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Abstract— The PMD Camboard Picoflexx Time-of-Flight (ToF)
camera is evaluated against the Microsoft Kinect V2 to assess its
performance in the context of markerless motion capture system
for human body kinematics measurements. Various error sources
such as the warm-up time, the depth distortion, the amplitude
related error, the signal-to-noise ratio, and limitations such as
their dependence on the illumination pattern and on the target
distance, are studied and compared. The Picoflexx device is
also compared to the Kinect V2 in relation to the quality of
shape reconstructions, to assess its adequateness in modeling
human body segments, and human body kinematics measure-
ments. The final result of this paper is definitely useful to the
research community, demonstrating that, even if the Picoflexx
performs lower than the Kinect concerning the measurement
performances, its behavior in estimating the volume of the body
segments, the angles at the joints for human body kinematics,
and the angle at the ankle in assisted walking applications is
definitely satisfactory. These results are extremely significant to
obtain accurate estimates of the parameters of the human body
models in markerless motion capture applications, especially in
laboratory-free environments, where compactness, lightweight,
wireless connection, and low-power consumption are of outmost
importance.

Index Terms— 3-D shape measurement, error analysis,
kinematics, sensor phenomena and characterization, time-of-
flight (ToF) cameras.

I. INTRODUCTION

DUE to recent advances in medicine, life expectancy
has dramatically increased and the number of elderly

people (aged 60 and above) is expected to rise at a rate
of 3% per year [1]. This demographic change has its inherent
obstacles and poses a challenge on our society as more high-
quality long-term care facilities and 50%–150% more geriatric
nurses are needed in the coming future [2]. In addition to
this, geriatric nurses commonly suffer from physical stress
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due to heavy lifting and incorrect ergonomics resulting in
musculoskeletal disorders such as lower back pain [3]. These
can be minimized early in the training phase of the caregivers
by monitoring ergonomics and giving feedback to trainees on
their performance. This entails a need for a system, which is
readily available, works in real time and is inexpensive.

The research project Virtueller ERgonomieTRainer in der
pflegeAusbildunG (ERTRAG) intends to fill this gap by pro-
viding faster, more efficient means of training future care-
takers. The project is funded by the German Ministry of
Education and Research and is supported by a consortium of
research institutes and industrial partners, working to develop a
virtual trainer able to teach ergonomics to health care students,
monitor their performance during training, and give them
feedback [4].

In designing such a system, one of the core tasks is to
implement human motion and skeleton tracking. The system
has to be markerless to avoid any preparation such as wearing
a special suit with external markers, which could hinder
natural movements of the trainee. The system is intended to
be used in schools which do not necessarily have controlled
dedicated lab spaces, while relying on inexpensive consumer-
grade hardware.

3-D acquisition of the human body is the first step of a
very complex elaboration chain, which should lead to mapping
3-D point clouds to virtual skeleton models immediately
visible to the trainee. The acquisition task should be per-
formed in real time, providing multiview point cloud capturing
and registering; in addition, it should be implemented using
eye-safe, low-power, and compact devices. Medium-low
measurement accuracies are required in a depth range
of 1.7–3.5 m.

Depth image sensors have been the subjects of research for
decades with various techniques having been introduced [5].
Among these, triangulation-based systems, either based on
active or passive illumination, using coherent or incoherent
light have been proposed and are now market available:
they outperform other 3-D sensors for their measurement
resolutions and accuracies in depth ranges from a few
tens of microns to 500 mm and are successfully used in
many applications, ranging from industrial quality control
and reverse engineering to robotics and medicine. However,
they often are inadequate when high frame rates, low cost,
low weight, and low power consumption combinations are
required.
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Time-of-Flight (ToF) cameras represent an efficient alter-
native, as they provide depth images at high frame rates
in a rugged package [6], [7]. Initially, ToF cameras were,
mainly, targeted at the automotive industry [8]. In the past two
decades, the continuous improvement in the microelectronics,
microoptics and microtechnology has led to the deployment
of ToF cameras at increased resolutions, accuracies and frame
rates, and simultaneous depth-intensity registration at each
pixel. ToF cameras were mostly developed for applications
requiring medium-low measurement accuracies overextended
measurement ranges (from 1 to 5 m), high robustness to
ambient light and simple computation in a compact design,
with no moving parts. Among the commercially available
ToF devices, those deployed on the market by 2011 by
Mesa Imaging AG, Canesta Vision, Ifm electronic, and
PMD Technologies GmbH have been extensively character-
ized, with the aim of analyzing and compensating for the
observed error sources [9]–[12] and in view of understand-
ing their usability in computer graphics and virtual reality
applications [13].

In the past years, this technology has been introduced to
the consumer market at affordable prices, mainly for domestic
gaming, hand gesture, and virtual reality applications: exam-
ples of these devices are the Senz3-D (Creative), the Argos
P100 (Blutechnix Inc.), the E70 (Fotonic), the Camboard Nano
(PMD Technologies GmbH), and the Kinect V2 (Microsoft
Corporation). A comprehensive overview of such devices is
reported in publication [14] also in comparison with those
mentioned earlier. The Kinect V2 is the most extensively
used device, for its unique depth resolution, accuracy, and low
cost, combined with the availability of extensive software and
documentation for human body skeleton markerless retrieval
from 3-D point clouds, in part inherited by its predecessor,
the Kinect V1 [15]. As a result, researchers have explored its
potential application in a huge number of fields. Among them,
body-capture methods for kinematics and motion analysis [16],
for multimedia applications [17], mobile robotics [18], and
for gesture recognition [19] have been studied. Inarguably,
the Kinect is the forerunner in commercially available hard-
ware upon which technologically advanced methods of people
care can be developed while maintaining affordability for
large-scale disbursement. Elderly care and disease rehabilita-
tion, often in the form of serious and exercise games [20], [21],
represent two main areas where the Kinect is used both for
clinical assessment and remote control and tracking. Previous
studies have validated the Kinect for postural analysis [22]:
the device accuracy of kinematics measurements, such as
joint angles, reaching distance, and gait parameters, has been
measured and compared to photogrammetric marker-based
systems, which are the state of the art among 3-D motion
capture systems [23], [24].

