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Abstract: In recent years, additive manufacturing (AM) has played a significant role in various
fashion industries, especially the textile and jewelry manufacturing sectors. This review article
delves deeply into the wide range of methods and materials used to make intricately designed
jewelry fabrication using the additive manufacturing (AM) process. The Laser Powder Bed Fusion
(L-PBF) process is examined for its suitability in achieving complex design and structural integrity in
jewelry fabrication even with respect to powder metallurgy methods. Moreover, the review explores
the use of precious materials, such as gold, silver, copper, platinum, and their alloys in additive
manufacturing. Processing precious materials is challenging due to their high reflectivity and thermal
conductivity, which results in poor densification and mechanical properties. To address this issue, the
review article proposes three different strategies: (i) adding alloying elements, (ii) coating powder
particles, and (iii) using low-wavelength lasers (green or blue). Finally, this review examines crucial
post-processing techniques to improve surface quality, robustness, and attractiveness. To conclude,
this review emphasizes the potential of combining additive manufacturing (AM) with traditional
craftsmanship for creating jewelry, exploring the potential future directions and developments in the
field of additive manufacturing (AM) for jewelry fabrication.

Keywords: additive manufacturing; fabrication methods; materials and post-processing (surface
polishing); jewelry applications

1. Introduction

Even though plenty of manufacturing processes are available for making jewelry
components, additive manufacturing processes are preferred to subtractive manufacturing
processing to reduce material wastage. Additive manufacturing (AM) is also known as 3D
printing, rapid prototyping, layer-by-layer manufacturing, digital manufacturing, or solid-
free form manufacturing processing, and it is used for the fabrication of intricate geometries
from 3D model data [1]. AM was developed as a potential tool of fabrication as compared to
the traditional manufacturing (TM) method because it has design flexibility, customization
features, the ability to create complicated shapes, and wastage reduction. This technology
uses layer-by-layer printing to create items with robust mechanical quality [1,2]. According
to ISO/ASTM 52900:2015(E), there are two main types of AM processes: (i) single-step
AM processes and (ii) multi-step AM processes [3]. In the first case, independently of the
techniques, the work material may achieve its fundamental form and expected qualities in
a single phase. Layer after layer, parts in metal, polymer, and composite materials can be
built up over time. The adhesion principle is generally used in multi-step AM processes
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to create the intended part geometry, and then additional stages are used to create the
part’s desired qualities. For instance, it is possible that the geometry was first acquired
through the joining of metallic, ceramic, and composite elements. They could go through
further processes, like sintering or infiltration, to obtain the desired qualities later [4–6]. A
thorough analysis of the AM process was provided by Parupelli and Desai, which focused
on the recent advancements made by numerous researchers and industries. A summary
of the features, benefits, and drawbacks of each AM printing method was reported and
presented in their work. The key advancements in AM technology in various industries,
including electronics, medical, aerospace, automotive, and construction industries, were
also examined [7].

The main focus of this review is on jewelry production, to emphasize, on the basis
of published work on the subject [8], the potential that these new technologies may have
for the jewelry industry compared to traditional methods (TM). AM offers the advantage
of allowing greater design freedom, creating innovative and complex designs that would
otherwise be challenging to construct using conventional techniques [9]. This is not the only
important aspect. A clear example of the potentiality of AM is presented in Figures 1–3.
A gold pendant piece “the Ojo” was constructed using Laser Powder Bed Fusion (L-
PBF) with the help of a support structure [10]. The supporting structure for making the
jewelry was designed using CAD software (Figure 1). Figure 2 reports the fabrication step
(processing) of the Au jewelry while Figure 3 underlines the surface finishing that can
be obtained by additional polishing treatment (post-processing) [10]. The complexity of
the part and its manufactured cost are directly correlated in the current standard jewelry
manufacturing process; however, by using L-PBF methods, this relationship can be greatly
reduced compared to the conventional method.
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Figure 1. Support structures designed using CAD software for “the Ojo”, Reprinted with permission
from ref. [10]. 2016 Springer Nature.

In the L-PBF production, in fact, around 30% of extra material was processed to create
the support structure (in some geometries, this amount can be decreased to virtually 0%).
In the TM, such as lost wax castings, the extra material is close to 60% and even if this value
can be decreased by optimizing the casting piece ratio, it can never reach L-PBF values.
Telma Ferreira et al. reported that L-PBF was an alternate and more efficient technique
to fabricate jewelry components while reducing material costs and production time as
compared to TM. In fact, comparing the processing time of silver and stainless-steel jewelry
fabricated by TM and AM, AM jewelry (3 weeks) was made faster than TM jewelry (more
than 10 weeks) [11–13].
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hand polishing and further stone setting, Reprinted with permission from ref. [10]. 2016 Springer Nature.

Based on previous literature, this review discussed the current state of the art of AM
for jewelry applications. Furthermore, the future direction of AM for Industry 4.0 jewelry
manufacturing is outlined (Figure 4).
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2. Powder Metallurgy (PM) and Advanced Manufacturing (AM) Techniques Used for
Jewelry Fabrication

Traditional jewelry manufacturing incorporates established methods that perfectly blend
timeless craftsmanship with precision techniques. The process involves traditional steps
such as design conception, material selection, and model creation. Essential activities such as
casting, wax carving, and handcrafting play a key role in ensuring meticulous detail.

Without dwelling on these traditional methods, which have very long lead times, this
paragraph discusses the advantages and disadvantages of powder metallurgy and AM
techniques for metal jewelry fabrication (Figure 5).
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Figure 5. Innovative technique for jewelry production: powder metallurgy and advanced manufac-
turing methods.

Both PM and AM technologies depend on powdered materials with well-defined
properties and morphology to ensure the quality and performance of the final products.
In these technologies, the powder characteristics, such as particle shape, particle size
distribution, apparent and packing density, flowability, and morphology are crucial. These
factors impact the powder behavior during processing, thereby affecting the mechanical
properties and accuracy of the finished part. In particular, spherical particles (Figure 6)
of well-controlled grain size are generally preferred due to their better flowability and
packing density. To obtain these powder characteristics, gas atomization is a widely
used method for producing metal powders with the desired properties for both PM and
AM. In this process, molten metal is dispersed into fine droplets by a high-pressure gas
stream, typically argon or nitrogen, which solidify into powder particles as they cool. Gas
atomization produces highly spherical powders with controlled particle size distribution,
and minimal contamination, making it a suitable technique for generating high-quality
powders for these technologies [14,15].
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2.1. Powder Metallurgy Method Used for Jewelry Fabrication

In addition to the traditional techniques, powder metallurgy (P/M) refers to the net-
shape manufacturing of components using powdered metal. Various techniques within
powder metallurgy, such as press and sinter (P&S), metal injection molding (MIM) and hot
and cold isostatic pressing (HIP and CIP) were recently investigated [16,17]. In particular,
powder metallurgical processing finds widespread applications in jewelry which show a
quality comparable to cast parts. The primary advantage lies in the reduced part cost due
to minimized material waste and processing expenses. Consequently, the direct application
of powder metallurgy in jewelry fabrication offers significant benefits [16,17]. Peter M.
Raw first presented the pioneering development of a powder metallurgical method for
large-scale ring manufacturing. Initially focused on carat-gold rings and later extended
to platinum, the ring fabrication process involved steps such as powder atomization, cold
pressing, sintering, and rolling to achieve the desired ring dimension. The rings produced
by powder metallurgy have a fine grain microstructure, which contributes to improved
wear resistance and strength. The fine grain size, often observed in powder metallurgical
products, was attributed to the existence of an extremely fine, sub-microscopic porosity
that has the potential to stabilize grain boundaries. Consequently, the method has both
economic and technical advantages, marking a significant milestone in ring manufactur-
ing [18]. J. T. Strauss explored P/M technologies demonstrating their ability to create
high-quality jewelry at reduced costs compared to conventional casting and machining
processes. Despite this potential, the use of P/M in the jewelry industry has remained
limited. The current status of P&S and MIM in the jewelry production industries was also
examined by Titan and Hilderbrand, that employed press and sinter (P&S) and MIM tech-
niques to fabricate Tanishq pure gold coins and 18-karat gold 3N pieces (Figure 7) [19,20].
Sintering, a heat treatment process that involves the consolidation of powdered materials
under an optimized thermal cycle, offers numerous methods for seamlessly combining
a variety of colors. K. Wiesner reported [21] that the sintering method has already been
firmly established in the manufacturing of wedding rings (Figure 8).
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The major disadvantage of these techniques is, of course, the simplicity of design
that can be achieved by having to go through a pressing process. To enhance the process
mechanism as much as possible, the optimal process parameters, such as compacting
pressure and temperature, have to be identified.

