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ABSTRACT
Global Navigation Satellite Systems (GNSSs) have settled as a crucial asset for Positioning, Navigation and Timing (PNT)38

within the Space Service Volume (SSV), and this technology is increasingly recognized a major player to serve the realm of39

lunar exploration missions. Current space operations are heavily relying on ground infrastructures, with escalating operational40

costs and limited resources. Therefore, it is urgent to enhance autonomy of space users, particularly in the task of real-time41

Orbit Determination (OD). This study aims to demonstrate the performance of GNSS-based onboard OD in the lunar regime. In42

a sequential Bayesian architecture, where GNSS observations are filtered with an orbital propagator, the sigma-point Unscented43



Kalman Filter (UKF) model is compared against the renowned Extended Kalman Filter (EKF)-based Orbital Filter (OF). The44

upcoming LuGRE mission serves as a case study, showcasing near-Moon PNT from a simulated portion of lunar ignition45

orbit at approximately 61 Earth Radii (RE). Both navigation algorithms are assessed with actual receiver observables, retrieved46

from a high-fidelity Hardware-in-the-Loop (HIL) simulation. Results highlight that the UKF effectively smooths out harmful47

Dilution of Precision (DOP) leaps induced by losses of lock of some GNSS signals, while maintaining position estimation errors48

within 2 km for 98.97% of the time. Moreover, remarkable accuracy gains over the EKF are observed, with a 3σ percentile49

improvement of 79.97% for position estimates and 63.62% for velocity estimates.50

I. INTRODUCTION
In contemporary space operations, the navigation, guidance, and maneuvering of space vehicles largely depend on ground51

segment assets. Radio Frequency (RF) tracking via Deep Space Networks (DSNs) facilities and Direct-to-Earth (DTE) links52

enables advanced Orbit Determination (OD) techniques through sophisticated off-board processing algorithms (Iess et al., 2014).53

However, relying on ground-segment assets introduces several drawbacks. Operational costs are elevated, and the management54

of numerous missions is constrained by limited ground segment resources (Turan et al., 2022). To meet the objectives set by the55

space exploration roadmap, there is a pressing need to enhance autonomous navigation capabilities.56

In the Space Service Volume (SSV), Global Navigation Satellite Systems (GNSSs) are a crucial asset for autonomous spacecraft57

(S/C) navigation and timing, and their usage has been regulated up to Geosynchronous Orbit (GEO) altitudes (Parker et al.,58

2018). While processing of Earth’s GNSS signal in space has been proven feasible at higher altitudes, several technological59

challenges arise. The Earth’s obstruction of satellite signals determines drops of availability. Moreover, the increased free-space60

path loss attenuation together with frequent tracking of side lobes results in weak signal reception and noisy observations.61

Additionally, the unfavourable geometric diversity of ranging sources can exacerbate navigation uncertainty.62

Targeting the lunar regime, scientific literature has proposed sequential filtering architectures to address the challenges of63

ground-independent and precise OD using onboard GNSS radiometric observations. Extended Kalman Filter (EKF)-based64

Orbital Filter (OF) models, as pioneered by (Capuano, 2016), have demonstrated significant navigation performance in Earth-65

Moon transfer orbit (MTO) up to Moon altitudes. In line with the reduced dynamic approach, (Capuano et al., 2017) augmented66

the state space model with pseudo-stochastic parameters to mitigate the effects of unmodeled or mismodeled S/C dynamics.67

Additionally, an ensemble Kalman filter (EnKF) model targeting orbital navigation in MTO has shown promising performance68

in simulations at lunar altitudes (Murata, 2023). Recently, unconventional EKF architectures that constrain a kinematic OD69

solution with a planned orbital trajectory have also been proposed (Vouch et al., 2024).70

As part of National Aeronautics and Space Administration (NASA)’s Commercial Lunar Payload Services (CLPS) program71

(Task Order 19D), the Lunar GNSS Receiver Experiment (LuGRE) (Parker et al., 2022) serves as case study to investigate the72

potential of more advanced Bayesian formulations for autonomous GNSS-based orbital navigation of a S/C in lunar proximity.73

The LuGRE technology development payload will deploy the Navigation Early Investigation on Lunar surface (NEIL) module–a74

GNSS Software Defined Radio (SDR) receiver specifically customized for operations in deep-space (Tedesco et al., 2023)–75

onboard the US Firefly Blue Ghost Mission 1 (BGM1) lander. The mission aims to be the first flight demonstration of76

multi-GNSS PNT in cis-lunar space and on the Moon surface; one of the key scientific objectives of LuGRE is to assess77

the performance of filtering-based PNT solutions obtained both by the real-time receiver operation and through ground-based78

post-processing of sampled multi-system, multi-band observables (Minetto et al., 2022; Nardin et al., 2022, 2023).79

This work explores the potential of a more complex Unscented Kalman Filter (UKF) model which integrates multi-channel80

GNSS observables tightly with the prediction of space dynamics from an orbital propagator. Benchmarking the UKF formulation81

against an EKF-based model, a Low Lunar Orbit (LLO) segment 61 RE away from Earth is considered to comprehensively82

assess the attainable orbital navigation performance. In particular, both Bayesian estimators are tested for the post-processing of83

observables constructed by the LuGRE receiver in a Hardware-in-the-Loop (HIL) simulation with RF GNSS signals. Leveraging84

a faithful model for the RF link simulation, the operational environment seen by a receiver in lunar proximity is also discussed85

in terms of navigation metrics. Even with an error-prone initialization, the UKF-based architecture can effectively tackle harsh86

multilateration geometry and reduced availability exhibiting position estimation errors within 2 km for the 98.97% of the87

analyzed orbit.88

II. BACKGROUND
From the navigation perspective, OD is the problem of determining the S/C motion relative to the center of mass of the Earth,89

and express it in a specified coordinate system. Orbital motion is described by the state of the dynamical system, which90

encompasses the instantaneous S/C position and velocity as minimal set of parameters useful to predict future motion states.91