From a careful review of the literature of human motion
capture, the authors have realized that the Kinect is still the
sensor almost exclusively used for markerless human capture.
As reported in [25] and [26], published in 2017 and 2018,
respectively, the Kinect V2 has almost completely replaced
any other 3-D sensor in markerless human motion capture
systems. As such, the Kinect V2 was thought a good candidate

for implementing human motion and skeleton tracking in the
ERTRAG Project.

However, Microsoft has announced that the Kinect will go
out of production by the end of 2018: the technology will
be not abandoned, but it will be probably further developed
toward the game market. This certainly will pose a question to
the numerous communities of researchers developing motion
capture systems, who will have to look for sensors presenting
performances that make it reasonable to use them as the
3-D raw data source in their motion capture systems.

In addition, a lot of effort is being made to develop small,
mobile, and wireless solutions for markerless human motion
capture, in cases, when a laboratory-free measurement setup
is needed (see, for example, the use of inertial motion sensing
technology for upper limb motion modeling in [27]). A very
interesting example deals with the assisted gait of exoskeleton
users, where the use of crutches is mandatory to allow the user
to walk [28]. Sardini et al. [29] and Lancini et al. [30] present
an extensive report of the research carried out by some of
the authors to instrument the crutches for force measurement
during the gait. The idea is to use the captured signals to
feed the biomechanical model (OpenSim in that case) to
estimate the internal forces at the upper limbs. This approach
could be further improved by equipping the crutches with a
small, compact, and wireless device for the 3-D capturing of
the movement of the feet during the gait, for evaluating the
parameters of the gait (stance, cadence, toe-off, and toe-on)
and for correlating them to the upper limbs forces estimated
by the biomechanical model. This is actually a hot topic in
assisted walking, and the authors are working on it.

The Kinect V2 is not suitable for such applications due
to its wired power supply and to its dimension. In contrast,
a compact device, not requiring an external power supply,
controllable using a smartphone, showing reduced dimension
and low weight, is definitely a better candidate, opening the
door to a plethora of new applications.

In 2015, PMD Technologies released the Camboard
Picoflexx device, a 224 × 171 pixels ToF camera, operating
in the depth range 10–400 cm, with measuring performances
worse with respect to the Kinect V2, but showing an extremely
low form factor and low weight. Moreover, the company
announced further optimization in terms of resolution, cost,
and design, for integration into smartphones [31]. All this
considered, we thought that this device could be an interesting
alternative to the Kinect V2, both for the ERTRAG application
and for markerless human body applications in laboratory-free
environments, like the one based on the instrumented crutches
in assistive walking mentioned earlier.

However, to the best of our knowledge, no extensive char-
acterization of the Picoflexx was available in the scientific
literature and, hence, we decided to assess the measurement
characterization of this new device. To perform this paper,
we took inspiration from the works presented in [9], [14],
and [32]–[34], which deeply analyze the Kinect V2, also
in comparison with its predecessor, the Kinect V1. Being
so extensively studied, the Kinect V2 was chosen as the
“gold standard” for characterizing the Picoflexx camera. The
characterization has been carried out in relation to temperature
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related error sources, depth distortion, amplitude error, tem-
poral error, and measurement uncertainty. In addition, four
further experiments have been performed: the first aimed at
assessing the performance of the Picoflexx with respect to
the Kinect V2 in the 3-D reconstruction of a cylindrical target
placed at different positions in the working volume; the second
test focused on comparing the robustness of the two devices
against the interference from external infrared light sources;
the third test was finalized to analyze the performance of
the Picoflexx to measure human body kinematics. In this
case, a triangulation-based system with an accuracy better
one magnitude order than the ToF cameras was used as
the measurement reference, and both the Kinect V2 and the
Picoflexx have been compared against this device. The fourth
experiment focused on assessing the feasibility of assembling
the Picoflexx on the crutches, and of using it to acquire the
point cloud of the feet during walking, for estimating the angle
at the ankle and the detection of the contact between the feet
and the ground.

The final result of the study presented in this paper will
demonstrate that, even if the Picoflexx performs lower than
the Kinect in terms of resolution and measurement uncertainty,
its behavior in estimating the volume of the body segments,
the angles at the joints, and the angle at the ankle is definitely
satisfactory in view of obtaining accurate estimates of the
parameters of the human body models for the mentioned
applications.

II. LAYOUT OF THE EXPERIMENTS

The Picoflexx and the Microsoft Kinect V2 devices are both
lock-in ToF cameras, where a near-infrared periodic wave is
emitted by the system and reflected back to the sensor. The
ToF measurement is carried out using continuous-wave mod-
ulation, based on phase shifting principle [35].

PMD Technologies released the Camboard Picoflexx in
May 2015. This is one of the first consumer ToF cameras,
which is specifically designed for integration into mobile
devices. The camera does not contain any other sensor than
the depth sensor, which makes it small and lightweight. The
resolution of the depth camera is 224 × 171 pixels and
the range is 10–400 cm with a field of view of 62° × 45°.
The frame rate can be selected by the user from 5 to 45 fps,
and the exposure time adjusts accordingly. Higher frame rate
results in a decrease in range due to lower exposure time. The
Picoflexx has a USB 2.0/3.0 interface and does not require
any extra power supply.

Microsoft released the Kinect sensor V2 in 2013. The sensor
incorporates an RGB camera with a resolution of 1920×1080
pixels and depth sensor with 512 × 424 pixels with a range
of 5–450 cm and 70° × 60° field of view. It also has an
array of four microphones included to record audio signals
and to detect location of the source. With all these different
modules integrated in a single package, the Kinect V2 is quite
bulky [18]. The sensor provides a frame rate of 15–30 fps and
adjusts the exposure time automatically. This, as to the best
of our knowledge, is not controllable by the user. Due to the
high amount of data sent by the sensor, it requires a dedicated
USB 3.0 bus and external 24-V power.

