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and 1116.5 ± 226.9 items/kg (average and st. dev). 
Microparticle abundance varied before and after the 
touristic summer season, increasing in the most popu-
lar beach and decreasing in the unpopular one. Differ-
ences in microparticle abundance between foreshore 
and backshore were present too; however, statisti-
cal analyses did not show evident relations between 
microparticle abundance and the distance from the 
see. Grain size influenced the abundance of micropar-
ticles in sediments. Our results improve knowledge 
on microparticle pollution in marine environments, 
highlighting information about micropollution in 
coastal areas. Future studies are needed to understand 
better microparticle dynamics and ecological impacts 
in marine and terrestrial systems, implementing new 
strategies to monitor pollution state, enhancing the 
natural intermediate environments, and providing 
useful and sustainable measure of conservation.

Keywords Microplastics · Microfibers · Pollution · 
Beaches · Micropollutants

Introduction

Marine ecosystems are constantly threated by 
anthropogenic activities and litter, especially along 
the coasts (Piazzolla et  al., 2023). Any material of 
anthropogenic origin, abandoned or disposed of, in 
marine environment, from shores to deep oceans, 
can be consider marine litter, including all materials 
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gin, such as microplastics and microfibers, are per-
vasive pollutants in the marine environment of the 
world. These microparticles pollute water and can be 
ingested by biota; however, while microplastics are 
often monitored, very few studies focus on microfib-
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trial and marine environments and their recreational 
and touristic functions. In this study, microparticle 
occurrence frequency was investigated along the 
Calabria coast, Italy, in one touristic beach in com-
parison with an unpopular one. High amounts of 
microparticles of anthropogenic origin were found 
in all sediment samples, despite the evident differ-
ent tourist exploitation of the two examined beaches. 
Sediments of the most touristic beach had values 
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instead, the less popular beach between 606.3 ± 102.8 
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brought indirectly to the sea by rivers, sewage, and 
weather phenomena (Kershaw, 2016).

Plastic litter in marine environments is one of the 
most abundant and critical pollutant (Löhr et  al., 
2017; Sharma & Chatterjee, 2017). Benefits of plas-
tics such as resistance, flexibility, durability, low cost, 
and low weight enabled the use of plastic materials in 
different products in the past decades. Unfortunately, 
when plastic waste reaches the environment, their 
characteristics make them extremely problematic pol-
lutants in natural environments, especially for small-
size particles. Plastic particles from 5 mm to 1 μm are 
considered microplastics (MPs) and can be produced 
with a small dimension (primary production) or as 
a result of the degradation of larger plastic objects 
(secondary production). MP pollution in marine 
ecosystems is problematic, especially because small 
fragmentation can increase food chain access and 
biota interactions (e.g., Assas et al., 2020; Devereux 
et al., 2021; Jahan et al., 2019; Marrone et al., 2021). 
Moreover, MPs pose a threat to coastal environments 
because they can adsorb chemicals and other pol-
lutants (Frias et al., 2010; Lee et al., 2020; Li et al., 
2018; Luo et al., 2019; Zhou et al., 2019). Different 
studies from all world regions report on MP occur-
rence in marine waters, sediments, and beaches (e.g., 
Bošković et al., 2021; Frias et al., 2010; Gholizadeh 
& Cera, 2022; La Daana et  al., 2019). The zones 
between terrestrial and marine environments, such 
as beaches, are particularly vulnerable to litter pollu-
tion. Moreover, their recreational and touristic func-
tion enhance their exposure to pollution. Plastic is 
the most frequent type of litter in beaches (Balčiūnas 
& Blažauskas, 2014; Thiel et al., 2013). Fragmented 
plastics on beaches derived from inland sources, 
transported by water, wind, storms, human activ-
ity, or directly from the oceans, are transported also 
from great distances (Eriksen et  al., 2014; Lebreton 
et al., 2012). Plastic materials on beaches are exposed 
to different environmental phenomena, such as abra-
sion due to wind, wave action, and sunlight, which 
facilitate plastic fragmentation into smaller pieces 
(Andrady, 2011). Water filtration due to hydraulic 
gradients resulting from wave action pushes particles 
from the surface into the sand body and is adsorbed 
onto the sand grain surfaces (Brown & McLachlan, 
2010). Hence, sandy beaches act as a specific filtering 
system that captures organic and inorganic particles 
and MPs (Brown & McLachlan, 2010).

