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Chapter 1

Introduction

1.1 Context and motivations

The geo-political, sociological and financial changes induced by globalization
in the last few years, are creating the need for a connected world where the
right information is always available at the right time. As such, with the
increasing use of the Internet and the improvement in hardware technology,
most of the applications previously deployed in “closed” environment are fed-
erating into geographically-distributed systems. In the future, no system is
expected to be isolated; every system will be composed by the interconnec-
tion of independent systems that need to share information, i.e., it will be a
System-of-Systems (SoS). Example of SoS are Large scale Complex Critical In-
frastructures (LCCIs), such as power grids, transport infrastructures (airports
and seaports), financial infrastructures, next generation intelligence platforms,
to cite a few. LCCIs play a fundamental role into several human activities and
have a strong economic and social impact. Hence, the consequences of an out-
age can be catastrophic in terms of efficiency, economical losses, consumer
dissatisfaction and even indirect harm to people. As a consequence, these sys-
tems are being confronted with new scenarios and operational requirements
posing unprecedented challenges with respect to: (i) the scale at which they
need to operate; (ii) the ubiquity and multi-modality of data access they need
to provide; (iii) the Quality of Service (QoS) level they need to deliver.

The proliferation of large scale applications and the process of federating
different systems in SoS, pose particular attention on the middleware used to
connect system nodes and to distribute data possibly from multiple sources
to all interested destinations. In the last few years, the publish/subscribe

1



2 CHAPTER 1. INTRODUCTION

paradigm is becoming attractive for anonymous and asynchronous informa-
tion dissemination. Specifically, this middleware is characterized by three
kinds of entities, as shown in Figure 1.1: (i) publishers, i.e, the producers of
information, (ii) subscribers, i.e., the consumers of information, and (iii) an
event notification service composed by brokers that convey the information
from publishers to subscribers.

Figure 1.1: Architecture of a publish/subscribe middleware. The interaction

between a publisher (P) and a subscriber (S) is mediated by a network of

brokers (B).

The communication takes the form of event, where an event is any occur-
rence of something of interest [88]. The main benefit of the publish/subscribe
paradigm lies on its intrinsic time, space and synchronization decoupling prop-
erties [52]: publishers and subscribers do not need to know each other, or to
be online at the same time, or to operate in a synchronous way. These prop-
erties are suitable to satisfy scalability requirements exhibited by large scale
systems, so to make the publish/subscribe paradigm attractive for the design
of innovative critical infrastructure. A concrete example is represented by the
novel Air Traffic Management (ATM) framework implemented in Europe by
EUROCONTROL in the context of the SESAR European Project [98], where
the System Wide Information Management (SWIM) middleware is used to
federate geographically sparse ATM entities, that act both as producers and
consumers of information (a complete description of the SESAR architecture
will be provided in Section 1.2.4).

The information sharing in a SoS is conveyed by wide-area channels, due
to its geographical extension. As such, the communication may be affected by
the unpredictable behavior of the network, where messages can be dropped
or delayed due to possible link failures or congestions. However, due to their
critical nature, LCCIs require that the middleware used to route data from the
source to all intended destinations provides an adequate QoS level. In fact, for
this kind of infrastructures, a message loss or a late delivery can compromise
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the mission of the overall system, leading to catastrophic consequences as
described above. Hence, a publish/subscribe middleware has to provide a
set of non-functional aspects, in order to support the implementation of the
novel generation of LCCIs. This set is orthogonal to the middleware core
functionalities, and includes QoS properties that we group in three categories:
reliability, ordering and timeliness.

Reliability properties define which kind of guarantees are provided in the
delivery of each single event to its intended destinations. We can distinguish
between two different properties:

• Best-effort delivery: the middleware will provide the event routing ser-
vice without any specific guarantee on the delivery; from this point of
view, receivers can expect to miss some events that will not be delivered
due to unexpected causes (e.g. message losses in the underlying trans-
port layer); publish/subscribe services providing best-effort delivery are
usually designed to offer the best performance (obtained by avoiding
as much as possible any protocol overhead); despite the lack of specific
mechanisms to enforce stronger delivery properties, such systems usu-
ally behave in a good way as long as they are deployed on top of a fairly
reliable communication substrate.

• Reliable delivery: the middleware will guarantee the delivery of events
to all their intended destinations despite possible network losses or other
unexpected events; this property is usually enforced at the event routing
level through several different techniques such as retransmission, bro-
ker replication, multi-path delivery, etc. The overhead caused by the
property enforcement can a have a non-negligible impact on the overall
performance.

Note that the enforcement of a reliable delivery property implies a strict
definition in the publish/subscribe middleware of the set of events that must
be delivered to each destination. This becomes a non-trivial issue as soon as
one considers that destination processes can possibly change at runtime their
subscriptions and that the interactions taking place between event producers
and consumers are completely asynchronous and decoupled with the purpose
of improving system scalability.

Ordering properties provide a mean to define a specific order that must
be enforced by the publish/subscribe service when delivering events to con-
sumers. Several different, and partially orthogonal ordering properties can be
considered:

• Per-source FIFO order: this is the simplest form of order that can be
considered as it forces the middleware to deliver events published by a
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same producer in the same order as they were produced (i.e. with a FIFO
semantic); as a consequence, the delivery of events generated by distinct
sources can experience different interleaving on distinct destinations.

• Causal order: by enforcing this property, the middleware guarantees that
if a process publishes an event e′ after an event e has been delivered to
it, then the publish/subscribe service will not deliver to a second process
the events in the order e′, e; this property proves particularly useful in
those contexts where processes act both as producers and consumers
and where maintaining the causal relationship among multiple events is
fundamental for the application correctness.

• Total order: by enforcing this property, the middleware guarantees that
any two destinations that receive a same set of events will receive those
events exactly in the same order; this order does not necessarily have a
connection with the real publishing time instants of these events, i.e. two
events e and e′ published at time t and t′, with t < t′ can be delivered
either in the order t, t′ or t′, t, but not a mix of the two.

• Real-time order: this property closely resembles the total order property
but also require deliveries to be executed in the same order as events
have been produced (hence the real-time attribute); the enforcement of
this property can be usually guaranteed only with a tolerance due to
the impossibility to perfectly synchronize event sources and thus always
correctly order the publication time of concurrent events.

The real-time order property is clearly the most comprehensive as it sub-
sumes all the preceding ones. Causal and total order are orthogonal and can
be enforced together, if needed.

Timeliness expresses the ability of the publish/subscribe middleware to
provide the expected service within known time bounds [15]. This aspect
proves crucial in many mission-critical applications, and it directly impacts
the time needed to route an event from its publication point up to all its
intended destinations.

• Timely delivery: there exists a time interval ∆ such that, given any event
e delivered at a node at time t, e has been published at a time t′ where
t−∆ ≤ t′ < t.

In the remainder of this Chapter, we present several case studies of real
applications, by highlighting which of the properties defined above need to be
satisfied by the publish/subscribe middleware used in those specific contexts
(Section 1.2). Section 1.4 describes how QoS is addressed in publish/subscribe
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systems and the current solutions present in literature to ensure ordering, time-
liness and reliability. From this assessment, we analyze the gap between the
requirements of the applications (summarized in Section 1.3) and the QoS level
provided by current middleware solutions (Section 1.4), highlighting which as-
pects need to be considered for event dissemination over WAN and which
challenges they pose (Section 1.5). This leads to the contribution of the the-
sis, discussed in Section 1.6, that consists in designing a framework that can
be posed on top of a generic publish/subscribe middleware to address some of
the presented QoS properties, specifically total ordering, reliable and timely
delivery.

1.2 Case studies

In this Section we discuss different application domains highlighting the QoS
requirements that a publish/subscribe middleware has to satisfy in order to
support those applications.

1.2.1 Collaborative Security for Financial Critical Infrastruc-

tures Protection

Financial institutions are increasingly exposed to a variety of security related
risks, such as massive and coordinated cyber attacks [4, 5] aiming at captur-
ing high value (or, otherwise, sensitive) information, or disrupting the service
operation for various purposes. Single financial institutions use local tools
to protect themselves from those attacks (e.g. intrusion detection systems,
firewalls); these tools verify whether there exists some host that performs sus-
picious activities within certain time windows. However, due to the complexity
of today’s attacks, such kind of defense results inadequate. A more large view
of what is happening at all financial institution sites is required, that could
be obtained by collaboratively sharing and correlating the information coming
from them, thus improving chances of identifying low volume activities which
would have gone undetected if individual institutions were exclusively relying
on their local protection systems [81].

Figure 1.2 illustrates the scenario of collaborative protection of financial
critical infrastructures against inter-domain stealthy SYN port scan attacks1.
The attack is a form of port scan that aims at uncovering the status of certain
TCP ports without being traced by application level loggers. It is carried

1This scenario has been widely investigated in the context of the EU project CoMiFin

[38]
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Figure 1.2: Collaborative processing system for port scan detection in financial

critical infrastructures.

out by probing a few ports of interest at different financial institutions, so as
to circumvent configured thresholds of local protection systems, and delaying
those probes in order to also bypass local time window controls [6, 7].

A scanner targeting different financial institutions probes ports on differ-
ent targets by following a well-known data pattern. For instance, a common
pattern in an inter-domain stealthy port scan is to initiate so-called incomplete
connections; that is, TCP connections for which the three-way handshaking
consists of the following ordered sequence “→” of packets: SYN→ SYN-ACK
→ RST (or nothing after a timeout is expired).

Owing to this scenario, a possible collaborative processing system can be
built such that it takes in input different basic events representing part of
the traffic sniffed from financial sites’ networks. It is worth noticing that
basic events are obtained through specific pre-processing activities carried out
locally by financial sites (see Figure 1.2). These activities allow the sites to
control the data flow to be injected into the collaborative processing system:
pre-filtering and possibly sensitive data anonymization operations are thus
performed in this phase.

Basic events flow from multiple financial sources to one or more modules
for collaborative processing purposes. These modules verify the presence of
the earlier mentioned data pattern and detect whether that pattern is “fre-
quently” discovered from all the sites (i.e., the processing modules verify if
the total number of collaboratively detected incomplete connections exceeds
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a pre-defined threshold). At the end of the processing, if a high number of
malicious activities originated by specific IP addresses are observed, a blacklist
containing those addresses is produced and disseminated to all the sites of the
system (see Figure 1.2).

In the design of such an architecture, it clearly emerges the crucial role
played by the middleware. It is used to convey both a large volume of basic
events to the collaborative processing system, and the results of the processing
to all the sites interested in receiving the produced blacklist.

However, in order to be effective, the middleware has to guarantee that
specific QoS properties are satisfied in order to not compromise the port scan
detection capabilities of the overall collaborative processing system.

Required middleware properties. For an accurate detection of inter-
domain stealthy port scans, data dissemination should provide the following
non-functional aspects:

• reliable delivery of both the basic events to the collaborative processing
modules and the produced blacklist to financial sites of the system. Referring
to the above data pattern, if the SYN-ACK packet is lost in the communication
between the sources and processing modules, the pattern cannot be correctly
detected. The pattern will then not contribute to the computation of the
earlier discussed pre-defined threshold, thus augmenting the number of false
negatives (i.e., real scans that are not detected) and decreasing the detection
accuracy of the system.

• per source FIFO order of the basic events. Referring to the above data pat-
tern, if some of those packets are delivered out of order at the level of single
source, the processing modules will not recognize the correct sequence. This
entails that even if the data pattern has been carried out by some malicious
IP addresses, it cannot be detected and used in the general threshold compu-
tation. Similarly to the previous point, this may lead to augment the number
of false negatives and, then, to decrease the port scan detection accuracy of
the system.

• timely delivery of both the basic events and produced blacklist. Typically,
these types of attacks are characterized by very low execution and propagation
times, in the order of a few seconds depending on the number of target hosts
and ports on those hosts. An effective processing system should then detect
scanner IP addresses and disseminate the results to interested sites within that
application time bound. This allows the sites to exploit the intelligence pro-
duced by the collaborative system and to timely take proper countermeasures.
In doing so, the publish/subscribe middleware has to guarantee timeliness on
both the delivery of basic events and the dissemination of produced results.
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In particular, we claim that in the inter-domain stealthy port scan the final
result of the collaborative computation should be delivered within a time in-
terval which is comparable to the application time bound (i.e., within a few
seconds).

1.2.2 Algorithmic Trading for Stock Market

The huge improvement in hardware and communication technology led the
stock market to extend its services from physical locations, where buyers and
sellers met and negotiated, toward a virtual market place (NASDAQ, NYSE
Arca and Globex, to cite a few) that exploits electronic media, where traders
can transact from remote locations. The increase of the electronic trading
brougth several benefits, such as reduced cost of transactions, greater liquidity
and competition (allowing different companies to trade with other ones) and
increased price transparency [95].

On the contrary, the virtual market place poses unprecedented challenges
in terms of data flows (up to 1 million updates per second) and short-term
trading decisions (up to thousandths of a second). These problems are further
exacerbated by the complexity of the operations. As an example, consider the
following indication about when to buy or sell a stock: “When the price of IBM
is 0.5% higher than its average price in the last 30 seconds, buy 10000 shares of
Microsoft every 3 seconds unless the average price drops back below the same
threshold“ [90]. Such an indication requires a careful market analysis of the
last IBM and Microsoft’s share prices and a consequent decision whether to
buy or not these shares. The complexity of operations and the strict timeliness
constraints imposed by the electronic market, led to the use of sophisticated
algorithms that process event streams, make complicated calculations and
take intelligent decisions in response to changing conditions reflected in those
events. This strategy, called algorithmic trading, is becoming more and more
a fundamental component of the virtual market place: all the world’s top-tier
firms, including JP Morgan, Deutsche Bank, and ABN Amro, as well as buy-
side hedge funds, such as Aspect Capital, are applying algorithmic trading.

A typical virtual market place is depicted in Figure 1.3. Each firm in the
electronic market has its Trading Engine System: it is composed by several
engines that take in input client orders stored in the Order Management Sys-
tem. Trading engines can obtain market data directly from the Exchange or
from the Real Time Market Data. The Market Data sends information such
as the current pricing and the number of contracts, and are provided in real
time by the Exchange. Examples of the Market Data are Reuters, Bloomberg
and Wombat. In addition, the Trading Engine System can always purchase
historical market data directly from the market’s Exchange. Trading engines
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Figure 1.3: Virtual market place where the interaction between buyers and

sellers occurs over the Internet.

execute complex queries on the data according to the instruction provided by
clients. In addition, trading engines can be organized in a hierarchical man-
ner, with some of them that operate on raw data and produce more complex
events that will be analyzed by engines at a higher level in the hierarchy. The
outcome of the executions and the order status is sent back to the Order Man-
agement System. Finally, raw and/or summarized historical data can also be
stored on the Historical Database and utilized for future strategy decision.

The communication among the electronic market components flows through
the Internet. Because of the strict requirements imposed by stock market ap-
plications, the publish/subscribe middleware plays a key role in the implemen-
tation of such system. In particular, it is required to convey a large volume
of raw events from the Order Management System and the Exchange to the
Trading Engine System in a reliable and timely fashion, in order to let trading
engines properly apply their strategy.