Fig. 1. (a) Camboard Picoflexx. (b) Microsoft Kinect V2.

TABLE I

MAIN SPECIFICATION OF PICOFLEXX AND KINECT V2

Fig. 1 shows the picture of the two cameras. Their specifi-
cations in terms of compactness, power consumption, weight,
and cost are listed in Table I.

In the past years, multiple publications on the character-
ization of ToF cameras have been presented. Various error
sources have been classified and studied based on their nature
(systematic or nonsystematic) [9], or, alternatively, as errors
showing dependence on the camera model and not on the
scene [14]. In [34], a metrological characterization based on
the Guide to the expression of uncertainty in measurement [36]
is presented for the uncertainty analysis of the 3-D scene
reconstruction.

In our work, we set the focus on the assessment of the
performances of the Picoflexx with respect to the Kinect V2 in
relation to the following error sources among those reported
in the literature.

1) Temperature Related Errors (Systematic Source, Device
Dependent): Temperature has a significant influence on
ToF cameras due to the temperature dependence of the
semiconductor technology they rely on. At switch on,
the ToF sensors start to heat up and a drift is observed
in the depth measurements [10]. This explains why many
devices include an internal fan, which stabilizes the tem-
perature and reduces the drift in-depth readings. Studies
suggest to wait a certain amount of time to let the sensor
warm-up before using it [11], [12], [14]. The Picoflexx
does not have active cooling and relies on convection
to dissipate heat, while the Kinect V2 compensates for
the temperature drift by means of active cooling. The
purpose of the test was to investigate the length of the
warm-up period in the two cameras. The results are
presented in Section IV.

2) Depth Distortion (Systematic Source, Device
Dependent): Depth distortion (also known as wiggling
or circular error) is a consequence of the fact that
the emitted light is not generated, in practice, as
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theoretically planned (either sinusoidal or not) due to
errors in the modulation process [14]. As a consequence,
an offset is produced which depends only on the
measured depth at each pixel. In our tests, we addressed
this error by comparing the depth measurements from
the two cameras with a reference ground truth distance.
To this aim, we used an additional sensor (a Bosch
GLM 30 laser range finder, at ±2-mm accuracy).

3) Amplitude-Related Error (Systematic Source, Device
Dependent): Depth accuracy is highly related to the
amount of light that impinges on a pixel [9]. Both
low and overexposed reflected amplitudes result into
depth errors: the intensity of illumination is the highest
in the center of the image and weakens toward the
borders. This leads to overestimating depth at the edges;
conversely, if the intensity is too high, e.g., when the
object is too close, it results in saturation of the pixel
and invalid measurements. In our study, we wanted to
assess the influence of this error source on the overall
measurement accuracy of the two cameras.

4) Temporal Error (Nonsystematic Error, Device
Dependent): Temporal error represents the variation
in depth of a static pixel (measurement noise) caused
by nonuniformities in illumination of the scene. Low
illuminated areas are more susceptible to noise than
higher illuminated ones; in addition, this error source
depends on the depth uniformity of the scene and on
the integration time.

Error sources from 2 to 4 are all depth errors. Other depth
errors like those related to fixed pattern noise and internal
light scattering have not specifically been evaluated. Instead,
the depth measurement uncertainty of the two cameras was
evaluated, following the GUM-based approach as in [34].
In this paper, depth-related errors are presented in Section V.

In addition to measurement uncertainty analysis, three other
experiments have been performed: the first test focused on
comparing the performance of the Picoflexx with respect to
the Kinect V2 in the 3-D reconstruction of a cylindrical target
placed at different positions in the working volume. This
activity was finalized to assess the capability of the former
camera to provide reliable modeling of body segments (which
can be approximated by cylindrical shapes) despite the lower
measurement resolution with respect to the Kinect. The second
test aimed at comparing the performance of the Picoflexx
to the Kinect when simultaneous acquisition from multiple
ToF cameras is required, to avoid occlusions [16]. This paper
was necessary to evaluate the influence of the interference
of multiple light reflections captured at each receptor pixel
on the depth measurement, in view of using the Picoflexx
in a multiview acquisition setup. The third test focused on
the performance of the Picoflexx in human body kinematic
measurements. Both cameras were used to acquire differ-
ent human postures and the angles between body segments
were computed and compared. The measured kinematics was
compared to the one obtained using a triangulation-based
range camera, characterized by a measurement accuracy one
magnitude order better than the ToF cameras. This experiment
investigated the suitability of the Picoflexx for segmentation

Fig. 2. Experimental setup. (a) Schematic of the dark room. (b) Linear stage.
(c) Mounting of the Picoflexx and of the Kinect V2.

and measurement of the human body. The results are presented
in Sections VI–VIII, respectively.

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 2. According to
the setup used in the study reported in [14], all experiments
were conducted in a confined space (4 m × 6 m × 2 m in
our case), completely covered in Duvetyne fabric (referred to
as the “dark room”) except for one side, which is used as a
target in the temperature and depth-related errors experiments.
The sides covered by the Duvetyne are shown as bold lines
in Fig. 2(a). This fabric was chosen as it absorbs any incident
ambient light or infrared, reducing errors in depth measure-
ment which may occur due to reflection. A motorized linear
stage with ±0.02-mm accuracy was used for actuation of the
cameras along the Z -axis (depth), in a 1.7–4.5 m range, shown
by the shaded region in Fig. 2(a). This is the operating range
for each experiment. The cameras were mounted on a support
moving on the linear stage at a height of 1.5 m from the
floor. The linear stage and the camera mounting are shown
in Fig. 2(b) and (c), respectively.