Unfortunately, the environment is not only contam-
inated by MPs. Pollution through anthropogenic fib-
ers of cellulosic or animal origin is greatly underrep-
resented in the literature (Hasenmueller et al., 2023; 
Stanton et  al., 2019; Suaria et  al., 2020a, 2020b). 
However, recent research suggests that these particles 
can be as toxic for ecosystems as synthetic ones, due 
to chemical additives and dyes used during manufac-
turing processes (Athey & Erdle, 2022). In marine 
environments, MPs are considered the harmful frac-
tion of wastes (Law & Thompson, 2014), being dan-
gerous for organisms (Jahan et al., 2019; Ugwu et al., 
2021), and potential carriers of pathogens and other 
pollutants (e.g., Li et  al., 2018; Zhou et  al., 2019); 
therefore, monitoring is fundamental to understand 
the relevance of the pollution. However, such as MPs, 
natural and regenerated fibers can pollute water and 
sediments and be ingested by biota; therefore, this 
kind of pollution cannot be neglected. Non-synthetic 
fibers are usually considered less dangerous in natural 
environments due to their biodegradability. However, 
little is known about their degradation in the marine 
environment, and some study highlighted a perma-
nence of these materials for more than 130 years in 
the deep ocean (Athey & Erdle, 2022; Chen & Jakes, 
2001). Moreover, their faster degradation in compari-
son to polymers could play a potential role in releas-
ing toxic pollutants (Ladewig et  al., 2015). Conse-
quently, monitoring of microfibers (MFs) is of great 
interest to better understand microparticle pollution in 
marine environments.

The Mediterranean Sea is a semi-enclosed basin 
and, because of its environmental characteristics and 
hydrodynamics, become a wide area of accumulation 
of plastic debris and litter over time (Canals et  al., 
2021; Cózar et  al., 2015; Eriksen et  al., 2014; Leb-
reton et al., 2012; Pierdomenico et al., 2019). Previ-
ous works studied MP pollution in the Mediterranean 
area (e.g., Bošković et al., 2021; Digka et al., 2018), 
including Italy (e.g., Cannas et  al., 2017; Guerranti 
et al., 2017). Marrone et al. (2021) analyzed the mor-
phological characteristics and the polymeric composi-
tion of MPs collected from the sea surface in six sta-
tions of the Calabrian coasts, describing the different 
particle distribution from coastal areas up to 12 nauti-
cal miles offshore. This study showed evident differ-
ences in MP concentration between the Tyrrhenian 
(87%) and Ionian (13%) sides, due to the complex 
marine and atmospheric dynamics. However, only 
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few research considered the presence of other micro-
pollutants such as MFs (e.g., Suaria et al., 2020b).

Sandy beaches of Calabria are a popular touristic 
destination in Italy, especially during the summer 
period. In this study, two beaches with different tour-
ist exploitation were sampled and analyzed, provid-
ing a more complete detection of micropollutants in 
the center of the Mediterranean Sea, evaluating the 
impact of tourism on microparticle accumulation 
and distribution, and if grain size affects the accu-
mulation and distribution of microparticles within 
sediments (Alomar et  al., 2016; Crawford & Quinn, 
2016; Vermeiren et al., 2021). The aims of this study 
are (i) to quantify the abundance of microparticles of 
anthropogenic origin (MPs and MFs) in two nearby 
beaches, differing in their touristic exploitation (high 
versus low), (ii) to verify if microparticle abundance 
is higher after the main touristic summer season, and 
if it is more pronounced at the tourist beach than at 
the unpopular one, (iii) to verify if the accumulation 
of microparticles increases as the distance from the 
shore increases, and (iv) to verify if grain size influ-
ences the abundance of microparticles in sediments.

