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Abstract. We introduce a 3D human pose estimation method from sin-
gle image, based on a hierarchical Bayesian non-parametric model. The
proposed model relies on a representation of the idiosyncratic motion
of human body parts, which is captured by a subdivision of the human
skeleton joints into groups. A dictionary of motion snapshots for each
group is generated. The hierarchy ensures to integrate the visual fea-
tures within the pose dictionary. Given a query image, the learned dic-
tionary is used to estimate the likelihood of the group pose based on its
visual features. The full-body pose is reconstructed taking into account
the consistency of the connected group poses. The results show that the
proposed approach is able to accurately reconstruct the 3D pose of pre-
viously unseen subjects.

Keywords: Human pose estimation · Hierarchical non-parametric
Bayes

1 Introduction

Human pose estimation from images has been considered since the early days
of computer vision and many approaches have been proposed to face this quite
challenging problem. A large part of the literature has concentrated on identify-
ing a 2D description of the pose mainly by trying to estimate the positions of the
human joints in the images. Recently, attention has been shifted to the problem
of recovering the full 3D pose of a subject either from a single frame or from
a video sequence. Despite this is an ill-posed problem due to the ambiguities
emerging by the projection operation, the constraints induced by both human
motion kinematics and dynamics have facilitated the recovery of some accurate
3D human pose estimation.

In this work we approach the problem of 3D pose estimation from a single
image building a hierarchical framework based on Bayesian non-parametric esti-
mation. A schema of the framework is shown in (Fig. 3). Following the schema
flow, we divide the human body into different parts and we study the idiosyn-
cratic motion behavior of each part independently from the others. In this way
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Fig. 1. Method overview; 3D pose estimation given a query image.

we learn the principal motion modes of each part. Each body part is specified
by a group of joints, and its motion is represented by pose features obtained by
the principal motion direction on the SE(3) manifold with respect to a refer-
ence pose. As a natural reference pose we consider the “Vitruvian man” pose
presented in Fig. 2 together with the selected groups.

Group 1
Group 2 
Group 3
Group 4

Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11

Fig. 2. “Vitruvian” pose
with defined groups.

The visual features for each group are the PHOG
features of [1], which are computed using the state-
of-the-art approach of [2]. Assuming a correspondence
between the visual and pose features both the space
of visual features and pose features are partitioned, in
such a way that from the visual features it is possi-
ble to accede to the non observed pose features. These
nested partitions are built up for each group with a
hierarchical non-parametric Bayesian model, designed
purposefully to deal with the inverse projection prob-
lem, from 2D to 3D. Indeed, the goal is to recover the
unknown human poses just from the available visual
features, since visual features are the only available
observations.

The hierarchical model is based on two nested countably infinite mixtures of
normal distributions. The first level builds a dictionary of 3D human poses by
considering various examples of 3D human poses taken from a large number of
motion sequences, while the second level takes into account the corresponding
images obtained from a number of view points. Indeed, the dictionary is built
by partitioning the space of 3D poses with a Dirichlet process mixture model
(DPM). The partition is defined on the space of poses specified by the principal
motion directions on the SE(3) manifold. The nested part of the model builds
the visual dictionary on top of the pose dictionary, and it is also based on Dirich-
let process mixture models. Here the mixture processes the PHOG [1] features
extracted from a window centered at the 2D position of each joint in the given
image.
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Fig. 3. Schematic representation of the proposed hierarchical model.

Based on the learned dictionary 3D pose estimation is performed as follows
(Fig. 1). Given a query image we extract the 2D positions of the joint in the image
using a state-of-the-art approach [2] and compute the corresponding PHOG
features for each group. From these features we infer the most likely cluster of
the visual dictionary, which in turns indicates the cluster of 3D poses with the
highest probability for the given group. The final 3D pose is reconstructed by
assembling together the most representative poses of the selected clusters for
each group. Clusters are selected considering also the compatibility between the
group poses.

