order to emulate the behavior 
of the service running at the MEC in the 5G-CARMEN on-road architec-

ture. A variable number of connected vehicles sending CAMs at 20 Hz 
(as foreseen by 5G-CARMEN) were emulated with an ad-hoc emulator 
running on the Producer VM. This emulator can realistically emulate a 
very large number of vehicles, starting from pre-recorded packet traces 
generated offline by ms-van3t [47], which is in turn configured with a 
scenario on the A22/E45 motorway. kubectl has been used to moni-

tor and log the resource usage of each pod and container running on the 
cluster. For each test, the number of emulated vehicles was increased 
by 10 every 15 seconds, up to 750 vehicles, for a total duration of 1125 
seconds. Finally, a sample automated driving centralized Maneuvering 
Service (MS), has been deployed on a third MS VM, to create a setup 
similar to the on-road configuration used for the in-country and cross-

border tests on the 5G-CARMEN architecture.

Concerning test 1, representing a simple in-country scenario, the 
CPU consumption shows a linear increase for both S-LDM and AMQP 
components up to 430 emulated vehicles, as depicted in the top part of 
Fig. 15(a). When the number of vehicles increases over this value, the 
CPU consumption becomes almost constant for the S-LDM and slowly 
decreases for the AMQP broker. This behavior translates in an increased 
time between database updates performed by the S-LDM for a given 
vehicle, as shown in the bottom part of Fig. 15(a), where the periodic-

ity remains stable at 50 ms (due to the 20 Hz CAM periodicity of the 
emulated vehicles) and then it starts significantly increasing from 430 
emulated vehicles. These results are due to an AMQP-level buffering be-

havior that results in messages getting sent in “bulks” when a very large 
number of producers are sending data to the S-LDM through AMQP 1.0. 
For a given vehicle being served, this behavior not only introduces mes-

sage delays while they are getting buffered, but also causes multiple 
messages to be placed in the same “bulk”, which results in groups of 
consecutive database updates performed in very short intervals (lower 
than a millisecond). For descriptive purposes, only database update in-

tervals larger than a millisecond are considered for Fig. 15. This result 
also allows us to conclude that a single S-LDM instance, connected to a 
single AMQP broker in an in-country scenario, is able to handle up to 
430 vehicles without any performance loss. This value can thus be used 
to properly define a deployment strategy, with proper coverage areas, 
for multiple instances. Considering vehicles traveling at 130 km/h and 
spaced 36 m, in a two-lane per direction of travel motorway, a single 
S-LDM instance would be thus able to cover at least, roughly, 3.9 km of 
road.

When considering multiple AMQP broker subscriptions, multiple 
AMQP client threads need to be running on the S-LDM (one client for 
each broker). With the goal of assessing the performance of the S-LDM 
while subscribed to multiple brokers, such as in a cross-border scenario, 
test 2 was performed with a single instance of the S-LDM subscribed to 
two AMQP brokers. It is worth mentioning that the number of emulated 
vehicles sending messages was increasing by 10 every 15 seconds, up 
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to 750 vehicles, for each of the AMQP brokers. Therefore, if compared 
to test 1, the total number of served vehicles in the database, at ev-

ery time step, is the double, while keeping the same number of vehicles 
being handled by each of the AMQP client threads. The CPU consump-

tion of all pods with respect to the number of vehicles being served by 
each component is depicted in Fig. 15(b). Intuitively, due to the fact 
that each broker is serving the same number of vehicles at every step 
on both tests, both AMQP brokers present a linear increase of CPU us-

age presenting very similar rate as in test 1. On the other hand, the 
S-LDM presents a linear increase of CPU usage at twice the rate, reach-

ing a maximum use of 660 CPU milliunits. As depicted in Fig. 15(b), 
the CPU consumption of all components stops increasing after a total 
number of 710 emulated vehicles. These results are in line with the 
database update periodicity for a given vehicle being served by a given 
AMQP broker, depicted at the bottom of Fig. 15(b), which shows that 
up to 710 vehicles can be served without any performance loss. This 
number corresponds to slightly less than the double of the single broker 
subscription case.