2.2. Additive Manufacturing (AM) of Jewelry

In this section, the production of jewelry by means of Laser Powder Bed Fusion
technology (L-PBF) is discussed in detail, bearing in mind that, in the bibliography, this
technology can also be referred to as selective laser melting (SLM, a term introduced by the
Fraunhofer Institute in 1995), direct metal laser melting (DMLM, a process patented in 1994
by EOS) or, finally, as laser powder melting (PLM).

L-PBF operates by employing a high-power laser to selectively melt and fuse metal
powder, thereby incrementally building up parts layer-by-layer [22]. L-PFB technology is
characterized by several variables that have to be optimized to increase the mechanical
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and physical properties of finished goods. The main factors include laser power, scanning
speed, and powder layer thickness that are corrected by the Equation (1):

VED =
p

vhl
(1)

where p is the power, v is the scanning rate, h and l are the line offset and the layer thickness,
respectively.

However, the selection of suitable L-PBF process parameters for jewelry alloys posed
a considerable challenge due to the notably high thermal conductivities and reflectivities
inherent in these metals and their alloys. Figure 9a provides a comparative analysis of the
reflectivity of polished metal surfaces across various metal families and laser wavelengths.
Reflectivity values for Au, Ag, and Cu exceeded 90% within the YAG laser wavelength
(~1 µm), while cobalt, nickel, and iron fell within the 60–70% range. Although these specific
reflectivity values pertained to polished solid-material surfaces, molten metal surfaces and
powder particles would exhibit similarly absorption values. Consequently, in the case
of Au-, Ag-, and Cu-based materials, a considerably larger percentage of the laser beam
energy was reflected back rather than being absorbed as heat, as depicted in Figure 9b [22].
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absorption and reflection of powder bed by the laser beam, Reprinted from ref. [22].

The local absorption of heat and energy by the powder was facilitated by the reflection
of some of the incident laser energy between the surfaces of the adjacent powder particles.
Subsequently, the locally absorbed heat from the powder was conducted into neighboring
regions, comprising both the previously melted layers and the unmelted powder (Figure 9b).
In order to achieve satisfactory processing of Au-, Ag- and Cu-based alloys with minimal
residual porosity, combinations such as higher YAG laser power, lower scanning speed,
lower layer thickness and shorter hatching distance had to be carefully considered [22].

In the following sections, the results that can be obtained using L-PBF on gold, silver,
platinum and copper-base alloys, were discussed highlighting which strategies were used
to increase laser absorption and thus achieve maximum densification.

2.2.1. AM of Gold Material

Additive manufacturing, especially L-PBF, was most suitable for fabricating gold jew-
elry to achieve complex and customizable designs that are otherwise too time-consuming
and challenging to fabricate with the powder metallurgy method. L-PBF selectively melts
the metal powder layer-by-layer to produce the bulk structure, which is guided by the
3D CAD models. Fischer-Buehner et al. fabricated 18 K yellow-gold (18 K YG) jewelry
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with different process parameter combinations using L-PBF. Figure 10 illustrates the im-
pact of laser power on 18 K yellow-gold powder. The laser power was varied between
50 and 95 W, with a layer thickness of 20 µm and scanning rates ranging from 200 to
400 mm/s. In Figure 10a, it is evident that a 50 W laser power, with parameters similar to
those commonly used for cobalt-chrome or steel, results in poor densification. However,
the images in Figure 10b–d demonstrate that the increase in the laser power leads to an
improved densification. A final laser power of 95 W yields low residual micro-porosity
levels. Using the optimized parameters, the authors printed jewelry in 18 K YG as shown
in Figure 10e–h. Metallographic cross sections confirm that excellent surface quality can be
achieved, even with a low residual amount of microporosity [22].

Metals 2024, 14, x FOR PEER REVIEW 8 of 43 
 

 

 
Figure 10. SEM images of 18 K YG (a–d) obtained by L-PBF with different laser power and (e–h) 
jewelry parts, Reprinted from ref. [22]. 

Mushtaq Khan et al. presented the use of L-PBF with 24 K gold powder. Au cubes 
were created using a set of optimized parameters (laser powder of 50 W, hatch distance 
of 80 µm, layer thickness of 100 µm, and scanning speed of 65 mm/s). The hardness and 
the porosity of the gold cubes were examined but the analysis underlined that, even after 
the optimization process, a full densification cannot be obtained due to the decreased 
energy absorption by the gold powder, which prevents full fusion with the preceding 
layer, leaving inter-layer porosity. Reducing the layer thickness from 100 to 50 µm or 
changing the hatch distance did not significantly affect the density of the gold cubes [24]. 
Similarly, Zito et al. [25,26] reported the fabrication of 18 K gold alloy by L-PBF and the 
outcome was a reduction in strength, hardness, and high roughness compared to 
conventional casting processes. In particular, the hardness of 18 K palladium white gold 
is 174 ± 5 Hv (conventional) versus 154 ± 2 Hv (L-PBF); the ultimate tensile strength is 480 
± 25 MPa (conventional) versus 460 ± 39 MPa (L-PBF), and elongation to failure is 33 ± 9% 
(conventional) versus 21 ± 8% (L-PBF). However, the authors also reported that the 
production time for one piece is 34 h (conventional) versus 2 h (L-PBF); for ten pieces, 34.5 
versus 8 h, respectively; for one hundred pieces, 37.5 versus 78.5 h, respectively 
underlining the main field of application of AM which becomes competitive for small 
batches of high geometric complexity. For mass production, the high productivity time 
that characterized L-PBF also brings a higher market price per gram (EUR 4–12) as 
compared to the conventional method (EUR 0.2–1). Also, the surface quality (Rt) of 
traditional casting and direct casting methods show a surface quality (Rt) of 22.0 µm and 
27.3 µm, while surface quality of L-PBF is 31.3 µm. Additionally, for 18 K yellow gold, the 
investment casting using a wax pattern results in an ultimate tensile strength of 414.9 MPa 
and 42.4% elongation, whereas a resin pattern yields 395.9 MPa and 38.5% elongation. L-
PBF outperforms both with an ultimate tensile strength of 474.2 MPa and 33.5% 
elongation. These comparisons highlight the variations in mechanical properties, surface 
quality, and costs associated with different manufacturing techniques (conventional and 
additive) that can be considered as a reference for the production of precious materials in 
the jewelry industry [25,26]. 

2.2.2. AM of Silver Material 
Due to its high reflectivity, sterling silver also posed a significant challenge for L-PBF 

(Figure 9a). The poor laser absorption of silver led to the incomplete melting of the 
powder, which caused defects such as lack of fusion, porosity, and keyholes, as shown in 
Figure 11. Additionally, the high thermal conductivity makes the processes more 
challenging due to the rapid dissipating of heat from the laser interaction area. Therefore, 
the L-PBF process parameters have to be optimized to reduce the defects. In particular, 
high laser power (p), low scanning speed (v), low hatch distance (h), and low layer 
thickness (l) were utilized to enhance the performance. Laser powder between 350 and 
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Mushtaq Khan et al. presented the use of L-PBF with 24 K gold powder. Au cubes
were created using a set of optimized parameters (laser powder of 50 W, hatch distance
of 80 µm, layer thickness of 100 µm, and scanning speed of 65 mm/s). The hardness and
the porosity of the gold cubes were examined but the analysis underlined that, even after
the optimization process, a full densification cannot be obtained due to the decreased
energy absorption by the gold powder, which prevents full fusion with the preceding
layer, leaving inter-layer porosity. Reducing the layer thickness from 100 to 50 µm or
changing the hatch distance did not significantly affect the density of the gold cubes [24].
Similarly, Zito et al. [25,26] reported the fabrication of 18 K gold alloy by L-PBF and
the outcome was a reduction in strength, hardness, and high roughness compared to
conventional casting processes. In particular, the hardness of 18 K palladium white gold is
174 ± 5 Hv (conventional) versus 154 ± 2 Hv (L-PBF); the ultimate tensile strength is
480 ± 25 MPa (conventional) versus 460 ± 39 MPa (L-PBF), and elongation to failure is
33 ± 9% (conventional) versus 21 ± 8% (L-PBF). However, the authors also reported that
the production time for one piece is 34 h (conventional) versus 2 h (L-PBF); for ten pieces,
34.5 versus 8 h, respectively; for one hundred pieces, 37.5 versus 78.5 h, respectively
underlining the main field of application of AM which becomes competitive for small
batches of high geometric complexity. For mass production, the high productivity time that
characterized L-PBF also brings a higher market price per gram (EUR 4–12) as compared to
the conventional method (EUR 0.2–1). Also, the surface quality (Rt) of traditional casting
and direct casting methods show a surface quality (Rt) of 22.0 µm and 27.3 µm, while surface
quality of L-PBF is 31.3 µm. Additionally, for 18 K yellow gold, the investment casting using
a wax pattern results in an ultimate tensile strength of 414.9 MPa and 42.4% elongation,
whereas a resin pattern yields 395.9 MPa and 38.5% elongation. L-PBF outperforms both
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with an ultimate tensile strength of 474.2 MPa and 33.5% elongation. These comparisons
highlight the variations in mechanical properties, surface quality, and costs associated with
different manufacturing techniques (conventional and additive) that can be considered as a
reference for the production of precious materials in the jewelry industry [25,26].

