Ontology-Based Data Access and
Integration

Diego Calvanese!, Giuseppe De Giacomo?,
Domenico Lembo?, Maurizio Lenzerini2, and
Riccardo Rosati?

IResearch Centre for Knowledge and Data
(KRDB), Free University of Bozen-Bolzano,
Bolzano, Italy

2Dip. di Ingegneria Informatica Automatica e
Gestionale Antonio Ruberti, Sapienza Universita
di Roma, Rome, Italy

Definition

An ontology-based data integration (OBDI)
system is an information management system
consisting of three components: an ontology, a
set of data sources, and the mapping between
the two. The ontology is a conceptual, formal
description of the domain of interest to a
given organization (or a community of users),
expressed in terms of relevant concepts,
attributes of concepts, relationships between
concepts, and logical assertions characterizing
the domain knowledge. The data sources are
the repositories accessible by the organization
where data concerning the domain are stored.
In the general case, such repositories are
numerous, heterogeneous, each one managed
and maintained independently from the others.
The mapping is a precise specification of the
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correspondence between the data contained in
the data sources and the elements of the ontology.
The main purpose of an OBDI system is to allow
information consumers to query the data using
the elements in the ontology as predicates.

In the special case where the organization
manages a single data source, the term ontology-
based data access (ODBA) system is used.

Historical Background

The notions of ODBA and ODBI were introduced
in [3, 14] and originated from several disciplines,
in particular, information integration, knowledge
representation and reasoning, and incomplete and
deductive databases.

OBDI can be seen as a sophisticated form
of information integration [11], where the usual
global schema is replaced by an ontology describ-
ing the domain of interest. The main difference
between OBDI and traditional data integration
is that in the OBDI approach, the integrated
view that the system provides to information
consumers is not merely a data structure ac-
commodating the various data at the sources but
a semantically rich description of the relevant
concepts in the domain of interest, as well as
the relationships between such concepts. Also,
the distinction between the ontology and the
data sources reflects the separation between the
conceptual level, the one presented to the client,
and the logical/physical level of the information
system, the one stored in the sources, with the



mapping acting as the reconciling structure be-
tween the two levels.

The central notion of OBDI is therefore the
ontology, and reasoning over the ontology is at
the basis of all the tasks that an OBDI system
has to carry out. In particular, the axioms of the
ontology allow one to derive new facts from the
source data, and these inferred facts greatly in-
fluence the set of answers that the system should
compute during query processing. In the last
decades, research on ontology languages and on-
tology inferencing has been very active in the area
of knowledge representation and reasoning. De-
scription logics [1] (DLs) are widely recognized
as appropriate logics for expressing ontologies
and are at the basis of the W3C standard on-
tology language OWL. (http://www.w3.org/TR/
owl2-overview/) These logics permit the specifi-
cation of a domain by providing the definition of
classes and by structuring the knowledge about
the classes using a rich set of logical operators.
They are decidable fragments of mathematical
logic, resulting from extensive investigations on
the trade-off between expressive power of knowl-
edge representation languages and computational
complexity of reasoning tasks. Indeed, the con-
structs appearing in the DLs used in OBDI are
carefully chosen taking into account such a trade-
off [3, 12]. We observe that many research pa-
pers on reasoning in DLs for ODBA and OBDI
actually concentrate on query answering in a
setting where the data are assumed to reside in
ad hoc repositories (often in RDF format), rather
than in independent sources. Since such ad hoc
repositories are designed for storing the instances
of the elements of the ontology, mappings are not
present in this simplified setting, which is often
called ontology-based query answering (OBQA).

As we said before, the axioms in the ontology
can be seen as semantic rules that are used
to complete the knowledge given by the raw
facts determined by the data in the sources. In
this sense, the source data of an OBDI system
can be seen as an incomplete database, and
query answering can be seen as the process of
computing the answers logically deriving from
the combination of such incomplete knowledge
and the ontology axioms. Therefore, at least
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conceptually, there is a connection between
OBDI and the two areas of incomplete
information [8] and deductive databases [4].
The new aspect of OBDI is related to the kind
of incomplete knowledge represented in the
ontology, which differs both from the formalisms
typically used in databases under incomplete
information (e.g., Codd tables) and from the
rules expressible in deductive database languages
(e.g., logic programming rules).