Materials and methods

Study area

The Calabria region, Italy, is located in the center of 
the Mediterranean Sea, enclosed by the Tyrrhenian 
and the Ionian seas (Fig. 1). Calabria has a coastline 
of about 740 km. Regarding climatic characteristics, 
the Ionian and Tyrrhenian coasts are exposed to very 
different winds, causing a high variability of weather 
and sea conditions between the various coastal 
areas that influence coastal dynamics. The Strait of 
Messina separates peninsular Italy (Calabria) from 
the island of Sicily, connecting the Tyrrhenian and 
Ionian seas, two seas with different characteristics in 
terms of salinity and temperature (Barilla et al., 2021; 
Bignami & Salusti, 1990). The coasts of this stretch 
of sea are crossed by very strong currents, and the 
geomorphology of the beaches varies from year to 
year because of the strong winter storms, which could 
characterize a part of the pollution. The examined 
sites were chosen in this particular area, according to 
their location, their environmental characteristics, and 

human activities, in order to consider the influence of 
the anthropogenic impact.

The beaches of Porticello (38°14′33″N 
15°40′27″E) and Pezzo (38°13′47″N 15°38′08″E) are 
located in the municipality of Villa San Giovanni, in 
the Reggio Calabria (RC) province. This coastal area 
is subject to pressure related to anthropogenic activi-
ties such as illegal fishing, widespread watercourse 
concreting, intense urbanization, maritime traffic, 
and road infrastructure (railways, viaducts, and tun-
nels) which has led to the discharge of large quantities 
of waste material into the sea (ARPACAL—Agen-
zia Regionale per la Protezione dell’Ambiente della 
Calabria 2016; MSFD - Marine Strategy Framework 
Directive, 2008). In addition, the local seabed is a 
landing point for submarine electricity cables and gas 
pipelines from Sicily. However, this Calabrian coast-
line is a protected area, with the aim of ensuring the 
long-term maintenance of natural habitats and flora 
and fauna species interesting at European level. The 
seabed is characterized by a steep bathymetric drop, 
reaching important depths (0–100  m) a few meters 
from the shore (ARPACAL—Agenzia Regionale per 
la Protezione dell’Ambiente della Calabria n.d.). Por-
ticello and Pezzo beaches differ strongly in their geo-
morphology and in the frequencies of tourists they 
receive. Both sites are characterized by coarse sand 
near the sea and finer sand inwards. The beaches are 
mainly sandy but, in some cases, contain small pro-
portions of gravel, usually on the lower part of the 
foreshore. At both beaches, beach cleaning is usually 
carried out by environmental associations once a year 
before the touristic season (April or May).

Porticello beach (Fig.  1A, C) overlooks the open 
sea segment to the north-west of the city of Villa San 
Giovanni and is characterized by a straight coastline. 
The beach is about 240 m long and 24 m wide, with 
a north west orientation. It is often subject to strong 
winds and sudden current change (ARPACAL—
Agenzia Regionale per la Protezione dell’Ambiente 
della Calabria n.d.; Barilla et al., 2021). At Porticello 
beach, the prevailing wave motion arrival direction 
is transverse (inclination of about 45°); therefore, 
a groyne arranged orthogonally to the shoreline is 
present to protect the coastline, reducing coastal 
transport and intercept sediment. Although it is in a 
peripheric area compared to Pezzo beach, it is easily 
reached in 10 min by car from the city center. There-
fore, this is an extremely crowded beach in the main 



 Environ Monit Assess         (2024) 196:993   993  Page 4 of 14

Vol:. (1234567890)

tourist season (July and August). Moreover, the area 
is full of residences and houses very close to the sea, 
which are populated only in the summer months. At 
Porticello beach, the incident direction is transverse 
from the shoreline, which produces a movement of 
materials parallel to the coast and at the breakwater 
line.

Pezzo beach (Fig. 1B, D) is located inside the Strait 
of Messina and has a slightly concave configuration. 

It is 218 m long and has a variable width. At the sam-
pling area, the beach is about 15 m wide. The wave 
regime characterizing this beach is more stable and 
less exposed to the wind than Porticello beach. The 
waves come perpendicularly to Pezzo beach, caus-
ing the removal of sediments and the erosion of the 
stretch of beach upstream. Therefore, a barrier con-
struction parallel to the coast is present for its pro-
tection. The beach of Pezzo is 700 m from the port 

Fig. 1  Location of the monitored beaches: Porticello A, C and 
Pezzo B, D. (Map of Italy created with mapchart.net; detail of 
Strait of Messina, images A and B from https:// earth. google. 

com/, Imagery ©2023 Google, Airbus, Data SIO, NOAA, 
U.S. Navy, NGA, GEBCO, Map data ©2023, modified [access 
2024–05-16]; photos C and D: F. Trunfio)

https://earth.google.com/
https://earth.google.com/
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of Villa San Giovanni port; therefore, the sea area 
is affected by an intense traffic of merchant boats 
and passenger ships. This traffic favors the accumu-
lation of marine litter along the coast, making this 
beach less frequented by tourists during the summer 
months.