2.2.2. AM of Silver Material

Due to its high reflectivity, sterling silver also posed a significant challenge for L-PBF
(Figure 9a). The poor laser absorption of silver led to the incomplete melting of the powder,
which caused defects such as lack of fusion, porosity, and keyholes, as shown in Figure 11.
Additionally, the high thermal conductivity makes the processes more challenging due to
the rapid dissipating of heat from the laser interaction area. Therefore, the L-PBF process
parameters have to be optimized to reduce the defects. In particular, high laser power (p), low
scanning speed (v), low hatch distance (h), and low layer thickness (l) were utilized to enhance
the performance. Laser powder between 350 and 370 W was identified for producing dense
pure Ag structures by John Robinson et al. [27]. The influence of various process factors was
examined in the formation of 3D silver structures revealing that specific parameters, namely
layer thickness, scan speed, and hatch distance set at 30 µm, 400–500 mm/s, and 0.15 mm,
respectively, resulted in a relative density of 97%. Also, two different substrates such as copper
and stainless steel were utilized to build the pure Ag. Due to the high thermal conductivity of
Cu, energy absorption is insufficient; therefore, Cu is not suitable for depositing silver, which
can, instead, be printed on a stainless-steel substrate [27].
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permission from ref. [27]. 2020 Elsevier.

The effect of L-PBF process variables for producing Ag jewelry on the material mi-
crostructure was discussed by Korium et al. [28]. A silver ring obtained by L-PBF is
represented in Figure 12. Ring support structure characteristics and proper geometry were
established. The microstructures of silver samples had internal porosities and defects with
a laser power of 50 W [28,29], achieving a relative density of 91.06%. Additionally, optimal
process parameters are further required to fabricate the dense part with a reduction in
porosity and other defects [30].
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Figure 12. CAD geometry of the Ag ring (a,b) and the product obtained by L-PBF (c), used under
CC BY 4.0 [28].

2.2.3. AM of Platinum Material

Additive manufacturing of platinum presents several challenges due to its unique
material properties, which require precise control of laser process parameters to avoid
defects such as porosity and cracks. Yadroitsava et al. explored the use of L-PBF for
processing pure platinum with optimized laser power (300 W), scan speed (800 mm/s), and
layer thickness (30 µm) to produce platinum parts with densities up to 99.98% and minimal
porosity. However, achieving fine, uniform grain structures necessary for high-quality
platinum parts demands a delicate balance between build speed and part quality. The high
thermal conductivity can lead to rapid heat dissipation, making it difficult to maintain
the melt pool stability and achieve uniform layer fusion [31]. Figure 13 shows a platinum
ring with a defective surface in the right-side ring shank due to an irregular melt and
unsupported structure. This defective surface was analyzed by SEM (Figure 14), which
shows a highly porous surface due to the balling effect of the melt pool and the adhesion of
the powder particles (Figure 15). Klotz et al. fabricated a platinum ring with high relative
density (99.8%) with the optimized process parameters of 500 mm/s as the scanning speed,
63 µm of hatch distance, and 95 W of laser power (using a Nd:YAG laser with a spot size of
30 µm and a wavelength of 1064 nm) [32].
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Vorobyev and Guo [33] investigated femtosecond laser processing of platinum to ad-
dress some of these difficulties. The study demonstrated that femtosecond laser blackening
significantly enhanced absorptance, achieving about 95% over a broad wavelength range
(250–2500 nm). Despite these advancements, maintaining high absorptance and reducing
reflectance (below 5%) across such a wide spectrum involves meticulous control over the
laser parameters and processing environment. Blackened platinum surfaces were pro-
duced without chemical changes, underscoring the importance of physical modifications
to overcome the material’s natural reflectivity [33].

2.2.4. AM of Pure Copper Material

The fabrication of pure copper via laser-based additive manufacturing has huge
challenges due to the high reflectivity, high thermal conductivity, low laser absorption, high
electrical conductivity, and oxidation sensitivity of copper with the 1070 nm wavelength
infrared laser (Figure 16a) [34,35]. Due to the low absorption behavior of pure copper,
the fabricated parts, in general, exhibit various defects such as low density, high porosity,
balling effect, layer delamination, and crack formation (Figure 16c–f) [36,37]. Also, the high
reflectivity of copper substrate can lead to damage in the optical mirror [38], as shown in
Figure 16b [39,40]. The high reflectivity and thermal conductivity of copper require the
use of higher levels of laser power and careful control of process parameters to achieve the
desired material properties. A bi-directional scanning strategy with a 90◦ rotation between
subsequent layers, using a laser power of 725 W and a scan speed of 400 mm/s, can be
preferably used; however, despite these efforts, achieving uniform and fully dense parts
was challenging due to the inherent properties of copper [41].
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Figure 16. (a) L-PBF with 1070 nm wavelength, Reprinted from ref. [34], (b) damage of the optical
mirror due to laser back reflection from the copper substrate and specific defects, Reprinted with
permission from ref. [36], 2019 Elsevier (c) micro-balling effect, Reprinted from ref. [38], (d) balling
effect, Reprinted from ref. [38], (e) delamination, Reprinted from ref. [38], (f) elevated edge, Reprinted
from ref. [38].

For example, a relative density of 99% was achieved with a laser power of 500 W
and a volumetric energy density range of 230–350 J/mm3. The L-PBF fabricated parts
demonstrated tensile properties with a yield strength of 122 ± 1 MPa, an ultimate strength
of 211 ± 4 MPa, and an elongation of 43 ± 3% [42]. Further, the densification and the
thermal and electrical conductivity of the parts were enhanced by high laser power [43,44].
In the future, copper jewelry could be printed using non-thermal AM techniques such as
cold spray additive manufacturing. This technique is similar to the traditional powder
metallurgy route, though it lacks the flexibility and customization capabilities provided by
other 3D printing methods [45].

2.3. Strategies to Improve the L-PBF Processability of Precious Metals

Although laser additive manufacturing technology has considerable advantages, there
are some problems that need to be eliminated. As already reported, the high reflectivity
of materials such as gold, silver, platinum, and copper means that a significant portion of
the laser energy is reflected from the material surface. This reflection reduces the efficiency
of the melting process, making it difficult to achieve the desired density and uniformity
in the fabricated parts. High reflectivity can also damage the laser optical system, further
complicating the manufacturing process. This low absorption rate requires the use of higher
laser power, which can increase the risk of thermal distortion and residual stresses in the
final product.

The methods suggested in the bibliography to overcome these problems are covered
below. These methods involve the use of various alloying elements, powder coating, or
the use of low wavelength lasers to enhance the metal absorbance. Alloying elements
like gallium, germanium, and silicon can reduce reflectivity and improve laser absorption,
leading to better fusion and reduced porosity. Powder coating can further enhance laser
energy absorption and melting efficiency. Low-wavelength lasers (i.e., green or blue lasers)
provide higher absorptivity, enabling the fabrication of high-quality components with
improved mechanical properties (Figure 17).
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2.3.1. Dopant Addition Strategy

The state of the art in the selection and analysis of the influence of doping of precious
materials is illustrated in the following sections, broken down by the type of base metal.

Gold-Based Alloys

L-PBF of gold alloys has made significant advancements in achieving higher densifica-
tion, reduced porosity, improved mechanical properties, and enhanced hardness. These
improvements are largely attributed to the careful selection and incorporation of alloying
elements, which increase the absorptivity of gold (Figure 18).
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Zito et al. reported several innovative materials that can be used to create a wide
range of jewelry pieces (Table 1). An element that can increase the gold absorption, i.e., is
gallium. The authors reported two different gold alloy powders (Au:Ag:Cu:Ga = 18.8:1:5.2:0
and Au:Ag:Cu:Ga = 37.6:2:9.4:1) successfully manufactured using L-PBF. The addition of
gallium resulted in low surface tension, which plays a key role in achieving the proper
wettability for better adhesion between the deposition layers to produce defect-free AM
components [46]. The improvement of surface quality and the reduction of porosity was
also obtained by the addition of Ge and Si (Table 1). Figure 19 shows the gold alloy ring
fabricated by L-PBF with two different set of parameters (standard and optimized) which
differ mainly for the overlapping rate. Due to the higher laser overlapping rate, the jewelry
fabricated with the optimized parameters (65 W, 330 mm/s, layer thickness 20 µm, and 75%
of overlapping) ensured high densification with less defects and higher resolution with
respect to the standard one (76.2 W, 250 mm/s, layer thickness 30 µm, 50% of overlapping).
Moreover, the use of finer particle sizes (<15 µm) allowed for obtaining higher resolutions
and smoother surfaces of the jewelry parts (Figure 20) [47].
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The surface finish plays a key role in jewelry production. D. Zito et al. reported that
the surface roughness is reduced from 72 to 55 µm with the addition of germanium in 18 K
red gold alloy. Moreover, a better ductility was obtained with the addition of germanium
between 0.2 and 0.4 wt%, while above 1.5–2 wt%, the jewelry became unacceptably brittle.
In this case, the optimal process parameters for achieving an improved surface finish and
reduced porosity are a laser power of 72.5 W, layer thickness of 140 µm, and a scanning
speed of 0.33 m/s.