A laser range finder with a ±2-mm accuracy (Bosch
GLM 30) was used to provide nominal depths Dn along the
Z direction. The measured depth values Dm were expressed
with respect to the sensor plane of the two cameras. This
was performed by carefully positioning the range finder at
the outer surface of each camera, and by ensuring that it
was oriented perpendicularly to the target. By comparing the
depth measured by the Picoflexx and by the Kinect at a
certain nominal position to those measured by the range finder,
it was possible to compensate for the displacements between
the outer case border and the inner sensor planes in the two
cameras.

Data acquisition and elaboration were carried out using the
official software development kits of the two cameras and the
MATLAB framework, running on a dedicated PC (Lenovo
E560, Intel core i7, 8-GB RAM). The cameras were switched
on for at least 1 h, prior to each experiment, except for the
evaluation of the temperature-related errors.

IV. TEMPERATURE RELATED ERRORS

In order to evaluate errors in depth measurement over time,
the distance of the camera from the target was kept constant.
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Fig. 3. Temperature related errors for (a) Picoflexx and (b) Kinect V2.

This was chosen to be 2 m, at half of the operating range of
the cameras. Prior to the experiment, the cameras were turned
off for at least 4 h, so they were completely cooled down. Both
cameras were run at 30 fps. A single depth frame was recorded
for 2 h at 10-s intervals. A region of interest composed of
15 × 15 pixels around the central pixel of each acquired
frame was extracted. Then, the frames acquired in each
5-min interval were grouped together and means and stan-
dard deviations of depths belonging to each group were
computed.

Fig. 3 (a) and (b) plots the results as a function of time
for the Picoflexx and the Kinect, respectively. The former
plot shows the average values distributed around the nominal
value of 2 m during the whole acquisition time. Standard
deviations have a maximum value of 3.37 mm. In contrast,
the latter presents a transient trend. In the first 20 min, average
depths increase toward the nominal value of 2 m: during this
time period, the sensor warms up, since the internal active
cooling is switched off. Then, the active cooling turns on:
from 20 to 40 min, the averaged depths exhibit a settling
behavior and oscillate around 2 m. After 40 min, the sensor
is warmed up and the measurements stabilize at the nominal
value. The maximum value of standard deviations is 1.11 mm.
This behavior has already been observed in [24] and, when
compared to the one shown by the Picoflexx, it highlights
that, in terms of warmup time, this last device shows better
performance because it does not require any waiting time
before performing data acquisition. After the warm-up phase,
the Kinect yields better and more accurate results: hence,
in cases, where immediate use of the devices is not required
the Kinect should perform better.

V. DEPTH MEASUREMENT ERRORS

In this set of experiments, the cameras were moved on the
linear stage in the operating range for our application, at steps
of 0.2 m, resulting in 15 nominal positions Dn .

At each nominal position Dn , 30 frames were acquired.
Before analyzing each error source, a preliminary evaluation
of the histograms of depths Dm , measured on a 15 × 15
pixels neighborhood of the central pixel of each frame, was
performed. An example is presented in Fig. 4, which plots
the distribution of values Dm , captured at nominal distance
Dn = 3.455 m and Dn = 3.420 m for the Picoflexx and
the Kinect, respectively. These histograms show that values
Dm are normally distributed: this observation allowed us to
evaluate depth measurement errors by considering average
values and standard deviations of measured depths Dm .

Fig. 4. Histograms of measured depth Dm , obtained with (a) Picoflexx and
(b) Kinect.

Fig. 5. Depth distortion εw for (a) Picoflexx and (b) Kinect V2.

Fig. 6. Amplitude images acquired with (a) Picoflexx and (b) Kinect V2.

A. Depth Distortion

The depth distortion was computed by calculating the dif-
ference εw between the average value μm over depths Dm ,
measured at the central pixel of each frame, and the corre-
sponding nominal value Dn . The results for both cameras are
shown in Fig. 5. In the Picoflexx, values εw span a range from
−4.54 to 1.98 mm at nominal distances lower than 3.5 m, and
decrease to −12.15 mm at Dn = 4.5 m. In the Kinect V2,
values εw span the range from −3.07 to 7.4 mm at nominal
distances lower than 3.5 m and the range from −11.63 to
10.5 mm at higher nominal distances. The Kinect V2 curve
presents the characteristic wiggling behavior with a sinusoidal
shape as observed in other studies [14], [34]. It is worth noting
that this shape is absent in the case of Picoflexx and that
the error contribution is reduced by 40% with respect to the
Kinect.

B. Amplitude-Related Error

Fig. 6 shows the amplitude images captured for the two
cameras at Dn = 1.7 m. These images simply record the
intensity of light reflected from the surface at each pixel in
an 8-bit-gray levels range. From Fig. 6, it can be observed
that the intensity of captured light decreases for increasing
distances from the image center. In the Picoflexx, the image
borders and the corners are very dark, which means that the
signal is weak or absent at the corresponding pixels, and either
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Fig. 7. Color maps of errors εA calculated for (a) Picoflexx and
(b) Kinect V2.

the depth is overestimated or it is not measured. In contrast,
in the Kinect V2, the light intensity is more homogeneous over
the frame, with most of the pixels receiving light.

The amplitude-related error was evaluated over 30 frames
acquired at Dn = 1.7 m; at each pixel, the average value μm

of measured depths Dm was computed and the difference
εA = μm − Dn was used to estimate the contribution of
this error source. Fig. 7 shows the resulting values εA at
each pixel in a color map representation. In both cameras,
the amplitude-related error increases at the image borders: the
Picoflexx [Fig. 7(a)] presents an almost uniform distribution
of values εA over the frame, with most pixels showing errors
in the range 0 ÷ −5 mm; at the image borders the errors
decrease up to −10 mm and error information is absent at
the corners, consistently with the very low intensity of the
captured backlight, already observed in Fig. 6(a). In contrast,
the Kinect V2 camera [Fig. 7(b)] is characterized by a high
dependence of differences εA on the pixel positions with
values in the range 0 ÷ −5 mm in the central image area and
values gradually decreasing to −12 mm at the image borders.
The white dotted overlay in Fig. 7(b) frames the spatial field
of view acquired by the Picoflexx with respect to the one
acquired by the Kinect V2: they are different as a consequence
of the different illumination apertures, which are 62°×45° and
70°×60° for the Picoflexx and for the Kinect V2, respectively.
Within the framed area, the errors evaluated for the Kinect
V2 span the range 0 ÷ −3.5 mm in the red–orange region,
and the range −3.5 ÷ −9 mm in the yellow–turquoise region
[the blue areas have not been considered, as they correspond
to the corners in Fig. 7(a)]. The comparison of these values
to those observed in the Picoflexx allowed us to consider the
two devices equivalent in relation to the amplitude related error
source, for object points captured in the central region framed
in Fig. 7(b).