In the following, Sect. 2 discusses related work and Sect. 3 the structure of the
training and testing data, and preliminaries. Section 4 presents the architecture
of the proposed model and how pose estimation is performed. In Sect. 5 we
present the results obtained with our method in comparison with state-of-the-
art 3D pose estimation approaches. Finally, Sect. 6 discusses conclusions and
future work.

2 Related Work

Human pose estimation (HPE) has been extensively studied during the years
by considering videos, 2D images and depth data, [3–5]. There exist several
open problems; among them we mention variations in human appearance, cloth-
ing and background, arbitrary camera view-point, self-occlusions and obstructed
visibility, ambiguities and inconsistency in the estimated poses.

Different features can be chosen to describe the different types of data. Focus-
ing on 2D input data, some works assume the 2D body joints locations already
given [6], while others extract features from silhouettes such as HOG [7], PHOG
[1], SIFT [8] and shape context [9], or dense trajectories [10].

In detail, concerning 3D HPE from videos, very recently [10] introduced a
spatio-temporal matching (STM) among 3D Motion Capture (MoCap) data and
2D feature trajectories providing the estimated camera view-point and a selected
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subset of tracked trajectories. In our approach, instead, as in [11,12], body parts
in 2D are detected by using the algorithm introduced in [2].

In the last years many works have approached the estimation of the poses via
deep learning as in [13–16]. In Zhou et al. [17] a convolutional neural network is
used to estimate the 2D joint locations in the image. 3D pose sequences are then
estimated via an EM algorithm over the entire video by considering a sparse
model of 3D human pose in input where each 3D body pose is represented by
a linear combination of a predefined basis of poses. Wang et al. [12] propose an
overcomplete dictionary of poses learned from 3D human poses and HPE is man-
aged by minimizing an L1 norm error between the projection of the 3D pose and
the corresponding 2D detection, optimizing via alternating direction method. In
[18], body part detectors provide proposals for the location of 2D pose of visible
limbs. The 2D pose is then refined via non-parametric belief propagation and
the corresponding 3D pose is estimated by learning the parameters of a mixture
of experts model.

In [19] a relevance vector machine is proposed to learn a reconstruction func-
tion that is a linear combination over a set of basis functions. The authors extract
shape descriptors from a set of 2D images and the corresponding 3D poses. [20]
store a set of different images and full body poses, both in 2D, together with the
corresponding viewpoint. A test image is directly matched with all the training
images via the shape context matching procedure. The 3D positions are then
estimated via the Taylor’s approach [21]. Differently from ours, their methods
is instance-based, which is not feasible for a real-time application, without also
the possibility of generalizing over the training images.

Assuming that joint positions are already given in 2D with the corresponding
image, [6] propose to learn pose-dependent joint angle limits from a MoCap
dataset, to form a prior for estimating the 3D poses, together with the camera
parameters. A tracking-by-detection technique is used in [22] to collect a small
number of consecutive video frames. A novel class of descriptors, called tracklets,
is defined and 3D poses are recovered from them. In [23], human pose is estimated
via a non-parametric Bayesian network and structure learning, considering the
dependencies of body parts. In our approach, instead, nested non-parametric
clustering is considered to find relations among the appearance and the 3D pose
of each body part. As in [23], our approach is able to generalize over the observed
data so as to generate new poses never seen before.

In [24], besides the construction of a large dataset, a benchmark among var-
ious HPE approaches is performed. [25] use boolean relationships between body
components, called posebits, for training an SVM for retrieving the 3D body
pose. Finally, [26] consider annotated 2D images and MoCap data as independent
input data to first obtain an initial pose model which is then refined iteratively.

3 Description of Input Data

Human 3.6 M Dataset. The dataset we consider for the development of our
HPE algorithm is Human 3.6 M [24], which includes about 3.6 million video



570 M. Sanzari et al.

frames with associated labelled joints and poses of different human subjects per-
forming actions. Relevant for us are the motion capture (MoCap) data (provided
as joints rotations and translations) acquired with the Vicon MoCap System;
data of 11 subjects performing 15 different actions are available. The 3D joint
poses are provided as transformation matrices evaluated with respect to a fixed
world origin as described in the next subsection.