The authors also compared the effect of the addition of niobium and of both niobium
and titanium in a gold–silver matrix (Table 1) and observed that almost equivalent hardness
and significantly lower density were obtained: approximately 25 and 18% less than an
equivalent alloy with palladium and the traditional white gold-nickel alloy [48].

The same authors [49] demonstrated the possibility of increasing the absorption of
laser radiation by adding a small concentration of semiconductor elements (Si, Ge) that
increase the electrical resistivity and can reduce the thermal conductivity of the red gold
alloy, thus improving the L-PBF behavior. The presence of semiconductor elements reduces
the porosity and improves the process stability [49,50].

Klotz et al. achieved an improvement in surface quality by optimizing powder com-
position (Table 1) with Ge, Fe or Ti. Microstructural analysis showed fine grains and low
porosity [51] giving the possibility to create intricate and high-end jewelry [52].
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Table 1. Representation of the elemental composition of yellow, red, and white gold (18, 14, 10, and 9 carats) powder alloy by Damiano Zito et al. and U.E. Klotz et al.
[47,48,51,53].

Element Compositions: Alloy Gold (Au)
wt%

Copper
(Cu) wt%

Palladium
(Pd) wt%

Nickel
(Ni) wt%

Silver
(Ag) wt%

Germanium
(Ge) wt%

Silicon
(Si)

wt%

Niobium
(Nb) wt%

Zinc
(Zn)
wt%

Titanium
(Ti) wt%

Iron
(Fe)
wt%

Pd: Ag
wt%

Cu:
Ni

wt%

Cu:Ag
wt%

18 K Yellow gold powder
alloy [47,53] 1 75.2 12.4 - - 12 0.4 - - - - - - - 1:1

Gold alloy (Au, Ag, Pd,
Cu, Si) [48] 12 76.26 13.5 1.93 - 4.69 - 3.62 - - - - - - -

Gold alloy (Au, Nb, Zn) [48] 13 75.2 - - - - - - 18.5 6.3 - - - - -

Gold alloy (Au, Ag, Ti) [48] 14 75.2 - - - 8.4 - - - - 16.4 - - - -

3N [51] 15 75.1 12.5 - - 12.4 - - - - - - - - -

Fe003 [51] 16 75.0 13.0 - - 11.3 - - - - - 0.7 - - -

Ge001 [51] 17 75.1 12.8 - - 11.8 0.4 - - - - - - - -

Ti001 [51] 18 75.2 12.8 - - 11.7 - - - - 0.3 - - - -

18 K Red gold powder
alloy [53] 2 75.2 21 - - 3.6 0.2 - - - - - - - 5.5:1

14 K Red gold powder
alloy [53] 3 58.7 33.45 - - 7.45 0.4 - - - - - - - 4.5:1

10 K Red gold powder
alloy [53] 4 41.9 47.06 - - 10.64 0.4 - - - - - - - 4.5:1

9 K Red gold powder alloy [53] 5 37.7 50.46 - - 11.44 0.4 - - - - - - - 4.5:1

18 K White gold powder
alloy [53] 6 72.5 - 12.4 - 12.2 0.2 - - - - - 1:1 - -

14 K White gold powder
alloy [53] 7 58.5 to

59.5 - 15 to 25 - 15 to 25 0.01 to 1 - - - - - 0.75:1 to
1:0.75 - -

10 K White gold powder
alloy [53] 8 41.7 to

42.5 - 25 to 45 - 25 to 45 0.01 to 2 - - - - - 0.75:1 to
1:0.75 - -

18 K White gold powder
alloy [53] 9 72.5 17.1 - 7.5 - 0.2 - - - - - - 2:1 to

3:1 -

14 K White gold powder
alloy [53] 10 58.5 to

59.5 23 to 35 - 8 to 20 - 0.01 to 1.5 - - - - - - 2:1 to
3:1 -

10 K White gold powder
alloy [53] 11 41.7 to

42.5 35 to 50 - 12.5 to 35 - 0.01 to 2 - - - - - - 2:1 to
3:1 -
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Silver-Based Alloy

The unique properties of silver, such as its high thermal and electrical conductivity
with low absorptivity, lead to porous L-PBF components characterized by low mechanical
properties. Therefore, the addition of alloying elements, such as Cu and La2O3, to enhance
densification, has been widely explored.

The normal sterling silver alloy powder, primarily composed of Ag and Cu, produced
unsatisfactory results (Figure 21a) as reported by Fischer-Buehner et al. [22]. Figure 21b–d
show similar results for three distinct 925 silver alloy powders, characterized by proprietary
additives at the expense of copper. The composition of the additives is not disclosed by the
author because the project is still in the research stage. Figure 21e–h display jewelry pieces
in 925 Ag, demonstrating that finished surfaces can achieve exceptionally high quality, and
are challenging to replicate with even the best casting techniques [22]. The 925 Ag alloy was
processed with a laser power of 180 W, a scanning speed of 600 mm/s, a layer thickness of
30 µm, and a hatch spacing of 0.060 mm, reaching a relative density of 96.56% [30]. The
microstructure reveals both columnar and elongated grains as shown in Figure 22. Wang
et al. and Xiong et al. highlighted that the copper content in 925 silver alloy increased laser
absorption, making it easier to process if compared to pure silver [30,54].
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Zhao et al. [55] explored the addition of La2O3 to Ag–Cu alloys to further enhance
their performance. The addition of La2O3 not only enhanced laser absorption but also
promoted grain refinement, thereby improving both the mechanical properties and the
corrosion resistance of the alloy. In the research, silver with 5.626% of copper was produced
by varying the content of La2O3 (0, 0.4, 0.8, and 1.2%). The best results were obtained
with 60 W of laser power, a scanning speed of 1000 mm/s, and a layer thickness of
20 µm. The addition of 1.2% of La2O3 resulted in the highest density (9.16 ± 0.55 g/cm3) and
significantly improved the mechanical properties, including a nano-indentation hardness
of 2.88 GPa with a decrease in porosity as La2O3 was increased (Figure 23a–e) [55].
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Platinum-Based Alloy

The addition of semiconductor materials to platinum material significantly enhances
their performance in the additive manufacturing process. For example, 800, 850, 900, and
950 Pt alloys were discussed by Corti et al., and the addition of gallium with Pt alloys was
studied to enhance the densification and minimize the porosity [56]. Zito et al. investigated
a 95PtGaInCu alloy using L-PBF with a 100 W fiber laser, collimated in a 10 µm diameter
spot. The optimal processing parameters included a laser power range of 72.5–80 W, a
layer thickness of 20 µm, a scanning speed of 0.25 and 0.33 m/s, and a spot distance of
40 µm. The as-built samples exhibited a porosity of 0.06 µm, surface roughness of
40 ± 13 µm, hardness of 222 ± 4 HV, ultimate tensile strength (UTS) of 582 MPa, and
elongation of 14.5% [57]. Heat treatment improves hardness and ductility by 16% and 50%
as compared to the as-built sample [57].

Figure 24 shows the effect of different element addition on the processability, assessed
by single scan tracks (SSTs), of platinum alloy. For example, 2% of Ge has a strong effect
with an increase in the track depth; Ga addition, instead, lead to hot cracking. These
SSTs indicated that different alloy elements strongly affect processability, emphasizing the
importance of optimizing compositions and process parameters.
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Regarding rhodium (PtRh 90-10), it not only increases the material absorption capacity,
but also allows for a more uniform and denser microstructure, comparable to conventionally
manufactured parts, although the addition of 10% rhodium showed a higher electrical
resistivity due to internal vacancies [58]. Wermuth et al. characterized L-PBF samples of
platinum rhodium alloy (PtRh 80-20), achieving full density with minimal porosity [59].

Overall, the integration of semiconductor elements like gallium, indium, tin, germa-
nium, zinc or rhodium in platinum alloys significantly improves their performance in
additive manufacturing [60]. These enhancements include higher density, reduced porosity,
better mechanical properties, and increased suitability for complex geometric designs,
making these alloys highly valuable for additive manufacturing in jewelry.