Required middleware properties. The publish/subscribe middleware for
algorithmic trading in stock market has to provide the following QoS proper-
ties:

• reliable delivery: raw data produced by the Exchange or the Real Time
Market Data and complex events generated by trading engines, as well as client
orders, outcome of operations and order status feedback, must be reliably
delivered to all interested destinations. Indeed, the loss of a message can
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compromise the accuracy of the applied strategy. As an example, consider
the complex query described above, with a trading algorithm that has to buy
10000 Microsoft’s shares when the price of IBM is 0.5% higher than its average
price in the last 30 seconds. If the event ”the price of IBM is 0.5% higher than
its average price” occurred in the last 30 seconds is lost, the algorithm does
not buy the Microsoft’s shares, preventing the client from a possible profit.
• timely delivery: it is a strict requirement of the stock market applications,
because the delay in the delivery of an event can lead the Trading Engine
System to take a wrong decision. Consider, again, the previous example: if
the event ”the price of IBM is 0.5% higher than its average price” occurred
in the last 30 seconds is notified to trading engines with a delay that exceedes
the value ∆ imposed by the application, then the algorithm might not buy
the Microsoft’s shares, preventing, even in this case, the client from a possible
profit. In addition, the timeliness in the information delivery must be ensured
not only for raw events produced by the Exchange or the Real Time Market
Data, but also for complex events generated by trading engines that are input
for other engines at a higher level of the hierarchy.
• real time order: the information produced by the Exchange or the Real
Time Market Data must be delivered in a real time order to all Trading Engine
Systems. Such a requirement is fundamental to ensure a fair electronic market
service to all clients. As an example, consider the three events: e1 = “the price
of IBM is 0.5% higher than its average price“, e2 = “the price of Apple is 0.8%
lower than the price of IBM“ and e3 = “buy 10000 Microsoft’s shares if event
e1 is happened before event e2“. Now let consider the Trading Engine Systems
of two different firms A and B, both interested in e1, e2 and e3. If one of the
firms, say A, delivers events out-of-real time order, for example e2 before e1,
then the event e3 is not verified and the algorithm does not buy Microsoft’s
shares. This clearly leads to an unfair market between the firms A and B,
that, on the contrary, delivered e1 and e2 in the correct real time order.

1.2.3 Active Database in Cloud Computing

In the last few years, cloud computing emerged as a technology to provide
resources on-demand and as a service over the Internet. Users can access these
resources anytime and anywhere, both from desktops or mobile platforms.
Amazon EC2, Google AppEngine, Microsoft’s Azure are just a few examples of
cloud architectures that provide services ranging from storage and application
development to high speed computing platform. A public cloud is typically a
complex infrastructure composed by one or more data centers, where a huge
number of services runs on a large amount of hardware. A meaningful example
of complex infrastructure is represented by the eBay architecture: in order to
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provide scalability, manageability and cost reduction, eBay made a functional
segmentation of its enterprise into multiple disjoint subsystems: Users, Item,
Transaction, Product, Account, Feedback (vertical division). Each subsystem
is further divided into chunks (horizontal division) to parallelize the handling
of requests within these [99].

The fundamental problem that arises from this segmentation is the main-
tenance of data consistency among all the chunks in which a database is parti-
tioned. Figure 1.4 depicts a cloud architecture where users, data management
applications and the chunks themselves send events to consistently update all
replicas of the same database.

Figure 1.4: Cloud architecture with several sources that send updates to a

set of replicated active databases. SQL Triggers execute persistent queries for

security monitoring, alerting, statistics gathering and authorization.

Replicas (database chunks) can be viewed as active databases [111] that
store all the same information. On top of them, SQL Triggers execute per-
sistent queries to audit changes, enforce and execute business rules, replicate
data, enhance performance, monitor the application and gather statistics. In-
consistency could lead to detect some pattern in a chunk hosted in a data cen-
ter, while leaving the pattern undetected in another data center. To prevent
inconsistency, a typical approach is to use transactional ACID-based mech-
anism. However, this introduces an unsubstainable load of interactions and
sycnhronizations (i.e., locks) among cloud nodes that may also hamper the
scalability of the system [29]. This is why major cloud providers are mov-
ing towards a decentralized convergence behavior in which cloud nodes are
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maintained in transiently divergent states, from which they will converge to
a consistent state over time. This behavior is known as eventual consistency
[109]: after an update completes, the system does not guarantee that subse-
quent accesses will return the updated value; there is an inconsistency window
that represents the time period between an update and the moment in which
any observer will always see the updated value.

A simple way to implement an eventual consistency algorithm is to use
a best effort data dissemination service and rollback techniques that allow
replicas to correct a wrong order. However, even if this solution avoids a
strong coordination among nodes that would increase the risk that the whole
cloud infrastructure may begin to thrash [29], it ensures that all replicas will
be consistent only after a time t. Before t the result of persistent queries is
unpredictable: in fact, the same pattern may be detected just by a subset of
SQL Triggers, due to the inconsistency of data stored in the databases.

To prevent this problem, the publish/subscribe middleware has to convey
the high volume of events generated by sources in a reliable and totally ordered
fashion. This two properties are fundamental for ensuring consistency without
locking: reliability guarantees that all replicas will receive the same set of
messages, while total order ensures that messages will be delivered in the
same order by all receivers. This avoids, or at least reduces, the need for
rollback techniques, because all chunks will see the same ordered sequence of
updates, also preventing the unpredictability in persistency query results.

Reliable delivery and total ordering can be obtained at expenses of a timely
delivery. In fact, as observed in [29], it does not matter how fast the protocol
is; the aim is to avoid self-synchronization mechanisms among cloud nodes.

Required middleware properties. The publish/subscribe middleware used
to support data consistency in cloud computing should guarantee the following
properties:

• reliable delivery: each operation on a database triggers an update event
that must be notified to all interest database chunks. The lack of reliability
can have a strong impact on the final result of an operation. As an example,
let us consider an auction bid with two bidders that issue an offer for the
same product. The two bids represent events that must be notified to a set of
database replicas. If one of the two events gets lost, then the outcome of the
bid may not consider that offer, preventing the user from a possible victory.

• total order: in order to keep coherent copies of data in database chunks,
events should be delivered in total ordering as defined in [45]. It does not
matter that event deliveries follow the real time ordering of their emission,
what matters is that every pair of events delivered by a pair of database
chunks are delivered in the same order.
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1.2.4 Flight plans exchange in the Air Traffic Control domain

To date, Air Traffic Control (ATC) has been a service provided by ground-
based controllers to direct aircrafts en route and on the ground. The European
airspace has been divided into several volumes, and the duty of controlling
flights in a given volume has been assigned to local Area Control Centers
(ACCs). En route management, departing and landing operations, surveil-
lance and flight data collection has been performed in isolation by local ACCs
only when an aircraft was close to an airport. While the traditional ATM
framework does not allow the cooperation among ACCs, the future SESAR
framework, introduced in Section 1.1, will be architected by implementing a
seamless control of aircrafts over multiple interconnected ACCs. As such, the
primary purposes of the new ATC system will be:

• to manage a higher volume of avionic traffic;

• to separate aircrafts to prevent collisions;

• to organize and expedite the traffic flow;

• to provide information and other support for pilots;

• to provide advice information for a safe ad efficient conduct of flights;

• to alert search and rescue bodies when necessary.

The SESAR architecture is depicted in Figure 1.5.
The core is represented by SWIM, a middleware solution that federates

into a SoS legacy and geographically sparse ATM systems, each one imple-
menting domain specific functionalities. SWIM realizes the many-to-many in-
formation distribution among geographically dispersed sources, which collab-
oratively update the same piece of information, and many destinations, which
need to maintain situational awareness with respect to information changes.
Air traffic controllers, airports, weather stations, pilots and radars are the
main entities in the ATC domain, each of them being both producer and con-
sumer of data. The information spread by the SWIM platform contains flight
plans, i.e., a series of information such as departure and arrival airport, the
estimated time of arrival, the route carried by the aircraft, possible alternative
airports in case of bed weather, etc.

Required middleware properties. With respect to the properties defined
in Section 1.1, the publish/subscribe middleware for the ATC scenario has to
satisfy:
• reliable delivery: each event conveyed by the middleware has to be notified
to all interested subscribers. As an example, consider flight plans exchanged
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Figure 1.5: The SESAR architecture as a federation of systems interconnected

by the SWIM network.

between several flight processors. This data contains information about the
trajectory and the coordinates of an aircraft en route; if such a message is lost,
a flight processor may not be able to infer the current position of an aircraft
and to detect possible collisions.

• timely delivery: the information must be prepared in real time, meaning that
the right information is delivered to the right place at the right time during
the entire period of the flight. The service must ensure high performance, and
it must therefore be capable of delivering very high volumes of data with very
low latency. An event delivered too late can have the same consequence of a
loss.

• causal order: the publish/subscribe middleware has to respect the causality
relationship among events. The violation of such a property, in fact, may lead
to several anomalies, as the one described in the example of Figure 1.6.

Consider two ATCs, one in France and the other one in The Netherlands,
and an aircraft currently on the Dutch airspace, tracked by the ATC in The
Netherlands. The ATC in France publishes the event e1 = ”The Paris air-
port is closed due to heavy snow“, while, after the delivery of e1, the aircraft
publishes the event e2 = ”Emergency landing request“. Because the ATC in
The Netherlands did not deliver event e1 before e2, it is not aware about the
closure of the Paris airport, and publishes the event e3 = ”Emergency landing
at Paris airport“. This obviously generates inconsistent information to the
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Figure 1.6: A violation of the causal order among events can lead to incon-

sistencies: the delay in the delivery of message e1 prevents the ATC in The

Netherlands to have a correct picture of the situation.

aircraft, leading it to a possible wrong decision.

1.3 Requirements analysis

In Table 1.1 we summarize the requirements of the analyzed case studies with
respect to reliability, timeliness and ordering policies.

↓ QoS policies Coll. sec. Stock market Active DB ATC

Delivery
Best effort

Reliable X X X X

Ordering

FIFO X

Causal X

Total X

Real time X

Timeliness soft hard hard

Table 1.1: Quality of Service requirements for the analyzed case studies.

Looking closely at Table 1.1, we notice that three out of the four case
studies we have analyzed require the timeliness property. However, the elec-
tronic market and the air traffic control are mission-critical applications, i.e.,
they impose a very tight latency bound, typically of the order of milliseconds
(referred to as hard in Table 1.1). Collaborative security, instead, imposes a
less stringent time bound, typically of the order of several seconds (referred



16 CHAPTER 1. INTRODUCTION

to as soft in Table 1.1). However, timeliness does not really matters for ac-
tive database in cloud computing. In this scenario, timeliness is traded for
scalability [29]: as such, consistency has to be ensured by avoiding the usage
of locking algorithms that would impose an unsustainable load on the system
due to the synchronization of cloud nodes. To this end, total ordering is of
fundamental importance to guarantee consistency in all database replicas, pre-
venting active queries from unpredictable results. Ordering is an important
requirement also for collaborative security, stock market and ATC. However,
all of them need different ordering policies. The stock market requires a real
time order to detect temporal relationships among events occurred at differ-
ent sources. The collaborative security scenario, instead, does not correlate
events coming from different source: collaborative processing engines are used
to detect possible ongoing port scanning attacks on single machines. As such,
just a per-source FIFO ordering is required. Finally, causal order is required
in the ATC domain, to maintain causality relationship among events.

Also reliability matters for all of the described case studies, as a missing
information could have a disruptive impact on the detection of an ongoing
attack, on the stock trading, on consistent updates and on the analysis of
aircrafts trajectory. However, it is worth mentioning that several applications
in the ATC domain, such as weather conditions monitoring or radar tracking,
can require just a best effort delivery. Indeed, due to the periodic updates
sent by sources, the loss of an event has no impact on the computation (a new
sample simply overwrites the old value).

1.4 QoS in publish/subscribe

In this Section, we analyze the QoS policies guaranteed by current pub-
lish/subscribe middleware implementations and compare them with the re-
sults reported in Table 1.1, in order to infer if they are able to satisfy, and to
what extent, the requirements of the applications. This analysis can be consid-
ered orthogonal to previous surveys on publish/subscribe systems [21, 52, 80].
The goal of [52], in fact, is to introduce the paradigm and to use the time,
space and synchronization decoupling properties of the publish/subscribe to
compare it with traditional interaction paradigms. Authors in [21], instead,
introduce a general architectural model that decomposes a publish/subscribe
system into three layers: network protocols, overlay infrastructure and event
routing. Then, the paper surveys current existing publish/subscribe middle-
ware for wired and mobile networks and positions them within the proposed
architecture. Finally, the work in [80] proposes a survey of publish/subscribe
systems considering overlay topology, matching algorithms and other aspects
such as reliability (by means of TCP links and path redundancy) and security.
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A publish/subscribe middleware can sport two different event selection
models: channel-based or content-based. The channel-based model, together
with its close sibling, the topic-based model, assumes that every event in-
jected in the system is completely characterized by a name, representing the
channel or topic it is published in; processes interested in receiving events can
declare their interest in just a subset of all the published information by join-
ing the channels where these events are expected to be injected. Examples of
channel- or topic-based middleware are: Data Distribution Service (DDS) [3],
Java Message Service (JMS) [104], TIBCO Rendezvous [106], Oracle Stream
Advanced Queuing (AQ) [89], SCRIBE [35], IndiQoS [33].

The content-based model is the most general as it assumes that all events
are characterized by a set of attributes (with their corresponding values); po-
tential receivers can issue complex subscriptions by applying constraints on
available attributes such that the publish/subscribe middleware will deliver
them only events satisfying their requirements. Examples of content-based
middleware are: JEDI [42], SIENA [34], Gryphon [101], Rebeca [54], Medym
[32].

A particular mention for Hermes [92] and PADRES [53]. The former
supports two different functionalities: (i) type-based routing, comparable to
a topic-based service with the addition of inheritance relationships between
event types; (ii) type- and attribute-based routing, that extends the type-
based routing with content-based filters on event attributes. The latter is
a content-based publish/subscribe middleware supporting workflow manage-
ment systems, characterized by: (i) a high subscription expressiveness; (ii)
a rule engine in each broker that performs subscription-publication matching
operations to determine the next hop destination of a message; and (iii) the
possibility for subscribers to subscribe future as well as past events.

1.4.1 Publish/subscribe prototypes and commercial systems

Research prototypes. Although many real world applications require sup-
port for QoS, as described in Section 1.2, the majority of current research
prototypes mainly operates on a best-effort basis [88]. Authors in [83] present
a taxonomy of QoS-aware publish/subscribe services with respect to several
aspects: timeliness, bandwidth, reliability, delivery semantics and message or-
dering. Starting from these results, in Table 1.2 we further categorize the
QoS policies satisfied by different publish/subscribe solutions based on the
properties defined in Section 1.1.

The analysis conducted in [83] stated that Hermes and Medym show re-
liability properties. However, both solutions guarantee reliability just from
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↓ QoS policies JEDI PADRES Si-R-SC-H-M IndiQoS

Delivery
Best effort X X

Reliable X X

Ordering

FIFO

Causal X

Total

Real time

Timeliness X

Table 1.2: Quality of Service policies satisfied by different publish/subscribe

middleware. The acronim ”Si-R-SC-H-M” refers to Siena, Rebeca, SCRIBE,

Hermes and Medym respectively.

the fault-tolerance point of view. In fact, they use techniques to enable event
brokers to recover after a failure, or to route information only toward brokers
known to be online, but they do not provide support for client-specific delivery
requirements as a service guarantee. On the contrary, PADRES additionally
tolerates message losses and guarantees publication delivery: overlay path
redundancy is exploited both for the routing process and fast information re-
covery. On the other hand, SCRIBE is a best-effort middleware, that provides
extensions to allow specific multicast group to use the reliable TCP transport
protocol. Anyway, broker failures are not handled: as such, if a broker fails, a
reliable delivery is no more guaranteed, even in presence of a reliable commu-
nication protocol. TCP is also used by JEDI. However, it is well-known that
the use of TCP in multicast tree overlays exhibits low throughput [22, 29] in
practical applications. In addition, the establishment of connections has an in-
herent mismatch with the decoupling properties of publish/subscribe systems
[33].