In a Bayesian filtering framework, GNSS-based orbital navigation can be framed as a statistical estimation process which92

sequentially estimates the belief of the latent system state. Given an initial estimate x0 of the state drawn from a distribution93
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Figure 1: Bayesian filtering approach for orbital navigation with radiometric GNSS observations, integrating predictions from an orbital
propagation model. Inspired by (Fang et al., 2018).

p (x0) which reflects the initial knowledge about the system (i.e., the initial condition), the estimation process tackled by the94

Bayesian filter follows two steps:95

• Prediction of the prior state density: the moments of the prior p(xk|x̂k−1)1 predict the system state evolution at time96

tk by applying the transitional model f(·) to the latest state estimate x̂k−1.97

• Estimation of the posterior state density: the posterior p(xk|zk) is estimated leveraging sampled observations zk which98

relate to the state through the measurement model h(·).99

A mathematical formulation of the S/C orbital dynamics (i.e., an orbital propagator) defines the transitional (or, motion) model100

as a non-linear, stochastic differential equation:101

ẋ(t) = f(x(t), t) +w(t) . (1)

Inaccuracies in the physical model of the orbital forces would end up causing the orbital propagator to deviate from the actual102

motion. These effects, together with deterministic yet unknown control inputs, are captured in the process noise term w(t).103

As a matter of fact, (1) is a transitional model with continuous-time dynamics. Although the orbital motion is more accurately104

described in continuous-time, the system is observed at discrete-time instants. When an estimate of the orbiting vehicle state is105

available at tk−1, (1) can be numerically integrated (cf. (Battin, 1999)) between sample intervals:106

xk = xk−1 +

∫ tk

tk−1

f(x(t), τ)dτ +wk . (2)

Model (2) characterizes the system evolution in terms of an equivalent non-linear, discrete-time difference equation. The107

random white-noise sequence wk is considered from the discretization of a piecewise constant process noise (Schutz et al.,108

2004). Under the assumption that the system state evolves as a discrete-time Markov process, a graphical representation of the109

sequential procedure is shown in Figure 1.110

When sampled GNSS observations are retrieved onboard (i.e., zk), they are processed through the measurement model:111

zk = hk(xk) + vk . (3)

This model filters observations using predictions based on orbital propagation, treating non-systematic measurement errors as112

additive disturbances with runtime-adaptable covariance. The resulting Bayesian formulation integrates GNSS observables113

tightly with the prediction of space dynamics (Capuano, 2016). This approach is well-suited at lunar altitudes where GNSS114

signal depletion occurs and blind spots are likely to intermittently appear. In fact, the integration of an orbital propagator enables115

continuous navigation without the need for a minimum set of radiometrically visible satellites to compute a single-point solution.116

Additionally, a limited number of measurements can still be beneficial in constraining the model-based orbital propagation,117

provided these measurements are not outliers. This helps to prevent drift caused by the integration of process noise.118

1xk=x (t = tk), and x̂k is an estimate of the true yet unknown system state.



1. Space vehicle dynamics119

In the framework of Newtonian’s physics, the S/C motion dynamics in an inertial reference frame relative to the Earth’s center120

of mass are governed by the two-body model:121

r̈(t) = −GMer(t)

r(t)3
= −µer(t)

r(t)3
(4)

which defines the second-order differential equation of motion for the unperturbed Keplerian orbit. In particular:122

• r(t) = [rx (t) , ry (t) , rz (t)]
T is the instantaneous, absolute S/C position vector expressed in an Earth-Centered Inertial123

(ECI) reference frame (or, its realization in the J2000 frame);124

• ṙ(t) = [ṙx (t) , ṙy (t) , ṙz (t)]
T is the instantaneous, absolute S/C velocity vector expressed in ECI frame;125

• r̈(t) = [r̈x (t) , r̈y (t) , r̈z (t)]
T is the instantaneous, absolute S/C acceleration vector expressed in ECI frame;126

• r(t) is the instantaneous geocentric distance of the S/C from the Earth center of mass (i.e., r(t) = ∥r(t)∥)127

• µe is the Earth’s gravitational parameter (µe = 398600.4405 km3 s−2 based on (Montenbruck et al., 2002))128

Time is the independent variable in the equations of motion for orbital navigation using GNSS measurements, which are tagged129

to the GPS Time (GPST). Transformations using International Atomic Time (TAI) are needed for transitions between dynamical130

and atomic time scales (Montenbruck et al., 2002). However, time dependence will be implicit hereafter and time variable will131

be omitted.132

It is remarked that (4) undertakes the assumption of the Earth being a sphere that is gravitationally equivalent to point mass.133

Although a realistic Earth’s gravitation model should account for the geopotential gradient due to the non-uniform mass distri-134

bution of the geoid, this first-order approximation is increasingly acceptable for orbital altitudes above 50 000 km (Montenbruck135

et al., 2002). As the S/C moves away from the Earth in the interplanetary trajectory towards the Moon, other perturbing forces136

become dominant, such as luni-solar gravitational fields and solar radiation pressure (SRP). Incorporating third-body effects137

into the S/C’s orbital dynamics extends the two-body model into a multi-body problem. Since the physical realization of138

forces is additive in nature, the non-linear differential equation of perturbed orbital motion can be expressed following Cowell’s139

formulation:140

r̈ = −µer

r3
+ r̈p . (5)

The net perturbative acceleration r̈p to the spherically symmetric Earth’s gravitation reads as:141

r̈p = r̈3b + r̈srp (6)

and it includes r̈3b the acceleration due to the point mass gravitation of other celestial bodies, and r̈srp the acceleration arising142

from solar photons impinging on the S/C surface.143

144

Assuming a set of nc celestial bodies, the first term of (6), resolved about ECI frame axes, is:145

r̈3b =

nc∑
j=1

µj

(
rj − r

∥rj − r∥3
− rj

r3j

)
. (7)

where rj denotes the geocentric position vector of the j-th celestial body, rj its distance from the Earth’s center of mass,146

and µj its planetary mass parameter. For GNSS-based navigation in deep-space up to cislunar altitudes and lunar orbits, (7)147

encompasses perturbations from the Sun and Moon. The geocentric positions of these celestial bodies can be retrieved from148