Sampling

Sampling methodology was performed taking as a 
reference the guidelines described by the European 
Commission (2013) for MP monitoring. Samplings 
were carried out once before and once after the sum-
mer period, in June and September 2021. A total of 
eight samples were collected at each beach (Porticello 
and Pezzo), four in June and four in September. Four 
sampling transects perpendicular to the coastline, two 
on the foreshore and two on the backshore, with a 
length of 20 m, were defined at each beach (Fig. 2). 
The width of each transect varied depending on the 
total width of each beach (Fig.  2), covering a total 
sampling area of 240  m2 for Porticello beach and 180 
 m2 for Pezzo beach. Four sampling spots were made 
for each transect, every 5 m. For each sampling point, 
two sediment collections of about 7–8 g were made: 
the first on the beach surface (about first 5  cm) and 
the second one at about 10–15 cm depth, after remov-
ing surface sediments. Finally, samples from the two 
foreshore transects (A and B in Fig.  2) and the two 
backshore transects (C and D in Fig.  2) were com-
bined to highlight the differences between the shore-
line and the backshore. Each sample was about 225 g.

Sediment samples were collected in glass jars 
using a metal spoon and stored in a fridge at 15  °C 
until laboratory analysis. During all steps nitrile 
gloves and cotton clothing were worn. The sampling 
sequence was carried out by moving along the refer-
ence transects in the opposite wind direction to avoid 
contamination.

Laboratory analysis

To avoid contamination during laboratory processing, 
plastic materials were replaced with glass and metal 
equipment, when possible, and all working surfaces 
and all laboratory glassware were cleaned with etha-
nol and Milli-Q water during all steps. Nitrile gloves 
were used by researchers during all steps, together 
with cotton coats. In accordance with Cabrera et  al. 
(2020), abrasive substances were not used, reducing 
the preparation time and decreasing the risk of pollut-
ant contamination.

Samples were placed in an aluminum box, covered 
with aluminum foil and dried in an oven at 40 °C to 
constant weight. Sediments were sieved for granu-
lometric classification with a mechanical sifter for 
3  min, intensity of impulses 6/9. Sediments were 
sifting using sieves with 1 and 0.5 mm of mesh, fol-
lowing the typical sand separation classes described 
in Crawford and Quinn (2016): > 1  mm very coarse 
sand, 1–0.5 mm coarse sand, < 0.5 mm medium, and 
fine sand). At once, this separation was useful for sep-
arating big microparticles (5–1  mm) from the small 
fraction, and the small fraction in two subsamples. A 
1:1 15% H₂O₂ solution was used for the organic mat-
ter removal (OMR) step. Finally, treated sediments 
were dried in the oven at 40  °C to constant weight. 
NaCl solution (200  g NaCl/0.6 L, density 1.2) was 
added to dried sediments and blended with a mag-
netic mixer for 2  min, as suggested in Balestra and 
Bellopede (2022). Density separation with NaCl for 
sediment samples could limit the ability to capture 
anthropogenic materials with higher densities; how-
ever, this solution is eco-friendly, and the density of 
materials left in natural environments is not neces-
sary the same as newly one. Material porosity, degra-
dation, and organic activity can increase or decrease 
their density in natural environments (Kaiser et  al., 
2017); therefore, not only the “lightest” fraction of 
anthropogenic litter could be extracted with this 

Fig. 2  Sampling transects 
in Porticello A and Pezzo 
B beaches. (Images from 
https:// earth. google. com/, 
Imagery ©2022 Google, 
Data SIO, NOAA, U.S. 
Navy, NGA, GEBCO, 
Landsat/Copernicus, Map 
data ©2022, modified)

https://earth.google.com/
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solution. Samples were left to rest for 24 h, favoring 
sediment deposition. The supernatant was extracted 
with a glass pipet and filtered through a 1.2-μm pore 
size glass microfiber filter (Whatman, Ø 47 mm). Fil-
ters were placed on glass petri dishes, covered with 
aluminum foil to avoid air contamination, and dried 
into an oven at 40 °C.