JEDI is the only publish/subscribe middleware that satisfies an ordered
delivery of events, specifically it ensures causal order. It is obtained by means
of a return value, i.e., a response message that a receiver uses to notify an
event delivery to the producer of that event. This mechanism is clearly not
scalable in presence of a high number of nodes [42] and a high event rate.

IndiQoS focuses on respecting timeliness in event dissemination. Sub-
scribers specify the latency constraint as an attribute of their subscriptions;
brokers take care to reserve a path from subscribers to publishers based on
the aggregate traffic they manage, by means of a constant number of deter-
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ministic attemps in order to find routes that satisfy those requirements. From
the analysis in [83], we can state that IndiQoS also supports bandwidth con-
straints, while Medym guarantees an exactly-once event delivery. However,
bandwidth and delivery semantics are not considered in this thesis. Finally,
publish/subscribe middleware such as SIENA and Rebeca are pure best-effort
services: differently from SCRIBE, they do not guarantee a reliable delivery
even in absence of failures (i.e., they neither provide a fault-tolerant mecha-
nism for brokers nor use a reliable communication protocol).

An analysis similar to the one presented in [83] has also been conducted in
[24], where the authors discuss relevant QoS policies and their application to
the publish/subscribe model. In particular, the paper focuses on the relation-
ship between QoS and the event notification topology. Authors indentifies two
different topologies for the global overlay that connects brokers: internal over-
lays, i.e., dissemination trees within the global overlay, and external overlays,
i.e., a broadcast overlay for each group. Authors claim that internal overlays
present scalability issues due to the presence of rendezvous nodes ([33, 35, 92]):
the total number of subscriptions of a node’s neighbors is likely to be higher
near rendezvous nodes than elsewhere in the network. This increases the load
of nodes closer to the source of a multicast tree, and, hence, the overall la-
tency. On the contrary, external overlays, such as in [54], reduce the number
of routing hops, and, then, the latency. Different overlays can also build differ-
ent topologies, to optimize with respect to their group size and requirements.
In addition, external overlays ensure message redundancy, because all nodes
in a group are interested in all messages, and prevent subscribers of different
groups to receive wrong notifications. However, external overlays are not scal-
able over a high number of groups (brokers have to maintain an overlay for
each group they belong to).

Commercial systems. Several commercial systems are nowadays available
for implementing the publish/subscribe paradigm in real world applications.
Among these systems, we mention TIBCO Rendezvous [106], DDS [3], JMS
[104], Oracle Stream Advanced Queuing (AQ) [89] and CORBA Notification
Service [1]. Both JMS and AQ can be used for point-to-point (or point-
to-multipoint) messaging and for publish/subscribe event dissemination. All
these systems differ among them for the QoS policies they offer, as reported
in Table 1.3.

DDS allows the control of a rich set of QoS parameters, such as latency
budget, reliable delivery, source-based or destination-based event order, event
persistency, subscription durability, etc [39]. This makes DDS appealing for
several mission critical scenarios, such as air traffic control and military do-
mains, where a piece of information has always to be delivered at the right
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↓ QoS policies DDS JMS TIBCO AQ CORBA

Delivery
Best effort

Reliable X X X X X

Ordering

FIFO X X

Causal

Total

Real time

Timeliness X X

Table 1.3: Quality of Service policies satisfied by different commercial systems.

place and the right time. However, the configurability of DDS comes at ex-
penses of scalability: DDS works for a small/medium local network, while
performance strongly degrades in WAN and over a high number of nodes.

A similar mention for TIBCO Rendezvous, that can be considered the
major player in the context of stock market services. Although it does not
allow the same QoS control as DDS, TIBCO Rendezvous guarantees reliable
delivery by means of retransmissions, FIFO ordering and timely delivery, due
to the use of IP multicast. However, even in this case, performance comes
at the cost of a difficult deployment in WAN, due to the lack of IP multicast
support of legacy network devices.

The only QoS policy ensured by JMS, instead, is reliability, by means of
message persistency and subscription durability [39]. The lack of timeliness
support, makes it not suitable for mission critical applications; on the contrary,
it has been used to implement the collaborative security service described in
Section 1.2.1, in the context of the CoMiFin European project [38]. As JMS,
also the CORBA Notification Service ensures only reliable delivery. A user
can choose between: (i) transient (best-effort) subscription, i.e., if a single
attempt to deliver an event fails, than the event is lost; (ii) persistent (reliable)
subscription, i.e., an event is guaranteed to be eventually delivered. It is
worth mentioning that persistent subscriptions do not take into account a
strict delivery semantics, i.e., an event can be delivered more than once.

Finally, AQ is a database-integrated service that includes query support,
triggers, indexing, transactions, consistency constraints, access control, data
management, etc. Due to its tight database coupling, it is suitable to imple-
ment active database applications. However, as JMS, AQ provides support
just for reliable delivery, by means of persistent messaging.
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1.4.2 Application requirements and QoS policies in pub/sub:

gap analysis

The QoS requirements addressed by commercial systems, such as DDS and
TIBCO Rendezvous, come at expenses of a difficult deployment and/or per-
formance degradation in WAN environment. Hence, these solutions can only
be used within local systems, while they do not result well suited to federate
local systems in a SoS. In addition, some functionality needs to be added to
fully meet all QoS requirements. As an example, DDS and TIBCO Rendezvous
provide only FIFO ordering; thus, additional algorithms and event reordering
techniques have to be deployed at application level to guarantee causal or real
time ordering, as required by ATC or stock market applications.

On the contrary, research prototypes such as SIENA, SCRIBE, Hermes,
IndiQoS, are designed to be scalable over large scale systems: the event no-
tification service is typically an application level multicast tree that conveys
the information from a publisher to all intended subscribers, without relying
on the IP multicast technology. However, we have seen in Table 1.2 that
these middleware services do not provide the necessary native support to QoS
parameters, in order to federate independent systems in SoS.

From the assessment of the study reported in tables 1.1, 1.2 and 1.3, we
can conclude that none of the current research prototypes as well as commer-
cial systems can actually be used for the novel generation of LCCIs without
extending its functionalities at application level. As such, in the next Chap-
ters of the thesis we describe a framework that can be posed on top of a
publish/subscribe middleware to address ordering, timeliness and reliability
for the implementation of applications in large scale systems. In this way,
QoS issues do not need to be addressed at application level, so as to leave
applications to implement just their native functionalities.

1.5 Challenges

Addressing QoS requirements in SoS over WAN poses unprecedented chal-
lenges in the design of algorithms. In this Section we analyze the main chal-
lenges that arise when devising protocols for ensuring ordering, timeliness and
reliability in large distributed systems.

Ordering. Ordering in single source applications can be trivially achieved
by timestamping events with a sequence number. By looking at this number,
a receiver can infer if the event can be delivered or delayed. On the contrary,
in presence of multiple sources, as in publish/subscribe systems, ensuring or-
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dering is more challenging. First of all, several order semantics can be defined:
FIFO, causal, total, real time, as done in Section 1.1. Then, while FIFO or-
der can be satisfied by timestamping events as in the case of a single source
application, causal and total order can be easily achieved only by relying on a
central entity that timestamps events with sequence numbers. The presence
of a centralized point clearly poses scalability issues in large scale systems.
However, a distributed approach in WAN may be affected by the variation
of the transmission delay [79]. This problem in publish/subscribe systems is
further exacerbated by the intersection of users’ subscriptions, with the risk
to deliver the same events in a different order to several subscribers. Finally,
real time order requires synchronized clocks: however, the WAN asynchrony
and phases of disconnection may hamper the accuracy of the synchronization
[79], and, in turn, the correct ordering of events.

Timeliness. Timeliness is a key requirement for mission critical and high
throughput applications, that try to maximize the number of tasks that com-
plete within a given deadline. However, the timeliness of a system is typically
affected by two factors: (i) the asynchrony of the network, that does not allow
to establish an upper bound on the transmission delay, and (ii) the network
and nodes failures, that can require retransmission in case of message losses.
In particular, the last point evidences a clear trade-off between timely and
reliable event notification. To date, ensuring reliability in publish/subscribe
middleware without affecting temporal constraints is still an open problem.

Reliability. A typical way to ensure reliability in event dissemination in
WAN is to impose a strong or weak feedback loop between sources and desti-
nations. However, the feedback imposes synchronization among nodes, which
can create instability in high throughput applications [44]. Examples of sys-
tem oscillations have been reported in Air Traffic Control systems, Amazon
system platform and IP multicast [28]. Decoupling the system nodes, by using
asynchronous communications whenever is conceivable and reducing synchro-
nization points as few as possible, are key requirements to effectively support
high load and scalable applications [109]. To this end, gossiping techniques
can be used to retrofit reliability in event dissemination over WAN. However,
due to the probabilistic nature of these algorithms, it is of fundamental impor-
tance to properly set the gossip parameters (i.e., number of rounds, number
of gossip partners) in order to increase the probability to notify an event to
all interested subscribers.
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1.6 Contribution

The contribution of the thesis is described in Chapters 3 and 5, where we
present novel protocols to address ordering, timeliness and reliability issues.
In addition, Chapter 4 shows how the ordering algorithm can be applied to
a database cloud to ensure eventual consistency among all database replicas.
After Chapter 2, that introduces the system model and node architecture
assumed in the remainder of the thesis, we present the main contribution as
follows:

Ordering. In Chapter 3 we propose a novel solution for out-of-order notifica-
tion detection on top of an existing topic-based publish/subscribe middleware.
Our solution guarantees that events published on different topics will be either
delivered in the same order to all the subscribers of those topics or tagged as
out-of-order. The proposed algorithm is completely distributed and is able to
scale with the system size while imposing a reasonable cost in terms of noti-
fication latency. It is based on a sequencing network of topic managers that
assign a sequence number to each event published on the topics they manage.
In addition, we define a total order relation among topics that determines
a one-way sequence of topic managers that collaboratively generate a times-
tamp for each published event. The subscribers that receive an event, can
infer the correct order by looking at the timestamp associated to that event.
Our algorithm improves the current state of the art solutions by dynamically
handling subscriptions/unsubscriptions and by automatically adapting with
respect to topic popularity changes. Indeed, we also propose a mechanism
that modifies the total order relation among topics at run-time, in order to
reduce the timestamp size and to minimize the latency overhead imposed by
the ordering algorithm. Finally, we conducted a simulation-based experimen-
tal analysis in a large scale system to evaluate the performance of our solution,
and a prototype-based study in a small scale WAN network that compares the
proposed algorithm to a solution based on the JGroups [67] communication
toolkit.

Ordering application to a database cloud. In Chapter 4 we apply the
total order algorithm described in Chapter 3 to a database cloud to ensure
eventual consistency among database replicas. We compare the performance
of our protocol in terms of notification latency and percentage of rollback
operations caused by out-of-order event delivery to a similar solution based
on a gossip algorithm for data dissemination [16]. A prototype-based experi-
mental study conducted on a cluster of real nodes shows that the cooperative
procedure used by our algorithm to generate a timestamp is fundamental to
decrease the number of out-of-order notifications, and, then, the percentage of
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rollback operations. However, this results, is obtained at the cost of a higher
latency when the number of topics increases.

Timeliness and reliability. In Chapter 5 we describe a solution that pro-
vides both reliability and timeliness in publish/subscribe systems. Although
these two requirements can be separately addressed, we decided to present a
joint solution because there exists a rich literature on algorithms for reliable
communications, but a solution for providing fault-tolerance without violat-
ing the timeliness requirements still lacks. Indeed, fault tolerance is typically
achieved at the cost of severe performance fluctuations, or timeliness is al-
ways obtained by softening the fault-tolerance requirements. On the contrary,
we propose to fulfill this lack by combining two different approaches, namely
random linear coding and gossiping, able to satisfy timeliness and reliability
requirements, respectively. We consider the scenario in which a publisher sends
information to a set of subscribers, which in turn apply a gossiping strategy to
recover from possible lost events. We also provide a theoretical model to eval-
uate the potential benefit of coding on the information delivery performance.
These results are confirmed by an experimental analysis conducted on a real
air traffic control workload, which evidences how coding mitigates latency and
overhead penalties to ensure reliable event notification.

The contributions listed above and basic ideas from which this work has
started are partially contained in the following papers: [12, 13, 50, 51]. In
addition, during the Ph.D., the author also worked in the field of peer-to-peer
systems [18, 19] and next generation networks [9, 94].



Chapter 2

System model and node

architecture

In this Chapter, we describe the system model and the node architecture that
we assume in the remainder of the thesis. Some integrations will be presented
and discussed in Chapters 3 and 5.

2.1 System model

We consider a system populated by geographically sparse and loosely synchro-
nized nodes deployed across different administrative domains; they are con-
nected by means of an overlay network built on top of a wide area network, for
example the Internet. System nodes can access a coarse grain common clock
such as Network Time Protocol (NTP) and might have knowledge about their
geographical location. This means that information can be labeled with tim-
ing and geographical timestamps. Note that due to the typical unpredictable
delays of loosely coupled distributed systems like the Internet, this kind of syn-
chronization cannot be used to reliably and totally order events produced by
independent sources [79]. The number of nodes in the system depends on the
applications: for example, in the air traffic control scenario we can have 3/4
different systems per nation federated in a SoS, where nations are those of the
European Community (currently 27); Thus, the scale of the overall SoS can
vary from few dozens to several thousand depending on the specific context.
Figure 2.1 illustrates a possible scenario of interest: it represents three US air-
ports, New York, Chicago and Las Vegas, each of which is an independent air

25
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traffic control system. A SoS deployed over the US landscape federates these
three systems by connecting some of their nodes by means of a middleware
service, that allows flight plans information sharing (dashed lines).

Figure 2.1: An example of a SoS composed by three US airports.

2.2 Node architecture

Each node in the system implements the architecture depicted in Figure 5.1.
It is composed by three building blocks: application, QoS layer and Event
Notification Service (ENS).

Figure 2.2: Architecture implemented by all SoS nodes.
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Application. The architecture we designed is targeted for several applica-
tions deployed over a large scale network, for example maritime surveillance,
air traffic control, collaborative security, next generation intelligence platform,
stock market, etc. We individuate two distinct roles: information producers,
i.e. publishers, and information consumers, i.e. subscribers.

Producers of information can be: sensors that capture data from an en-
vironment (temperature, humidity, enlightment); systems or devices, for ex-
ample firewalls, that produce log files for monitoring applications; radars or
stock market sites that generate periodic updates; data sources that update
database in a cloud.

On the contrary, consumers of information are: systems that infer envi-
ronmental conditions (fires, floodings) by analyzing data detected by sensors;
trading applications that buy and sell actions based on data produced by stock
market sites; flight processors that analyze information about flight plans.

Finally, several applications can be both publishers and subscribers. As
an example, the processing engines introduced in Section 1.2.1 can be sub-
scribers of raw events generated by firewalls of Financial Infrastructures, and
at the same time, they can also be publishers of complex events obtained by
correlating raw events coming from different sources.

QoS layer. As stated in Section 1.1, the publish/subscribe paradigm can
be really the winning solution for event dissemination in SoS only if the mid-
dleware is able to offer a means to provide QoS. Due to the best effort nature
of publish/subscriber middleware, also discussed in Section 1.4, we wrap the
ENS with a Quality of Service Layer that ensures some of the QoS properties
indroduced in Section 1.1, specifically total ordering, timeliness and reliability.
We extensively described in Sections 1.2, 1.4 and 1.5 how these aspects affect
the implementation of large scale applications.