Jet Propulsion Laboratory (JPL) Development Ephemerides series DE440 (Park et al., 2021). These ephemerides, reference149

to the International Celestial Reference System (ICRS) (e.g., ECI-frame), and are computed by fitting integrated orbits to both150

ground-based and space-based observations in a series of Chebyshev polynomials. The DE series are time-tagged to Barycentric151

Coordinate Time (TCB), requiring conversions to align with GPST. The planetary mass parameters according to DE440 are152

tabulated in (Park et al., 2021).153

The SRP induced acceleration on a S/C of mass m can be considered as a surface force which is approximated by the following154

spherical model (McMahon, 2011):155

r̈srp = −P 1AU
srp

(
1AU

∥rs − r∥

)2
A

m
CR

rs − r

∥rs − r∥
(8)



where A is the S/C exposed area to solar energy, CR is the radiation pressure coefficient (cf. Table 3.5 of (Montenbruck et al.,156

2002)) that depends on the S/C reflectivity ϵ, and rs is the ECI-frame position vector of the Sun. Assuming that A absorbs all157

photons (i.e., ϵ = 0) and is normal to the direction of the incoming radiation, P 1AU
srp ≈ 4.56× 10−6 Nm−2 is the force of solar158

pressure per unit area in one astronomical distance (1AU ≈ 149.6× 106 km).159

Building upon (1), the orbital dynamic model in an ECI-frame can be obtained as a variation of Cowell’s formulation (6) into a160

non-linear, first-order vector differential equation:161

d

dt

[
r
ṙ

]
︸︷︷︸
xsc

=

[
ṙ

−µer
r3 + r̈3b + r̈srp

]
︸ ︷︷ ︸

f(xsc,t)

+

[
03×1

wsc

]
(9)

where wsc is the instantaneous acceleration driving noise with Power Spectral Density (PSD) Ssc
w =

[
Ssc
wx

, Ssc
wy

, Ssc
wz

]T
.162

The differential model (9) is applicable for a deep-space orbital propagator during a transfer orbit above 50 000 km altitude, and163

it is also suitable for cislunar and lunar altitudes. Recent contributions have considered a model in a selenocentric inertial frame164

that incorporates higher-order lunar gravity harmonics (Iiyama et al., 2024). Nonetheless, this model lies beyond the scope of165

the present study.166

2. GNSS measurement model and clock dynamics167

Sampled GNSS observations admit a non-linear functional model with the S/C positioning states. Assuming Time-Of-Arrival168

(TOA) ranging based on code tracking, the pseudorange equation for the PRN sequence transmitted by the i-th GNSS satellite169

is formulated at time tk as:170

ρik =
∥∥rk − rik

∥∥+ c · δtu,k + ϵik (10)

where:171

• rik is the position vector of the satellite center of mass at tk;172

• δtu,k is the receiver clock offset relative to GNSS system time at tk;173

• ϵik is the non-systematic, residual model error which combines both signal-in-space user range error (SISRE) and user174

equipment error (UEE) into the user equivalent range error (UERE) (Teunissen and Montenbruck, 2017).175

The pseudorange equation (10) is valid under the assumption that space-segment corrections, relativistic effects, atmospheric176

delays2, and biases have been compensated for by external data or physical models (Teunissen and Montenbruck, 2017). The177

position vector rk is referenced to the phase center of the GNSS receiver antenna onboard the S/C, unlike Section II.1, which178

considers the position relative to the S/C center of gravity. A lever-arm correction factor should be applied to account for such179

spatial offset. For a GNSS receiver tracking PRN sequences of both GPS and Galileo satellites, δtu,k represents the clock-offset180

relative to GPST. As such, the Galileo pseudorange equation must include an additional term for the GPS-to-Galileo time-offset181

(GGTO). This GGTO can either be obtained from the navigation message and applied as a space-segment correction or, if not182

demodulated, included as an unknown parameter in the sequential estimation process. The former approach is considered in the183

observation model formulation according to Section II.3. Moreover, the satellite position vector in (10), whether computed from184

broadcast ephemeris parameters in the navigation message or through precise orbit products, is determined in an Earth-Centered185

Earth-Fixed (ECEF) frame (i.e., WGS84) (Teunissen and Montenbruck, 2017). Since the receiver position vector is more186

conveniently expressed in an ECI frame, a rotational transformation is required to compare on-board GNSS measurements with187

satellite positions.188

Doppler measurements arise from the relative motion between the receiver and GNSS satellites, and they are relevant to the189

estimation of both the receiver velocity and the frequency deviation of the receiver clock. The Doppler model can be derived by190

differentiating the pseudorange equation with respect to time, and is computed from the projection of the relative satellite-receiver191

velocity vector onto the receiver-to-satellite Line-of-Sight (LOS) (Morichi et al., 2024). For the tracked carrier component of192

the i-th GNSS satellite, the Doppler measurement Di
k is expressed as:193

ρ̇ik − ṙik · eik︸ ︷︷ ︸
Di

k

= −eik · ṙk + c · δṫu,k + ϵ̇ik (11)

2When tracking signals on multiple frequency bands, the dispersive group delay induced by the ionosphere is referenced to a single frequency using
frequency-dependent ionospheric coefficients.



where:194

• ρ̇ik is the pseudorange-rate measurement at tk;195

• ṙik is the velocity vector of the satellite center of mass at tk;196

• eik =
[
eix,k, e

i
y,k, e

i
z,k

]T
is the unit pointing vector from the S/C position to i-th satellite position at tk;197