Cu-Based Alloy

Pure copper shows high reflectivity and low absorptivity during the melting process
by laser radiation. The high reflectivity represents a high risk due to the increase in the
thermal distortion and residual stress of the build components. Therefore, to reduce the
reflectivity and increase the absorptivity, copper alloy powders were developed. The
addition of pre-alloy powder to pure copper led to reducing the reflectivity from 95 to
55.3% for Cu-15Sn, to 90% for Cu + 2% CNTs (carbon nanotubes), to 32% for Cu + 0.1C and
to 44.2% for CuCr0.3 + 0.05C, as shown in Figure 25a–d [61–64]. Held et al. reported that
the addition of tin to copper alloy reduces reflectivity, surface tension, and electrical and
thermal conductivity to 80.8%, 1061 mN/m, 12.1% IACS, and 48.5 W/mK. As a result, the
porosity decreased, and an enhancement of surface quality can be observed [65].

Ayub et al. studied the effect of the addition of different concentrations of CNTs,
underlining that CNTs significantly enhance the thermal absorption of copper, allowing for
lower laser power levels (<40%), reducing the reflectivity, and enhancing laser absorption.
In addition, the densification of the sample with 1.5% CNTs is greater than for pure copper
and samples with fewer CNTs, as shown in Figure 26a–d [62].

Jadhav et al. reported that the addition of carbon leads to an in situ deoxidation
during the process, although the produced copper samples have a tensile strength of
125 MPa, a ductility of 3%, and an electrical conductivity of 22.7 × 106 S/m, limited by
the segregation of carbon nanoparticles and impurities, such as oxygen and phosphorus,
at the grain boundaries. Moreover, microstructural analyses showed that defects, such as
surface cracks, are primarily owing to the segregation of carbon at the grain boundaries
(Figure 27a–d) [63].
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Jadhav et al. studied the L-PBF behavior of both virgin and carbon-mixed CuCr0.3
powders. Additionally, in this case, carbon nanoparticles facilitate the in situ deoxida-
tion of copper and chromium oxides. The mechanical properties were improved due
to the precipitation of nanometric metallic chromium precipitates in the copper matrix
(Figure 28c,f). Figure 28a,b show the microstructure of samples with epitaxial colum-
nar grains growth, parallel to the build direction with carbon segregation at the grain
boundaries (Figure 28d,e). These results confirm that carbon addition enhances optical
absorption without adversely affecting powder properties, and significantly improves
mechanical and electrical properties through deoxidation and subsequent precipitation
strengthening [64,66].

Robinson et al. studied the effect of the addition of silver on the mechanical and ther-
mal properties of pure copper by L-PBF, observing a significant improvement in mechanical
properties [67]. For instance, the CuAg10 alloy, consisting of 92.51% Cu and 7.49% Ag,
exhibited a yield strength of 223.5 MPa and an ultimate tensile strength (UTS) of 277.7 MPa.
As the silver content increased, the mechanical properties further improved, with CuAg30
(64.20% Cu, 35.80% Ag) showing a yield strength of 330.3 MPa and a UTS of 381.8 MPa [68].
The thermal properties of these alloys were also noteworthy. CuAg alloys maintained high
thermal performance with minimal variation despite increasing silver content, showcasing
their potential for applications requiring excellent thermal management [68].
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Figure 28. SEM images of (a–c) Cu alloy and (d–f) CuCr0.3 underlining the epitaxial growth of the
columnar grains parallel to the build direction and precipitates and carbon segregation at the grain
boundaries, Reprinted with permission from ref. [64]. 2019 John Wiley and Sons.

In Figure 29a–d, a tin-bronze alloy with a laser power of 95 W, a layer thickness of 20 µm,
and varying laser scan speeds from 50 to 400 mm/s was reported. Minimizing the scan speed
results in low residual levels of micro-porosity even at the lowest scan speed of 50 mm/s
because it greatly enhances the energy available for local melting per volume unit. Instead,
decreasing the laser scan speed leads to an increase in processing time and the final L-PBF
fabricated product (Figure 29e–h) needs a surface finish post-processing treatment [22].
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2.3.2. Powder Coating Strategy

A novel approach to overcome the challenges (high reflectivity and thermal conduc-
tivity) has been experimented by modifying the powder surface by coating it with less
reflective materials. This approach has been used mainly for copper. Coated powders, such
as nickel-coated copper powder (Figure 30a–c), have a higher absorption of laser energy
(Figure 31a), thus improving the melting efficiency and leading to higher densification
and improved mechanical properties. The nickel coating of copper powder particles was
achieved by the immersion plating technique. The uncoated copper powder required
high energy density from 200 to 500 J/mm3 to melt the powder while the coated powders
achieve higher densities with 236 J/mm3 (Figure 32a–d) [69–71].
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Figure 30. (a) Schematic representation of Ni-coated copper powders, (b) SEM image, and (c) EDS
analysis, Reprinted from refs. [69,70].

Figure 31. Optical absorption of pure copper and surface-modified copper powders with different
wavelengths. (a) Ni-coated copper powders, Reprinted from refs. [69,70], (b) copper powder treated
in a nitrogen environment, Reprinted with permission from ref. [72]. 2020 Elsevier.

A different approach has been proposed for a CuCr1 powder. The method involves the
outward diffusion of chromium in a nitrogen atmosphere, which allows for the formation
of a chromium-nitride coating which significantly reduces the optical absorption of the
powders (Figure 31b). Moreover, the surface-modified powder exhibited enhanced flowa-
bility and minimized oxygen uptake during storage, crucial for maintaining consistent
L-PBF performance and part quality. For these reasons, the surface-modified powders have
higher densification as compared to unmodified powders (Figure 33a–d) [72].
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The highly conductive CuSn0.3 alloy was fabricated via L-PBF using tin-coated cop-
per powder. The copper powder particles were coated with the immersion plating tech-
nique that involves a powder pretreatment to remove contaminants (alkaline solution at
80 ◦C for 5 min) and oxides (0.1 M HCl solution for 1 min), followed by coating and
drying. Moreover, the research underlines the detrimental impact of high sulfur content
(0.091 wt%) on the L-PBF process, which leads to solidification cracks and porosity, empha-
sizing the importance of limiting sulfur content to below 0.0025 wt% for optimal results.
The coating facilitated the production of crack-free, fully dense copper parts with high
thermal conductivity (334 ± 4 W/(m·K)), electrical conductivity (80 ± 1% IACS), tensile
strength (256 ± 14 MPa), yield strength (203 ± 4 MPa), and ductility (21 ± 2%) using a fiber
laser at 500 W. [73].

Tin and nickel coatings on copper powders for L-PBF was reported by Lindström
et al. [74]. The tin and nickel coatings were performed by the immersion deposition method.
The coated powders exhibited significantly lower reflectivity (~40%) compared to pure
copper (~70%), resulting in lower porosity and better densification (Figure 34) [74].
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Wadge et al. examined the impact of titanium (Ti) coatings on silver powders to
improve absorptivity (from 27% to 45%). A thin and uniform Ti-coating was achieved
by physical vapor deposition (pulsed DC magnetron sputtering) optimizing the process
parameters (50 W, 3 h). The titanium-coated silver powders demonstrated a significant
enhancement over uncoated powders that allow also to reduce the laser power (280 W
for coated versus 320 W for uncoated), indicating a more efficient melting process. The
enhanced absorptivity facilitated more uniform densification of the powder bed at lower
energy densities, resulting in reduced porosity (0.7 ± 1.0% compared to 7.1 ± 2.0% for
uncoated powder at 133 J·m−1) [75].
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Therefore, the various coated metal powders, including steels, titanium, aluminum,
and copper, were examined for their performance in LPBF by Bidulsky et al. The coatings
were obtained by several coating methods such as mechanical methods (ball milling, Tur-
bula mixing) and non-mechanical methods (powder immersion, physical vapor deposition,
chemical vapor deposition). The mechanical methods are simple and cost-effective but
they affect the powder morphology, whereas non-mechanical methods allow one to obtain
uniform coatings with methods that are more costly and complex [76]. Finally, titanium
diboride (TiB2), aluminum oxide (Al2O3), graphene oxide (GO) and carbon nanotube (CNT)
coatings improved hardness, wear resistance, and mechanical properties, achieving relative
densities close to the theoretical values [76,77].

To conclude, the use of coated powders in L-PBF processes enhances the absorptivity,
flowability, and overall quality of the final parts.

2.3.3. Use of Laser with Lower Wavelength

A very interesting technological approach is to process highly reflective metals using
blue laser (wavelength 450 nm, developed by group of researchers led by Prof. Masahiro
Tsukamoto at Osaka University’s Joining and Welding Research Institute, in collaboration
with Shimadzu Corporation, Nichia Corporation and Furukawa Electric Co., Ltd., in Japan)
or green laser (wavelength 515 nm, developed by Fraunhofer Institute of Laser Technology
(ILT), Aachen, Germany) characterized by high power and shorter wavelengths than
common red lasers. At these wavelengths, in fact, highly reflective materials have a higher
absorption of the laser, as shown in Figure 35 [61,78].
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Green Laser

The use of green lasers, specifically at a wavelength of 515 nm, has been shown to
significantly improve the performance of the laser-based additive manufacturing of pure
copper with absorption in the range of 40–60% [79,80]. In particular, green lasers reduce re-
flective losses resulting in parts with better density, lower porosity, improved surface finish,
less spatter, and higher productivity (Figure 36) [81]. The pure copper powder, obtained
with a green laser, achieved relative densities above 99.95% and electrical conductivity up
to 100% IACS, showing superior performance compared to infrared lasers [82,83].
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Figure 36. Comparison of laser-based additive manufacturing of copper cubic structure (four layers)
with a green and red laser (laser source: TRUMPF product), Reprinted from ref. [81].