Blocks in the QoS layer are independent and can be combined together
in order to satisfy the QoS requirements of the specific application. The QoS
layer intercepts events published by the application or notified by the ENS,
and runs one or more algorithms depending on the selected QoS blocks. In
Chapter 5 we will show how two independent blocks, namely timeliness and
reliability, can be used together without further modifications. The QoS layer
may also require additional interaction among nodes, and it can be done by
accessing a point-to-point communication primitive that can be offered by the
operating system or by other solution like an overlay network. Finally, when
the QoS layer has completed its task, it publishes the events on the ENS or
notifies them to the subscriber application.
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Event Notification Service. The communication model used in our archi-
tecture follows the event-based publish/subscribe paradigm. The interaction
among publishers and subscribers is mediated by a distributed topic-based
Event Notification Service (ENS), that provides the standard interface of a
publish/subscribe middleware [91]:

• publish(): invoked by publishers to publish events in the system;

• subscribe(): invoked by subscribers to declare an interest in a topic of
events;

• unsubscribe(): invoked by subscribers to unsubscribe from a previously
subscribed topic;

• notify(): invoked by the ENS to deliver events to subscribers according
to their topics of interest.

The intrisic decoupling properties of the publish/subscribe paradigm make
it appealing for satisfying scalability requirements of large scale application as
previously mentioned. In addition, it is worth noticing that the presented QoS
layer exposes the same interface of the ENS; thus neither the applications, nor
the ENS must be changed in order to work with our framework. This aspect,
joint with the facts that the QoS layer does not require any degree of synchro-
nization among participants and does not violate the anonymity principle of
the publish/subscribe paradigm, makes our framework independent from the
underlying ENS implementation, such that all the current solutions described
in Section 1.4 can be employed in practice.



Chapter 3

Ordering issues

A distributed ENS can route events toward subscribers using multiple paths
with different lengths and latencies; as a consequence, subscribers can receive
events out of order. However, many research efforts in publish/subscribe sys-
tems focused on reliability and performance aspects with few contributions in
the area of event ordering [58, 79, 82, 84]. Defining a coherent specification
for notification ordering is a fundamental step for the case studies analyzed in
Section 1.2 and for a wide range of other applications such as online games [26],
messaging, or those based on composite event detection [93]. All these appli-
cations assign a semantics to the order in which events are notified; therefore,
it is important that a notification ordering is specified and that the underly-
ing ENS is able to guarantee its adherence to this specification or, at least,
to provide hints about which subsets of notifications are guaranteed to be no-
tified “in order”. As an example, in composite event detection applications,
ordering is fundamental to recognize pattern of sequences on the input event
stream [93].

In this Chapter, we address the following simple ordering problem: how to
guarantee that two subscribers sharing (at least) two same subscriptions are
notified about events matching those subscriptions in the same order. While
the above ordering problem stems from the simple rationale that two partic-
ipants should always see the notification of two events in the same order, its
enforcement in distributed ENSs is far from being trivial. Violations to the
ordering property can easily arise due to the fact that two events, possibly
published by different publishers, can follow distinct paths through the ENS
before reaching the point where they will be notified to the final recipients1.

1Non-determinism in the form of unpredictable network latencies and message losses can

easily exacerbate the problem.
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The impact of this problem can be easily seen by running a simple experiment
executed on a toy application where two subscribers receive events published
by two sources on two different topics, and check the occurrence of a specific
notification pattern (e.g. the sequence of notifications e → e′ → e′′); the re-
sults we obtained by running this test in a simple setting where events are
diffused using SCRIBE show how the ENS notifies events in a best-effort fash-
ion without providing any form of ordering, thus allowing the two subscribers
to coherently detect only about 35% of the patterns (further details on this
test are reported in Section 3.5). Current approaches to solve this problem
either (i) use hardware-based synchronization solutions to timestamp events
[79] or (ii) implement total order [58] among all the receiving participants by
trading performance for strong ordering guarantees, or (iii) give up some or-
dering aspects only guaranteeing per-source ordering [3] or, finally, (iv) require
complex offline set-ups that must be continuously updated when subscribers
change their interests [82].

In this Chapter we present a novel algorithm for out-of-order notifica-
tion detection in distributed topic-based systems. Our solutions, encapsulated
within a software component that can be deployed on top of any existing topic-
based ENS, transparently delivers events notified by the ENS to the applica-
tion layer and is able to deterministically tag every event whose notification
violates the following total notification order property: if two independent
subscribers are notified about the same two events, then these two events will
be notified to them in the same order2. Out-of-order detection is realized by
comparing logical timestamps that our algorithm automatically generates and
attaches to events. The algorithm can use a configurable buffer to re-order
events prior to notification as this can easily reduce the number out-of-order
notifications. The algorithm performance has been analyzed through an ex-
tensive experimental study whose results show how our solution has a small
impact on the event diffusion latency and the ability to dynamically adapt its
behaviour to the current topic popularity distribution. Finally, we developed
a prototype implementation of our algorithm, whose performance has been
compared to a solution based on the JGroups [67] toolkit.

3.1 System model and problem statement

We assume that publishers and subscribers share a common knowledge about a
set of available topics, and that each subscriber issues a subscription containing
the set of topics it is interested in. An event e published on a topic T matches

2Note that this delivery order does not necessarily correspond to the real-time event

production order.
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a subscription S if and only if T ∈ S; if this happens, the corresponding
subscriber must be notified about e.

In addition, in order to simplify the description of our solution, we will
initially assume that our system works on top of a reliable communication
substrate, that all communication links deliver messages in FIFO order, and
that all processes are correct. Some of these assumptions will be removed or
relaxed in Section 3.4.

The ordering property we want to enforce is defined as follows:

Property 1. Total Notification Order (TNO). Let ei and ej be two

distinct events notified to a subscriber s. If ei is notified to s before ej, no

subscriber will be notified about ei after being notified about ej.

Note that this definition matches the definition of Weak Total Order given
in [14] in the context of total order specifications [45]. Differently from those
specifications, we do not consider any form of deterministic agreement (uni-
form or not uniform) because here we are only interested in designing an
ordering layer to be transparently plugged on top of a generic ENS which can
provide different reliability and agreement properties.

Guaranteeing TNO in a distributed setting is a non trivial task. Consider,
for example, the toy system depicted in Figure 3.1: the six black dots represent
processes constituting the ENS, the white dots on the left (p1 and p2) are two
publishers and those on the right (s1 and s2) are two subscribers.

p2

e1

e2

A BTMT1

C D

ENS

e1,e2

e2,e1

p1 s1

s2
TMT2

single hop multiple hops

Figure 3.1: An example showing how notifications can be performed out of

order in a distributed event notification service.

A simple solution for ordering events published on a specific topic is based
on the usage of topic managers: a single node in the ENS is elected as a
“sequencer” for all the events published in that topic. In our example TMT1
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acts as the topic manager node for topic T1, receiving all the events published
in T1 (i.e., event e1 published by p1), adding a sequence number to them,
and then routing the events toward the intended destinations (i.e., s1 and s2
notified by nodes B and D).

However, this simple approach is not useful when the subscriptions inter-
sect in multiple topics. For example, assume that both s1 and s2 are sub-
scribed to T1 and T2. In this case the sequence numbers attached by TMT1

and TMT2 would be completely uncorrelated and thus useless to check for a
correct notification order on the subscribers’ side. The obvious solution, i.e.
having a single topic manager for all the topics, has important scalability and
reliability drawbacks and cannot thus be considered as a realistic alternative.

3.2 The event ordering algorithm

This Section first describes how the proposed solution can fit within an existing
architecture based on publish/subscribe interactions, and then, details the
algorithm that implements the solution.

3.2.1 Architectural aspects

Our solution assumes that all participants to the system (publishers and sub-
scribers) are equipped with an Ordering module that implements the algorithm
described in the next Section (see Figure 3.2). This module mediates the inter-
actions between application level software components, that act as information
producers (publisher applications) or consumers (subscriber applications), and
a standard ENS.

We also assume that the set of available topics is fixed and a precedence
relationship → holds among topic identifiers inducing a total order on them3.
Moreover, we assume that there is a method to univocally map a topic T to a
single participating node in the system that will act as the topic manager for
that topic (TMT ). This latter assumption can be satisfied in several different
ways, i.e., through a static mapping provided as a configuration parameter
or using a distributed hash table as in rendez-vous based publish/subscribe
systems [35]. In the following, whenever there is no ambiguity, we will use
the terms publisher and subscriber to refer the parts of our ordering module
located respectively at the publisher and at the subscriber site.

3This assumption will be relaxed in Section 3.4 where we will show how this order can

be changed at run-time in order to improve the performance.



3.2. THE EVENT ORDERING ALGORITHM 33

Figure 3.2: Architectural view that shows how the ordering module acts as

a mediating software layer between the applications and an existing event

notification service.

3.2.2 Algorithm description

The basic idea behind the algorithm is to assign a logical timestamp to each
event. By looking at a timestamp, a subscriber must be able to decide if the
event can be notified or it needs a tag, witnessing that it was received out of
order. The notified application will then take a decision on how out-of-order
events must be treated. The algorithm to be executed when an event is pub-
lished is split in three phases: (i) timestamp generation, where a timestamp is
generated for the event, (ii) event diffusion, where the ENS delivers the event
and its timestamp to all the intended subscribers, and (iii) event notification,
where subscribers, by looking at the timestamp content, decide if the event
must be tagged as out-of-order before notifying it (Figure 3.3). The algorithm
uses only local information maintained by each process: a topic manager TMT

stores all subscriptions containing topic T and a sequence number that counts
the number of events published on T , while each subscriber stores its subscrip-
tion S and a set containing the sequence number of the last event notified on
T , for each topic T ∈ S (i.e., it maintains a local subscription clock).

The first phase is started by a publisher requiring the creation of a times-
tamp for a new event e published on a topic T . The timestamp creation for e
is carried out by the subset of TMs associated to topics belonging to the se-
quencing group of T (namely SGT ). SGT is a set of topics including all T ′ such
that (i) T ′ → T and (ii) there are at least two subscriptions including both T
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Figure 3.3: Example of a system run with two subscribers, Si and Sj , and a

publisher P .

and T ′. The timestamp generation procedure is started by TMT when it re-
ceives the request of a timestamp generation from the publisher. TMT creates
the structure of the timestamp adding one entry for each topic T ′ such that
T ′ ∈ SGT , stores T ’s current sequence number and forwards the timestamp to
the TM associated to the first topic in SGT that precedes T according to the
precedence relation →. Note that, given a specific order T1 → T2 → · · · → Tn
among topics, the timestamp generation flow proceeds in the opposite direc-
tion (i.e., given a topic Ti, TMTi will fill in the timestamp and forward it to
some TMTj such that Tj → Ti). The receiving TM adds the sequence number
for the topic it manages to the timestamp and sends it to the TM associated
to the next topic in SGT . When the last TM completes the timestamp, it is
returned to the publisher that will publish the event on the ENS together with
the timestamp, starting the event diffusion phase. This collaboration among
several TMs in the creation of a timestamp is fundamental to totally order
events published on their corresponding topics, and thus it avoids possible
TNO violations like the one shown at the end of Section 3.1. Referring to the
example in Figure 3.3, where the topic order is T1 → T2 → T3, the publisher
P publishes an event e on topic T2 and asks TMT2 to create the timestamp.
In this case SGT2 = {T2, T1}. Therefore TMT2 creates the structure of the
timestamp with entries for topics T2 and T1, puts its sequence number in the
timestamp and forwards it to TMT1 that, in turn, will complete the times-
tamp and return it to P . Finally P publishes both e and its timestamp on
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the ENS.

In the event notification phase, once an event e and its timestamp are
notified by the ENS, the subscriber checks if the timestamp attached to the
event is coherent with the event order maintained through the local subscrip-
tion clock. If so, the event is notified to the application, otherwise it is tagged
to let the application be aware that it is notified out-of-order (cfr. paragraph
notify() Operation in the following). Once an application is notified about
an unordered event, it will decide, according to its specific requirements, if the
order inversion can be tolerated or if the event must be discarded.

Note that, given a topic T , its sequencing group is defined according to
all subscriptions containing T . As a consequence, every new subscription
(or unsubscription) to topic T induces a modification of the subset of topic
managers involved in the timestamp generation phase. Thus, when a topic T
is added to a subscription S, each topic manager TMT ′ associated to a topic T ′

in S must be advertised about the change of the subscription to avoid possible
TNO violation. To this aim, the subscriber creates an empty subscription
timestamp, containing one entry for each topic in the subscription. Similarly
to event timestamp, each entry of the subscription timestamp is filled in by the
corresponding topic manager. In addition, receiving the request, each topic
manager TMT updates the list of subscriptions it knows. When the sequence
number of the last topic manager belonging to the subscription is added, the
latter sends the complete timestamp to the subscriber, that, in turn, resets
its local subscription clock. The same approach is used to unsubscribe a
topic. When a subscriber is no longer interested in events of a topic T , it
advertises the change on the subscription to topic managers managing topics
in its subscription. Receiving the unsubscription, a topic manager just updates
the set of subscriptions it knows.

In the following, before describing the algorithm operations in detail, we
first provide the definition of a timestamp associated to an event e and then
we specify an order relation between two timestamps.

Definition 1. Let e be an event published on a topic T , T1 → T2 → · · · → Tn

be the topic ordering and let SGT be the sequencing group of T . A timestamp

tse for e is a set of pairs < Ti, sni > ordered according to the precedence

relation→, where Ti ∈ SGT is a topic identifier and sni is e’s sequence number

for topic Ti.

Definition 2. Let tse and tse′ be two timestamps associated with two different
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events e and e′. We say that tse and tse′ are comparable if there exists at least

one topic identifier included both in tse and tse′ (i.e. ∃ tid, i, j | (< tid, i >∈

tse) ∧ (< tid, j >∈ tse′)).

From the two definitions above, it is easy to see that given two events e
and e′ published respectively on topic T and T ′, the corresponding timestamps
tse and tse′ are comparable if and only if SGT ∩ SGT ′ 6= ∅.

Definition 3. Let tse and tse′ be two timestamps associated with two different

events e and e′. We say that tse is smaller than tse′ (i.e. tse < tse′) if

1. tse and tse′ are comparable and

2. ∀ < tid, sn >∈ tse | ∃ < tid, sn
′ >∈ tse′, sn ≤ sn′ and

3. ∃ < tid, sn >∈ tse | ∃ < tid, sn
′ >∈ tse′, sn < sn′

As an example, in Figure 3.3 we show the timestamps for three published
events e, e′ and e′′. Considering the timestamp ts associated to e and the
timestamp ts′ associated to e′ we have that they are comparable (there is at
least one topic, i.e., T1, belonging to both ts and ts′); on the contrary, ts and
ts′′ (or even ts′ and ts′′) are not comparable. Moreover, considering ts and
ts′, we have that ts < ts′.

Local data structures to each publisher pi: each publisher maintains
locally the following data structures:

• ide: is a unique identifier associated to each event produced by pi.

• outgoingEventsi: a set variable, initially empty, storing the events in-
dexed by event id that are published by the upper application layer, and
that are waiting for being published on the ENS.

Local data structures to each subscriber si: each subscriber maintains
locally the following data structures:

• subsi: a set variable storing topics subscribed by pi;

• sub LCi: a set of pairs < Ti, sni >, where Ti is a topic identifier and sni
is an integer value; sub LCi contains a pair for each topic Ti ∈ subsi.
Initially, for each topic Ti ∈ subsi the corresponding sequence number is
⊥.
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Local data structures to each topic manager TMTi : to simplify the
notation, we assume that each topic manager TMi is responsible for one topic
Ti

4. Each topic manager maintains locally the following data structures:

• LCTi : is an integer value representing the sequence number associated
to topic Ti, initially 0.

• externalSubsTi : a set of pairs < id, sub > where sub is a subscription
(i.e., a set of topics {Tj , Tk . . . Th}) and id is the subscriber identifier.
Such a set contains all the subscriptions that include Ti.