Scientific Fundamentals

We deal here with the semantic and computa-
tional aspects related to the use of an ontol-
ogy and of mappings to data sources in query
processing in OBDI. Thus, we do not address
the problems that specifically pertain to access-
ing and querying multiple, heterogeneous data
sources in an integrated way, such as wrapping
non-relational data, distributed query evaluation,
and entity resolution. For those problems, we
refer to the “Information Integration” entry. The
distinction between OBDI and OBDA is there-
fore not significant for our treatment of the scien-
tific fundamentals, and we refer to OBDA only.
Coherently, we assume to deal with a single rela-
tional data source, whose schema might represent
the federated schema of multiple, heterogeneous
data sources, wrapped as relational databases.

OBDA Framework
We distinguish between the specification of an
OBDA system and the OBDA system itself (cf.
Fig. 1). An OBDA specification ] determines the
intensional level of the system and is expressed
as atriple (@, S, M), where O is an ontology, S is
the schema of the data source, and M is the map-
ping between S and O. Specifically, M consists
of a set of mapping assertions, each one relating a
query over the source schema to a query over the
ontology. An OBDA system (], D) is obtained by
adding to 7 an extensional level, which is given
in terms of a database D, representing the data at
the source, structured according to the schema S.
The formal semantics of (], D) is specified by
the set Modp () of its models, which is the set
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Ontology-Based Data
Access and Integration,
Fig.1 OBDI/OBDA
specification and system

of (logical) interpretations 7 for O such that 7 is a
model of O and (D, 7) satisfies all the assertions
in M. The satisfaction of a mapping assertion
depends on its form, which is meant to represent
semantic assumptions about the completeness of
the source data with respect to the intended ontol-
ogy models. Specifically, sound (resp., complete,
exact) mappings capture sources containing a
subset (resp., a superset, exactly the set) of the
expected data.

In OBDA, the main service to be provided by
the system is query answering. The user poses
queries by referring only to the ontology and is
therefore masked from the implementation de-
tails and the idiosyncrasies of the data source.
The fact that the semantics of (7, D) is defined
in terms of a set of models makes the task of
query answering involved. Indeed, query answer-
ing cannot be simply based on evaluating the
query expression over a single interpretation, like
in traditional databases. Rather, it amounts to
compute the so-called certain answers, i.e., the
tuples that satisfy the query in all interpretations
in Modp () and has therefore the characteristic
of alogical inference task. Obviously, the compu-
tation of certain answers must take into account
the semantics of the ontology, the knowledge
expressed in the mapping, and the content of the
data source. Designing efficient query process-

ing algorithms is one of the main challenges of
OBDA.

We discuss now computational issues con-
nected to query answering in OBDA, with the
aim of showing which are the sources of com-
putational complexity. An OBDA framework is
characterized by three formalisms: (1) the lan-
guage used to express the ontology, (2) the lan-
guage used for queries, and (3) the language used
to specify the mapping. The choices made for
each of the three formalisms affect semantic and
computational properties of the system.

The axioms of the ontology allow one to en-
rich the information coming from the source with
domain knowledge and hence to infer additional
answers to queries. The language used for the
ontology deeply affects the computational char-
acteristics of query answering. For this reason,
instead of expressing the ontology in first-order
logic (FOL), one adopts tailored languages, typ-
ically based on description logics (DLs), which
ensure decidability and possibly efficiency of
reasoning.