Test 3 was performed with the aim of testing the AMQP performance 
when multiple S-LDM instances are subscribed to it. All emulated vehi-

cles were “traveling” in an area covered by two S-LDM instances, rep-

resenting an overlapping area between two adjacent S-LDM instances. 
At the top of Fig. 15(c), the CPU consumption of all pods with respect 
to the number of vehicles being served by each service is depicted. The 
results show a linear increase of CPU consumption by all services up 
to a value of 430 emulated vehicles, as with test 3, after which the re-

source usage remains stable and the performance starts to decrease. The 
main outcome of this test shows that the CPU usage of the AMQP broker 
does not seem to be affected significantly when serving multiple S-LDM 
instances, with a maximum increase of only 16% with respect to the 
outcome obtained in test 1. The outcome of this test, combined with 
the results of the previous experiments, shows the presence of a per-

formance bottleneck at an AMQP level, for high numbers of connected 
vehicles. This bottleneck, as can be inferred from the results of test 3 
(i.e., from the CPU usage of the broker which is not significantly in-

creased when serving two S-LDM instances), is however not due to the 
AMQP broker but rather to the AMQP client module within the S-LDM, 
which is based on the Qpid Proton library. Thus, even though an already 
significant number of vehicles can be managed by each single S-LDM in-

stance, future performance improvements may consider including and 
testing other AMQP 1.0 client implementations.

Finally, an additional performance test has been performed with the 
goal of benchmarking the S-LDM performance when running multiple 
AMQP client threads for each AMQP broker. A similar scenario to the 
one of test 2 has been considered, where two AMQP client threads were 
connected to each of the two AMQP brokers. For a given AMQP broker, 
each of the AMQP clients has been configured to subscribe to messages 
coming from an area half the size of the one considered for test 2, hence 
selecting half of the previously considered Quadkeys. The clients to-

gether are set to cover the full area of test 2. As depicted at the top 
of Fig. 15(d), a linear increase of CPU consumption by all services is 

observed up to a value of 930 emulated vehicles. As in all previous 



Vehicular Communications 49 (2024) 100819C.M. Risma Carletti, F. Raviglione, C. Casetti et al.

Fig. 17. (a) CPU consumption of S-LDM pods, measured in milliunits, with respect to the number of vehicles requesting context information and the number of 
vehicles located within the context range of each requesting vehicle. (b) Instantaneous update periodicity of a reference vehicle (i.e., reference stationID), with respect 
to the number of requesting vehicles managed by a single S-LDM instance and different numbers of vehicles in the triggered context.
tests, the database update periodicity for a given vehicle being served 
by a given AMQP broker, depicted at the bottom of Fig. 15(d), shows 
a stable, fast behavior up to the same point where the linear increase 
of CPU consumption tapers off. The outcomes of this experiment show 
how running more than one AMQP client thread for a given AMQP bro-

ker further increases the number of vehicles manageable by the S-LDM 
without any performance loss. Specifically, we observe an increase up 
to almost 30% with respect to test 2 (with one S-LDM subscribed to two 
brokers, with one client thread for each broker).

6.2. Data provision to other services scalability

The tests described in this Section were conducted to assess how 
well the service performs in terms of resource consumption while pro-

viding road context to other latency-critical MEC services. For these 
experiments, the same testbed setup as in the previous tests has been 
used, as depicted in Fig. 16. Specifically, on the MS VM, a custom REST 
server application was designed to accept the POST request coming 
from the S-LDM instance when a triggering condition is detected. The 
purpose of the custom REST server is to imitate the behavior of an ac-

tual centralized maneuver management service. With this aim, it has 
been configured to receive 10 POST requests, one every 50 ms, before 
sending a reply with the rsp_type field set to “STOP”.