As an example, let us consider the system depicted in Figure 3.3. Let
Si = {T1, T2, T3} and Sj = {T1, T2} be respectively the two subscriptions of
si and sj . The three variables externalSubs maintained by each topic manager
are respectively: externalSubsT1 = {< i, Si >,< j, Sj >}, externalSubsT2 =
{< i, Si >,< j, Sj >} and externalSubsT3 = {< i, Si >}.

publish() Operation. The algorithm for a publish() operation is shown
in Figure 3.5. To simplify its pseudo-code, we defined the following basic
functions:

• generateUniqueEventID(e): generates a locally unique identifier for a spe-
cific event e.

• next(ts, T ): given a timestamp ts and a topic identifier T , the function
returns the identifier of the topic T ′ preceding T in the timestamp ts,
according to the precedence relation→; if a null value is passed as topic
identifier, the function returns the last topic identifier contained in the
timestamp.

• getTopicRespAddress(T ): returns the network address of the topic man-
ager TMT responsible for topic T .

• update(ts, T, LCT ): updates the event timestamp ts changing the pair
< T,− > with the pair < T,LCT >.

In addition, we have defined a more complex function, namely createPub-
Timestamp (T, externalSubsT ), that generates an empty timestamp for a
generic event published on topic T by considering the set of subscriptions
containing T (i.e., subscriptions stored in externalSubsT ). The pseudo-code
of the function is shown in Figure 3.4.

4This assumption does not limit the applicability of our solution. If the topic manager

is responsible for more than one topic, its local variables must be duplicated, one for each

topic.
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function createPubTimestamp(T, externalSubs):

(01) for each < −, s >∈ externalSubs do SGT ← SGT ∪ s; endfor

(02) sort (SGT );

(03) for each Tj ∈ SGT : Ti → Tj do SGT ← SGT /{Tj}; endfor

(04) for each Tj 6= Ti ∈ SGT do

(05) let S = {s ∈ externalSubs|Tj ∈ s};

(06) if (|S| ≤ 1) then SGT ← SGT /{Tj} endif

(07) endfor

(08) for each Tj ∈ SGT do ts← ts ∪ {< Tj ,⊥ >}; endfor

(09) return ts.

Figure 3.4: The createPubTimestamp() function (for a topic manager TMTi).

We want to remark that an event timestamp has an entry only for those
topics that precede T in the topic order (line 03) and that appear in more
than one subscription together with T (lines 04-07).

Considering the execution depicted in Figure 3.3 and the topic order T1→
T2 → T3, we show how the timestamp of the event e published on T2
is created. The procedure can be summarized in the following steps: (i)
SGT = {T1, T2, T3} initially represents the sorted union of all the subscrip-
tions containing T2 (lines 01-02), (ii) SGT = {T1, T2} is the result after filter-
ing out topics following T2 according to the precedence relation → (line 03),
and (iii) tse = {< T1,⊥ >,< T2,⊥ >} is the empty timestamp built from
SGT .

When an event e is published on a topic T , the publisher pi executes the al-
gorithm shown in Figure 3.5(a). In particular, it associates to e a unique iden-
tifier generated locally (line 01), it puts the event, together with the topic and
the corresponding identifier in a buffer (line 02) and sends a create pub ts
(ide, i, T ) message to the topic manager TMT , associated to T (lines 03-04).

Receiving the create pub ts (ide, i, T ) message, TMT executes the algo-
rithm shown in Figure 3.5(b). In particular, it first creates an empty times-
tamp tse by executing the createPubTimestamp function, it increments its local
sequence number (line 02), updates the corresponding entry in tse (line 03)
and sends a fill in pub ts message containing the timestamp, to the pre-
ceding topic manager until tse has been completed and it is finally returned
to the publisher. Note that, when a topic manager receives a fill in pub ts
message, it just attaches its local sequence number (line 12). Figure 3.3 shows
an example of the complete publish procedures for three different events with
the corresponding timestamps.
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operation publish(e, T ):

(01) ide ← generateUniqueEventID (e);

(02) outgoingEvents← (e, ide, T );

(03) dest← getTopicRespAddress(T );

(04) send create pub ts (ide, i, T ) to dest;

————————————————————————————

(05) when event ts (ts, eid) is delivered:

(06) let < e, ide, T >∈ outgoingEvents

(07) such that (eid = ide);

(08) ENSpublish(< e, ts >, T );

(09) outgoingEvents← outgoingEvents/{< e, ide, T >}.

(a) Publisher Protocol (for a publisher process pi)

(01) when create pub ts (eid, j, T ) is delivered:

(02) ev ts← createPubTimestamp(T, externalSubsTi
);

(03) LCTi
← LCTi

+ 1;

(04) ev ts← update(ev ts,< Ti, LCTi
>);

(05) if (|ev ts| = 1)

(06) then send event ts (ev ts, eid) to pj ;

(07) else t′ ← next(ev ts, Ti);

(08) dest← getTopicRespAddress(t′);

(09) send fill in pub ts (ev ts, eid, j) to dest;

(10) endif

————————————————————————————

(11) when fill in pub ts (ts, eid, j) is delivered:

(12) ts← update(ts,< Ti, LCTi
>);

(13) t′ ← next(ts, Ti);

(14) if (t′ = null)

(15) then send event ts (ts, eid) to pj ;

(16) else dest← getTopicRespAddress(t′);

(17) send fill in pub ts (ts, eid, j) to dest;

(18) endif.

(b) TM Protocol (for a topic manager TMTi)

Figure 3.5: The publish() protocol.

notify() Operation. When an event e is notified by the ENS, a subscriber
si executes the algorithm shown in Figure 3.6. The algorithm uses a function
tag(e) that creates a new event e′, containing e and the indication that it has
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been delivered out-of-order. The event e is not immediately notified to the
application layer. A subscriber si first checks if the event has been published
on a topic actually subscribed by si and then checks if it has been notified by
the ENS in the right order (line 01). If such condition is not satisfied, a new
event e′ is created by tagging e; then, the event e′ is notified to the application
(lines 09-11).

upon ENSnotify(< e, ts >, T ):

(01) if ((T ∈ subsi) ∧ (sub LCi < ts))

(02) then trigger notify (e, T ); % ordered notification

(03) for each (< Tj , v >∈ sub LCi)

(04) if((∃ < Tj , v
′ >∈ ts) ∧ (v′ > v))

(05) then sub LCi ← sub LCi/{< Tj , v >}

(06) sub LCi ← sub LCi ∪ {< Tj , v
′ >}

(07) endif

(08) endfor

(09) else e′ ← tag(e);

(10) trigger notify (e′, T ); % out-of-order notification

(11) endif

Figure 3.6: The notify() protocol (for subscriber si).

On the contrary, if the event can be notified, si triggers the notification
to the application (line 02) and then updates its local subscription clock with
the sequence numbers contained in the event timestamp (lines 03-08).

subscribe() and unsubscribe() Operations. The algorithm for a
subscribe() operation is shown in Figure 3.7. To simplify its pseudo-code,
in addition to the functions used in the publish() algorithm, we defined the
createSubTimestamp(sub) function, that creates an empty subscription times-
tamp, i.e., a set of pairs < T, sn > where T is a topic identifier and sn is
the sequence number for T , initially set to ⊥. The subscription timestamp
contains a pair for each topic T of a subscription S.

When a subscriber si wants to subscribe a new topic T , it executes the al-
gorithm shown in Figure 3.7(a). In particular, it creates an empty subscription
timestamp through the createSubTimestamp function (including also topic T ),
and then it sends a fill in sub ts (ts, (subsi ∪ {T}), id) message to fill the
timestamp and to forward the new subscription to the topic manager TMTk

responsible for the last topic in the subscription, according to the precedence
relation → (lines 02-04).
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operation subscribe(T ):

(01) ts← createSubTimestamp(subsi ∪ T );

(02) t′ ← next(ts, null);

(03) dest← getTopicRespAddress(t′);

(04) send fill in sub ts (ts, (subsi ∪ {T}), id) to dest;

———————————————————————————-

(05) when completed sub vc (ts, s) is delivered:

(06) sub LCi ← ts;

(07) subsi ← subsi ∪ {T};

(08) ENSsubscribe(T );

(a) Subscriber Protocol

(01) when fill in sub ts (ts, sub, j) is delivered:

(02) externalSubsi ← update (externalSubsi, < j, sub >);

(03) LCTi
← LCTi

+ 1

(04) ts← update (ts,< Ti, LCTi
>);

(05) t′ ← next (ts, Ti);

(06) if(t′ = null) then send completed sub vc (ts, s) to j;

(07) else dest← getTopicRespAddress(t′);

(08) send fill in sub ts (ts, s, j) to dest;

(09) endif

(b) TM Protocol

Figure 3.7: The subscribe() protocol.

Upon the delivery of a fill in sub ts message, each topic manager TMT ′

executes the algorithm shown in Figure 3.7(b). In particular, TMT ′ updates
its externalSubsk variable with the new subscription (line 02), increments its
local sequence number (line 03), updates its entry in the subscription times-
tamp (line 04) and finally forwards the fill in sub ts message to the pre-
ceding topic manager until it is completed and returned to the client. When
the subscriber receives the completed subscription timestamp, it updates its
local subscription clock (line 06) and then makes the subscription effective by
calling the ENSsubscribe() method (line 08).

The algorithm for the unsubscribe() operation is shown in Figure 3.8.
A subscriber that wants to unsubscribe from a topic T , removes it from the
set of subscribed topics (line 01) and, then, informs all topic managers of
these topics with the updated subscription through an update sub message
(lines 02-05), including the topic manager of T that will receive an empty
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operation unsubscribe(T, subID):

(01) subsi ← subsi/{T};

(02) for each Tj ∈ subsi do

(03) dest← getTopicRespAddress(Tj);

(04) send update sub (subID, subsi) to dest;

(05) endfor

(06) dest← getTopicRespAddress(T );

(07) send update sub (subID, ∅) to dest;

(08) ENSunsubscribe(T );

(a) Subscriber Protocol

when update sub (id, s) is delivered:

(01) if (s 6= ∅)

(02) then externalSubsi ← update(externalSubsi, < id, s >);

(03) else externalSubsi ← externalSubsi/{< id,− >};

(04) endif.

(b) TM Protocol

Figure 3.8: The unsubscribe() protocol.

subscription (lines 06-07). When receiving an update sub message (Figure
3.8(b)), topic managers update the externalSubs set accordingly with the
received subscription.

3.2.3 Correctness proof

In this Section, we will show that the TNO property holds for any pair of
non-tagged events.

Definition 4. Given a generic subscriber si, let us denote τn(i, e) as the time

instant at which the ENS notifies an event e to si.

Lemma 1. Let e1 and e2 be two events published respectively on a topic T . If

a subscriber si notifies e1 before e2 then any other subscriber that notifies both

e1 and e2 will notify e1 before e2.

Proof Let us suppose by contradiction that there exist two subscribers,
namely si and sj , that notify both e1 and e2 published on topic T , but si
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notifies e1 and then e2 (i.e., τn(i, e1) < τn(i, e2)), while sj notifies e2 and then
e1 (i.e., τn(j, e2) < τn(j, e1)).

Given a generic subscriber sk notifying both e1 and e2, it follows that at
time τn(k, e1), T1 ∈ Sk and at time τn(k, e2), T2 ∈ Sk.
Moreover, sub LCk(τn(k, e1)) ≤ tse1 and sub LCk(τn(k, e2)) ≤ tse2 .
Given the two timestamps tse1 and tse2 associated respectively to e1 and e2,
let us first consider how they have been created and then let us show that it
is not possible to have inversions in the notification order.

Let pk and ph be respectively the publishers of events e1 and e2. When a
publisher publishes an event, it executes line 04 of Figure 3.5(a) and it sends
a create pub ts message.
Without loss of generality, let us assume that TMT delivers first the cre-
ate pub ts message sent by pk and then the create pub ts message sent
by ph.

Let v be the value of the local clock maintained by TMT when it delivers
the create pub ts message sent by pk. When TMT delivers such a message,
it creates an empty event timestamp tse1 through the execution of the cre-
atePubTimestamp function (cfr. Figure 3.4), it increments its local clock (i.e.
LCT = v+1) and it includes the pair < T, v+1 > in tse1 (lines 03 - 04, Figure
3.5(b)). Then two cases can happen:

1. tse1 contains only the entry for T (line 05): tse = {< T, v + 1 >}
and TMT returns the completed timestamp to the publisher for the
publication on the ENS.

2. tse1 contains more than one entry (lines 06 - 09): in this case,
there exists a topic T ′ following T in the topic order and TMT sends a
fill in pub ts message to TMT ′ . Receiving such a message, TMT ′ just
updates the pair < T ′,⊥ > contained in tse with its current sequence
number for T ′ and it checks if there exists a topic T ′′ following T ′ in
the timestamp. If so, it forwards the fill in pub ts message to TMT ′′ ,
otherwise, it returns tse to the publisher (lines 11 - 16).

When TMT delivers the create pub ts message sent by ph, it repeats
the previous actions: it creates a template tse2 for the timestamp, increments
its local sequence number (i.e., LCT = v + 2), includes the pair < T, v + 2 >
in tse2 and sends the timestamp to the publisher or to the following topic
manager.

Considering that the subscriptions are stable, the timestamp will always
include the same entries, i.e., tse1 and tse2 contain a set of pairs differing only
for the sequence numbers associated to each topic. In particular, considering
that (i) a topic manager can only increment its local sequence number when a
publish occurs, and (ii) topic managers are connected through FIFO channels,
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it follows that for each topic Ti the sequence number v′ associated to Ti in tse2
cannot be smaller than the one associated to Ti in tse. Therefore, tse1 < tse2 .

Considering that (i) as soon as an event e is notified to the application
layer, the local subscription clock of the subscriber is updated according to
the event timestamp (lines 03 - 06, Figure 3.6), and that (ii) tse1 < tse2 , we
have that sj evaluating the notification condition at line 01 will discard event
e1 after the notification of e1. This clearly leads to a contradiction.

2Lemma 1

Lemma 2. Let e1 and e2 be two events published respectively on a topic T1

and on a topic T2, with T1 6= T2. If a subscriber si notifies e1 before e2 then

any other subscriber that notifies both e1 and e2 will notify e1 before e2.

Proof For ease of presentation and without loss of generality, let us assume
that T1 and T2 are the two only topics subscribed by both si and sj

5 (i.e.
{T1, T2} ⊆ Si, Sj).

Let us suppose by contradiction that there exist two subscribers, namely si
and sj , that notify both e1 (published on topic T1) and e2 (published in topic
T2) but si notifies e1 and then e2 (i.e. τn(i, e1) < τn(i, e2)) while sj notifies e2
and then e1 (i.e. τn(j, e2) < τn(j, e1)).

Given a generic subscriber sk, if it notifies both e1 and e2, it follows
that, at time τn(k, e1), T1 ∈ Sk and at time τn(k, e2), T2 ∈ Sk. Moreover,
sub LCk(τn(k, e1)) ≤ tse1 and sub LCk(τn(k, e2)) ≤ tse2 .

Given the timestamps tse1 and tse2 associated respectively to e1 and e2,
let us first consider how they have been created and then let us show that it
is not possible to have inversions in the notification order.

Without loss of generality, let us assume that T1 has higher priority than T2
in the topic order (i.e., in any timestamp containing an entry for both T1 and
T2, T1 follows T2 in the sequence). Considering the createPubTimestamp func-
tion shown in Figure 3.4, each event published on T1 will have attached a times-
tamp containing a pair < T1, v1 > and each event published on T2 will have
attached a timestamp containing the following pairs < T1, v1 >,< T2, v2 >.