Microparticle identification and characterization

MPs and MFs can be detected with visual identifica-
tion under a microscope (e.g., Alomar et  al., 2016; 
Guerranti et  al., 2017; Houck, 2009; Khan et  al., 
2017; Mathalon & Hill, 2014; Zhang, 2014), being an 
inexpensive methodology (Crawford & Quinn, 2016). 
However, it does not allow to identify the chemical 
composition of materials. Fluorescent additives are 
often used in plastic and textile production world-
wide, especially whitening agents (Qiu et al., 2015); 
therefore, many materials can be easily observed 
under ultraviolet (UV) light (Balestra & Bellopede, 
2023; Balestra et al., 2023; Ehlers et al., 2020; Klein 
& Fischer, 2019).

In this work, microparticles on filters were 
observed with and without a Alonefire SV10 365 nm 
UV flashlight 5W under a Leitz ORTHOLUX II 
POL-MK microscope equipped with a DeltaPix Inve-
nio 12EIII 12 Mpx Camera, starting with 2.5 × zoom, 
increased to 10 × or more for fiber identification, as 
described in Balestra and Bellopede (2022) (Sup-
plementary Fig.  1). Visual identification was used 
to count MPs according to the strict selection crite-
ria described in Crawford and Quinn (2016). Images 
of natural, regenerated, and synthetic fibers under a 
microscope taken in previous works were used for 
MF comparisons (e.g., Houck, 2009; Khan et  al., 
2017; Zhang, 2014). Particles smaller than 0.1  mm 
and those that were not clearly identifiable were not 
take into account (European Commission 2013).

The software PAST version 2.17c (Hammer et al., 
2001) was used to perform statistical analyses. A chi-
squared test was used to check if considered variables 
were related or independent.

Results

The grain size of the three main classes (> 1  mm, 
1–0.5  mm, and < 0.5  mm) of the analyzed sediments 

are reported in Fig.  3 and Supplementary Table  1. 
Porticello Beach foreshore and backshore were char-
acterized especially by coarse sand, while in Pezzo 
Beach was mainly present coarse sand in foreshore and 
medium-fine sand in backshore.

MPs and MFs were found in all examined samples, 
in both beaches (Fig.  3). The 58% of the examined 
microparticles were MPs, highlighting a significant per-
centage of natural and regenerated anthropogenic fibers 
polluting marine environment. Weighted averages of 
microparticle concentrations in relation to the distance 
from the sea, before and after the tourist season, are 
reported in Fig. 3 and Supplementary Table 2.

Statically significant differences in microparticle 
abundance between June and September were present 
in both beaches (χ2 = 114.96, p < 0.01). Microparticle 
abundance varied before and after the summer season, 
relevantly increasing in Porticello beach, the most pop-
ular, and decreasing in Pezzo beach.

Microparticle abundance considering both beaches 
was independent from the sea distance (foreshore/
backshore) (χ2 = 1.65, p = 0.2). However, Porticello 
beach doubled microparticles abundance in the back-
shore from June to September, while in the foreshore, 
the microparticles abundance decreased slightly. The 
difference between the amount of microparticles found 
in foreshore and backshore, from June to Septem-
ber, is statistically significant (χ2 = 90.48, p < 0.01). In 
Pezzo beach, microparticles abundance decreased of 
about one-third from June to September, while in the 
backshore, it slightly rise. The difference between the 
amount of microparticles found in foreshore and back-
shore, from June to September, is statistically signifi-
cant (χ2 = 61.53, p < 0.01).

Relation between the abundance of microparticles 
and the sediment grain size was found considering 
both beaches (χ2 = 175.67, p < 0.01), Porticello beach 
(χ2 = 1015.70, p < 0.01) and Pezzo beach (χ2 = 100.65, 
p < 0.01) (Fig.  4). There was also a statistical relation 
between microparticle abundance from June to Sep-
tember and the sediment grain size for both Porticello 
(χ2 = 462.93, p < 0.01) and Pezzo beaches (χ2 = 1036.20, 
p < 0.01) (Fig. 4).
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Discussion

Considerations about methodology

Research on MPs and MFs is challenging. Different 
methods for MP determination exist; however, there 
is no general consensus on MP definition or meth-
odologies. Moreover, MF methodology are often 
the same of MPs (Frias & Nash, 2019; International 
Organization for Standardization and European Com-
mittee for Standardization 2020).

