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design possibilities and create new design options not con-
ceivable with traditional composites [4].

In the last decades, due to their promising capabilities, it has
been imperative to mechanically characterize VAT laminates in
terms of buckling and vibration response [5]. For instance, Lee
and Harper [6] evaluated the improved buckling performance
of tow-steered laminates with a cutout. Giirdal et al. [7] found
that axial stiffness is decoupled from buckling behavior by
investigating the change in in-plane stiffness during buckling
as the fiber orientation was varied. Moreover, Vescovini et al.
[8] introduced a numerical approach using the Ritz method in
combination with first-order theories to model the pre-buckling
and buckling of VSCs, which was shown to accurately calculate
the buckling condition at a lower computational cost than most
finite element based methods. On the other hand, Akhavan
and Ribeiro [9] analyzed the natural frequencies and modal
forms of VSCs using both first-order shear deformation theory
(FSDT) and third-order shear deformation theory (TSDT). It
has been demonstrated that the significant advantage of using
curved fibers is the increased flexibility that can be efficiently
utilized to adjust frequency and mode shapes. Pereira et al. [10]
carried out a modal characterization study of VAT laminates,
focusing on damping, using a model that combined the semi-
analytical Rayleigh—Ritz approach, classical laminated plate
theory (CLPT), and the strain energy method. They were
able to estimate the exact damping capacity of each mode.
Another important aspect was explored in the study of Stodieck
et al. [11] where the use of tow-steered composites for the
tailoring of the aeroelastic behavior of a rectangular wing was
modeled utilizing the Rayleigh—Ritz method and strip theory
aerodynamics. Also, a method for predicting the aeroelastic
flutter state for flat and curved VAT plates under supersonic
flow was proposed in the study of Sharma et al. [12]. It was
concluded that VAT laminates have the potential for improved
design compared to traditional unidirectional composite
laminates.

In contrast to the CLPT and FSDT models, which are
examples of equivalent single-layer (ESL) theories, it is
possible to implement layer-wise (LW) models, where
each layer is modeled with independent variables (degrees
of freedom) and continuity of interlaminar displacements
must be imposed at the interface. One of the first attempts
to use LW theory to model VAT was made by Demasi et al.
[13] in which two-dimensional (2D) ESL, Zig-Zag, and LW
theories were presented, and different orders of expansion
were implemented using the Carrera Unified Formulation
(CUF) to capture the behavior through the thickness
accurately. Furthermore, Viglietti et al. [14] proposed a
refined one-dimensional (1D) CUF-based model for the
free vibration analysis of VSCs. Sanchez-Majano et al. [15]
studied the stress distribution of VAT laminates using ESL
and LW theories. Furthermore, Pagani et al. [16] conducted
nonlinear geometric analyses of VAT plates to examine the
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vibration in nonlinear equilibrium states. The crucial task of
the mesoscale’s mechanical characterization was addressed
in Ref. [17, 18]. Specifically, the LW approach was used to
describe the layer scale, while a 1D component-wise (CW)
method was implemented to characterize the fiber-matrix
scale. This approach accurately captured the 3D stress state
at different scales. These investigations have concluded that
the ESL and LW models are consistent with the results of
major commercial software tools for analyzing in-plane
stress components in VAT laminates. Nevertheless, refined
kinematics were required to predict the out-of-plane stresses
accurately.

Defects resulting from the AFP manufacturing process are
a critical aspect that characterizes VSCs. Such manufacturing
signatures cause discrepancies between the finished component
and the original numerical model. As stated in [19], these
defects are the main limitation of the AFP technology. The
works of Nguyen et al. [20, 21] presented experimental results
on the effects of process-induced imperfections when using
AFP technology and found a strong influence of gaps on the
compressive behavior of composite laminates. At the same time,
overlaps improved tensile properties and showed negligible
compressive changes. Blom et al. [22] suggested using a denser
mesh in areas where the defect is most prevalent to capture the
effect of this defect type on mechanical behavior. In contrast,
Fayazbakhsh et al. [23] proposed the Defect Layer Method
(DLM), which accounts for gaps by scaling the material’s elastic
properties and obtains overlaps by adjusting the layer thickness.
It was found that despite the number of finite elements involved,
the DLM was more accurate in identifying and estimating the
area of defects. A method for investigating the fundamental
frequency of variable stiffness laminates that combines DLM
and CUF has been presented in [24]. Notably, it was observed
that the fundamental frequency decreased with gaps but
increased with overlaps due to their structural stiffening effect.

As outlined in [25], the future success of utilizing advanced
tailoring techniques hinges on developing optimization tools
that consider the manufacturing signature. In this regard, Car-
valho et al. [26] conducted a study on optimizing the lamina-
tion angle to maximize fundamental frequency. They integrated
gaps into the optimization process through a modified rule of
mixtures, and the optimization problem was solved using a
Genetic Algorithm (GA). Nik et al. [27, 28] introduced a multi-
objective optimization framework for designing VAT laminates
using a surrogate algorithm incorporating an evolutionary
model to reduce computational cost. The optimization frame-
work’s main goals were to investigate which parameters influ-
ence the optimal solutions set while maximizing the in-plane
stiffness and critical buckling load. It was discovered that when
the course width remained constant, the defect areas within the
laminate were reduced as the number of tows rose. Additionally,
adopting a complete gap strategy resulted in a decreased in-
plane stiffness and critical buckling load. Conversely, utilizing
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Fig.7 Flowchart of the surrogate-based optimization framework considering the constraint ky;;, = 1.57m™" and the quantification of the defects
performed by DLM. Finally, the CUF-based FE code is used to calculate the fundamental frequency

(T:':Leezpr:gf:;“::ﬁ‘e propertics E,[GPa]  E,GPa]  G,lGPal  Gyy[GPal  GylGPal vy,  plkg/m’]
in[42] Prepreg 143 9.1 4.82 4.9 4.9 03 1500
Resin 3.72 3.72 1.43 143 1.43 0.3 1100
Table 3 Mesh convergence analysis using Q9 elements and a com- [+(58,39)],, was considered. The laminate length-to-thick-
plete gap condition ness ratio a/h is 200, and the width and length of the plate
Model DOFs f, [Hz] are a = b = 1 m. The mechanical properties of the prepreg
and resin are listed in Table 2. Both complete gap and com-
Ref. [42] - 30.95 plete overlap strategies were implemented with a simply
44 Q9-1LD1 4131 32.12 supported boundary condition on all four sides. Table 3 pre-
636 Q9-1LDI 8619 31.89 sents the convergence analysis of the FE mesh by varying
88 Q9-1LDI 14,739 3181 the number of Q9 quadratic 2D elements while using LD1
10x10Q9-1LDI 22491 377 kinematics through the thickness for each ply in the case of
LD1 kinematics are implemented through the thickness a complete gap strategy. In this context, the acronym LD1
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