When e2 is published by the application layer, the publisher sends a cre-
ate pub ts request for the event timestamp to TMT2 (line 04, Figure 3.5(a)).
Receiving such a request, TMT2 executes line 01 of Figure 3.5(b) (i.e. cre-
atePubTimestamp function) and creates an empty event timestamp containing
an entry both for T1 and T2 (i.e., tse2 ⊇< T1,⊥ >,< T2,⊥ >), it increments

5The proof can be easily extended to multiple intersections, by iterating the reasoning

for any pair of topics that appears in more than one subscription.
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its local clock, let’s say to a value v (line 02), it updates its component of the
timestamp with its local clock (i.e. tse2 ⊇< T1,⊥ >,< T2, v >) and then it
sends a fill in pub ts message containing tse2 to the following topic man-
ager selected in the event timestamp according to the precedence relation →
(i.e., to TMT1).
The same procedure is executed when e1 is published.

Note that, in the worse case scenario, due to concurrency in the timestamp
creation procedure, TMT1 can either deliver first the fill in pub ts message
sent by TMT2 and then the create pub ts sent from the publisher of e2
or viceversa, it can first manage the create pub ts message and then the
fill in pub ts message.

1. TMT1 delivers the create pub ts message for event e1 and then
the fill in pub ts message for tse2 . Delivering the create pub ts
for event e1, TMT1 creates an empty event timestamp for e1 (i.e., tse1 ⊇<
T1,⊥ >), it updates its local clock to v1 + 1, it updates its component of
the timestamp with its local clock (i.e., tse1 ⊇< T1, v1 + 1 >) and then
it sends a fill in pub ts request containing tse1 to the following topic
manager in the topic order (if any) or directly to the publisher.
Delivering the fill in pub ts message for tse2 , TMT1 executes line 11
of Figure 3.5(b), and updates its component of the timestamp with its
local clock (i.e., tse2 ⊇< T1, v1 + 1 >,< T2, v >). Then, it sends a
fill in pub ts request containing tse2 to the following topic manager
in the topic order (if any) or directly to the publisher.

2. TMT1 delivers the fill in pub ts message for tse2 and then the
create pub ts message for event e1. Delivering the the fill in pub ts
message for tse2 , TMT1 executes line 11 of Figure 3.5(b), and updates its
component of the timestamp with its local clock (i.e., tse2 ⊇< T1, v1 >
,< T2, v >). Then, it sends a fill in pub ts request containing tse2 to
the following topic manager in the topic order. On the contrary, deliv-
ering the create pub ts for event e1, TMT1 creates the template for
the event timestamp (i.e., tse1 ⊇< T1,⊥ >), updates its local clock to
v1 + 1, updates its component of the timestamp with its local clock (i.e.,
tse1 ⊇< T1, v1 + 1 >) and then it sends a fill in pub ts request con-
taining tse1 to the following topic manager in the topic order (if any) or
directly to the publisher.

Note that, TMT1 only attaches its local clock to the timestamp for e2 with-
out incrementing it; thus, the two cases can be considered together. Let us
now consider the behavior of si and sj when the notification is triggered by
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the ENS.

Subscriber si. At time τn(i, e1), si notifies e1 and then updates its local
clock by executing lines 03 - 08 of the notification procedure. In particular,
si updates sub LCi with the pair < T1, v1 > (or < T1, v1 + 1 >). At time
τn(i, e2), si is notified by the ENS about e2. Since it has updated only the
sub LCi entry corresponding to e1, and considering that the value v has been
assigned to T2 for e2, it means that sub LCi ≤ tse2 and also e2 can be notified.

Subscriber sj. At time τn(j, e2), sj notifies e2 and then updates its local
clock by executing lines 03 - 08 of the notification procedure. In particular, sj
updates sub LCi with the pairs < T1, v1 > (or < T1, v1 + 1 >) and < T2, v >.
At time τn(j, e2), sj is notified by the ENS about e2. Looking to tse2 , it is
not smaller equal than sub LCi (i.e., there not exists a component where the
timestamp is strictly greater than the local clock). Therefore the condition at
line 01 is not satisfied, e1 is discarded and we have a contradiction.

2Lemma 2

Theorem 1. Let ek and eh be two events. If a subscriber si notifies first ek

and then eh, any other subscriber that notifies both ek and eh will notify ek

before than eh.

Proof The proof trivially follows from Lemma 1 and Lemma 2. 2Theorem 1

3.3 Causality relation among events

In this Section we show that the events published on the same topic maintain
a causality relation among them. To this end, we assume that each process
that is publisher on a topic T , it is also a subscriber of the same topic. Thus,
we define a causality relation “ 7→ “ as follows:

Definition 5. If publish(e) 7→ publish(e′), where e, e′ are published on the

same topic T and e, e′ have the same destination, then e has to be notified

before e′.

Note that this definition meets the original definition of causal ordering
given by Birman and Joseph in the context of broadcast communications [30]
when considering a publish/subscribe system with a single topic. To demon-
strate that in our total ordering algorithm events published on the same topic
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also respect a causal order, we have to prove that: (i) the relation “ 7→ “
follows the happened-before relation introduced by Lamport in [76]; (ii) if the
relation “ 7→ “ is verified, then a subscriber that receives e, e′ notifies e before
e′. To this end, we introduce the following Lemma:

Lemma 3. Given two events e, e′ published on a topic T , publish(e) 7→

publish(e′) if and only if:

1. e, e′ are published by the same process, or

2. e is published by a process p, while e′ is published by a process q 6= p

after it has notified e, or

3. there exists publish(e′′) such that: publish(e) 7→ publish(e′′) 7→ publish(e′).

Proof For the condition 1, let us assume by absurd that two events e, e′,
published in this order by the same process p, have the sequence numbers sne
and sne′ such that sne′ < sne. Because the sequence numbers are assigned
by the same topic manager TMT and we have assumed the presence of FIFO
channels, TMT will receive e, e′ in the same order they have been published
by process p. Due to the increasing monotonicity of the sequence numbers as-
signed by the same topic manager, the event e′ cannot have a sequence number
lower than the one assigned to e. This obviously contradicts the thesis.

For condition 2, instead, let us assume by absurd that the event e′ pub-
lished by a process q has a sequence number lower than the one assigned to
the event e previously published by a process p, with p 6= q. Because these se-
quence numbers are assigned by the same topic manager TMT , and the event
e has been already notified by process q before publishing e′, TMT will receive
the event e′ after that a sequence number for e has been assigned. Due to the
increasing mononicity of sequence numbers assigned by a topic manager, e′

cannot have a sequence number lower that e. This clearly leads to a contra-
diction.

The condition 3 simply follows from conditions 1 and 2 by considering two
couples of publish operations, i.e., publish(e), publish(e′′) and publish(e′′),
publish(e′). 2Lemma 3

The next step is to demonstrate that if the relation “ 7→ “ is verified,
then a subscriber that receives e and e′ notifies e before e′. To this end, we
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introduce the following theorem:

Theorem 2. If publish(e) 7→ publish(e′), with e, e′ published on the same

topic T , then tse < tse′ and a subscriber that receives both e and e′ delivers e

before e′.

Proof By the design of our algorithm, a process p subscribed to a topic T
that receives an event published on T , will also receive a timestamp that will
contain all pairs < Ti, sni > related to the topics Ti in the sequencing group
of T . Consider two new events e, e′ published in this order on T , and let us
assume by absurd that the process p receives the timestamps associated to e
and e′ such that: tse′ < tse.

From Lemma 3, we have that sne < sne′ ; therefore, e and e′ have to be
notified in the same order they are published. By considering the whole set of
pairs < Ti, sni > contained in the timestamps associated to e and e′, we have
from Lemma 3 that no two events ei and ei′ , that could have been published in
this order on a same topic Ti in between publish(e) and publish(e′), have their
sequence numbers such that sne′i < snei . As such, tse < tse′ , that contradicts
the thesis. 2Theorem 2

3.4 Engineering aspects

Event Buffering. The algorithm introduced in Section 3.2.2 assumes that
received events with old timestamps are tagged to indicate that they are noti-
fied out-of-order. The main source of out-of-order notifications lies in the fact
that two events, possibly published by different publishers, can follow distinct
paths through the ENS, before reaching the point where they will be notified
to the final recipients. To reduce the number of out-of-order notifications, we
can use a buffering strategy on the subscriber side. Every time the ENSnotify()
primitive returns a new event e, the algorithm checks through the attached
timestamp whether some other event can exist with a smaller timestamp. This
check is performed by looking at the sequence numbers included in the times-
tamp: if the values for all the topics are equal to the corresponding ones stored
locally in sub LCi, except for the topic where the event has been published,
that must have a value greater than the local one by one unit, then no event
with a smaller timestamp exists that must be still received by the subscriber,
and the received event can thus be delivered.

If there is a possibility that an event with a smaller timestamp exists but
has not been delivered to the subscriber so far, then the event e is queued
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in a buffer able to host a maximum of b events and a timer for e is started
(TTLe). The event e is delivered through the notify() primitive when one of
the following conditions holds: (i) all the events with smaller timestamps have
been notified, (ii) TTLe expires or (iii) the buffer is full, a new event must be
buffered and e is at the head of the queue.

Reliability. Making the algorithm presented so far working reliably in an
environment where messages can be lost requires some more minor changes.
The loss of a message during the timestamp generation phase, for example,
could lead a publisher to wait forever before publishing an event in the ENS.
This problem can be solved with a simple retransmission approach: the pub-
lisher periodically re-initiates the procedure for building the timestamp until
it receives a correct timestamp for the event. During the timestamp con-
struction procedure, TMs buffer partially filled-in timestamps and retransmit
them as soon as they receive another request for the same timestamp. When
a timestamp has been completely filled-in, a message can be routed through
the appropriate TMs to free their buffers. Finally, the internal state of TMs
should be preserved despite possible process failures in order to avoid possi-
ble TNO violations. This can be obtained by adopting standard replication
techniques [31, 97].

Dynamic topic ordering. The algorithm described so far assumes a fixed
topic ordering that is given and known by all the participants. This ordering
has a strong impact on the performance of the algorithm at run-time as it is
used to decide the content of each timestamp. Depending on the intersection
among subscriptions, and on the topic ordering, the timestamp for an event
published on a topic can have different sizes spanning from a single entry, up
to an entry for every topic in the system. This size impacts the time needed
to build the timestamp as it will travel through all TMs of topic it contains.
Ideally, topics where a lot of events are published should thus appear in the
highest ranks in the topic ordering such that their timestamp will probably
contain less entries. However, accurate statistics on the popularity of top-
ics are not always available at configuration time and, moreover, they only
describe statistical properties ignoring transient behaviors that can adversely
impact system performance for non negligible time periods. In this Section we
describe a topic swapping procedure that modifies the topic ordering adapting
it at run-time to the current topic publication popularity.
We assume the presence of a special system topic Ts subscribed by all TMs,
which is used to advertise that a new topic swapping procedure is happening.
Ts is managed by a TM, say TMTs , as all other topics in the system. In ad-
dition, Ts has an associated sequence number that represents the number of
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swaps occurred so far in the system, and it is used to clearly define subsequent
ordering epochs, i.e. periods of time where different topic orderings are con-
sidered. All TMs maintain a local copy of this sequence number in LCTs .
The topic swapping procedure relies on a function f() that, when applied on a
topic T , returns a comparable metric that can be then used by a TM to check
if one of the other TMs managing topics with lower priorities (i.e. a topic T ′

such that T → T ′) in the topic order is a candidate for swapping. In this case
a swapping procedure takes place: when TMT wants to swap position with
TMT ′ , it contacts TMTs and communicates that T has to be exchanged with
T ′ in the topic order. Then, TMTs increments LCTs and inserts it in a mes-
sage together with the new topic order. This message is sent to the TM with
lower priority in the topic order and will traverse all the TMs; at the end of
the procedure each TM will be informed about the swap and will update the
topic order and the value of LCTs . This value determines a new epoch: when
a TM receives a timestamp with a previous sequence number for Ts, it simply
discards that message. The definition of function f() is tied to the application;
from a general point of view, it should take into account the topic publication
popularity as this metric can lead to shorter timestamps. However, other as-
pects can be considered as well. For example f() could be structured in order
to push topics associated to TMs with more available resources (networking
and computational) toward higher priorities where larger loads are incurred.

Dynamic reordering: correctness proof. Let us consider two topic man-
agers TMT1 and TMT2 respectively of topics T1 and T2, currently in the or-
der T1 → T2 and with a higher publication rate on T2. TMT1 notices that
f(T2) > f(T1); thus it contacts TMTs for a new swap. TMTs , in turn, in-
crements LCTs by one and inserts this value in a message containing the new
ordering rule T2 → T1. The message is forwarded along the ordered sequence
including all TMs and it is returned to TMTs . If it does not receive back
the message within a timeout expiration, TMTs assumes that the message has
been lost and resends it. Thus, eventually all TMs will receive the message
and update both the order of TMs in the chain and the local copy of LCTs . All
events published in the system have a timestamp containing a sequence num-
ber for Ts: in this way all timestamps received by a subscriber have at least
one entry in common and can be comparable. When a TM receives a message
with a previous sequence number for Ts, it simply discards that message. It is
worth mentioning that Ts is not involved in the swapping procedures: it can
be always considered as the last topic in the sequence.

During the topic swapping procedure, there is a transitory phase during
which some TMs could not be notified yet about a swap. Consider the topic
sequence T1 → T2 → T3 → T4 → T5 and two distincts ordering paths T1 →
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T2 → T5 and T1 → T2 → T4. At time t, TMT1 contacts TMTs for a topic
swapping between T1 and T2. Thus, TMTs increments LCTm and inserts it
in a message together with the new order T2 → T1. This message will be
delivered by TMT5 , TMT4 , TMT3 , TMT2 , TMT1 in this order. Suppose that
at time t′ > t TMT5 creates a timestamp for a new publication on T5: this
timestamp will include T1 and T2 other than T5. We can distinguish between
two cases:

1. TMT5 did no receive the message from TMTs , thus the new timestamp
contains < TMT1 , TMT2 , TMT5 > in this order. Because at time t T5
preceeds T1 and T2 in the chain and TMT5 did not received the message
from TMTs , TMT1 and TMT2 did not received that message as well.
The execution proceeds seamlessly as before time t (i.e., before topic
swapping).

2. TMT5 received the message from TMTs , thus the new timestamp contains
< TMT2 , TMT1 , TMT5 > in this order. Two subcases can verify:

• TMT1 and TMT2 received the message from TMTs , thus all TMs
along this ordering path have updated information about the new
topic order.

• At least one between TMT1 and TMT2 did not received the message
from TMTs , for example TMT1 . However, TMT1 can verify that
the sequence number for Ts contained in the timestamp created by
TMT5 has been incremented with respect to its local copy, and from
the timestamp itself it can infer the new topic ordering rule. Thus,
TMT1 updates information about LCTs and the new topic ordering.

Finally, let us suppose that TMT4 did not received the message from TMTs

and creates a timestamp for a new publication on T4 at a time t′′ > t′, with
TMT1 and TMT2 that have updated their information based on the timestamp
previously created by TMT5 . When TMT1 receives the timestamp created by
TMT4 , it notices a previous sequence number for Ts and, therefore, discards
that message.

3.5 Performance Evaluation

In this Section we evaluate the behavior of our ordering module implementing
the proposed algorithm. In this evaluation we use SCRIBE as the underlying
ENS, and Pastry [96] as a point-to-point communication substrate. We further
assume that subscriber and publisher roles are played by the same nodes that
constitute the ENS.
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We first show how ordering affects the system performance in a large scale
environment through a simulation-based study. In such a scenario we also
show how it is possible to reduce the impact of ordering through our dynamic
topic adaptation based on publication popularity. In addition, we also present
how this mechanism is able to adapt publication popularity even when this
popularity changes. Then, in a second phase we show the performance of the
real prototype we implemented in a small scale; in particular, we provide a
comparison between our algorithm and a solution based on JGroups, a toolkit
for reliable and ordered multicast communication. This study assesses that
with a low/medium number of published events per time unit the performance
of the two algorithms are very close, while for a higher publication rate our
solution outperforms the one based on JGroups.