C. Temporal Error

Temporal errors as a function of depth were evalu-
ated by calculating the standard deviation σm over depths
Dm measured at the central pixel of each frame at nominal
distances Dn in the range 1.7–4.5 m. The results are shown
in Fig. 8, where values σm are plotted against the correspond-
ing average values μm .

For both cameras, standard deviations σm increase with
increasing μm , which is expected, for increasing values Dn .
Values σm span the range 2.24–13.1 mm for the Picoflexx, and

Fig. 8. Standard deviations σm as a function of average values μm for
(a) Picoflexx and (b) Kinect V2.

Fig. 9. Standard deviations σm calculated at each pixel for (a) Picoflexx and
(b) Kinect V2.

the range 1.16–3.8 mm for the Kinect V2. The values σm of
the Picoflexx are greater with respect to the Kinect: this is by
no means surprising, considering the measurement resolution
parameter of the two cameras, which is below 1% and 0.5%
for the Picoflexx and for the Kinect V2, respectively [25], [34].

The linear regression over values σm results in the dotted
lines in the two plots: the regression coefficients R2 equal
88.76% for the Picoflexx and 86.16% for the Kinect V2; when
the linear regression is calculated in the range 1.7–3.5 m,
coefficients R2 increase to 96.63% and 91.97% for the
Picoflexx and the Kinect, respectively. Thus, concerning the
linearity behavior, the two cameras are equivalent.

Temporal errors as a function of the pixel positions were
also evaluated at each nominal depth. An example is shown
in Fig. 9, which presents standard deviations σm calculated
at Dn = 1.7 m for the Picoflexx [Fig. 9(a)] and for the
Kinect V2 [Fig. 9(b)] as color maps.

Values σm increase with the distance from the center of
the maps in both cameras and the Picoflexx shows worse
performance with respect to the Kinect, consistently with the
lower intensity of the captured light reflected from the target,
already observed in Fig. 6. However, there is a wide region
(framed by the dotted overlays in the two figures) where the
values σm from the Picoflexx and those from the Kinect V2
span the ranges 1–1.6 mm and 1–1.5 mm, respectively. Within
this region, the performance of the two cameras is equivalent.

D. Evaluation of the Overall Measurement Uncertainty

The overall measurement uncertainty was measured in cor-
respondence to five positions on the target arranged in a Greek
cross layout, four at the cross ends, and one at the center. Each
position was marked using a reflective tape cut in 20×20 mm
squares.

At each nominal distance Dn , 30 frames were acquired
from the target areas corresponding to each single marker
(a 15 × 15 pixels neighborhood was considered): in this



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PASINETTI et al.: PERFORMANCE ANALYSIS OF THE PMD CAMBOARD PICOFLEXX ToF CAMERA 7

Fig. 10. Measured depths Dm as a function of nominal depths Dn for
(a) Picoflexx and (b) Kinect V2.

Fig. 11. Target of cylindrical shape used for the 3-D reconstruction
experiment.

way, we collected five sets of measured depths Dm , each set
composed of 15 × 15 × 30 = 6750 values. The use of the
markers was strategic to ensure that the data extracted from
each frame corresponded to the same physical points on the
target along the whole measurement range, avoiding that local
irregularities of the wall influenced the subsequent analysis.

The collected measurements are presented in Fig. 10, which
plots 33 750 measurements Dm at each value Dn for the two
cameras. The visual observation of the plots shows that the
Picoflexx is characterized by a higher dispersion of the mea-
sured depths with respect to the Kinect V2. To quantitatively
evaluate it, we computed the mean accuracy σ0, which resulted
equal to 37 mm for the Picoflexx and 18 mm for the Kinect V2.
In contrast, the two devices show equal performance in terms
of their measurement linearity: the linear regression evaluated
on the experimental data resulted in the two dotted lines shown
in the plots, with linear regression coefficients R2 of 99.82%
for the Picoflexx of and 99.96% for the Kinect V2.

VI. 3-D RECONSTRUCTION OF A CYLINDRICAL TARGET

In this experiment, the white cylinder with diameter
d = 75 mm and height h = 175 mm shown in Fig. 11 was
used as the measurement target. The two cameras were placed
at position C in the dark room, as shown in Fig. 12. The
target was placed at the positions represented by the circles in

Fig. 12. Target positions used for the 3-D reconstruction experiment. The
gray area corresponds to the measurement range from 1.7 to 3.5 m.

Fig. 13. Estimated cylinder heights for the Picoflexx and the Kinect V2.

the xz plane. Two further positions along Y -axis were consid-
ered, at 1.5 m and at 0.5 m from the floor.

In Fig. 12, even and odd numbers label the positions at
1.5 and 0.5 m, respectively. For each target position, 30 frames
were acquired. For each frame, the depth values of the pixels
belonging to the target were extracted from the acquired point
cloud and fitted to a cylinder [37].

Fig. 13 shows the results of the statistical analysis carried
out on the distribution of the heights of the fitted cylinders
for both cameras. Squares and bars represent mean values and
standard deviations, respectively; full and hollow squares cor-
respond to even and odd positions, respectively. The cylinder
height is represented by the dashed line.