• δṫu,k is the receiver oscillator frequency deviation (i.e., clock drift);198

• ϵ̇ik is the residual error after model-based corrections and compensation of known physical effects.199

Eventually, clock dynamics can be modelled using to the following discrete-time, linear stochastic system (Galleani, 2008):200 [
δtu,k
δṫu,k

]
︸ ︷︷ ︸

xclk
k

=

[
1 ∆t
0 1

]
︸ ︷︷ ︸

Φclk

[
δtu,k−1

δṫu,k−1

]
+

[
wclk

ϕ,k

wclk
f,k

]
︸ ︷︷ ︸
wclk

k

(12)

where ∆t = tk − tk−1, Φclk is the time-invariant state-transition matrix, and wclk
k is the white noise random sequence (i.e.,201

from discretization of clock noise random walk) with stationary covariance Qclk (cf. Section 9.3 in (Brown and Hwang, 1992)).202

3. State-space model formulation203

Combining S/C orbital dynamics with the GNSS receiver clock states, the state vector for GNSS-based orbital navigation can204

be defined at time tk:205

xk =
[
xscT

k xclkT

k

]T
∈ Rn×1 (13)

where xsc
k ∈ R6×1 includes the S/C absolute position and velocity vector states at time tk, and n = 8 for the present study.206

Starting from the non-linear, differential model (9) for perturbed orbital motion, an approximate linear model between sample207

times can be derived by linearizing around the latest estimate of S/C dynamics (i.e., x̂sc
k−1). The solution to the first-order, vector208

differential equation of the state-transition matrix can be expressed as a function of the system matrix (Bar-Shalom et al., 2004):209

Φsc
k−1,k = eF

sc(t,x̂sc
k−1)∆t (14)

where:210

F sc
(
t, x̂sc

k−1

)
=

∂f (xsc, t)

∂xsc

∣∣∣∣
xsc = x̂sc

k−1

=

[
03×3 I3×3

∂
∂r

(
−µer

r3 + r̈3b + r̈srp
)∣∣

xsc = x̂sc
k−1

03×3

]
. (15)

The partial derivatives of Earth’s point mass gravitation, third-body effects, and SRP can be found in (Montenbruck et al., 2002).211

From (14), the state-transition matrix for the linearized dynamics is obtained via Taylor series approximation. The linearized212

approximation may be inaccurate compared to the true transition matrix. An alternative is to express the differential equation213

of the state-transition matrix in variational form, and use numerical integration (Montenbruck et al., 2002). A simpler approach214

is to use a complex-step derivative approximation (Capuano, 2016).215

Assuming a first-order Taylor approximation of (14), the state-transition matrix including receiver clock states takes the form:216

Φk−1,k =

[
I6×6 + F sc

(
t, x̂sc

k−1

)
∆t 06×2

02×6 Φclk

]
. (16)

Discretizing the process driving noise in (9) into a white noise sequence wsc
k , the covariance matrix of the discrete process217

sequence affecting state-transition dynamics becomes:218

Qk =

[
Qsc

k 06×2

02×6 Qclk

]
, Qsc

k =

[
∆t3

3
∆t2

2
∆t2

2 ∆t

]
⊗ diag

(
Ssc
wk

)
(17)

where Ssc
wk

=
[
Ssc
wx,k

, Ssc
wy,k

, Ssc
wz,k

]T
is the sampled PSD of the acceleration process white noise.219



In a similar vein, the non-linear GNSS observation model (cf. Section II.2) can be linearized by taking the partials of the220

measurements about the state evaluated locally at the sample instant. Assuming Ns tracked GPS/Galileo satellites at time tk221

and GGTO demodulation (i.e., single constellation model), the Jacobian of the observation equations (10) and (11) is computed222

as:223

Hk =

[
H̃k 0Ns×3 c · 1Ns×1 0Ns×1

0Ns×3 H̃k 0Ns×1 c · 1Ns×1

]
, H̃k =

[
−e1k, . . . , −eNs

k

]T
. (18)

This linearized measurement model is valid under the assumption of processing single-frequency, code-based observations. For224

dual-frequency processing, (18) strictly holds after ionosphere-free linear combination (Teunissen and Montenbruck, 2017).225

When considering the processing of GNSS observations in a Kalman-based estimator, measurement noise vk is modeled as226

a white random sequence with non-stationary covariance Rk. The latter assumption is reasonable given the highly-variable227

GNSS signal characteristics as a function of the S/C altitude, and thus over time. For Ns pseudorange and pseudorange-rate228

observations available from navigation satellites, the covariance matrix is compactly written as:229

Rk = diag
([

σ2
ϵ1,Sk

, . . . , σ2
ϵNs,S
k

, σ2
ϵ̇1,Sk

, . . . , σ2
ϵ̇Ns,S
k

])
. (19)

For the stochastic disturbance affecting pseudorange observations, the error budget in terms of UERE includes space-segment230

errors (i.e., satellite clock and ephemeris parameters), uncorrected atmospheric effects, relativistic errors, and receiver noise.231

The dominant contributor to receiver noise on pseudorange measurements is the code tracking jitter from the Delay-Lock Loop232

(DLL), induced by thermal noise. The model from (Betz and Kolodziejski, 2000), valid for BPSK modulated codes3, can be233

used to weight code tracking accuracy runtime by jointly accounting for code loop tuning, front-end bandwidth, and received234

Carrier-to-Noise-density ratio (C/N0).235

Doppler measurements variance, instead, should account for the Phase-Lock Loop (PLL) carrier tracking jitter, influenced by236

thermal noise and short-term Allan deviation, and Frequency-Lock Loop (FLL) frequency tracking jitter, primarily affected by237

thermal noise, neglecting vibration-induced errors.238

For a comprehensive understanding of each noise source, the reader is encouraged to refer to the literature on the topic (Kaplan239

and Hegarty, 2017).240

III. METHODOLOGY
1. UKF architecture with orbital propagator241

For non-linear transitional models, the sub-optimal EKF uses a Taylor series approximation under the Gaussian assumption for242

covariance prediction, while state-propagation can be achieved through numerical integration. In contrast, the UKF uses the243