3.5.1 Settings and metrics

We used FreePastry [57] to implement and evaluate our ordering algorithm.
FreePastry is a Java tool that provides both a simulator and a prototype of
SCRIBE and Pastry.

In the simulated setting, we considered an underlying physical network
characterized by two channels types [17]: fast channels for short/medium
distance (80% of all links) and slow channels for long distance (20% of all
links). Both were modeled by a Gaussian distribution with mean latency
21ms and 240ms, and standard deviation 10.85ms and 129.27ms respectively.
This carachterization allows us to model the whole SoS as the interconnection
of systems deployed in national landscapes by means of long distance overlay
channels. Following realistic implementations of the applications described
in Section 1.2, we assume that publishers and subscribers are deployed in all
national systems.
In the prototype-based setting, we deployed our algorithm on virtual machines
hosted in 2.8 GHz quad-core dual processor physical machines interconnected
with 10Gbps network links. Each virtual machine was equipped with 1 GB of
RAM and Linux Ubuntu 10.4 as the OS. We used the WANem [110] network
emulator to emulate links with standard ADSL bandwidth and an average la-
tency of 21ms in order to emulate the behavior of small/medium scale WAN.

The following metrics have been considered:

End to end latency: represents the time taken by an event for traveling
from the publisher to the last notified subscriber and it is measured in sec-
onds. In our experimental analysis we separately tracked for each event the
time needed for building the timestamp and the time taken by SCRIBE to
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notify all the intended subscribers.
Percentage of tagged messages: represents the percentage of messages
that the ordering module tags because they have been received out-of-order.
Percentage of notifications: represents the ratio between the number of
events published and notified to all interested subscribers in a second.
Bandwidth overhead: represents the additional bandwidth usage imposed
by timestamps and it is measured in bytes. In particular, each timestamp
entry < Ti, sni > measures 24 bytes: we consider the topic identifier Ti as a
Pastry object identifier (i.e., 16 bytes), and the sequence number sni as a Java
long int (i.e., 8 bytes).
Message overhead: represents the load imposed by our algorithm on topic
managers during the construction of timestamps. Specifically, it is the ratio
between the number of messages processed by a topic manager to build times-
tamps for events published on topics managed by other nodes, and the total
number of processed messages during the construction of timestamps.
Percentage of sequence detection: represents the ratio between the num-
ber of event sequences correctly detected by all subscribers and the number of
event sequences occurred during an execution of the algorithm (despite how
many subscribers detected them).

All the values reported in the following are the result of at least 10 indepen-
dent runs (we did not observe standard deviation above 5% of reported values,
thus they are not plotted on the curves).

Parameters we vary in our analysis are:

Event rate: number of events published per second.
ENS size: number of processes in the system.
Buffer size: maximum number of messages temporarily stored in the buffer
on the subscriber side.
Number of topics: number of topics in the system available for subscrip-
tions and publications.
Number of subscription: number of topics subscribed by each subscriber.
Publication model: we model publications as a probability distribution over
the set of topics. We consider random uniform distribution or power-law dis-
tribution with shapes 0.269 and 0.901. These two values respectively refer to
the 40% and 0.5% of topics having a probability of 80% to be selected for a
new publication. Moreover, we consider an additional worst case scenario that
consists in publishing always on the last topic in the topic order; this repre-
sents a disadvantageous scenario for our algorithm as building timestamps will
require messages to travel through a long list of TMs.
Subscription model: as for publications, subscriptions are modeled as a
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probability distribution over the set of topics. Again, we consider random
uniform distribution or power-law distribution with shapes 0.269 and 0.901.
Moreover, we consider an additional scenario in which subscribers subscribe
all topics; this represents a particular scenario where all subscribers are part
of a single group where all published events are notified (typical setting for
broadcast protocols).

3.5.2 Simulation results

In this Section, we first analyze performance assuming a given static topic
ordering and we show how results are strongly influenced by this order, then
we switch to a setting where dynamic adaptation is enabled and we show the
performance improvements obtainable with the topic swapping procedure. Fi-
nally, we also show how the presented ordering algorithm helps in augmenting
the percentage of event sequences detected by two different subscribers.

Static topic ordering. First, we measure the mean end to end latency for
event notification by considering both the time spent for timestamp generation
and for event diffusion and notification, varying the ENS size in the range [10-
10000]. We consider a scenario with 50 topics subscribed by all subscribers;
the event rate was set to 1 event/sec and the simulated time is 30 minutes.
The results are reported in Figure 3.9.
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Figure 3.9: End to end latency for event notification vs ENS size with different

publication models.

Each curve refers to a different publication model: worst case, uniform
distribution and power-law distribution with shape 0.901. In this last case,
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the power-law distribution selects more frequently topics at the beginning of
the topic order. The curves show the strong impact that different publication
models have on notification latency. The coupling between the worst case
publication model and the fact that all subscribers subscribe all topics means
that the timestamp will travel through all the 50 TM s during the generation
phase before returning to the publisher and this clearly has a negative effect
on the latency that steeply grows with the ENS size. Conversely, in a more
favorable scenario where events are published more often on topics with higher
priority (power-law model), the latency increment remains reasonable despite
the system growth.

In Figures 3.10 and 3.11 we evaluate separately the time spent for times-
tamp generation and for event diffusion and notification, considering worst case
and power-law publication models respectively. These curves clearly show the
impact of the ordering algorithm on latency: it is comparable to event dif-
fusion latency for the power-law model, but it completely drives the overall
latency with the worst case model. These curves highlight that our algorithm
has a non negligible impact on the event diffusion latency, but this impact can
be drastically reduced as long as the topic order is carefully chosen to match
the publications popularity.
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Figure 3.10: Differentiated ordering and ENS latencies vs ENS size with a

worst case publication model.

The same consideration can be inferred by looking at Figure 3.12, that
shows the percentage of notifications in a second. Even in this case, an advan-
tageous topic order helps in augmenting the fraction of events notified within
a second; this can be particularly useful for high throughput applications.
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Figure 3.11: Differentiated ordering and ENS latencies vs ENS size with a

power-law (shape 0.901) publication model.
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Figure 3.12: Percentage of notifications in a second with different publication

models.

Figures 3.13 and 3.14 illustrate the bandwidth overhead imposed by the
usage of timestamps and the message overhead due to the timestamps con-
struction by varying the number of subscriptions. In both cases we consider
publication and subscription models based on two power-law distributions
with shape 0.901, one with the most popular topics at the top of the topic
order (referred to as best case), and one with the most popular topics at the
bottom (referred to as worst case). In addition, we also consider publication
and subscription models based on a uniform distribution.
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Figure 3.13: Bandwidth overhead due to the usage of timestamps.

The Figures show that when the topic order follows the publication popu-
larity, the overhead imposed by our algorithm both in terms of bandwidth and
messages is quite low, and it is not affected by the number of subscription.
This is motivated by the fact that in a more favorable scenario the timestamp
size decreases, and, in turn, the number of processed messages to construct it.
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Figure 3.14: Message overhead imposed by the timestamp construction on

topic managers.

Finally, we conclude this part by evaluating the trade-off between the per-
centage of tagged messages and the delivery latency when we vary the size of
the buffer used by subscribers. The simulated scenario is the one described
above, with publication and subscription models following a power-law distri-
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bution with shape 0.901.
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Figure 3.15: Trade-off between notification reliability and latency vs buffer

size.

Figure 3.15 highlights how the presence of a buffer helps in augmenting
the number of ordered messages delivered to the application, at expenses of
an increment of the latency. Applications can decide how to tune the sys-
tem in order to obtain a configuration that satisfies timeliness requirements
and/or helps in delivering a higher number of ordered messages. However, the
curves show how just a small buffer can greatly improve this number without
impacting too negatively the notification latency.

Dynamic topic ordering. In the previous paragraph we have shown the
benefit of configuring the topic order in accordance with the topic publication
popularity. In this paragraph we evaluate our dynamic topics adaptation
algorithm, which aims to adapt at run-time the topics order to publication
popularity. The function we adopted in our experiments was f(x) = e−1/α(x+1)

where x is a sequence number. A topic manager TMTi applies this function
on the sequence number sni of the topic Ti it manages and on all sequence
numbers of other topic managers in the timestamp it receives: if a sequence
number snj exists such that f(snj) > f(sni) + β, the positions of Ti and
Tj in the topic order must be swapped. The rationale behind the use of
this function is that it eventually converges to f(x) = 1; in this way, topics
with highest publication rates eventually will reach an almost stable position
in the sequence, avoiding swapping procedures that would bring only useless
overhead to our algorithm. The parameter α helps in tuning how fast the
function convergence is: a smaller value delays this convergence allowing an
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higher number of swaps. In this way, the topic sequence quickly adapts to the
current publication popularity. However, in order to prevent continuos topics
swapping, we allow two topics Ti and Tj to swap their position only if f(Tj)
is larger than f(Ti) for a fixed threshold β. In these tests, we considered a
setting with 10000 nodes, 1000 topics, 100 topics subscribed per subscriber
and event rate fixed at 1 event/sec. In Figures 3.16 and 3.17 show how to
tune parameters α and β.
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Figure 3.16: Performance of the algorithm with dynamic adaptation for dif-

ferent α values.
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Figure 3.16 shows the effect of α on the system, with its value that varies in
the set {0.1, 0.3, 0.5}. While the ordering algorithm converges to a small mean
latency with α = 0.1 or 0.3, with α = 0.5 there is no benefit from dynamic
adaptation: in this case function f() grows rapidly allowing few topic swaps.
The average number of swaps performed during our tests ranged from 15.1
(α = 0.1) to 7.4 (α = 0.5). Figure 3.17, instead, shows the effect of β on
the system when it varies in the set {0.1, 0.2, 0.3}. With β = 0.1 the latency
overhead imposed by the ordering algorithm is very low, at the expenses of
a high number of swaps (51.8 on average). On the contrary, with β = 0.3,
the algorithm convergence speed is lower, due to a reduced number of swaps
(7.8 on average). In this case, dynamic topic ordering has no benefit on the
performance of our algorithm. The value β = 0.2 represents a good trade-off
between the two extreme cases: the convergence time of the algorithm to a low
latency is still reasonable, with limited overhead imposed by topic swapping.
All the following tests were performed setting α = 0.1 and β = 0.2. Figure 3.18
reports the average end-to-end latency for event notification as the simulation
evolves in time.
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Figure 3.18: Comparison between the algorithm with dynamic adaptation and

the static one (best case, and average case).

In this scenario we consider both publications and subscriptions following
a power-law distribution with shape 0.901. The best case static topic ordering
curve assumes that the initial topic order follows the publication popularity
distribution. Conversely, the random static topic ordering and the dynamic
topic ordering curves assume that the initial topic order is randomly chosen.
Each point in the picture represents the average notification latency for 10
published events. The curves clearly show how dynamic adaptation allows the
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ordering algorithm to quickly converge to a small average latency even if the
starting topic order was random. The interesting aspect is that the dynamic
adaptation outperforms the best case static ordering: indeed, while topic order
in the latter case is decided only on the basis of the statistical properties of
the publication popularity distribution, dynamic adaptation is able to tune
topic order following the real distribution of publications happening at run-
time, thus taking into account also possible temporary fluctuations from the
statistical properties of their distribution. In addition, the dynamic topic re-
ordering procedure produces an improvement also in the bandwidth overhead:
Figure 3.19 shows that, with time, due to the reduction of the timestamps
size, this overhead is drastically reduced, converging to a mean value of about
100 bytes.
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Figure 3.19: Comparison between the bandwidth overhead in the static and

dynamic scanarios.

Finally, we show the behavior of the ordering algorithm in a special setting
where the publication popularity distribution is abruptly changed at run-time.

Figure 3.20 depicts a scenario in which at time 300 sec. we shuffle the topics list
in order to modify the frequency at which topics are returned by the power-law
distribution used to model publications. In correspondence of this popularity
change, the average latency has a steep increase justified by the fact that
the topic order to which the algorithm converged so far is no more the best
one for the new publication popularity distribution. However, the dynamic
adaptation procedure is able to quickly converge back to a new stable topic
ordering that brings back performance in terms of latency to the values shown
in the previous tests.
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Figure 3.20: Behaviour of the algorithm with dynamic adaptation with an

abrupt change in the system configuration.

Impact of notification order on event pattern detection. In this test
we try to recreate a scenario similar to the one that can be encountered in
composite event pattern detection applications. We consider two subscribers
that have to detect the pattern “event e precedes e′, that in turn precedes e′′”.
The system is composed by five publishers that publish on five different topics,
two subscribers acting as pattern detectors and an ENS populated with 100
nodes. Each publisher publishes on its topic one of the three events chosen at
random at a rate of 5 events/sec. The values reported in Figure 3.21 show the
percentage of sequence detections for different settings. The leftmost bar refers
to the bare-bone ENS without ordering: in this case the correct detection of
the searched pattern is driven only by chance as the ENS will not enforce any
kind of ordering. As the result shows, only 35% of the patterns are detected
by both subscribers.

The addition of our algorithm to the game completely changes the Figures:
the rightmost three bars show the percentage of consistently detected patterns
when the algorithm is configured with buffer 0, with buffer 30 and with infinite
buffer respectively. In particular, the difference between the bare-bone ENS
without ordering and the ENS with the addition of our algorithm, with buffer
0, lies in the fact that the ordering protocol forces events to pass through
the network of topic managers, that impose an order among those events.
However, several events can be notified out-of-order to different subscribers;
hence, the presence of the buffer is not only useful for minimizing out-of-order
notifications, but it is also necessary for sequence pattern detection. In fact,
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Figure 3.21: Percentage of consistent discoveries of sequence patterns at two

different event engines.

note how, in the case with infinite buffer, all the patterns are consistently
detected by both subscribers that can thus produce consistent outputs.

Prototype performance evaluation. In this Section, we evaluate the per-
formance of our prototype, also comparing the described ordering algorithm
with a solution based on the JGroups toolkit. In all our experiments we var-
ied the ENS size from 1 to 10 nodes. In addition, we have a single publisher
that can publish on 5 different topics according to the publication model, while
subscribers are subscribed to all topics. The obtained results are the average
of 5 experiments of 5 minutes each.

We first evaluated the end to end notification latency by varying the ENS
size and the publication model, while the event rate is fixed to 1 event/sec.
Figure 3.22 shows that an increase of the number of nodes in the ENS causes
a corresponding increase of the latency. However, the latency quickly reaches
a stable point, as its value is mainly driven by the timestamps length. In
presence of a single node, the whole system collapses in a centralized sequencer
that timestamps and distributes each incoming event.

In Figure 3.23 we evaluated the percentage of notifications by varying the
event rate in the range [5-100] and the publication model, while the ENS size
is fixed to 10. The Figure shows that the overhead imposed by the ordering
algorithm in terms of latency may have an impact also on the percentage of
the events notified in a second. This can be particularly disadvantageous in
high throughput applications. However, in presence of a more advantadgeous
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Figure 3.22: End-to-end notification latency in a real WAN setting.
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Figure 3.23: Percentage of notifications in a second by varying the event rate.

subscription model, the impact of the latency overhead can be drastically
reduced, without affecting the number of notifications per second.

Finally, we provide a comparison between our ordering algorithm and a
similar application developed on top of JGroups. Ordered delivery is guar-
anteed only within a group, thus we developed an application that simply
publishes all events in a single group (independently from the topics). Sub-
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scribers can then discard upon delivery events published on topics they are
not subscribed to.