Avoiding contamination during sampling and labo-
ratory analysis is difficult; however, plastic materials 
were avoided when possible, and all working surfaces 
and laboratory glassware were cleaned with ethanol 
and Milli-Q water during all steps. Nitrile gloves 
were used by researchers during sampling and analy-
sis. Not placing control filters in the laboratory could 
prevent the recognition of some other contamination 
that the samples could have suffered during all proce-
dures; however, laboratory analysis were made under 
the hood.

The sediment subdivision into grain size classes 
made it possible to examine the samples in a more 

representative manner, allowing to do considerations 
and correlations between microparticles abundances 
and the size of the sediments.

Marine and beach sediment samples contain 
organic matter that may interfere with the analyses 
changing the apparent density of polymers and mak-
ing easier aggregation with microparticles (Eerkes-
Medrano et  al., 2015; Morét-Ferguson et  al., 2010). 
Therefore, OMR is a fundamental step for MP and 
MF analyses. The most commonly used chemicals 
are HCl, HNO₃, NaOH, KOH, and especially H₂O₂. 
A 30% H₂O₂ solution can damage or dissolve smaller 
MPs (Nuelle et al., 2014); however, 15% H₂O₂ cannot 
remove all organic materials. OMR on environmen-
tal samples should be done in relation to the sample 
characteristics; therefore, preliminary observations 
on samples must be done. The choice of treatment for 
OMR depends on the examined matrix, and several 
protocols are present in literature (e.g., Corami et al., 
2020; Crawford & Quinn, 2016; Mukhanov et  al., 
2019); however, there is no standardized methodol-
ogy. An incorrect OMR choice may result in the par-
tial or complete degradation of non-synthetic MFs, 
resulting in counting errors, under- or overstimation 
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(Athey & Erdle, 2022; Duis & Coors, 2016; Nuelle 
et  al., 2014; Rocha-Santos & Duarte, 2015; Treilles 
et al., 2020). Currently, H₂O₂ is one of the most com-
mon methods used for OMR in MP and MF analyses 
(Athey & Erdle, 2022); however, it can affect parti-
cle properties and spectroscopic analyses, increasing 
the fragility of different kinds of materials. Micro-
particles with fluorescent whitening agents are eas-
ily detectable under UV light; nevertheless, a lot of 
organic and inorganic materials are fluorescent under 
UV light too; therefore, OMR is a fundamental step 
before this kind of detection.

For sediment samples, density separation with 
NaCl could limit the ability to capture anthropogenic 
materials with higher densities; however, this solution 
is eco-friendly and the density of materials left in nat-
ural environments is not necessary the same as newly 
one. The specific density of certain plastics is higher, 
and in different cellulosic materials, they have higher 
density than the one of several synthetic polymers, 

such as polyester, polypropylene, and nylon/acrylics. 
However, material porosity, degradation, and organic 
activity can increase or decrease their density in 
natural environments (Kaiser et al., 2017); therefore, 
not only the “lightest” fraction of anthropogenic lit-
ter could be extracted with this solution. However, it 
should be taken into account that high-density materi-
als can remain into the sediments.

A combination of microscopy and spectroscopy 
methods is probably the optimal choice to character-
ize MPs and MFs in natural matrices. Microscopy is 
faster than spectroscopy; however, it does not allow 
to identify microparticle composition. Nevertheless, 
during spectroscopic analyses, spectra obtained are 
difficult to match with high percentages with those 
of the libraries because surface of microparticles 
remained in natural environments for a long time is 
often degraded and contaminated by other materi-
als (Song et  al., 2015). Moreover, different cellu-
lose-based fibers, natural and regenerated, have very 

94
0

63
1

23
37

48
078

0

78
0

74
0

66
074
0 82
0 98
0

70
077
8

41
53

20
17

11
96

10
40 13

00

76
0

16
40

30
0

80
0

12
00

80
0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

June September June September

M
icr

op
ar
�c
le
s/
kg

>1 1-0.5 <0.5 >1 1-0.5 <0.5

Backshore

Pezzo Beach

Foreshore

Fig. 4  Abundance of microparticles of anthropogenic origin in Porticello and Pezzo beaches, before and after the tourist season. 
Data in relation to sediment grain size