Also, the use of FOL (i.e., SQL), as a query
language, immediately leads to undecidability
of query answering, even when the ontology
consists only of an alphabet (i.e., it is a flat
schema) and when the mapping is of the sim-
plest possible form, i.e., it specifies a one-to-one
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Ontology-Based Data Access and Integration, Table 1 DL-Lite4 assertions. Symbols in square brackets may or

may not be present, and R~ (x, y) stands for R(y, x)

Type of assertion DL syntax

FOL semantics

ISA/disjointness between concepts | C C [-]Cs Vx.Ci(x) = [C]Ca(x)

Domain/range of a role JrR-1 £ ¢ Vx,y.RI7(x,y) = C(x)

Participation to a role C c 3JRrRUI Vx.C(x) = 3y.R(x, y)

ISA/disjointness between roles RE_] C [—-]Rg_] Vx, y.RE_] (x,y) > [—-]R[z_] (x,y)
Functionality of roles (funct Ry Vx,y,z.RNx, ) AR (x,2) > y =2

correspondence between ontology elements and
database tables. Hence, the language typically
adopted is union of conjunctive queries (UCQs),
i.e., FOL queries expressed as a union of select-
project-join SQL queries.

With respect to mapping specification, the
incompleteness of the source data is captured
correctly by mappings that are sound. Moreover,
allowing to mix sound mapping assertions with
complete or exact ones leads to undecidability of
query answering, even when only CQs are used in
queries and mapping assertions and the ontology
is simply a flat schema. As a consequence, all
proposals for OBDA frameworks so far assume
that mappings are sound. In addition, the concern
above on the use of FOL applies also for the
ontology queries in the mapping. Note instead
that the source queries in the mapping are directly
evaluated over the source database and hence
are typically allowed to be arbitrary (efficiently)
computable queries.

A Tractable OBDA Framework

Considering the discussion above, we present
now a specific OBDA framework tailored to-
wards efficiency and tractability. The framework
makes use of a family of DLs, called DL-Lite,
which has also given rise to the OWL 2 QL
profile (http://www.w3.org/TR/owl2-profiles/) of
the Web Ontology Language OWL standardized
by the W3C.

DLs are class-based formalisms that represent
the domain of interest in terms of classes, or con-
cepts, and binary relationships, or roles, between
classes. Here, we consider DL-Liteq, which is
able to capture essentially all features of entity-
relationship diagrams and UML Class Diagrams,
except for completeness of hierarchies. In DL-

Liteq, a concept is either an atomic concept C
(i.e., a unary predicate) or the projection IR or
dR™ of arole R on its first or second component,
respectively. A role can be either an atomic role
R or an inverse role R™, allowing for a complete
symmetry between the two directions. DL-Litey
includes also value attributes relating objects
in classes to domain values (such as strings or
integers), but we do not discuss this aspect here.
The ontology is modeled by means of axioms that
can express inclusion and disjointness between
concepts or roles and (global) functionality of
roles (with some restrictions on the interaction
between functionality and role inclusions to en-
sure tractability). In Table 1, we illustrate the
conceptual modeling constructs captured by DL-
Litey assertions and provide also their semantics
expressed in FOL.

Mapping assertions are of type GAV, i.e., have
the form ¢(X) — ¥ (X), where ¢(X) is a domain-
independent FOL query over the source schema,
e.g., expressed in SQL, with answer variables
X, and ¥ (X) is a conjunction of atoms over
the concepts and roles of the ontology, whose
only variables are those in X. However, we need
to take into account the impedance mismatch
between values in the data source and objects
that populate classes in the ontology. To do so,
the arguments of the atoms in ¥ (X) might be
not only constants or variables but also terms
constructed by applying functors to them. Such
functors act as object constructors, like in object-
oriented approaches. The meaning of a mapping
assertion ¢(X) — ¥ (X) is to extract the tuples
satisfying ¢(X) and to use them to (partially)
populate according to v(X) the concepts and
roles, constructing suitable objects through the
functors. Actually, such extraction is typically
only virtually performed during query answering.
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The DLs of the DL-Lite family, including DL-
Liteq, combined with the GAV mapping asser-
tions above, have been designed so as to enjoy
the FO-rewritability property: given a UCQ ¢
and an OBDA specification J = (O, S, M), it is
possible to compile ¢, @, and M into a new FO
query ¢’ formulated over S. Such query ¢’ has
the property that when evaluated over a database
D for S, it returns exactly the certain answers
for g over the OBDA system (7, D), for every
data source D. Each such ¢’ is called an (FO-)
perfect rewriting of ¢ w.r.t. J. FO-rewritability
immediately implies that the data complexity of
computing certain answers is in AC?, which is the
same complexity as that of FOL query evaluation
in relational databases.