At positions 1–6, which are further away from the cameras,
the Picoflexx shows lower performance than the Kinect: this
is due to its lower resolution. As an example, Fig. 14 shows
one single depth image acquired at position 2 by the two
cameras: the cylinder is captured by 4 × 8 pixels in the
Picoflexx [Fig. 14(a)], while for the Kinect, it is 8 × 19 pixels
[Fig. 14(b)]. The measured depths other than the cylinder
in Fig. 14(b) are a side effect induced by the high power light
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Fig. 14. Depth images acquired with (a) Picoflexx and (b) Kinect V2,
at position 2.

Fig. 15. Depth images acquired with (a) Picoflexx and (b) Kinect V2,
at position 31.

source of the Kinect V2, for which the light is reflected back
even from the Duvetyne fabric.

From positions 7–34, the performance of the Picoflexx
increases with respect to the Kinect V2. The reason is evi-
dent when the point clouds acquired in this depth range are
observed, as in Fig. 15 for position 31. Here, the cylinder is
captured by 18 × 36 pixels for the Picoflexx. This number
is still lower than the one from the Kinect V2 (55 × 110
pixels) but sufficient to provide a reliable estimate of the
cylinder height; in contrast, the side effect induced by the
high power light source of the Kinect V2 reduces the quality
of the fitting and results in inaccurate estimates of the cylinder
height.

Fig. 16 shows the point clouds acquired by the two cameras
at positions 14 and 26, together with the fitted surfaces: at
position 14, the fitted cylinders are both 175 mm in height
[Fig. 16(a) and (b)]; conversely, at position 26, the height
estimated by the Picoflexx is 174.5 mm and the one from
the Kinect V2 is 216.1 mm.

The Euclidean distance DE between the fitted cylinder and
each point of the captured clouds shown in Fig. 16 has been
evaluated. Fig. 17 shows the histograms of values DE : in the
case of the Picoflexx [Fig. 17(a)] DE spans the interval from
−9 to +9 mm and the histogram is bell shaped, with a mean
value of 0.62 mm and a standard deviation of 4.36 mm; in the
case of the Kinect V2 [Fig. 17(b)], DE values span the same
range of the Picoflexx, but the histogram is bimodal, with a
mean value of 2.13 mm and a standard deviation of 4.62 mm.

The histograms of values DE at position 26 are shown
in Fig. 17(c) and (d). In the case of the Picoflexx [Fig. 17(c)],
DE spans the interval from −5 to +5 mm and the histogram
is no more bell shaped with a mean value of 0.10 mm and a
standard deviation of 2.67 mm; in the case of the Kinect V2,

[Fig. 17(d)] DE values span about the same range as for
the Picoflexx, the histogram is still bimodal, but the mean
value increases to 1.07 mm with a standard deviation equal
to 3.37 mm.

This test highlighted that, in the range of interest for
our final application (positions from 7 to 30), the Picoflexx
represents a better choice with respect to the Kinect V2.

VII. INTERFERENCE

The experimental setup for the interference analysis is
shown in Fig. 18. Errors due to the interference were evaluated
by placing the cylindrical target inside the dark room at
position O. This experiment was performed by using two
Picoflexx cameras and subsequently two Kinect V2. To set
a baseline for the measurements, a single camera (camera 1)
was placed at position A and 30 frames were acquired.
A second camera (camera 2) was then placed at positions A–E:
this provided a second source of infrared light incident on the
target. For each position, the target was captured for 15 min
by camera 1. The height of the cylinder was estimated by
following the procedure described in Section VI.

The difference E f between mean values of the estimated
height of the cylinder and the nominal height (175 mm) is
shown in Fig. 19 for the two cameras, in the absence of inter-
ference (single camera) and in the presence of the interference
(positions A–E). Squares and vertical bars represent the mean
values and standard deviations, respectively.

In the Picoflexx, the effect of interfering illumination is
more evident at positions A, D, and E, where the difference
E f is 5.9 ± 1.7, 5.5 ± 5.1, and 5.1 ± 2.7 mm, respectively.
At positions B and C values, E f are 1.9±5.2 and 2.1±4.5 mm,
respectively.

For the Kinect V2, the highest values E f are observed
at positions A and C (14 ± 10.7 and −6.7 ± 10.4 mm,
respectively); at positions B, D, and E errors E f are 2.3±7.3,
0.4±7.1, and −1.6±9.7 mm, respectively. This is in agreement
with [38] where most of the interference was observed at
smaller angles.

With the exception of position A, where the Picoflexx
performs better than the Kinect V2, in the other cases, the two
cameras show comparable performances with maximum errors
of 5.9 ± 1.7 and 6.7 ± 10.4 mm for the Picoflexx and the
Kinect, respectively. At position A, the Kinect V2 shows an
error significantly higher than that for the Picoflexx, likely due
to its powerful light source, which causes multipath errors,
even in the dark room.

VIII. MEASUREMENT OF HUMAN BODY KINEMATICS

In this experiment, we analyzed the performance of the
Picoflexx with respect to the Kinect when they are used for
measurements of human body kinematics. The experiment
has been thought mandatory to assess the performance of the
former camera in the application envisaged by the ERTRAG
Project, considering that the point clouds acquired by the
Picoflexx are characterized by lower spatial resolution and
higher dispersion of the measured depths with respect to
the Kinect V2 (as shown in Figs. 9 and 10, respectively).
A dummy reproducing the human upper body (Fig. 20) was
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Fig. 16. Fitted cylinder at position 14 for (a) Picoflexx and (b) Kinect V2 and at position 26 for (c) Picoflexx and (d) Kinect V2.

Fig. 17. Histograms of distance DE at position 14, for (a) Picoflexx and (b) Kinect V2 and at position 26 for (c) Picoflexx and (d) Kinect V2.

used in the experiment. The dummy is 70 cm high and 30 cm
wide, and it can simulate human postures thanks to its moving
arms.

We can identify seven different body segments [Fig. 21(a)],
namely, head and trunk, left and right upper arm, left and
right arm, and left and right hand. To evaluate the human
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Fig. 18. Experimental setup for evaluating the interference.