Environ Monit Assess         (2024) 196:993  Page 9 of 14   993 

Vol.: (0123456789)

similar chemical composition; therefore, it is diffi-
cult to differentiate them with spectroscopic analy-
sis. Microscopy can be more helpful in identify these 
materials (Peets et al., 2017). In both microscopic and 
spectroscopic analysis, the overestimation or under-
estimation of microparticles has been observed (e.g., 
Hidalgo-Ruz et al., 2012; Song et al., 2015), and both 
methods are susceptible to operator biases and errors. 
The purpose of these work was not to feature micro-
particles characteristics, but to estimate microparticle 
abundances and discover their movements related 
to environmental characteristics and tourism on the 
monitored beaches, microscopic analyses following 
the strict criteria described in Crawford and Quinn 
(2016) are enough.

Considerations on microplastic and microfiber 
pollution

In this study, microparticles were found in all col-
lected samples, highlighting an intense pollution. 
Microparticle abundance varied before and after the 
touristic summer season, relevantly increasing in 
Porticello beach, the most popular, and decreasing in 
Pezzo one, probably given its proximity to the Villa 
San Giovanni port. Significant differences in micro-
particle contamination between the two sites could 
depend on the direct anthropogenic influence, as the 
seaside tourism, or by indirect pollution. The Medi-
terranean Sea is characterized by a complex marine 
circulation which favor pollution in the semi-enclosed 
basin (Cózar et al., 2015; Eriksen et al., 2014; Lebre-
ton et al., 2012), and the prevailing superficial winds 
blow contribute to the accumulation of floating pol-
lutants toward the Tyrrhenian coasts. Therefore, it 
is reasonable to assume that the microparticle accu-
mulation was also linked to the complex marine and 
atmospheric currents circulation. Comparisons with 
other researches are particularly difficult as there 
is no standardized method and a lot of studies con-
sider only MPs. However, some similarities can be 
observed. In Vermeiren et al. (2021), two Uruguayan 
sites were analyzed, one with a high anthropogenic 
impact and one with a lower one, showing a high 
number of MPs (5  mm to 66  μm) in the most tour-
istic area, as well as in our study. Sediment samples 
collected outside Talamone harbor, Italy, an area 
characterized by low coast, consisting of sandy loam 
and/or silty clay deposits highlighted MP abundances 

from 62 ± 24 since 466 ± 297 particles/kg. Whereas 
58% of our data were MPs, the abundances found in 
our examined Calabrian beaches were only slightly 
higher respect to those found in the area of Talamone.

With regard to spatial distribution, there is a ten-
dency for objects to settle closer to dunes or creeks, 
which degrading lead to the formation of micro lit-
ter. Our results show that microparticle accumula-
tion is greater towards the back of the beach, with the 
exception of Porticello beach in June; however, sta-
tistical analyses did not show evident relations. The 
shore area in which the waves break is an accumula-
tion zone for micro litter coming from the sea. There-
fore, sediment sampling in this area could lead to an 
overestimation during micro litter analyses (Merlino 
et al., 2020). Moreover, the distribution of micro lit-
ters and in this area is highly variable depending on 
the climate variations. Instead, the micro litter accu-
mulation in the inner part of the beach is static, due 
to the transport by the action of high tide and wind 
to the backshore. High abundances of MPs in this 
area were found in different work, including in the 
deep layers (Hidalgo-Ruz & Thiel, 2013; Turra et al., 
2014). However, other research show discrepancies 
by assuming that MP distribution along the beaches 
can vary depending on the sampling area, the moni-
toring period, and the morphology of the examined 
site (Vermeiren et  al., 2021). Each sample is repre-
sentative of the time at which it was taken. Sampling 
before a substantial accumulation of debris along 
the shore, for example, after a swell, can affect the 
results, highlighting excessive pollution. In Porticello 
beach, in the month of June, the amount of micropar-
ticles found in the foreshore could be higher than the 
backshore due to the rough seas in the days before 
the sampling. The accumulation of microparticles at 
the high tide line depends on the force of the wave 
motion and the tidal cycle (Hinata et  al., 2017; Lee 
et al., 2015; Moreira et al., 2016). At both sites, the 
wave breakwater line was about 2–3 m from the low 
tide line. The arrival of the wave direction on the 
beach is different for the two sampling sites, affect-
ing microparticle accumulation. Moreover, in both 
beaches, artificial structures were present to avoid 
costal erosion. At Porticello beach, the incident wave 
direction is transverse from the shoreline, which, 
together with the groyne, favors accumulation of 
materials. At Pezzo beach, the wave motion comes 
in a direction perpendicular to the shore, favoring 
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erosion; therefore, a barrier construction parallel 
to the coast is present for its protection. In Marrone 
et  al. (2021), small plastic particles ranging from 
5 mm to 50 μm were collected from the sea surface of 
different Calabrian coasts, highlighting a MP density 
of 0.13 ± 0.19 particles/m2. Other studies in marine 
waters of the Mediterranean area showed a density 
of 0.243 particles/m2 (Cózar et al., 2015), 0.40 ± 0.74 
particles/m2 (Suaria et al., 2016).