De Terris et al. reported the fabrication of pure copper via L-PBF using both green and
infrared laser beams. The green laser, which involves the complete melting of the material,
produces superior properties in terms of mechanical, electrical, and thermal performance
as compared to the infrared laser. The lack of fusion and keyholes that characterized the
microstructure of samples obtained by infrared laser (Figure 37a–c) are completely absent
in the samples obtained by the green laser (Figure 37d–f) [84]. The use of a green laser
was found to potentially eliminate the need for oxidation or other powder treatments to
produce materials with a high thermal conductivity. Porosity was minimized with specific
combinations of laser power and scanning speed, achieving a high relative density of up to
99.9% [85,86].
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Blue Laser

The application of blue lasers, particularly at a wavelength of 450 nm, has significantly
improved the performance of additive manufacturing processes for precious materials due
to their high absorptivity (Figure 35c) [78]. Published papers on the use of blue lasers in
L-PBF are scarce. Wu et al. reported [87] that the increased absorption allows one to obtain
higher densification and reduce the porosity in the final product. The manufactured parts
exhibit an almost complete density, up to 99.6%, which enhances the mechanical properties
and structural integrity of the material [87]. Other papers were found if weldability
is considered. Recently, Pasang et al. further explored the mechanical properties and
weldability of pure copper foil using blue diode lasers [75]. Blue diode lasers are absorbed
the most (60%), significantly outperforming IR (5%) and green lasers (50%) [88].

Therefore, blue laser processing offers substantial benefits for copper welding and
additive manufacturing. The high absorption efficiency of blue lasers at 450 nm leads to
better energy utilization and favorable microstructural characteristics [89]. The findings
underscore the potential of blue laser technology to overcome the limitations of traditional
IR lasers.

2.4. AM of Precious Materials: Conclusion

Additive manufacturing has revolutionized the production of precious metals such as
gold, platinum, silver, and copper. It enables intricate designs and complex structures with
unprecedented precision. Researchers are actively investigating precious materials with
improved properties such as strength, conductivity, and durability through the modification
of materials (the addition of specific elements or coatings) and technologies (green or blue
lasers). Table 2 provides a summary of the main materials used in the literature for AM
jewelry manufacturing, indicating process parameters and obtained properties.

Despite the potential benefits, the proposed methods may face challenges, such as
the need for precise control over alloy compositions and coating processes to achieve
consistent results. Furthermore, the implementation of low-wavelength lasers may require
modifications to existing equipment and processes. Optimizing the parameters for each
specific material will be crucial to achieving the desired performance outcomes.
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Table 2. Summary of precious materials used in L-PBF of jewelry applications with process parameters and performance characteristics.

Materials Composition/Strategy Laser Power (W) Layer Thickness
(µm)

Scanning Speed
(mm/s)

Hatch Distance
(µm)

Relative Density
(%)

Porosity
(%) Ref.

Gold

Yellow-gold alloy
(75Au12.5Ag12.5Cu) 95 15–25 250–450 - - ±0.2 [23]

24-carat gold 50 100 65 80 - <10.4 [24]

750% yellow-gold alloy 65 30 330 35 - - [47]

Au, Ag, Ti 50 - 250 150 - 0.22 ± 0.04 [48]

750‰ red-gold alloy addition
germanium 72.5 140 330 - - <0.5 [49]

3N YG + Fe003 90 15 250–450 36 97 <0.5 [51]

3N YG + Ge001 90 15 250–450 36 99.7 <0.3 [51]

Fe003 + Ge001 90 15 250–450 36 99.9 <0.2 [51]

Gold alloy: Table 2 72.5 140 330 - - <0.5 [53]

Ag–Cu alloys with La2O3 of 0% 600 20 1000 - 84.7 - [55]

Ag–Cu alloys with La2O3 of 0.4% 600 20 1000 - 88.8 - [55]

Ag–Cu alloys with La2O3 of 0.8% 600 20 1000 - 93.3 - [55]

Ag–Cu alloys with La2O3 of 1.2% 600 20 1000 - 99.9 - [55]

Gold alloy 72.5 140 330 - - 0.01 [65]

Silver

99.9% Pure silver 370 30 550–800 150 97 2.72–34.01 [27]

Silver 350–370 30 and 60 400–500 150 97 ±3 [28]

99.9% Pure silver 400 30 400 and 800 150 99.8 - [29]

99.9% Pure silver 430 30 400 80 91.06 - [30]

925 silver 180 30 600 60 96.56 - [30]

Ag7.5Cu alloy 120 30 400 - 96.7 - [54]

Pure Silver (>99%) 370 30 400 140 89.9 - [67]
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Table 2. Cont.

Materials Composition/Strategy Laser Power (W) Layer Thickness
(µm)

Scanning Speed
(mm/s)

Hatch Distance
(µm)

Relative Density
(%)

Porosity
(%) Ref.

Uncoated silver powder 320 - 500 - - 3.9 [75]

Titanium (Ti) Coated silver powder 320 - 500 - - 0.2 [75]

Platinum

Pure Platinum (Pt) 175 30 600 80 99.98 0.01 [31]

950Pt alloy
(950Pt-Ga-Cu) 95 20 500 63 >99.8 <0.1 [32]

950‰ platinum alloy 62.5 140 250–330 - - <0.06 [49]

950‰ Platinum 72.5 140 250–330 - - [50]

95PtGaInCu alloy 72.5–80 20 250–330 - - 0.06 [57]

950Pt with Au, In and Ru 90 15 - - 99.97 - [60]

80Pt20Ir 90 20 - - 99.97 - [60]

50Pd50Rh 90 20–50 - - 99.8 - [60]

50Pt50Rh 90 20–50 - - 98.5 - [60]

Copper

Pure copper 99.9% 350–1000 30–50 400–600 80 >99 - [34]

Pure copper powder
99.9Cu0.08O0.15P 600–1000 50 1000–5500 70 99.1 - [35]

Electrolytic Tough Pitch copper >
99.90% 400–500 30 400–600 - 99.82 - [36]

Pure copper 600–800 30 200–400 70–90 98 - [38]

Pure copper 300–800 30–50 200–1500 20–120 99.1 - [39]

Copper (Cu) 400 30 600 100 99.82 - [40]

99.8 wt% Cu 175 20 - - 98.1 - [41]

Pure copper (Cu) 500 30 800 90 99.3 ± 0.2 - [42]

Pure copper (Cu) 370 30 1000 100 99.5 - [43]

Virgin CuCr0.3 600 30 300 and 400 90 98.5 - [64]

Carbon-mixed CuCr0.3: 0.05%
Carbon 600 30 300 and 400 90 98.5 - [64]
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Table 2. Cont.

Materials Composition/Strategy Laser Power (W) Layer Thickness
(µm)

Scanning Speed
(mm/s)

Hatch Distance
(µm)

Relative Density
(%)

Porosity
(%) Ref.

Carburized CuCr1 powder 500 30 700 90 99.2 - [66]

Heat treated 500 30 700 90 99.3 - [66]

Pure Copper (>99%) 370 30 400 140 99.9 - [67]

CuAg10:
92.51% Cu, 7.49% Ag 370 30 400 140 100 - [67]

CuAg20:
72.50% Cu, 27.50% Ag 370 30 400 140 100 - [67]

CuAg30:
64.20% Cu, 35.80% Ag 370 30 400 140 100 - [67]

CuAg10:
92.51% Cu, 7.49% Ag 400 30 400 140 87 - [68]

CuAg20:
72.50% Cu, 27.50% Ag 400 30 400 140 83 - [68]

CuAg30:
64.20% Cu, 35.80% Ag 400 30 400 140 99 - [68]

Coated materials: Sn, Ni, and CrZr,
etc. 300 30 800 100 >99 - [76]

IR laser 425–750 30 1000 - >99 - [81]

Green laser 425–750 30 1000 - >99 - [81]

Deoxygenated oxygen-free pure
copper

(Cu-OF)
500 30 - 120 99.8 0.017 ±

0.024 [82]

Oxygenated electrolytic tough
pitch copper (Cu-ETP) 500 30 - 120 99.8 0.013 ±

0.009 [82]

IR laser 500 30 - - 99.8 - [84]

Green laser 500 30 - - 99.8 - [84]

Pure copper
(Cu-OFE, C10100) 500 30 250–350 100 99.9 - [85]
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Table 2. Cont.