Fig. 19. Difference E f in the absence of interference (single camera) and
in the presence of the interference (positions A–E) for the Picoflexx and the
Kinect V2.

kinematics, we defined six angles [Fig. 21(b)], computed from
positions and orientations of human body segments.

1) αL: angle between body trunk and left upper arm.
2) αR: angle between body trunk and right upper arm.
3) βL: angle between left upper arm and left arm.
4) βR: angle between right upper arm and right arm.
5) γL: angle between left arm and left hand.
6) γR: angle between right arm and right hand.
We placed the dummy in six different configurations to

cover various human postures (Fig. 22). Some of them
[Fig. 22(a)–(c)] simulate typical positions that caregivers take
during daily work, while some others [Fig. 22(d)–(f)] repro-
duce other common human body poses.

For each configuration, the cameras were placed in front of
the dummy at a distance of about 2 m, and a single point cloud
was acquired. Then, the points belonging to the dummy from

Fig. 20. Dummy used for the measurement of human body kinematics.

Fig. 21. Definition of body segments. (a) Angles. (b) Measurement of human
body kinematics.

Fig. 22. Body configurations used for the measurement of human body
kinematics. (a) Position number 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6.

the point cloud acquired with each camera were extracted, and
principal component analysis (PCA) were used to identify the
direction of their main principle components, given the bodies
axial symmetry [39], [40]. These directions have been used as
directional vectors to create a reference system for the body.
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Fig. 23. Point clouds acquired with the (a) Konica Minolta, (b) Picoflexx,
(c) Kinect V2 for the dummy configuration shown in Fig. 22(a).

Seven body segments were identified and the angles between
them were measured, following the definitions described ear-
lier and in Fig. 21(b). For each configuration, we measured the
reference ground truth angles using a commercial noncontact
3-D digitizer (Konica Minolta VIVID-920) with a resolution
of 640 × 480 pixels and an accuracy of ±0.40 mm.

As an example, Fig. 23 shows the point clouds acquired
with the Konica Minolta [Fig. 23(a)], with the Picoflexx
[Fig. 23(b)], and with the Kinect V2 [Fig. 23(b)] for the
dummy configuration represented in Fig. 22(a).

The human body pose is well recognizable in all the figures.
The body segments (represented with different colors in the
figure) are well defined and they can be segmented from the
acquired point clouds. Obviously, the Konica Minolta digitizer
gives the most accurate and dense point cloud, while Picoflexx
and Kinect point clouds are composed by less points due to
their lower resolutions.

Fig. 24 shows the results obtained for each dummy config-
uration considered. Angles between adjacent body segments
are plotted as bars. The colors represent the camera used
for the measurements. The performances of the ToF cameras
are compatible with the results obtained with the Konica
Minolta. The average error between angles obtained with
Konica Minolta and Picoflexx is 5.82 ± 3.87° (k = 1).
The maximum error is 12.5°, obtained in the measurement of
angle γR and dummy configuration represented in Fig. 22(a).
The Kinect gives an average error of 4.15±2.29° (k = 1) and a
maximum error of 11.53° [angle γL and dummy configuration
of Fig. 22(b)]. We obtained higher errors in the measurement
of γ angles (both left and right), i.e., the angles between
arms and hands, because in correspondence of the hands the
3-D points clouds are less dense and the PCA algorithm
is less accurate. In all the configurations, the dummy kine-
matics is well estimated both for the Picoflexx and for the
Kinect.

Finally, the measurement performances of each camera were
analyzed, with respect to the one supplied by the commercial
digitizer. We placed the dummy in the configuration repre-
sented in Fig. 22(e) and we acquired two partial overlapping
point clouds (one of the upper half of the dummy and one of
the lower half) using the digitizer and the ToF cameras. Then,
we optimally aligned the point cloud pairs using a commercial
software (Polyworks2016, Innovmetric) and we compared the
alignment errors, defined as the 3-D distances between the
points belonging to the overlapping surfaces. Fig. 25 shows
the results obtained with the Konica Minolta [Fig. 25(a)], with
the Picoflexx [Fig. 25(b)], and with the Kinect [Fig. 25(c)].
The left figures show the point clouds acquired (the over-

lapping part of the surfaces is colored), while the right
figures represent the histograms of the alignment errors.

The best results are undoubtedly given by the Konica
Minolta: the errors are normally distributed, with a mean value
of 3.67 × 10−3 mm and a standard deviation of 0.39 mm.
ToF cameras show worse performances with respect to the
Konica Minolta: Picoflexx and Kinect give mean errors of
47.4 × 10−3 and 5.94 × 10−3 mm, respectively, and standard
deviations of 1.72 and 1.19 mm, respectively. As in the
experiments described in Section V, Picoflexx shows worse
performances in terms of measurement accuracy. Despite this,
the human body kinematic is well measured by the Picoflexx.

IX. TESTING THE PICOFLEXX FOR GAIT ANALYSIS

In this experiment, we tested the feasibility of using the
Picoflexx to acquire the 3-D point cloud of the foot during
a test session where the user wears an exoskeleton and,
using a pair of crutches, can stand up, step forward, and
walk. The crutches are instrumented with a system measur-
ing the forces acting on the upper limbs, based on strain
gages mounted at the crutch base and on the signal acqui-
sition and conditioning electronics, suitably developed for this
application [29], [30].

In our test, the Picoflexx camera was mounted on each
crutch in a position that maximizes the visibility of the
contralateral foot (i.e., the camera mounted on the right crutch
views the left foot and viceversa) and was USB connected to a
Raspberry PI 3 for image acquisition. Fig. 26 shows the whole
apparatus mounted on the right crutch: it is easy to note that
the reduced dimension of the Picoflexx, and its portability are
a key issue to implement this solution [41].