Additionally, we consider the corresponding video frames captured from high
resolution RGB cameras from 4 different viewpoints. This is done to ensure
that we take in consideration a sufficiently varied set of poses captured from
different view points. We consider the 4 views of each pose as distinct instances.
Furthermore, we are given also the positions of the MoCap skeleton mapped
into the image domain. This is used for the 2D joints inference in images, as
explained in the following. As in [17], we use 5 subjects (S1, S5, S6, S7, S8) for
the training stages, and 2 subjects (S9, S11) for testing. Moreover, we consider
only 18 out of the entire set of 32 3D joints by excluding joints corresponding
to fingers and toes and by merging together joints corresponding to the same
3D position in order to avoid redundancy in the data. Therefore, for each video
frame we have the association among the image, the 3D joint poses, and the 2D
joints mapped in the image.

PGA-Based Features. We now describe the basic principles used for extract-
ing features representing the pose of each group. A MoCap sequence amounts to
the poses of a subject at regular time instances. At each time instant the pose
of the subject is represented by a given configuration of its joints. In detail, a
skeleton J is specified by 18 joints, where the first one is the index of the root
joint. Each joint has a single parent joint, except from the root joint. The config-
uration of the i-th joint is represented by a homogeneous transformation matrix
Ti ∈ SE(3), a Lie Group with identity element defined by the 4 × 4 identity
matrix. By defining a proper metric the Lie Group is a Riemannian manifold,
on which we can define (via the exponential mapping) the notion of geodesic
between two elements on the manifold (see [27–29]), which is locally the shortest
path that connects two group elements. Henceforth each joint is considered as a
rigid body moving in space with respect to some coordinate system. Note that
this coordinate system may change according to the MoCap system used for
acquiring the data.

We breakdown the skeleton into 11 sub-body groups Gs, with s = 1, . . . , 11.
Each group contains Ms joints and is defined as Gs = {Jψ(1), . . . , Jψ(Ms)} ⊆ J ,
with ψ(·) providing the relation of the group joint indices with respect to the
skeleton indexes. All joints belonging to a group have a parent within the same
group, except the root of the group, which is included in at least one other group,
whenever it is not the root of the entire skeleton, this proviso is required by the
reconstruction of the full-body pose (Algorithm 2).

Breaking down the skeleton into groups is motivated by the idiosyncratic
motion of body parts, and to appraise this fact we use the Da Vinci’s Vitruvian
pose as the reference skeleton configuration, adapting an idea of [30]. The Vitru-
vian pose and the joint groups considered here are shown in Fig. 2. Now, given
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Table 1. Average geodesic distance between the Karcher mean and the rotations of
each joints for each group over the whole dataset.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

J1 1.102 1.152 1.152 1.149 1.144 1.143 1.108 1.145 1.106 1.110 1.141

J2 1.102 1.521 1.521 1.521 1.524 1.518 1.108 1.535 1.106 1.110 1.510

J3 - 1.520 1.519 1.519 1.540 1.521 - 1.530 - - 1.519

a pose, we find the transformation between the current pose configuration and
the Vitruvian pose, for each group Gs, s = 1, . . . , 11. Then, the pose feature set
for each group is obtained from the principal direction, computed via Principal
Geodesic Analysis [31] from these transformations.

More specifically, for each Gs, s = 1, . . . , 11 the transformation matrices
mapping the joints from a current arbitrary pose to the Vitruvian pose are com-
puted, taking into account the dependencies from the parent pose. We compute
the Karcher mean [32] μ of the group transformations, following the algorithm of
Afsari [33]. In particular, regarding rotation averaging, the center of mass should
be within a geodesic distance no larger than π/2 in order to be unique, and thus
well defined [33–35]. Table 1 shows the average geodesic distance between the
intrinsic mean and the rotations of the individual joints for each group over the
whole dataset, suggesting that the Karcher mean computation is well defined for
this particular choice of groups.

Hence we compute the tangent space of SE(3) at μ and select the principal
direction. This direction is the one that best interprets the variability of the
motion that the group of joints performs in order to return to the configuration of
joints of that sub-body group, in the Vitruvian rest pose. The actual computation
of the principal direction in SE(3) is given in [36], and for the transformation
considered here the whole computation is resumed in Algorithm 1.