For what concerns the tests outlined in this Section, we set up a 
gradual increment in the number of vehicles triggering context data 
transmission to the REST server: every 50 seconds, from one emulated 
vehicle up to 20 vehicles, resulting in a total test duration of 1000 
seconds for each test. In particular, for this test, to simplify the data 
collection and generate controlled triggering conditions, we decided to 
set the CAM-based trigger to detect when a vehicle switches on its right-

turn indicator. The test was conducted three times, with each iteration 
featuring 5 additional non-triggering vehicles placed within the 150-

m context range of the vehicles requesting context data. It is worth 
mentioning that, in every test, the batch of non-triggering vehicles was 
generated simultaneously with the triggering ones and was configured 
to travel at the same speed to remain within the context range through-

out the entire test period.

The results regarding the S-LDM CPU consumption, concerning both 
the number of triggering vehicles and the number of vehicles located 
within a given range around each triggering vehicle (i.e., within a con-

text of 150 m), are presented in Fig. 17. It can be observed that the 
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CPU consumption rises by 1000 CPU milliunits for every new vehicle 
triggering data transmission towards the REST server. This can be at-

tributed to the S-LDM generating a new REST client thread for each 
service request, responsible for retrieving data from the database and 
sending POST requests with associated context information.

In addition, our findings reveal that the CPU consumption remains 
unaffected by the number of vehicles located inside the context trans-

mitted to the other MEC services. However, as depicted in Fig. 17(a), 
once the total number of served vehicles approaches the previously 
mentioned maximum value of 430 vehicles (when relying on a single 
AMQP client and broker), as is the case for 15 triggering vehicles each 
with 25 additional non-triggering ones within context range, the CPU 
consumption decreases. This decrease is due to the delay in AMQP mes-

sage reception, which leads to a decline in performance. It is worth 
mentioning that for the results showcased in Fig. 17, the total number 
of emulated vehicles depends on the number of non-triggering vehi-

cles within context range. Indeed, for the case of 18 triggering vehicles 
each with 20 additional non-triggering ones, the total number of emu-

lated vehicles is roughly the same as the case of 15 and 25 respectively, 
thus presenting the same behavior. This proves that the performance 
decrease in context data transmission to the REST server is not affected 
by the number of triggering vehicles nor by the number of vehicles in 
their context range, but only by the total number of served vehicles.

This behavior is a result of the triggering conditions being, as de-

scribed for this test, dictated by the information contained in CAMs, 
specifically, by the status of exterior lights, found in the lowFrequen-

cyContainer. Indeed, the lowFrequencyContainer is available on CAMs 
every 500 ms, coinciding with the duration needed to transmit all 
POST requests while supplying context information of a requesting ve-

hicle. Consequently, as shown in Fig. 17(b), when message delay due 
to buffering occurs at the AMQP client, triggering conditions detected 
in messages are delayed as well, resulting in fewer REST client threads 
operating simultaneously at a given point in time.

Other than providing useful thresholds for a possible deployment 
strategy of the S-LDM, with multiple instances, the tests presented in 
this Section provide interesting insights on a possible smart scaling 
policy (as already hinted at in Section 3.3). The latter, in particular, 
could be based on the combination of road traffic (which should be 
possibly predicted to perform scaling actions proactively) and CPU us-

age. Although the number of vehicles triggering the transmission of 
road context increases the CPU consumption of the S-LDM, it has been 
proven that it does not affect the performance of the database, which 

is only limited by the total number of vehicles served by an AMQP 
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client instance. Thus, future versions of the S-LDM may also consider 
improving the single instance performance by spawning multiple AMQP 
clients for each single broker subscription, in different threads, when an 
oncoming performance reduction is detected or predicted (e.g., when 
getting near the maximum number of vehicles manageable by a single 
client instance).

7. Conclusions and future work

We presented in this paper an innovative V2X 5G-enabled MEC ser-

vice, capable of receiving messages from a large number of connected 
vehicles, both related to connected and non-connected road objects.

This service, called Server Local Dynamic Map (S-LDM), can pre-

process and store the information about large portions of the roads (i.e., 
coverage areas of each S-LDM instance) in a highly efficient, central-

ized Local Dynamic Map [7], and provide a proper filtered data context 
to other services managing highly automated maneuvers. The latter 
can thus focus on the latency-critical control algorithm, avoiding being 
overloaded by message decoding and processing operations in presence 
of high vehicle densities and penetration rates.