Materials Composition/Strategy Laser Power (W) Layer Thickness
(µm)

Scanning Speed
(mm/s)

Hatch Distance
(µm)

Relative Density
(%)

Porosity
(%) Ref.

Blue laser (450 nm) 650 - 1000 - 99.6 - [88]

Pure copper (99.9 wt%) 370 40 500 100 96 - [90]

Pure copper 500 30 400 90 97.5 - [91]

Virgin CuCr1 alloy 500 30 200 90 98.64 - [92]

Surface-modified CuCr1 alloy 500 30 800 90 99.1 - [92]

Pure copper 500 30 500 90 99.6 - [93]
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3. Surface Finishing and Post-Processing in Jewelry Fabrication

This section discusses the post-processing methods for AM jewelry (Figure 38 and
Table 3).
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AM of precious metal jewelry is gradually gaining ground in the global jewelry busi-
ness, with many industries already adopting or considering the technology. Two main
elements still need to be improved to accelerate technology adoption: (1) AM jewelry
design; and (2) AM jewelry polishing and finishing. Fletcher and Cooper analyzed the
different polishing and finishing processes for AM precious metal jewelry [94–96]. The
advantages of the various polishing methods such as Dish Finishing (DIF), Drag Finishing
(DF), Stream Finishing (SF), Tumbling or Barreling (TU), Centrifugal Tumbling (CF), Vi-
bratory Bowl Finishers (VBF), Laser Polishing (LP), electrolytic polishing, Electropolishing
(EP), Electro-Mechanical Finishing (EMF), and Plasma Electrolytic Polishing (PEP) were
discussed. Recent advances have opened up new possibilities for machine-assisted surface
treatment techniques, which are becoming increasingly effective. The authors emphasize
the many advantages of machine-assisted processing over manual processing, which have
contributed greatly to the renaissance of the watch and jewelry industry. Modern finish-
ing technology, in fact, aims to reduce waste, increase value, improve quality and create
attractive surfaces, as well as reduce processing times.

For example, several mechanical polishing methods have demonstrated their ability
to significantly reduce the time and effort required to achieve an adequate surface finish
for an 18-carat AM jewelry article. A comparison of the processing times of various
mechanical polishing procedures is illustrated in Figure 39, using hours as the unit of
measurement. The reported data indicates that Stream Finishing (SF) is faster than other
polishing methods [94].
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The surface of an L-PBF part consistently shows a rougher texture than that of a
cast part, regardless of the adjustments made to the process parameters. Consequently,
pre-finishing operations are always necessary before starting regular finishing procedures
to ensure that the surfaces achieve the desired smoothness, similar to that of cast parts. This
aspect is particularly crucial in the context of surface finishing designs characterized by
hollow and perforated structures, such as in the case of bracelets. If L-PBF production were
scaled up to production volumes, the problem of as-built surface roughness pre-finishing
would have to be addressed, although L-PBF production is currently not considered suitable
for mass production, where mass finishing processes are considered essential [22].

Sandblasting, typically considered an exposed process, was able to effectively smooth
and brighten L-PBF surfaces, even in the case of complex designs that are usually difficult
to access. Figure 40 summarizes the results of the initial experiments on bronze L-PBF
parts. Starting with the surface roughness in the state of construction (Figure 40a), dry
blasting with corundum sand rapidly polished the surface in 1–2 min (Figure 40b,c);
subsequently, a wet micro-sandblasting step with <50 µm glass microspheres further
improved the smoothness and brightness in a further one to two minutes (Figure 40d,e).
The resulting bronze ring had an excellent surface quality after hand polishing (Figure 40f).
In addition, the author used electropolishing to improve gloss in hard-to-reach areas,
surpassing traditional finishing techniques [22].

Electropolishing, an electrochemical material removal technique mainly used for metal
parts, uses an external electric current source. In this process, the material is extracted from
the workpiece (anode) and immersed in an electrolyte suited to the chemical composition of
the metal, which leads to a significant reduction in surface roughness. The electropolished
surface is not affected by the process, resulting in a smooth and highly reflective surface [94].

When metal is subjected to laser polishing, the surface of the metal punctually melts,
and the smoothing effect of the liquid phase thus formed is highly dependent on its surface
tension. To guide the laser beam, patterns are used that correspond to the contours of the
surface. The innovation in laser polishing is rooted in the principle of active remelting,
which differs fundamentally from traditional grinding and polishing methods that rely on
abrasion and removal. This technique proves effective on hard-to-reach surfaces that are
often difficult to clean manually or with machines (Figure 41) [94].
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In electromechanical polishing, the metal object is coated with a gel-like substance and
immersed in an appropriate electrolyte solution. During polishing, the microscopic particles
of the gel are brushed against the metal surface, making it possible to treat articulated
parts such as necklaces or interior walls inaccessible by mechanical means (Figure 42).
Electroplasma polishing is a new surface treatment that produces exceptionally smooth
and highly polished surfaces. Although PEP is considered an electropolishing process,
it uses environmentally friendly, non-acidic electrolytes and operates at relatively high
temperatures and voltages to achieve a better surface finish [94].
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Figure 42. Electro-mechanical polished sample (a) before and (b) after a 15-min treatment, Reprinted
from ref. [94].

The application of mechanical polishing to additive manufacturing (AM) jewelry
has proven effective in reducing manual finishing and polishing activities [94]. Ready-to-
sell surfaces have been created by mass-finishing machines (MFM). Even though these
MFMs use the prescribed finishing medium, it is often possible to improve the results by
making some minor modifications to process variables such as speed, duration, compound,
etc. The process parameters of the mass finishing machine to achieve better results have
been evaluated and modified by Moser [97]. Overall, the polishing sequence, such as
sandblasting, electropolishing, and hand polishing, is necessary to achieve a better surface
finish (Figure 43a–c).
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Figure 43. Surface polishing of yellow-gold jewelry followed by various steps: (a) sandblasted,
(b) electro-polished, and (c) hand-polished, Reprinted from ref. [23].

In summary, despite these advances, further research is needed to identify the most
suitable mechanical finishing process that offers an optimal reduction in processing time. It
is important to note that many of these processes are still at an early commercialization or
experimental stage. Furthermore, extensive investigation and testing are required before
incorporating them into the jewelry industry.
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Table 3. Post-processing of AM for jewelry application.

Fabrication
Method

Post-
Processing
Technique

Principle Material
Used

Feature Size
(µm) Advantage Disadvantage

Traditional

Disc polishing
[94,95,97]

Material is
removed and

smoothed from
the workpiece
surface using

rotating and an
abrasive slurry.

Abrasive
materials are

alumina, silicon
carbide and

diamond were
used

0.1–1.0

High-quality
surface finish,
Mirror finish

surface,
Adaptability,
Suitable for

complex
features

Time-
consuming
process for

larger
components,
larger waste

generation, and
multiple steps
were required

Drag
Polishing

[94,95]

Utilizes a
revolving drag

plate and
abrasive slurry
to polish and

sculpt the
surface of a
workpiece.

Diamond was
used as an
abrasive

material and
water as a

carrier fluid

0.05–0.5

Precise and
surface finish
and material

removal,
efficient for

intricate shape
and adaptable

for several
materials

Knowledgeable
operators are

required,
Limited to

specific
geometries, and

produce a
waste slurry.

Tumbling or
barreling [94]

Surface
polishing is

accomplished
by friction and

impact in a
spinning barrel
or drum packed
with abrasive

material.

Various
materials, such

as steel pins,
ceramic beads,

or abrasive
stones, were

used as
abrasive media.

5–50

Efficient for
edge

radiusing,
polishing and

deburring,
mainly utilized

for batch
production

It may take
more stages to

achieve a
mirror-like

quality, making
it unsuitable for
highly delicate

or detailed
components.

Centrifugal
Tumbling [94]

It uses a
fast-revolving
drum or bowl

to polish
surfaces by

contacting them
at high speeds
while exposing
workpieces and

abrasive
material to
centrifugal

forces.

Abrasive media
such as steel,
plastic and

ceramic were
used

1–20

Surface
finishing that is

effective and
reliable,

suitable for
deburring,

polishing, and
edge radii, and

ideal for
different

materials.

Better options
for delicate or

detailed
components

may exist, batch
processing is
only possible,

and appropriate
medium and
compound
selection is

needed.

Vibratory Bowl
Finishers (VBF)

[94,95]

It uses a
vibratory bowl

to transfer
vibrational
energy to
combine

workpieces,
abrasive media,

and a liquid
compound,

aiding surface
finishing by

relative motion
and friction.

Abrasive media
such as steel,
plastic and

ceramic were
used

1–30

Deburring,
polishing, and

surface
refinement

techniques that
are successful

in batch
processing,
suited for
various

materials, and
suitable for a
wide range of

materials.