Fig. 4. Left: 2D joints esti-
mation using [2]; Right: HOG
descriptor extraction for a group
of joints.

2D Joints Estimation from Monocular
Images. In both learning and testing stages
we extract PHOG visual features for each
considered group. For this purpose, given an
image sampled from a video of the dataset in
Human 3.6 M, the first step is the estimation of
the 2D joints together with suitable surrounding
boxes in the image domain.

In detail, since we have considered the 3D
skeleton subdivided into 11 groups we recover 11
boxes (or windows), one for each imaged group.
From each of these boxes we extract the most
suitable image descriptors for our purpose, that are the Pyramid Histogram of
Oriented Gradients (PHOG) [1,7]. We have decided to consider a pyramid with
levels equal to 0 and 1 and 8 bins spanning an angle of 360◦, for each joint in
the group, this choice leads to feature vectors of size m,m ∈ {16, 24, 32}.
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Data: The pose of the group Gs given by the corresponding set of
homogeneous transformations {Tψ(1), . . . , Tψ(Ms)}; the Vitruvian
joints configuration {T V

ψ(1), . . . , T
V
ψ(Ms)

}.
Result: Feature vector for the pose of the group Gs

1. Move the root of Gs to the root of the corresponding group in
Vitruvian pose.

2. Compute the “disparity” between each joint current pose and the
Vitruvian pose as Ĝs = {T̂ψ(1), . . . , T̂ψ(Ms)}, taking into account the
dependency of each joint pose from its parent pose.

3. Compute the Karcher mean as in [33], extending it to translation.
4. Compute the variance S as in [31], but using the twist

u∨ = (ω�,v�)�, obtained from the Lie algebra of the given
transformations, to extend the PGA to SE(3), with ω and v the
instantaneous angular and linear velocities, as in [36].

5. Compute the eigenvector and eigenvalues of S and return the first
principal direction in the Lie algebra se(3).

6. Build the feature vector in R
7 using the instantaneous angular and

linear velocities from the principal direction, forming a twist, together
with the norm of the instantaneous linear velocity [36].

Algorithm 1. Feature extraction for the pose of a group Gs of joints

The estimation of the 2D joints from images is performed using the state-
of-the-art approach [2]. This approach is particularly suitable for the estimation
of the sought-after boxes surrounding joints of human body. We train a model
using the algorithm described in [2] using images sampled from the videos in the
Human 3.6 M dataset. In particular, we used 61750 images for training taken by
the 5 different subjects (S1, S5, S6, S7, S8) performing all the actions, provided
together with the 2D joints positions. We used 24700 images for testing taken
from the remaining subjects (S9, S11) performing the same actions. From the
boxes obtained we consider the central points being the 2D joints. Note that we
know the ordering of the parts and so of the joints. Figure 4 shows the result of
the boxes extraction for two different testing images and the process of PHOG
extraction from an image of a group when the PHOG level is set to 0.

4 Features to Poses Mapping: A Hierarchical Model

In this section we present the hierarchical model connecting 3D poses and visual
features, which make it possible to infer a human pose from the visual features.
The hierarchical model takes care of the main aspects of this inference process.
First of all it generates a dictionary of poses, for each group. The dictionary col-
lects poses in clusters, where the similarity within a cluster is defined according
to the parameters of the underlying distribution. In particular, the dictionary for
the poses is a list of indexes specifying for each pose the set of poses sharing the
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same partition block – or the same parameters. Because a set of similar poses
admits several views, the visual features indexed in the same partition generate
a mixture of features too. Finally, a principle of compatibility amid clusters of
different groups is defined.

In this section we consider (X1,X2, . . . , XN ), (Y1, Y2, . . . , YN ) sets of real
valued random variables; with X = (x1, . . . ,xN ) and Y = (y1, . . .yN ) their
realization. In particular, we consider here a multivariate X, for the principal
direction of the poses of a group of joints, such that a random sample of obser-
vations xi ∈ R

7. We consider also a multivariate Y for the PHOG features, with
yi ∈ R

m, m ∈ {16, 24, 32}. To simplify reading we sometimes talk about poses,
though in fact we consider the twists obtained by the principal direction of the
set of rototranslations of the joints of a group, with respect to the same joints
in the Vitruvian pose, as explained in Sect. 3.