The images were sent wireless to a client PC for subsequent
elaboration, carried out using the MatLab Image Toolbox.
A preliminary result is shown in Fig. 27, where two depth
images are presented. The former [Fig. 27(a)] corresponds to
the swing phase of the gait cycle, when the foot is not in
contact with the ground; the latter [Fig. 27(b)] to the stance
phase, when the foot remains in contact with the ground. These
images have been preprocessed to filter out the background
information: Fig. 28 presents, for the swing [Fig. 28(a)] and for
the stance [Fig. 28(b)] gait phases, respectively, the resulting
point clouds, where only the points corresponding to the foot
and to the ground are retained. As shown in these two images,
both the foot and the ground are well visible; in addition,
the corresponding point clouds are well separated during the
swing, while they are connected to each other during the
stance. By suitably elaborating these images, it was possible
to cluster the feet and the ground and, hence, to distinguish
the swing from the stance [42]; then, following an approach
similar to the one presented in Section VIII for the analysis
of the dummy body segments, the PCA was used to estimate
the angle at the ankle. The result of this analysis is shown
in Fig. 29, where the angle at the ankle, denoted by δ1 is
overlaid to the image: the values calculated in the swing
and in the stance phases equal 94.4° [Fig. 29(a)] and 108.9°
[Fig. 29(b)], respectively.
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Fig. 24. Body angles obtained for each dummy configuration considered with the Konica Minolta (blue bars), with the Picoflexx (red bars), and with the
Kinect (yellow bars). (a) Position number 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6.

TABLE II

COMPARISON RESULTS BETWEEN THE PICOFLEXX AND KINECT V2

X. COMMENTS ON THE EXPERIMENTAL RESULTS

The experimental work presented in this paper highlighted
the following aspects.

1) The Picoflexx camera shows better performance with
respect to the Kinect V2 in relation to the temperature
related errors, since it does not show warm-up time;
in contrast, the Kinect V2 needs at least 40 min to

output reliable data. However, after the warm-up phase,
the Kinect yields better and more accurate results: hence,
in cases, where immediate use of the devices is not
required the Kinect performs better.

2) The Picoflexx camera shows better performance than
the Kinect V2 in relation to depth distortion, at least
in the measurement range from 1.7 to 3.5 m, which is
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Fig. 25. Alignment errors obtained with the (a) Konica Minolta, (b) Picoflexx, and (c) Kinect. The acquired point clouds (the overlapping part of the surfaces
is colored) (left). The histograms of the overlapping errors (right).

of interest in the application of the ERTRAG project.
Moreover, it does not present the wiggling behavior that
characterizes the Kinect V2.

3) Both cameras perform best at the central region of
their fields of view. This was evidenced by the experi-
ments conducted to assess the amplitude and the tem-
poral related errors. Errors in the depth measurements
increase when approaching the edges of the depth
images for both cameras. Despite the Picoflexx shows

lower performance than the Kinect V2 (as demon-
strated by the measurement uncertainty shown at
Paragraph 5.4), it can be considered a valid alternative
to the Kinect V2 in the central area of the acquired
frames.

4) The Picoflexx performs better than the Kinect V2 in
estimating the height of the cylindrical target in the
measurement volume considered for the ERTRAG appli-
cation. Surprisingly, the Kinect V2 high illumination
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Fig. 26. Crutches during a walk session using an exoskeleton. The small
dimension of the Picoflexx, its low power consumption and the wireless
connection to the central unit, make it suitable for outdoor, online gait capture.

Fig. 27. Depth images captured by the Picoflexx mounted on the left crutch
during a walk session (gray shades represent measured depths). (a) Swing and
(b) stance phases of the gait.

proves to be a disadvantage in this regard and results
in errors due to flying pixels.

5) The Picoflexx shows lower dependence then the Kinect
V2 on the interference of the illumination from a second
camera of the same type, at different positions in the
measurement volume. This result can be related to the
values of the illumination apertures, which are lower in
the Picoflexx.

6) Despite worse performances in terms of alignment errors
with respect to a commercial digitizer (considered as
reference), both cameras show good performances in
the measurement of the human body kinematics. The
results reported in Section VIII is quite encouraging
as, despite the point clouds captured by the Picoflexx
are significantly worse than the ones from the Kinect
and from the Vivid 910 triangulation-based scanner,
the estimated kinematics angles are not.

7) The Picoflexx shows very promising in applications
where portability, low power consumption and wire-
less communication are the key elements. In the test
presented in Section IX, it is has been proven that the

Fig. 28. Effect of the background elimination. (a) Swing phase. (b) Stance
phase.

Fig. 29. Clustering of the point clouds and estimate of the mutual leg/foot
orientation for the evaluation of the angle at the ankle. (a) Swing phase.
(b) Stance phase.

Picoflexx is a valuable device to capture the gait phases
during the walk, thanks to the possibility of mounting
it on the crutches, and to its suitability to capture the
3-D point cloud of the foot for subsequent measurement
of the angles at the ankle and the detection of the gait
phases.

For the sake of clarity, the comparison results between the
Picoflexx and the Microsoft Kinect V2 are reported in Table II.

XI. CONCLUSION

In this paper, the results of the comparative analysis of
two consumer-grade ToF cameras, namely, the Camboard
Picoflexx and the Microsoft Kinect V2 have been presented.
The experiments were designed in the context of marker-
less human motion capture, using a multiview setup for the
research project ERTRAG. The two cameras were evaluated
to assess their performance in relation to temperature related
error sources, depth distortion, amplitude error, temporal error,
shape reconstruction, interference errors, and human body
kinematic measurements. The evaluation of the measurement
uncertainty was also carried out to compare the overall mea-
surement performance of the two devices.

Although the authors have started their experimental work
thinking at the ERTRAG project application, the final result
of their effort is definitely useful to the research community,
demonstrating that, even if the Picoflexx performs lower than
the Kinect concerning the measurement performances, its
behavior in estimating the volume of the body segments,
the angles at the joints, the gait phases, and the angle at
the ankle in assisted walking applications is definitely sat-
isfactory. These results are extremely significant to obtain
accurate estimates of the parameters of the human body
models in markerless motion capture applications, especially
in laboratory-free environments, where compactness, light-
weight, wireless connection, and low power consumption are
of outmost importance.
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