Unscented Transform (UT) paradigm, which can directly capture the moments of a target Gaussian distribution, providing a244

more accurate representation of highly non-linear functions in sequential estimation. This section discusses the UKF model245

embedded with an orbital propagator for GNSS-based sequential OD. The EKF-based model is not extensively discussed, as it246

is well-documented in the literature (Capuano, 2016). However, the results section will evaluate both Bayesian models in the247

task of S/C orbital navigation in LLO, when GNSS observations are filtered in a tightly integrated configuration.248

Following the augmented form of the UKF (Särkkä and Svensson, 2023) with process noise terms, the augmented posterior249

state estimate at tk−1 is expressed4 as:250

x̂a
k−1 =

[
x̂T
k−1 01×n

]T
. (20)

Correspondingly, the augmented posterior covariance estimate follows as:251

P̂ a
k−1 =

[
P̂k−1 0n×n

0n×n Qk

]
. (21)

A set of 2n+ 1 sigma-points are then deterministically computed as:252

χi
k−1 =

[(
χi,x

k−1

)T (
χi,w

k−1

)T]T
=


χ0

k−1 = x̂a
k−1 for i = 0

χi
k−1 = x̂a

k−1 +

√
(n+ λ)

[
P̂ a

k−1

]
i

for i = 1, . . . , n

χi+n
k−1 = x̂a

k−1 −
√
(n+ λ)

[
P̂ a

k−1

]
i

for i = n+ 1, . . . , 2n

(22)

3When processing subcarrier modulated codes, the modified formulation discussed in (Betz, 2000) should be used. Yet for the processing of Galileo E5 and
E5ab signals, code tracking error models can be found in (Tawk et al., 2012).

4For discrete-time equivalent models, the additive discrete process sequence has the same dimensionality of the state vector. However, this is not true in
general, and a similar equivalence does not hold for model noises defined directly in discrete time (Gustafsson and Gustafsson, 2000)



where [·]i denotes the i-th matrix column, and the square-root of a matrix is computed from the Cholesky decomposition of the253

positive definite P̂ a
k−1. The terms of χi

k−1 can be further decomposed as:254

χi,x
k−1 =

[(
χi,sc

k−1

)T (
χi,clk

k−1

)T]T
; χi,w

k−1 =

[
01×3

(
χi,wsc

k−1

)T (
χi,wclk

k−1

)T]T
(23)

to differentiate between the components relative to S/C positioning states and those relative to the GNSS receiver clock.255

Equation (22) defines the scaled UT (Van Der Merwe, 2004) with256

λ = α2 (n+ κ)− n (24)

determining the spread of the sigma-points around the mean of the posterior state density; this spread is tuned through the filter257

parameters (α, κ). The sigma-points are assigned a set of scalar, time-invariant weights:258

Wi =

{
λ

n+λ i = 0
1

2(n+λ) i = 1, . . . , 2n
(25)

a) Moments of the Gaussian prior state density259

x̂−
k =

2n∑
i=0

Wiχ
i,x
k|k−1

P̂−
k =

2n∑
i=0

Wi

[
χi,x

k|k−1 − x̂−
k

] [
χi,x

k|k−1 − x̂−
k

]T
.

(26)

The term χi,x
k|k−1 is obtained through numerical integration of

(
χi,sc

k−1,χ
i,wsc

k−1

)
based on (9), and linear propagation of260 (

χi,clk
k−1 ,χ

i,wclk

k−1

)
via (12). The predicted covariance evaluates the spread of the time propagated sigma-points over the261

estimated mean of the prior. For the i-th time-propagated sigma-point χi,x
k|k−1, the predicted GNSS measurement vector ẑi

k is262

calculated by leveraging the non-linear functional models (10) and (11). The predicted GNSS measurement vector would then263

be computed:264

ẑk =

2n∑
i=0

Wiẑ
i
k (27)

b) Posterior estimation265

Pxz =

2n∑
i=0

Wi

[
χi,x

k|k−1 − x̂−
k

] [
ẑi
k − ẑk

]T
Pzz =

2n∑
i=0

Wi

[
ẑi
k − ẑk

] [
ẑi
k − ẑk

]T
x̂k = x̂−

k + PxzP
−1
zz (zk − ẑk)

P̂k = P̂−
k − PxzH

T
k −HkP

T
xz +HkPzzH

T
k

(28)

where zk is the GNSS measurement vector at the sample instant (cf. Section II.2), Pxz is the the cross-covariance between266

x̂−
k and ẑk, and Pzz is the innovation covariance (Julier et al., 2000). The last relation of (28) expresses a generalized Joseph267

formula for the posterior covariance estimation, applicable to non-linear measurement models (Zanetti and DeMars, 2013).268

2. Lunar orbit scenario269

The upcoming LuGRE mission is considered as case-study to assess the potential of more complex non-linear Bayesian270

formulations when tackling the challenges of autonomous orbital navigation of a S/C in the lunar regime.271

The initial state-vector of the BGM1 lander has been used in Ansys Systems Tool Kit (STK) to retrieve ephemeris parameters272

for the whole mission based on the High Precision Orbit Propagator (HPOP). The ephemeris parameters are expressed in the273



(a) (b)

Figure 2: (a) The BGM1 lander trajectory with a zoom in the analyzed LLO segment. (b) The dynamic skyplot of tracked GPS and Galileo
satellites in lunar proximity.

Table 1: Overview of the analyzed LuGRE mission segment in LLO.