The S-LDM can receive ETSI-compliant messages from one or more 
AMQP brokers, following the C-Roads standards. The messages of vehi-

cles located in the coverage area are decoded, filtered and processed to 
be stored in a vehicle database, that represents one of the core compo-

nents of our service. Then, in addition to real-time monitoring for road 
operators, pre-processed context data can be provided to other maneu-

ver management services in an efficient way, either a single time or 
periodically. This happens either when the S-LDM itself detects special 
conditions on the road that require the intervention of centralized V2X 
services, or when such services query the S-LDM for information that 
may be needed for several different applications, from controlling traf-

fic light phases to optimally manage an automated lane merge involving 
multiple vehicles.

After detailing the architecture and deployment options of the S-

LDM, we evaluated our service both with in-lab tests, and through on-

road experiments. The latter were performed as part of the 5G-CARMEN 
project, funded by the European Commission [2], involving two proto-

type Stellantis vehicles and the MEC platforms of three major European 
Mobile Network Operators (TIM of Italy, MTA of Austria and DTAG of 
Germany). This allowed us to test the S-LDM in both in-country and 
cross-border configurations, showing how it can always process each 
message and update the internal database in few tens of microseconds. 
Furthermore, the S-LDM has been designed to work as a cross-OEM ser-

vice, and several compatibility tests have been performed with both 
Stellantis and BMW vehicles before the deployment for the road tests.

Our service was also tested with high message rates (i.e., 20 Hz), 
showing how it can steadily maintain a per-vehicle database update 
rate around 50 ms, up to 430 vehicles for each single instance, with a 
single AMQP client for AMQP broker configuration.

Finally, with respect to [5], we presented a novel extensive scala-

bility analysis, providing interesting insights on how the S-LDM could 
be deployed and scaled in real-world scenarios. Specifically, we proved 
how the total number of manageable vehicles without any performance 
loss depends on the number of AMQP clients subscribed to each broker. 
This also provides useful information for an orchestration policy based 
on resource consumption and number of managed road objects.

As future work and research directions, we plan to:

• implement the S-LDM to Vehicle LDM interface;

• finalize the design and development of a smart AI/ML trigger and 
algorithm, as described in Section 3.2.5;

• design and implement an internal scaling mechanism which auto-

matically detects performance bottlenecks and spawns new AMQP 
client when needed, dynamically adapting the coverage area of 
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each client.
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Concerning the second point, the S-LDM could play a crucial role 
in future AI-enabled automated vehicle MEC services. Use cases like 
DL task offloading from camera frames are emerging and they may re-

quire a centralized view of the road to find optimal solutions to the 
offloading problem, to be then communicated to the vehicles. Indeed, 
several works already analyze the problem of task offloading to the 
edge [51,52], that is emerging as a problem in vehicular networks. 
The S-LDM could thus provide two main advantages: (i) it could pro-

vide centralized offloading services with real-time information about 
road users, so that optimal offloading strategies can be employed and 
communicated to vehicles, and (ii) it can provide services that need to 
perform the offloaded tasks with any additional information they may 
need, offloading them from the need of decoding and filtering infor-

mation, and leaving free resources for computationally heavy inference 
jobs.

In addition, the inclusion of an AI/ML trigger could further enhance 
the capability of the S-LDM to detect special conditions on the road, to 
provide in a timely manner the information needed to other maneuver 
management MEC services. For instance, an AI-based algorithm could 
analyze the current and historical position of vehicles to detect whether 
a lane merge is likely to occur. If this kind of maneuver is estimated to 
occur with a probability higher than a given threshold, the S-LDM could 
start processing and sending information about the involved vehicles to 
a maneuver management services, that will be able to timely react and 
provide proper maneuver recommendations to autonomous vehicles as 
soon as the actual maneuver is initiated.e
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