Fig. 5. Plate representation of S =
1, . . . , 11 fold replication of the
stacked DPM for pose and visual
features. Inner plates are replicated
for each DPM.

Given the training sets DX
s ={xi|xi∈R7,

i=1, . . ., N} and DY
s ={yi|yi∈Rm, i=1, . . ., N,

m ∈ {16, 24, 32}} as the sampled pose and
visual features for a group Gs, s=1, . . ., 11 (a
subset of joints as specified in Fig. 2), we
want to partition these sets, though neither
the partition dimensions nor the specific allo-
cations are known. Hence we resort to the
Bayesian nonparametric perspective on mix-
tures with countably infinite number of com-
ponents. In this perspective we are given a
measurable space X, a discrete measure μ on
this space, a collection of continuous obser-
vations, latent variables (θ1, . . . , θK) admit-
ting a distribution, with K a random number
≤ N , and a probability distribution function
F (·|θi), parametrized by the random vari-
ables θi. This setting leads to the popular Dirichlet process mixture model,
where F (·|θi) is the kernel of the mixture, here the normal distribution, and
μ ∼ DP (α, μ0), is the mixing measure, with concentration parameter α and
mean E{μ} = μ0. This is usually expressed in a hierarchical representation as:

Xi|θi = F (·|θi), i = 1, . . . ,K
θ1, . . . , θN |μ ∼iid μ and μ ∼ DP (α, μ0).

(1)

Then X ∼
∫

F (X|θ)dμ(θ) is a mixture of distributions with countably infinite

number of components [37,38]. Since the measure μ is discrete, each pair of
latent random variables can take the same value with probability p > 0. Where
the taken value is precisely that of a mixture component. Hence the observations
will be allocated by the latent variables to a random number of components.

Different representations have been given of the DPM since [39] and sev-
eral methods have been devised to sample the mixture parameters from the
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DP (α, μ0) (see [40,41]). Recently a number of contributions have explored
advanced methods to obtain a parallel implementation [42,43], and to obtain
a distribution on the partition of the tangent space to the sphere [44], introduc-
ing mixture models for data lying on the sphere, and on Riemaniann manifolds
[45]. In this work we did not consider our data as placed on a curved mani-
fold. Despite features data for poses are obtained from the principal direction
on SE(3), each twist extended with the velocity norm, as described in Sect. 3
is independent of the others and forms an exchangeable set. As we do not con-
sider any trajectory between the pose feature vectors we may not consider them
on a curved manifold, though we are exploring the interesting modeling that
a manifold representation could lead to. Several approaches have also consid-
ered different forms of hierarchical and nested NPB models. Though here we
could not use the hierarchical model of [46], since the pose clusters of the same
group, likewise the visual features, do not share any element. Neither could be
used across groups, since groups have different ranges of PHOG variates and the
number of clusters depends on the number of poses of a specific body part.

Our proposed hierarchical model relies on the hypothesis that for the training
datasets there exists an index set {Z}N

i=1, with a bijective mapping h between
any two datasets. So, for each PHOG feature vector yi there exists a correspond-
ing pose vector xi in the training set. This fact does not affects generality nor
exchangeability, as we see below, since the index set labels the sampled features
not the partitions.

To generate an exchangeable random partition for the mixture of poses, we
consider the well known Chinese restaurant process (CRP) [47]. On the other
hand, to compute the parameter α we followed the approach of [48], defining
the prior of α as coming from the class of mixtures of gamma distributions,
with small initial scale and shape parameters. For inference we resort to Gibbs
sampling [49,50] with conjugate priors.