Parameter Value
Trajectory Type LLO
Reference Frame ICRF (ECI-J2000 realization)
Initial geocentric distance [km] (RE) 389032.47 (60.99)
Maximum geocentric distance [km] (RE) 390981.82 (61.30)
Mean geocentric distance [km] (RE) 389206.46 (61.02)
Initial GPS time [s] / UTCG date 1411329668.38 / 25-Sep-2024 20:01:49.382
Final GPS time [s] / UTCG date 1411336800.38 / 25-Sep-2024 21:59:42.382
Sampling time [s] 60

geocentric, inertial J2000 frame, and are converted to position and velocity states. Starting from the complete mission trajectory274

(45.97 days), a section (2 hours) has been selected for the evaluation of the navigation algorithms. This section has been chosen275

because it reflects the mission’s scientific objectives and is characterized by particularly challenging navigation conditions,276

including limited availability of satellite measurements and degraded geometry. It involves a selenocentric segment in LLO277

around 61 Earth Radii (RE) and close to apolune, happening after the second Lunar Orbit Injection (LOI) maneuver (Parker278

et al., 2022). The LuGRE trajectory together with the analyzed LLO section are shown in Figure 2(a). Moreover, the LLO details279

are summarized in Table 1. For the selected LLO, the original 60-second step trajectory was up-sampled to 1 Hz performing280

7-th order Lagrange interpolation in General Mission Analysis Tool (GMAT) (Hughes et al., 2014). This step was performed281

in view of emulating the operational scenario of the LuGRE receiver (cf. Section III.3). Eventually, a frame transformation to282

an Earth-fixed frame (ECEF-WGS84 realization) was operated on the up-sampled trajectory segment by accounting for Earth’s283

rotational effects relative to inertial space.284

The reported trajectory is based on pre-launch orbit design and does not reflect the actual trajectory the BGM1 lander will follow285

upon deployment. Details of the operational orbit remain undisclosed.286

3. RF simulation framework & navigation analysis287

To emulate the GNSS operational environment and the RF signal conditions the LuGRE receiver is expected to be subject288

to in the LLO segment, a multi-GNSS simulation model was configured in Spirent GSS9000 GNSS RF simulator (Spirent,289

2015). Consistent with the NEIL hardware design and Earth GNSS signal processing capabilities, only GPS (G) and Galileo290

(E) constellations were modelled in the simulation environment. The most recent Almanac data and space-segment operational291

advisories were incorporated into the navigation systems’ configuration. Although also other services are broadcast by the292

respective satellite payloads, the RF signal generation was confined to L1 C/A and L5 signals for GPS, and E1 and E5a signals293

for Galileo. For the Global Positioning System (GPS) constellation, the gain patterns of batches IIR and IIR-M were modelled294

according to (Marquis, 2016), with the boresight EIRP configured based on (Delépaut et al., 2020) for L1 C/A and L5-Q signals.295

Similarly, the gain pattern for batch IIF was taken from (Donaldson et al., 2020), and replicated for batch III-A. For the Galileo296



(a) C/N0 from RF-visible satellites (L1/E1)

(c) Visibility map of GNSS satellites (unique SVs)

(b) C/N0 from RF-visible satellites (L5/E5a)

(d) Single-point positioning error (left axis) and Dilution of Precision
metrics (right axis).

Figure 3: GNSS environment seen by the LuGRE receiver in the analyzed LLO segment in terms of relevant navigation metrics.

constellation, instead, patterns were configured based on the reference model for first generation Full Operational Capability297

(FOC) satellite antennas (Menzione et al., 2024). Moreover, the non-isotropic radiation patterns of both GNSS systems for the298

modelled signals were truncated with an off-boresight mask to account for satellite body effects. Further insights about RF link299

simulation can be found in (Tedesco et al., 2023).300

Regarding atmospheric effects, GNSS signals received from satellites on the opposite side of the Earth relative to the S/C’s301

position cross the ionosphere twice, causing greater delays and introducing unmodelled biases in the retrieved measurements.302

These signals correspond to the main lobe portion in the transmitting EIRP that spills over the Earth’s disk and is confined303

within the altitude of the ionospheric layer (i.e., ≈ 103 km). For GPS satellites, this translates to an angle of approximately304

13◦ in the EIRP pattern, with an additional 2.2◦ margin for the ionosphere, while for Galileo satellites, the angles are slightly305

smaller at approximately 12◦ plus 2◦ respectively, due to the higher orbit radius. At Moon altitudes, the likelihood of receiving306

such signals is very low, as demonstrated in the feasibility study by (Delépaut et al., 2020). Therefore, ionospheric effects307

were neglected in the simulation, which is justified for the analyzed LLO section of the LuGRE trajectory. Nevertheless, when308

tracking dual-band signals for the same satellite and processing observables, ionospheric-free measurements can be obtained,309

albeit with higher noise variance.310

Based on the described framework, a HIL test was conducted by integrating the NEIL receiver in the configured GNSS testbench.311

Digitally generated signals for GPS L1/L5 and Galileo E1/E5a bands were upconverted to RF and transmitted through Spirent’s312

Signal Generator Unit (SGU). RF signals were eventually processed by the LuGRE receiver, thus allowing the record and313

post-processing of dual-band raw measurements from both constellations.314

Figure 2(b) displays the dynamic skyplot of GPS and Galileo satellites, whose signals are tracked and for which observables are315

constructed, according to the high-sensitivity acquisition and tracking capabilities of the LuGRE receiver. This polar diagram316

considers the instantaneous relative dynamics between the S/C and the tracked GNSS satellites in the LLO segment. The317

positions and velocities of the tracked GNSS satellites are projected onto a Local Vertical Local Horizontal (LVLH) frame (for318

Space Data Systems , CCSDS), with the radial direction representing the S/C’s boresight, assuming perfect pointing to the319