Techniques for Query Answering via
Rewriting

In the tractable OBDA framework previously
described, one can think of a simple technique
for query answering, which first retrieves an ini-
tial set of concept and role instances from the
data source through the mapping and then, using
the ontology axioms, “expands” such a set of
instances deriving and materializing all the logi-
cally entailed concept and role assertions; finally,
queries can be evaluated on such an expanded
set of instances. Unfortunately, the instance ma-
terialization step of the above technique is not
feasible in general, because the set of entailed
instance assertions starting from even very simple
OBDA specifications and small data sources may
be infinite.

As an alternative to the above materialization
strategy, most of the approaches to query answer-
ing in OBDA are based on query rewriting, where
the aim is to first compute the perfect rewriting ¢’
of a query g w.r.t. an OBDA specification J and
then evaluate ¢ over the source database.

The above described OBDA framework allows
for modularizing query rewriting. Indeed, the
current techniques for OBDA consist of a phase
of query rewriting w.r.t. the ontology followed by
a phase of query rewriting w.r.t. the mapping. In
the first phase, the initial query g is rewritten with
respect to the ontology, producing a new query
qo, still over the ontology signature: intuitively,

qo “encodes” the knowledge expressed by the on-
tology that is relevant for answering the query gq.
In the second phase, the query ¢, is rewritten with
respect to the mapping M, using the mapping
assertions as rules for reformulating the query
with respect to the source schema signature. We
illustrate now the two phases more in detail.

Query Rewriting w.r.t. the Ontology

Most of the proposed techniques [3, 5, 13] start
from a CQ or a UCQ and end up producing a
UCQ (i.e., a set of CQs) expanding the initial
query. They are based on variants of clausal
resolution [10]: every rewriting step essentially
corresponds to the application of clausal reso-
lution between a CQ among the ones already
generated and a concept or role inclusion axiom
of the ontology. Each such step produces a new
conjunctive query that is added to the resulting
UCQ. The rewriting process terminates when a
fixed point is reached, i.e., no new CQ can be
generated.

A potential bottleneck of the rewriting ap-
proach is caused by the size of the rewritten
query, and several research works aim at opti-
mization techniques addressing this issue. For
example, the first algorithm for query rewriting
w.r.t. a DL-Lite ontology [3] has been improved
in [5,13] by refining and optimizing the way in
which term unification is handled by the above
resolution step. Notice that the sentences corre-
sponding to the ontology axioms may be Skolem-
ized (e.g., due to the presence of existentially
quantified variables in the right-hand side of a
concept inclusion): to compute perfect rewritings,
the unification of Skolem terms during resolution
can actually be constrained in various ways with
respect to standard resolution.

Some recent proposals for optimizing query
rewriting w.r.t. the ontology (e.g., [5, 7, 15])
are based on the use of Datalog queries besides
CQs and UCQs, to express either intermediate
results or the final rewritten query. The same idea
has also been used to extend query rewriting to
more expressive, not necessarily FO-rewritable
ontology languages [2,5,6,13]. Other approaches
take a more radical view and propose strategies



based on partial materialization of instance asser-
tions [9].