Given the distribution on the partition induced by the mixture model, a
finite set of parameters θ̂1, . . . , θ̂K is obtained, together with a cluster indexing
c = (c1, . . . , cN ) for each element in the training set. The prediction of a new
pose xN+1 is defined by the posterior predictive distribution:

p(xN+1|X) =
∑

c1,...cN+1

∫
p(xN+1|cN+1, θ)p(cN+1|c)p(c, θ|X)dθ (2)

Here:

p(c, θ|X) =
1
H

K∏
k=1

μ0(θk)
n∏

j=1

F (xj |θcj )P (cj), (3)

where H is the marginal likelihood of the mixture of Normals given the com-
puted parameters. And, according to the sampling process induced by the CRP,
p(cN+1|c) is:

p(cN+1 = k|c) =

⎧⎨
⎩

nk

N − 1 + α
k ≤ K

α

N − 1 + α
otherwise

(4)
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Here nk is the size of the set of elements in c having value k. Since poses are
continuous and somehow unpredictable, the case that a new pose asks for the
initialization of a new cluster has probability greater than zero. However, once
the partition is specified, we make it available to the visual inference, recovering
the association between the index set {Z}N

i=1, and each element in each cluster of
the dictionary. Because of the label switching problem we prefer to reallocate the
indexes {Z}N

i=1 to the clusters. Hence, for each pair θ̂ci = (ηci , Σci) we sample a
number of pose vectors {u}|ci|, proportional to the current ones from (ηci , βD),
with Σci = UDU�, and β a filtering parameter. Given the sampled set we find,
in the training set DX

s , the pose vectors x which minimize the square error, w.r.t.
some specific threshold, i.e. {x ∈ X|||x−u||2 ≤ ε, ε > 0}. This fact allows, at the
same time, to regularize the clusters around their mean, and to reallocate the
observations into the clusters together with the observation index set {Z}N

i=1.
Therefore according to the model, the induced partition, and the reallocation,
given elements s = {xs1, . . . ,xsk}|θ̂cj we have that h−1(s) = zsj , a subindex set
zsj ∈ {Z}N

i=1, such that h(zsj) = {ys1, . . . ,ysk}, namely it returns a choice of
visual features. The subindex zsj specifies which set of features, having index
in {Z}N

i=1 should be allocated to the cluster generated by parameters θcj , due
to the bijection between the training data. Repeating this for all parameters
θ̂cj , j = 1, . . . K, and for each group, a CRP process is computed for each
feature set indexed by zsj . The probability measures generating these new set
of DPM, are obviously specific for each PHOG feature set. The structure of the
hierarchical model is illustrated in Fig. 5. Each feature set indexed by zsj can
specify different views of the same pose, and possibly under different lighting
conditions. Further, we expect that similar poses of different people, yet belong
to the same cluster, and the PHOGs might capture this, when represented by
a mixture distribution. Thus we induce a new partition exploiting the Gamma
additive property. For each cluster of poses, generated by each group, there exists
a set of models Ms = (M1

PHOG, . . . ,MKs

PHOG), with K varying according to the
group s, s = 1, . . . , 11.

Fig. 6. Most representative poses of the learned dictionary for the groups Left Arm,
Hips, Right Leg, Left Foot, with respect to the “Vitruvian pose”.

Now, given a new observation y�, this could be either a query or a new mea-
sure. Then the posterior predictive of Eq. (2) should integrate with respect to the
parameters of the feature set indexed by zsj , for j = 1, . . . ,K and with respect
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to each feature set Yzsj
, collected in the training. Without loss of generality

we can do this into two steps. In the first step we compute the density, finding
the model that best fits y�. We can do this because the index set for the visual
features is not required for this step:

arg max
MPHOG

p(y�|ξ) =
∑

h

∑
j

πhjϕh(y�|ξhj ,Mh
PHOG). (5)

Here the πs are the mixing proportion and ϕ(·|ξ) is the Normal density with
parameters ξ for the specific PHOG features set. Once the model is chosen, hence
the cluster, the predictive distribution in Eq. (2), can be applied to the PHOG
feature y�. Note that if a new component is generated, this now will have its
reference pose being the mean of the cluster it is hooked to. Note that if the
subindexes of the clusters generated by the visual features y with subindex zsj

are needed, to identify a particular feature and its connection to a particular
pose, then a resampling is necessary, as we did with the poses. Otherwise the
mean pose can be used. We can see this process as a funnel guiding visual features
into the small opening of the pose set, and possibly widening the opening as new
observations come in.