Earth’s center of mass. To ease graphical interpretation, a zoom is included that frames the boresight direction; it is clearly320

visible that the batch of tracked satellites is clustered at boresight thus lacking variability in elevation due to the large distance321

of the S/C from the Earth compared to the GPS/Galileo orbit semi-major axis. Moreover, the minimum elevation for the Earth’s322

disk and the elevation isolines of both GPS and Galileo systems are identified by modeling the GNSS system’s orbit semi-major323



axis and flattening. For each S/C position, an ellipsoid is considered, and the minimum elevation level is determined and324

repeated over the entire analyzed LLO. This elevation isoline represents the boundary circle beyond which satellites cannot be325

seen inside the polar diagram. The Moon’s occlusion of the S/C-to-Earth LOS is considered as well instant-by-instant, with the326

skyplot representing the worst-case Moon occupation. Despite this occlusion, RF signals are not necessarily blocked. Given327

the S/C’s mean geocentric distance (cf. Table 1) and the Moon’s radius (about 0.2727 of Earth’s mean equatorial radius), the328

Moon’s disk occupies an angle roughly 84.19 times smaller than the Galileo E1 main lobe beamwidth when the Moon center of329

mass is taken collinear with the S/C-to-Earth LOS.330

By setting a 20 dB-Hz threshold as the minimum received C/N0 level of a signal for the corresponding raw observable to be331

considered available for processing in the PVT unit, the C/N0 patterns seen by the LuGRE receiver are depicted in Figure 3(a)332

for L1/E1 band and in Figure 3(b) for the L5/E5a band. For the mean geocentric distance of the analyzed LLO, a 30 dB-Hz333

threshold is reasonable to differentiate between the reception of the main lobe and peak side lobes. The measured C/N0 levels334

for L5/E5a band signals are higher, reaching up to 43 dB-Hz for GPS L5, due to the wider transmission pattern beamwidth and335

lower path loss. This aligns with the observations by (Delépaut et al., 2020). However, more signals are tracked on the L1/E1336

band because only a subset of satellites of each system broadcasts services in the lower frequency band. Notably, measurements337

are available from only one Galileo satellite (i.e., E19) in the whole LLO segment, with a side lobe signal being tracked. This338

is likely caused by the conservative modeling of Galileo EIRP in the simulator, or the orbital geometry, as Galileo satellites are339

distributed across three orbital planes compared to GPS’s six, limiting orbital diversity.340

Figure 3(c) illustrates the radiometric visibility profile of GNSS satellites throughout the entire LLO section. It shows that a341

maximum of five GPS satellites are tracked for a short interval of 130 s, accounting for only the 1.21% of the dataset length. On342

average, 2.72 satellites are tracked, indicating that fewer than three satellites are available for most of the dataset. Moreover, the343

availability of the minimum number of measurements required for the computation of a single-point PVT solution is 21.32%.344

This availability is reflected in the weighted Least-Mean Squares (LMS) solution shown in Figure 3(d) (left axis). The right axis345

on the same figure highlights the profiles of geometric DOP (GDOP), position DOP (PDOP), and time DOP (TDOP). To better346

illustrate the dependence of the single-point positioning error on the DOP metrics, a logarithmic scale was chosen. Due to the347

scarcity of tracked GNSS satellites, the LLO scenario is characterized by remarkable DOP discontinuities. In particular, the348

rapidly changing geometric conditions can be characterized by steep ascending ramps, which rapidly deteriorate the accuracy349

of GNSS single-point estimates.350

IV. RESULTS
This section discusses the OD performance of the UKF-based OF model (cf. Section III.1) within the analyzed LLO scenario351

in the LuGRE framework, benchmarked against the renowned EKF-based model. The filtering-based algorithms are analyzed352

for post-processing sampled GNSS observations collected by the LuGRE receiver in the HIL simulation (cf. Section III.3).353

The filters have been developed with equivalent orbital propagators modeling S/C dynamics, and share the same stochastic354

characterization of the noises affecting both the process and the measurements (cf. Section II.3). It is remarked that sequential355

estimators require an initial condition for the PVT states, which models the prior knowledge about the system. Typically, this356

initialization can be provided through a (weighted) single-point solution. However, the limited multi-system, multi-channel357

position fixing availability observed in lunar proximity (cf. Figure 3) suggests the need for alternative approaches. For the358

current assessment, aided initialization is assumed; in the real operational scenario, this approach would leverage data via the359

ground-based TeleCommand (TC) link. Similarly, in this analysis, the navigation algorithms are initialized using the upsampled360

BGM1 lander trajectory. To simulate inaccuracies in the aiding information, purposely degraded initialization is considered.361

For the position states, a 103 m error is uniformly added to each spatial dimension. A similar approach is applied to the velocity362

states, with a smaller error accounting for the 0.1% of the true lander speed at the initial sample time. In the absence of reference363

values for the receiver timing states, approximate values of 103 m and 10−4 ms−1 are assigned, and this lack of prior knowledge364

is modelled in the covariance of the initial state distribution.365

Figure 4 shows the time-series of S/C position and velocity estimation errors (ECI frame) using dual-channel GNSS observations,366

with separate plots for position (Figure 4(a)) and velocity (Figure 4(b)). The solid lines of each error subplot evaluate the distance367

of the estimated mean of the posterior density from the true lander positioning state at the sample instant. Moreover, the shaded368

areas indicate the conditional 3-sigma Root-Sum-Squared (RSS) error. Figure 5 presents the errors in the S/C comoving orbital369

frame, separating radial error from the orthogonal plane components. Cumulative error statistics are summarized in Table 2.370

Upon the biased initialization of 103 m, the radial position error in Figure 5(a) reduces to about 50m after the first sample of371

GNSS observations are filtered through to orbital propagator. Given that the tracked satellites are clustered at high elevation372

(cf. 2(b)), the radial error mirrors the error in the receiver clock offset estimate. A similar behavior characterizes the radial373

component of the velocity estimate, as shown in Figure 5(b). Despite the limited number of available measurements at the374

beginning of the LLO section, the receiver timing states possess enough observability to allow for the convergence of the radial375

estimate. Conversely, the normal component exhibits an error bigger than the initial mismatch and takes longer time (about 10376
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Figure 4: EKF and UKF OD error (solid line) with RSS confidence intervals (shaded area) at 3σ (99.7% confidence).
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Figure 5: EKF and UKF OD error decomposed in radial (left axis) and normal (right axis) components of a local orbital frame.