Query Rewriting w.r.t. the Mapping

It is well known by the studies on data integra-
tion that rewriting a query w.r.t. GAV mappings
boils down to a simple unfolding strategy, which
essentially means substituting every predicate of
the input query with the queries that the mapping
associates to that predicate [11]. In OBDA, how-
ever, query rewriting w.r.t. mappings is compli-
cated by the following two aspects: (1) OBDA
mappings allow for constructing objects that are
instances of the ontology predicates from the val-
ues stored in the data source, in order to deal with
the mentioned impedance mismatch problem; (2)
the source queries in the mapping are expressed
using the full expressive power of SQL, which is
needed to bridge the large cognitive distance that
may exist between the ontology and the source
schema.

Solutions to the first problem depend on the
strategy adopted to construct objects from values.
When functors applied to values are used, as
in the tractable framework for OBDA we pre-
sented above, logic terms constructed through
such functors can be treated in the standard way
in the unifications at the basis of the unfolding
procedure: see, e.g., the algorithm proposed in
[14], which relies on techniques from partial eval-
uation of logic programs. In the R2ZRML stan-
dard, (http://www.w3.0org/TR/r2rml/) functors are
realized through templates that construct W3C
compliant URIs for objects from the values re-
turned by the SQL query in the mapping asser-
tion.

The second problem heavily affects the perfor-
mance of the query-answering algorithm. Indeed,
current SQL engines have hard times in optimiz-
ing the execution of queries expressed over vir-
tual views, like those introduced by the unfolding
that use complex SQL features such as union,
nesting, or aggregation. Performance problems
are of course amplified when there are several
SQL queries mapping the same ontology pred-
icate. Due to the abovementioned limitations, it
is not realistic to group all such queries within
a single mapping assertion for each predicate.
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However, without such grouping, the mapping
associates several queries to the same predicate,
and therefore, the size of the query obtained by
rewriting w.r.t. the mapping may be exponential
in the size of the input query. Indeed, in real-
world applications, it may very well happen that
the size of the produced rewriting is too large to
be handled by current SQL engines. Techniques
to avoid or mitigate these issues are currently
under investigation.

Key Applications

The applications of OBDA and OBDI include all
the real-world settings in which an organization
needs a unified and transparent access to its data,
based on a domain model. Examples are:

— Enterprise information systems, where data
governance and data access can be greatly
enhanced by the use of the ontology

— Scientific data management, at least in those
fields where ontologies are available as unified
representations of relevant meta-data

— Public administration and government data
management, where the OBDI paradigm can
be the enabling technology for information
sharing and semantic interoperability

— Open data publishing, where the ontology can
help determining what to publish and which
strategy to follow in order to enrich the data
with useful meta-data

Future Directions

OBDA and OBDI are young paradigms, and
many problems related to them are still open.
Here is an incomplete list:

— Although query processing in OBDI has been
the main subject of investigation, there is still
much room for optimization techniques, espe-
cially those aiming at making query process-
ing feasible in the “big data” setting.
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— Real-world applications often demand more
expressive languages in the various compo-
nents of the OBDI system. An interesting
direction that is currently under investigation
is to extend the query processing techniques to
the case where both the ontology language and
the mapping language go beyond the expres-
sive power considered above and to the case of
more powerful languages for specifying user
queries.

— Although we concentrated on description log-
ics, other types of ontology languages have
been considered and studied, notably those
based on extensions of Datalog [2].

— Since the ontology should reflect the concep-
tual model of the domain, and not the infor-
mation at the sources, it is likely that source
data are not fully coherent with the axioms
in the ontology. How to design inconsistency-
tolerant query answering methods is an impor-
tant challenge in OBDI.

— In various applications of OBDI, e.g., enter-
prise information systems, there is the need to
provide the user with update facilities. Obvi-
ously, the updates should be expressed at the
level of the ontology, and the main challenge
is to design techniques for translating the up-
date requests into appropriate updates on the
source data, similarly to the notorious problem
of view update.

— Finally, interesting research developments aim
at going beyond query processing and ex-
ploring the power of OBDI in more general
data governance tasks, including data quality
checking, data cleaning, data profiling, and
data provenance.
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