Data: Pairwise group compatibility probabilities rij (Eq. 6).
Result: Most likely set of consistent pose clusters.
Find the most likely pose cluster for the root group (G8);
Add all the connected groups of G8 (denoted children(G8)) in the set
Gopen;
while Gopen is not empty do

for Each group Gs ∈ Gopen do
Find its most likely pose cluster taking into account the
compatibilities {rij}i∈{1,Ms} with respect to the selected cluster j
of its parent group parent(Gs)

end
Remove (Gs) from Gopen;
Add children(Gs) in Gopen

end

Algorithm 2. Consistent pose cluster selection.

The final inference step requires a principle of compatibility amid groups
from which derive the consistent pose selection summarized in Algorithm 2. We
define the intergroup clusters compatibility as follows. Let i, j, be two clusters
from groups q and s. Let Wij = |zqj ∩ zsi| with | · | the cardinality and let
Dij = zqj ∪ zsi and p(mij = 1) = Wij/|Dij |.

The probability that the two intergroup clusters are compatible is given as:

rij =
p(Dij |mij = 1)p(mij = 1)

p(Dij |mij = 1)p(mij = 1) + p(Dij |mij = 0)(1 − p(mij = 1))
(6)
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With
p(Dij |mij = 1) = γ

∑
Dij

πiδDij
(x) + (1 − γ)

∑
Dij

πjδDij
(x) (7)

Where δDij
(x) = 1 if x ∈ Dij and zero otherwise, πi and πj are the mixing

proportions of the DPM of the two clusters, and 0 ≤ γ ≤ 1 balances the con-
tribution from the two clusters. While, where the two clusters are completely
uncorrelated:

p(Dij |mij = 0) =
∏
Dij

πiπj (8)

5 Results

Dictionary Learning. As described in Sect. 3, we consider the dataset Human
3.6 M [24] to evaluate our 3D pose estimation algorithm. In order to obtain the
dictionaries of the 3D poses we first apply the decomposition of the joints in
groups according to Fig. 2 and then compute PGA-based features for each group
joints, as described in Sect. 3. As the dataset contains 3D poses synchronized
with video frames at a high rate (50 Hz), we subsample with a factor of 12 in
order to remove redundant data. Further we compute the PHOG features as
described in Sect. 3. The number of clusters generated for each group by the
DPM models are reported in Table 2.

Table 2. Number of clusters generated by the DPM models for the PHOG and the
PGA-based features for each group of joints.

Groups 1 2 3 4 5 6 7 8 9 10 11 12

Nr. of pose clusters 56 155 38 85 20 49 90 88 58 49 52 16

Avg. nr. of visual components 18 31 31 25 22 22 4 22 22 11 18 13

The significance of pose clusters is shown in Fig. 6, where the mean poses are
visualized for the groups Left Arm, Hips, Right Leg, Left Foot.
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Fig. 7. Error distribution for the PHOG (left) and the PGA (right) features.
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3D Pose Estimation. Using the learned dictionary of poses and visual features
we perform 3D pose estimation for the testing part of the dataset, namely for
the actions performed by subjects S9 and S11. For each query image, the 2D
joint positions in the image are estimated by using [2], and they are grouped
together forming the groups of Fig. 2. For each group, the PHOG features are
then extracted, as described in Sect. 3, and the corresponding cluster of the visual
dictionary is selected as the most likely one according to the learned hierarchical
model. We calculate the error of the visual features as the euclidean distance
of the extracted features with respect to the most representative visual features
of the selected cluster. The mean of this error together with the 25th and 75th
percentiles for each group, are shown in the left box-plot of Fig. 7. Note that as
the errors refer to distances, we expect that they follow a χ2 distribution instead
of a normal one. We observe that the errors of the PHOG features are low in
average for most of the groups. The groups corresponding to the hands and the
arms (G3, G4, G5, G6) show higher errors, mainly because of the high variability
of their appearance.