minutes) to reduce for both filters. Additionally, for the normal components, the mean posterior estimates remain biased by377

roughly the same amount as the simulated initialization error. This suggests that accurate initialization is crucial for achieving378

accurate OD solutions in operational scenarios with significant depletion of Earth GNSS signal, such as those experienced at379

the Moon.380

During the first time frame of single-point PVT availability (cf. Figure 3(d) between 20:20 and 20:34), the radial position and381

velocity error profiles of both estimators follow the GDOP pattern as expected. However, at the end of the time frame, the UKF382

radial position estimate exhibits a sudden deviation while the EKF remains stable. This phenomenon might be associated with383

a decrease in the observability of the clock states due to the loss of L1 signal track for satellites G1 and G21 (cf. Figure 3(a)),384

along with the UKF filter gain weighting more the observations than the EKF. Moreover, examining the entire LLO section,385

abrupt variations in the radial error time series often coincide with discontinuities in the radiometric tracking of satellites (cf.386

Figure 3(c)). These discontinuities can determine anomalies in the clock states’ estimates, directly affecting the radial terms.387

However, the UKF appears to be less affected by these effects, resulting in a smoother estimate overall.388

More interesting effects can be observed during the second time frame of single-point PVT availability (cf. Figure 3(d) between389

21:8 and 21:19), which is marked by a harmful PDOP ramp with values reaching nearly 160 × 103. At the end of this ramp,390

coinciding with the loss of signal track for G1 on L1 band and G7 on L5, the conditional posterior estimates from the two391

filters highlight different behaviors. the EKF posterior mean for both position and velocity states drifts, accumulating an error392

against the true lander state that increases exponentially over time. This is clearly evidenced by the axial errors in Figure 4.393



Table 2: Cumulative OD error statistics for EKF and UKF architectures.

Position Error [km] Velocity Error [m/s]Bayesian Filter
68.3% 95.5% 99.7% 100% 68.3% 95.5% 99.7% 100%

EKF 2.26 13.06 15.43 15.52 2.42 8.44 8.63 8.67
UKF 1.02 1.76 3.09 3.16 0.81 2.29 3.14 3.20

Despite the growing error, the EKF maintains high confidence in its estimate, as the 3σ RSS error profile closely follows the394

OD error curves. This likely results from the non-linearity of the system dynamics, which compromises the validity of the EKF395

Taylor approximation about the latest state estimate. For each component of xsc
k , comparing the terms of (15) evaluated both396

about the latest state estimate and about the true lander state, the difference between these quantities exceeds the corresponding397

state estimate’s uncertainty, leading to an overoptimistic covariance and a growing state estimation error. Conversely, the UKF398

posterior estimate maintains its accuracy, albeit the above mentioned bias on the normal component. Simultaneously, the UKF399

confidence in the estimate decreases exponentially, as indicated by the RSS error profile. This suggests that the UT-based400

approximation of the state density better accounts for unknown changes in the system dynamics in the absence of GNSS401

observations. Moreover, sigma-points enable an improved approximation of state correlations in the Gaussian belief, which is402

crucial for maintaining estimate quality under compromised state observability. In the final part of the LLO, new measurements403

from a Galileo satellite allow for a reduction in the UKF state uncertainty estimate. For the EKF, instead, the estimate is sensitive404

to changes in the observables’ set, but this is insufficient to recover from divergence.405

V. CONCLUSION
This study has demonstrated the performance of autonomous GNSS-based OD in the lunar regime. In a sequential Bayesian406

architecture which integrates GNSS radiometric observations tightly with the prediction of space dynamics from an orbital407

propagator, the potential of an UKF-based model has been investigated for statistical OD. The more complex sigma-point filter408

has been compared against the renown EKF-based OF model, showcasing near-Moon PNT at about 61RE. The upcoming LuGRE409

scientific mission has served as case-study, selecting a LLO segment from a pre-launch design of the BGM1 trajectory. Both410

Bayesian navigation algorithms have been assessed through the post-processing of raw multi-band GPS/Galileo observables;411

these measurements have been constructed by the NEIL receiver in a HIL test with realistic RF link simulation.412

By leveraging the UT under the Gaussian assumption, the UKF can better approximate the moments of the posterior belief for the413

latent state. When the state observability is undermined due to the absence of fresh measurements, enhanced OD performance414

can be pursued through better modelling the correlations of states while propagating orbital dynamics. This seems promising in415

scenarios with severe satellite signal depletion, such as in lunar proximity. Moreover, the UKF’s sigma-point sampling proves416

effective in maintaining estimate accuracy and mitigating the effects of harmful discontinuities characterizing multi-lateration417

geometry in the lunar regime.418

Highlights of the study include:419

• The UKF maintains position estimation errors within 2 km for the 98.97% of time over the analyzed dataset, with a net420

3σ accuracy gain over the EKF of 79.97% for the position estimate and of 63.62% for the velocity estimate.421

• Under detrimental GDOP conditions, the UKF results in a smoother and more resilient state estimate compared to the422

EKF; the latter exhibits a divergent trend driven by an overoptimistic covariance estimate.423

• Accurate initialization might be critical for both filters, particularly in the lunar environment, where availability of424

radiometric observations is limited and mismatching biases can be hardly cancelled.425

• The strong yet peculiar TDOP caused by the lack of elevation diversity in satellite ranging sources necessitates sequential426

estimators that can reduce the sensitivity of radial estimates to discontinuities in the timing estimates.427

Aligning with the goals of increased autonomy, the UKF-based OF model seems to offer a promising solution for GNSS-based428

onboard OD in the lunar regime. Further research will aim to further enhance PNT algorithms, and GNSS-based OD will be429

explored in different deep-space and cis-lunar operational scenarios.430
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