It needs careful
medium and
compound

selection, may
not be the best

option for
highly delicate

or detailed
pieces, and
makes noise
while in use.
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Table 3. Cont.

Fabrication
Method

Post-
Processing
Technique

Principle Material
Used

Feature Size
(µm) Advantage Disadvantage

Non-
Traditional

Laser
Polishing (LP)

[94]

Utilizes a
powerful laser
beam to melt

and re-solidify
the material’s

surface,
producing a
polished and
smooth finish.

No abrasive
materials used
(Laser beams),
depends on the
laser absorption
and interaction

properties.

0.01–0.1

Minimum
material
removal,
provides

precise control
and the

capacity to
focus on

specific areas,
producing high
quality finishes.

Limited to
certain

materials, it
could be

needed for
post-processing
processes and

might be
sluggish for

larger
components.

Electro
polishing (EP)

[94]

The controlled
removal of a

layer of
material from a
metal’s surface

using an
electrolytic bath
and an electric

current to
produce a

polished and
smooth finish.

Electrolytes
used (for
example,

sulfuric acid,
phosphoric

acid)

0.1–10

Enhances
corrosion
resistance,

offers a
high-quality,
mirror-like

surface, and
reaches

intricate details
and

complicated
geometries.

Limited to
metals, could

need specialist
equipment, and
the procedure

can be relatively
slow for larger
components.

Electro-
mechanical
polishing

[94,98]

Combines
mechanical and
electrochemical

abrasion to
remove

material from
the workpiece’s

surface,
improving

flatness and
quality.

Combination of
electrolytes and

abrasives
(For example,

electrolytic
solutions and

diamond paste)

0.05–1.0

Produces
surfaces with

an optimal
flatness and
smoothness,

appropriate for
the

manufacturing
of semiconduc-

tors, and is
highly

automatable.

Limited to
certain

materials and
applications,

can be sluggish
for larger

components,
and may need

specialist
equipment.

Plasma
Electrolytic

polishing (PEP)
[94]

Polish and
remove

material from a
metal’s surface
using a mix of

electrolytic
action and

plasma
discharge to
produce a

smooth and
polished finish.

Electrolytic
solutions (For

example,
alkaline

solutions)

0.1–10

Provides a
mirror-like

polish,
improves
surface

cleanliness, and
increases
corrosion

resistance; it is
suited for many

metal alloys.

Restricted to
metals, it may

demand
specialized

machinery and
can be mostly
sluggish for

large
components.

4. Future Directions of Additive Manufacturing for Jewelry Industries

Although many jewelry industries still use traditional methods to produce jewelry
with huge, attractive parts [99], in recent times, the jewelry industry has been impacted by
the additive manufacturing technique and research is still ongoing to produce high-quality
jewelry parts with cost-effective methods. Initially, additive manufacturing was integrated
with traditional craftsmanship (Figure 44). Integration has improved the design and post-
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processing of jewelry products, such as surface finishing, stone setting, and assembly, which
are related to quality assurance [100,101].
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Integrating additive manufacturing technologies into the jewelry industry involves
several challenges. The transition from traditional methods to AM requires significant
changes in workflow, which often meet with resistance from skilled craftsmen. The initial
investment in AM equipment and staff training is considerable, especially for smaller
companies, and difficult to justify without immediate returns. In addition, ensuring
consistent quality and expanding the range of suitable materials, particularly precious
metals, remains an ongoing problem that requires robust quality control and further
research [100].

Despite significant advancements, additive manufacturing technologies are still ma-
turing and facing significant research gaps and challenges. The process variables in the
AM process, such as laser power, scanning speed, hatching distance, layer thickness, etc.,
are not yet fully understood, which affects product quality and consistency. The lack of
standardized processes and materials leads to production inconsistencies, highlighting the
necessity of establishing industry standards. Additionally, extensive post-processing is
often required, emphasizing the need for research to streamline these steps. Studies on
the long-term durability of AM-produced jewelry under everyday wear are also essential.
Finally, developing hybrid manufacturing approaches that integrate AM with traditional
techniques is crucial for leveraging the strengths of both methods [101].

In particular, digital design of jewelry parts will improve the jewelry industry produc-
tivity and design freedom to realize complex structures with greater precision.

In order for craft enterprises to adapt to technological developments, the following
three strategic directions need to be pursued: (1) embracing the use of digital technologies
rather than seeing technology as a threat to the enterprise’s future, (2) involving customers
in the design and production processes and expanding the enterprise’s network, and
(3) offering craft products through a wide range of services. The following strategic paths
will help craft enterprises to survive, innovate, and increase their competitive advantage
by exploiting the possibilities offered by innovative technologies and new production
methods [102,103].
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On the other hand, however, there are still many challenges to be faced when consider-
ing the future direction of the jewelry industry, particularly with regard to material choice,
design complexity, surface finish, production speed, and efficiency (Figure 45). Moreover,
the future perspective of additive manufacturing of jewelry will focus on the introduction
of different types of innovative alloys, hybrid AM (manufacturing with post-processing),
real-time monitoring, machine learning (ML), deep learning (DL) and Internet of Things
(IoT) to improve the accuracy of jewelry pieces.
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As far as materials are concerned, some jewelry applications still require more consumer-
friendly alloys, such as harder alloys with higher tarnish resistance. Further research is
needed to determine whether new alloys, such as shape memory alloys and bulk metallic
glasses, are usable. Furthermore, with regard to nickel in white golds and cadmium
in welds, future health and safety regulations may impose further restrictions on alloy
compositions and encourage their further development [104]. Finally, the addition of
semiconductor materials in precious metals and composite materials, such as precious
metal matrix composites (PMMCs), could be explored in the future [104].

Next, the automation of additive manufacturing with post-processing (surface fin-
ishing) needs to be evaluated in order to increase the productivity of jewelry products
that can become cost-effective (Industry 5.0). Real-time monitoring systems for additive
manufacturing can enable the automatic identification of defects on the line and in situ,
saving time and material [105]. The use of, among other things, machine vision to assess the
quality of a 3D print [106,107] can make processes more efficient and reduce scrap [108–110].
For example, IoT closely monitors the scanning process, providing recommendations for
optimal scanning for superior results. This integration addresses challenges related to mate-
rial parameters, surface topology, data integration, and communication between scanning
and additive manufacturing devices. Actuators, sensors, and other IoT connectivity devices
play a crucial role in improving coordination between these devices. In addition, the use
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of artificial intelligence (AI) for 3D scanning is envisioned, foreseeing a future where the
process is as simple as shooting a movie with a smartphone [111,112].

5. Conclusions

This article represents a comprehensive review on the use of AM for jewelry making.
Nowadays, jewelry design has received new life through the incorporation of AM. As
personal adornment is redefined through the lens of technology, this synergy goes beyond
mere aesthetics. Using additive techniques (such as L-PBF), objects are created with
precious materials such as gold, silver, and platinum. The main challenge in fabricating
precious materials with L-PBF is their low absorbency and high thermal conductivity.
This paper explores potential solutions to overcome these problems and improve the
properties of precious materials produced by L-PBF. In addition, post-processing techniques
improve surface finish and reduce porosity. Each piece of jewelry represents creativity and
craftsmanship, allowing for the tangible manifestation of one’s unique talent. In addition to
simplifying production, this combination of technology and craftsmanship ushers in a new
era of cutting-edge jewelry that combines tradition and innovation. From the literature
review, the following observations emerged:

• L-PBF is a good alternative for producing high-quality jewelry because of its supe-
rior mechanical strength, accuracy, and surface finish quality compared to powder
metallurgy processes.

• Enhancing material-use efficiency in L-PBF for jewelry is essential for overcoming
challenges like oxidation, agglomeration, and contamination. This can be achieved
by better handling sensitive powders and optimizing recycling processes, thereby
improving the sustainability and cost-effectiveness of this advanced manufacturing
(L-PBF) method than the traditional method.

• This review highlights various strategies to optimize the performance of precious
jewelry materials in L-PBF. In particular:

• The addition of alloying elements to precious materials can significantly increase
mechanical strength, thermal stability, and overall durability by improving absorption
at the common laser wavelength.

• Powder coating in precious metal fabrication using L-PBF improves laser absorption
and reduces defects, resulting in higher densification and better surface quality. This
approach is particularly beneficial for intricate jewelry designs, providing superior
surface finish and structural integrity.

• The use of low-wavelength lasers (green or blue lasers) can be a technological approach
to improve the properties of precious metals fabricated by L-PBF. These lasers improve
energy absorption and reduce thermal gradients, leading to higher material density
and reduced porosity.

• LP excels over other surface polishing techniques in producing accurate surface qual-
ities, making it an excellent choice for high-end jewelry with complex patterns that
require precise surface finishes.

• The integration of AM with traditional craftsmanship in jewelry production improves
design flexibility, quality control, customization, and efficiency.
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