Sediment samples collected along transepts of var-
ying length and width, parallel or perpendicular to the 
coastline, do not allow the origin of the debris to be 
traced; therefore, it is not possible to know whether 
the source of the pollution is from terrestrial sources, 
if they are transported from the sea by floating on the 
surface or by transport on the bottom. Additionally, it 
is not possible to estimate a global distribution frame-
work that satisfies well-defined criteria because the 
weather-sea climate and the variation of currents have 
a significant impact on the rate of debris accumula-
tion (Bergmann et al., 2015). Glass and heavy plastics 
seem to accumulate mainly on rocky beaches (Moore 
et  al., 2001), while the lighter micro-litter accumu-
late along coasts not affected by strong wind, which 
would otherwise favor their off-shore spread (Costa 
et al., 2011).

Relation between the abundance of microparticles 
and the sediment grain size was found for our exam-
ined beaches. Vermeiren et  al. (2021) showed a sig-
nificant correlation between the abundance of micro-
particles and the size of the sediments in which they 
were found too. In contrast, in Alomar et al. (2016), 
no correlation was found, highlighting also that a 
finer sediment fraction is not always associated with a 
greater amount of MPs.

Conclusions

Sandy beaches of Italy are a popular touristic destina-
tion during the summer period and, therefore, may be 
more threatened by pollution. Most studies in natu-
ral environment focused on MPs only, neglecting an 
important component of anthropogenic microfiber 
pollution. In this study, one popular and heavily used 
beach of Calabria region against an unpopular one 
was monitored for conservation purposes, improving 
knowledge on microparticles of anthropogenic origin 
(microplastics and microfibers).

Microparticles were found with high amount in all 
examined sediment samples, despite the differences 
in touristic exploitation of the two beaches. Micro-
particle abundance varied before and after the sum-
mer season, increasing in the most touristic beach and 
decreasing in the unpopular one. Differences between 
foreshore and backshore microparticle abundances 
were present; however, statistical analyses did not 
show evident relations. A relation between grain size 
and micro litter abundance was highlighted. These 
results suggest that micropollutant accumulation pro-
cesses are not depending on the effect of tourism and/
or urbanization only, highlighting the important role 
of the complex marine and atmospheric circulation in 
structuring beach microparticle pollution.

Microparticle monitoring is the first step to under-
stand the health status of the marine environment, 
possible threats, sources, and effects of micropollut-
ant of anthropogenic origin. In marine environments, 
MPs are considered the harmful fraction of wastes; 
however, such as MPs, natural, and regenerated fib-
ers can pollute water, sediments, and be ingested 
by biota; therefore, this kind of pollution cannot be 
neglected. Monitoring is fundamental to understand 
the relevance of the pollution and the environmental 
sustainability. Future extensive monitoring programs 
are needed to better understand dynamics, transport, 
ecological impacts, and degradation rates of micro-
particles of anthropogenic origin in the marine and 
terrestrial systems. Greater efforts should be made to 
protect marine ecosystems and their resources, imple-
menting new strategies to monitor and mitigate pol-
lution and providing useful solution and an adequate 
environmental education following the sustainability 
principles.
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