The 3D pose of the whole body is obtained according to Algorithm 2.

Table 3. Average per joint error between the estimated 3D pose and the ground truth
in mm. Best values in bold.

Directions Discussion Eating Greeting Phoning Photo Posing Purchases

LinKDE [24] 132.71 183.55 132.37 164.39 162.12 205.94 150.61 171.31

Li et al. [13] - 136.88 96.94 124.74 - 168.68 - -

Tekin et al. [51] 102.39 158.52 87.95 126.83 118.37 185.02 114.69 107.61

Zhou et al. [17] 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78

Ours 48.82 56.31 95.98 84.78 96.47 105.58 66.30 107.41

Sitting SittingDown Smoking Waiting WalkDog Walking WalkTogether Average

LinKDE [24] 151.57 243.03 162.14 170.69 177.13 96.60 127.88 162.14

Li et al. [13] - - - - 132.17 69.97 - -

Tekin et al. [51] 136.15 205.65 118.21 146.66 128.11 65.86 77.21 125.28

Zhou et al. [17] 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01

Ours 116.89 129.63 97.84 65.94 130.46 92.58 102.21 93.15

Examples of the recovered poses for query images of the subjects S9 and S11
are shown in Fig. 8. We calculate the euclidean distance of the PGA-based fea-
tures of the true 3D pose of the subject, with respect to the most representative
PGA-based features of the selected cluster for each group. The mean distance for
each group together with the 25th and 75th percentiles, are shown in the right
box-plot of Fig. 7. We note that the average errors of the PGA-based features
are small for all groups, apart from G5 and G6 which correspond to the right
arm and the right hand. The fact that the PGA features reside in a deeper level
of the hierarchical model affects the presence of an increased number of errors
above the 95th percentile.

We also compute the mean error of the joint positions of the recovered 3D
pose with respect to the ground truth 3D pose of the subject. This error, com-
pared to the error of other state of the art approaches is reported in Table 3.
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Fig. 8. Examples of query images and the recovered 3D pose. More results are reported
in the supplementary material.

The results show that our method gives slightly worse results only with respect
to [17] for the ‘Eating’ and ‘Purchases’ actions, and for the walking actions with
respect to [51] and [17]. In summary, the proposed method outperforms other
recently proposed state of the art 3D pose estimation methods both in average
and also for the vast majority of actions considered in the Human 3.6 M dataset.

Efficiency of the Method. For the 2D joints estimation training uses 61750
frames of the Human 3.6 M dataset taking about 104 s, [2] does not report effi-
ciency. For the hierarchical DPM we consider a training set of 130272 frames,
asking for ∼8.5 × 105 s for the poses partitioning and ∼7 × 104 s for the visual
features partitioning. This considering main Gibbs cycles of 1800 iterations. Full-
pose consistency takes around 0.05 s for a single query, and the total percent-
age of queries not satisfying it are around 23%. Once parameters are learned
pose computation takes around 0.96 s, with PGA and group computation taking
around 0.07 s. These results are obtained with a computer equipped with four
Xeon E5-2643, 3.70 GHz CPUs and 64 GB RAM.

6 Conclusions

We present a novel method for 3D human pose estimation from a single image
based on a hierarchical Bayesian non-parametric model. The proposed model
captures idiosyncratic variations of the motion and the appearance of different
body parts, identified by groups of joints. The decomposition in groups avoids
redundant configurations, obtaining a more concise dictionary of poses and visual
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appearances. Given the learned model a 3D pose query can be resolved in real-
time. The results show that the proposed model is able to generalize and accu-
rately reconstruct the 3D pose of previously unseen subjects. Our results improve
the current state of the art though we aim to further ameliorate them, by con-
sidering additional constraints of the pose structure. We shall also consider to
move the NBP on the Riemann manifold for the pose features considered.

Acknowledgement. Supported by EU FP7 TRADR (609763) and EU H2020 Sec-
ondHands (643950) projects. The authors thank the anonymous reviewers for their
comments.
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