In our experiment we assumed that no subscriptions or unsubscriptions are
issued. JGroups was configured to use the SEQUENCER stack protocol. The
usage of the WANem network emulator forced JGroups to use TCP point-
to-point channels instead of more performing primitives (e.g. UDP-based IP
Multicast). For the ordering algorithm the setting were similar to those de-
scribed above, with the ENS size set to 10 nodes and the event rate varying
in the range [5 - 100] events/sec.
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Figure 3.24: Comparison between our algorithm and a solution based on

JGroups. With a high event rate our solution outperforms the one based

on JGroups.

Results in Figure 3.24 show how our algorithm delivers performance close
to JGroups in terms of mean latency as long as a favorable topic ordering is
chosen. When the event rate grows our solution starts to outperform JGroups
(see the curve related to the power-law publication model); this is a conse-
quence of two different aspects: while on one hand the impact of the ordering
algorithm is limited as timestamps are maintained small, on the other hand
the application-level tree-based multicast strategy employed by SCRIBE de-
livers better performance with respect to the point-to-point based multicast
strategy employed by JGroups.
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3.6 Related work

Totally ordered communications. Totally ordered communications have
been extensively studied in the literature and there exists a considerable
amount of work on total order broadcast primitives following different ap-
proaches. A common point is represented by the need of a certain degree of
synchronization and knowledge of the system. As an example, [58] is based
on a propagation graph to support multiple overlapping groups: authors use
a fixed sequencer approach in which sequencers are intermediary nodes of the
graph placed at the intersection of different groups and messages are prop-
agated through a series of sequencers that order them by merging messages
destined to different groups. Differently, Gopal and Toueg in [61] use a token-
based approach in which the execution of processes is synchronized according
to rounds. Lamport in [76] uses a communication history approach: mes-
sages carry a timestamp and can be broadcasted at any time. Destinations
observe the communication history, i.e., previously generated messages and
their timestamps, in order to understand when a message must be delivered
to preserve total order. Chandra and Toueg [36] use a destination agreement
approach in which destinations run a consensus algorithm to agree on a set
of messages to deliver. Most of the existing total order broadcast approaches
and algorithms are extensively surveyed in [45].

All previous algorithms work properly in a small network while they scale
badly with respect to number of participants and their geographical distri-
bution. The sequencer represents a bottleneck as well as a single point of
failure. Additionally these algorithms require a certain degree of synchro-
nization among the interacting participants and this is in contrast with basic
principles of a publish/subscribe paradigm such as time (i.e., asynchronous no-
tifications) and space decoupling. The ordering mechanism proposed in this
paper does not require either any prior knowledge on the system or synchro-
nization among the participants but it relies only on the set of available topics
and subscriptions, matching thus the publish/subscribe paradigm principles.

An ordering algorithms for publish/subscribe systems is presented in [82].
Similar to our work, authors use a sequencing network to order events across
multiple groups of subscribers. However, their solution suffers of two prob-
lems: (i) it is not able to handle subscription dynamics, and (ii) a new sub-
scription/unsubscription can create loops in the sequencing network (circular
dependency problem). In this last case, the sequencing network must be rebuilt
from scratch. On the contrary, our solution solves these problems by defining
a total order relation among topics that determines a one-way sequence of
topic managers that establish an order for events.

Two interesting solutions for ordering in content-based publish/subscribe
middleware recently appeared in [118] and [72]. Differently from our work,
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authors in [118] ensure total order by also defining a Uniform Agreement
property: as such, two correct processes interested in two events e and e′

both deliver them and they do so in the same order. Each publisher has to
advertise all brokers about the set of events it will publish. To this end, a
broadcast procedure is employed to create a spanning tree rooted at the pub-
lisher. Subscriptions are instead forwarded hop-by-hop along the reverse path
of matching advertisement trees up to the publisher. While in our solution the
correct order of events is reconstructed on subscribers’ side, in [118] this task
is performed by brokers, that use advertisements and subscriptions to detect
a conflict, i.e., an out-of-order notification to one or more subscribers. Con-
flicts are resolved through an acknowledgment mechanism: a broker issues a
request to the next hop with conflicting advertisement. The next hop replies
back with an ack message if it can determine that there is no conflict. On
the other hand, the paper in [72] presents a partition-tolerant content-based
publish/subscribe algorithm that can tolerate cuncurrent failures of brokers
or communication links up to a value δ. Differently from our solution and the
algorithm in [118], the work in [72] ensures a per-source FIFO order.

Finally, authors in [114] investigate the problem of multi-delivery multicast
in asynchronous systems in presence of crash-stop failures. They introduce an
aggregation model based on a predicate grammar for expressing conjunctions
of types of events and properties for the multicast primitives. The paper shows
that a total order is necessary to guarantee an agreement on events notified to
processes interested in identical conjunctions. In particular, this is shown by
deploying an algorithm that implements the described aggregation model on
top of a total order broadcast and vice-versa for a majority of correct processes.

Timestamping techniques. Logical clocks have been introduced by Lam-
port in [76] to identify the causality relation among events of a distributed
computation. In [87], the notion of vector clock has been introduced to cap-
ture such causality relation. A vector clock is composed of n entries, one for
each process in the system while a logical clock is an integer. Logical clocks
and vector clocks have been used to solve many basic problems such as transac-
tion management, coordination protocols, ordered communication protocols,
message stability protocols, distributed predicate detection just to name a few
[20].

At a first glance, timestamps used in our algorithm resemble vector clocks,
but they are very different structures. Vector clocks have a well defined and
fixed structure that depends on the size of the distributed computation in
terms of processes. Therefore the causality relation among two events can
be detected just comparing (entry by entry) the two vector clocks associated
with the two events. On the contrary, our timestamp structure is independent
from the system size but it rather depends on the current set of subscrip-
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tions. This is why, the ordering relation among two events can be detected
looking, first, to the structure of the timpestamps (i.e., the events have to
be comparable according to Definition 3) and secondly, if the timestamps are
comparable, the ordering between the two events can be detected examining
the values contained in common entries of the timestamps. Let us finally re-
mark that in our timestamping technique, the timestamp associated with an
event does not bring any information about the producer of the event, this
matches the anonymity principle of a publish/subscribe paradigm (producers
and consumers do not know each other).

In some work, events are timestamped with physical clocks. As an exam-
ple, [79] uses accuracy interval-based timestamps relying on NTP synchronized
local clocks as a global time reference. The interesting aspect of this times-
tamping technique lies on the fact that the order of events follows the real time
order. However, such a technique has many drawbacks. Many events could
be issued in the same physical time interval by producers (so they have the
same physical timestamp). A total order could be established among these
events only resorting on additional deterministic information such as the iden-
tifier of the publisher of the event, contradicting thus the anonymity principle.
Moreover, such protocols can loose liveness during periods in which there is a
disconnection with the NTP server.

3.7 Future work

The algorithm proposed in this Chapter solves the problem of total ordering in
publish/subscribe middleware, but it is susceptible to further improvements.
An aspect that we planned to address in the close future is the failure of topic
managers. Currently, we assume the presence of reliable TMs; as such, they
are always up and running during the timestamp generation of our protocol.
On the contrary, we need to evaluate the impact of a failure of a topic manager
on the correctness and execution of the algorithm, and how this affects the
system performance. Then, we propose to study a solution that replicates the
state of a topic manager on other nodes, in order to improve the reliability of
our algorithm.

Another aspect that we plan to study is the impact of dynamic on the
ordering algorithm. In particular, we want to evaluate how the change of sub-
scriptions at run-time can impact both the timestamp generation and the dy-
namic topic ordering procedure. In this Chapter, we described how to manage
subscriptions and unsubscriptions in order to preserve the Total Notification
Order property, but how they can affect the execution of the algorithm and
the topic adaptation to the publication popularity is still unclear.

Finally, a further improvement of our algorithm is to introduce causality
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relation not only among events published on the same topic, as shown in Sec-
tion 3.3, but also among events published on different topics. We are currently
planning to work on an extension of our logical timestamping mechanism by
using additional physical clock information that allow to notify events in an or-
der that is coherent with the publication time, while both keeping the liveness
of the notifications and the anonymity of the publisher/subscriber paradigm.
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Chapter 4

Total order application to

active database in cloud

computing

In Section 1.2.3 we described the case study of active database in cloud com-
puting, in which we argumented how an ACID-based transactional mechanism
is not suitable for guaranteeing data consistency of replicated databases, be-
cause this would introduce an unsubstainable load of interactions and synchro-
nizations among cloud nodes that would hamper the scalability of the system
[29]. As such, the major cloud providers are moving toward eventual con-
sistency [109] mechanisms in which cloud nodes are maintained in transient
divergent states, from which they will eventually converge to a consistent one.
To this end, all operations performed on database replicas must be serialized,
i.e., a total order among operations must be defined to provide to each cloud
node the same ordered sequence of operations.

The simplest solution to implement eventual consistency is to use an al-
gorithm that delivers events as soon as they arrive and a rollback technique
that corrects a wrong order. However, it has many drawbacks: first of all, in a
large scale system with multiple event producers this simple solution does not
help to infer which order can be defined as correct, and, then, when an event
can be safely notified. It would require a consensus-based algorithm on the
receivers’ side, that would not solve the problem of strong coordination and
synchronization among nodes. As suggested in [29], even if consensus algo-
rithms like Paxos [77] are currently used in cloud computing (as an example,
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in Google AppEngine), application developers are under huge pressure to use
them only if strictly necessary.

The second problem that arises from the trivial solution is the high number
of rollback operations that may be required to achieve a consistent event order
among all database replicas. In fact, if an event is notified out of order, all
events that have been processed so far must be undone and processed again
in the correct order [73]. If we assume that an event represents a database
transaction, this means that a transaction cannot be committed until the
correct order among events has been achieved. This obviously translates into
a delay penalty. In addition, rollback techniques pose issues in terms of number
of stable storage accesses and interference with live processes: in fact, typical
recovery protocols [69, 70, 100, 102] require either the entire system blocks,
or live processes refraining from receiving messages during recovery [48]. As
such, a solution for eventual consistency in cloud computing should ensure
a total order among events that avoids, or, at least, reduces the number of
rollback operations.

In the remainder of this Chapter we show how the total order algorithm
described in Section 3.2.2 can be applied to the context of active database
in cloud computing to ensure eventual consistency among all replicas. We
compare our solution with a gossip-based protocol described in [16] in terms
of end to end latency (as defined in Section 3.5.1), and percentage of rollbacks,
i.e., the fraction of transactions that are rolled-back before their commit due
to a inconsistent event notification order.

4.1 System model and problem statement

Figure 4.1 illustrates the application scenario: a database system is composed
by several data centers connected through a wide area network. Each database
within a data center, also referred to as cloud node, stores a portion of the
whole information. In addition, we assume that the same piece of informa-
tion is replicated on a set x1, x2, ..., xn of n replicas geographically distributed
across the global system.

Users and data management systems, generically referred to as clients, can
access the database system to execute read and/or write operations: a read
corresponds to a query to retrive an information, while a write consists in
updating data stored in the system. When a client executes an operation,
this operation is routed toward one of the replica that contains the required
information. In addition, in case of a write, the replica that performs the
operation also updates all other replicas.

With reference to the eBay architecture described in Section 1.2.3, we
can think about the global system as one of the database systems in which
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Figure 4.1: Example of a database system composed by several data centers

connected through a WAN.

the architecture is partitioned: Users, Item, Transaction, Product, Account,
Feedback. Sets of replicas store part of the whole information: as an example,
if we consider the Product database system, a set of replicas stores information
about sport, wear and gadgets, another set stores information about hi-tech,
electronic devices and software, and so on...

The communication within the database system takes the form of events
exchange, where an event represents an operation that has to be executed
on the replica that receives it. These operations are specifically defined as
transactions, i.e., sequences of read and/or write operations followed by a
commit or abort. The correctness criterion for transactions that we consider
is linearizability [64], also known as one copy serializability [25]: an object is
perceived as one logical copy despite the existence of multiple copies, and the
system allows only serializable transactions. To ensure linearizability, we have
that the event delivery must satisfy the following two properties [62]:

1. Order : if two replicas xi and xj notify two events e and e′, they notify
them in the same order.

2. Atomicity : if a replica notifies an event e, then every other correct (non
crashed) replica also notifies e.
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The problem that we want to address is to guarantee eventual consistency
among sets of replicas by reducing the number of rollbacks required to provide
the same ordered sequence of operations to all cloud nodes within a set. A
high number of rollbacks, in fact, may have a strong impact both on the
performance and the correctness of the whole system. As also stated in the
previous Section, typical rollback algorithms require either the system stops
or that live processes refrain from receiving new events. Even if scalability in
cloud computing can be achieved at the cost of a higher latency [29], blocking
continuously the system due to recovery operations may dramatically enlarge
the delay between a user’s request and a system’s response. On the other
hand, refraining a running process from receiving new events may lead to
discard some of them, expecially in presence of a high event rate: this, in
turn, may enlarge the inconsistency window [109] (see also Section 1.2.3), so
to produce unpredictable results to users’ queries until all missed events have
been recovered.

4.2 Architectural aspects

The architecture that we use to address the problem of guaranteeing eventual
consistency among database replicas within a cloud by reducing the number
of rollback operations is depicted in Figure 4.2. In particular, it consists
of the architecture described so far in this thesis, with an ordering layer on
top of a topic-based ENS, with the addition of a module that guarantees
the atomicity property for each notified event. This module defines how a
transaction terminates; we assume that one of the two mechanisms described
in [112] is used to commit a transaction:

• voting: requires a message exchange to coordinate replicas or a confir-
mation message sent by a given site;

• non voting: replicas can deterministically decide on their own whether
to commit or abort a transaction.

How the atomicity module is implemented in practice is out of the scope
of this work.

In addition, we consider all replicas being both publishers and subscribers
of events. External clients, instead, act as publishers that can execute opera-
tions on any replica. In case of a write, a replica updates its information and
publishes it as a new event. At each subscriber’s site, a new event is notified
by the cloud node respecting order and atomicity properties.
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Figure 4.2: Architecture implemented by all cloud nodes.

In the experimental evaluation we compare our algorithm to the one de-
scribed in [16]. The reason why we have chosen this solution for a comparison
lies in the fact that it addresses the same problem that we have defined above.
Specifically, the algorithm in [16] ensures unconscious eventual consistency.
The term unconscious is used to evidence that, despite all system nodes even-
tually will see the same ordered sequence of events, in practice they do not
know when all of them are actually consistent. To ensure ordering among
events, the algorithm in [16] uses a coalition of k sequencers, one of which is
randomly selected to assign a sequence number to a new event before it is sent
to all other nodes by means of a gossip protocol. A coalition member assigns
to an event e a sequence number of the form sne = n|c| + pid, where n is a
monotonically increasing variable, |c| is the cardinality of the coalition and pid
is the node identifier. This function ensures that no two events have the same
sequence number, but not that the sequence numbers provided by different
sequencers are consecutive. A total order is defined among all events by using
the sequence number and the sequencer identifier: for any pair of events e and
e′, e precedes e′ if and only if (i) sne < sne′ or (ii) sne = sne′ and pide < pide′ .

The first time that a system node wants to send an event, it has to discover
an existing coalition. If it does not find one, at the expiration of a timeout it
creates a new coalition. To do that, the node includes itself and some other
nodes in the new coalition to get the desired size. However, the target of the
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algorithm is to exploit the time intervals in which the network is “synchronous
enough“ to merge all coalitions in a single one of size k. Finally, due to the
fact that sequence numbers provided by different sequencers may be not con-
secutive, a rollback technique is used to correct the wrong order.

In both solutions, we assume the presence of a standard recovery algorithm
like [25] to execute a rollback operation.

4.3 Experimental evaluation

4.3.1 Setting

We consider the database system depicted in Figure 4.1 as composed by two
geographically distributed data centers of five replicas each. A replica is a
virtual machine with 1 GB RAM and running Ubuntu 10.4 OS. It represents
a cloud node that has installed the prototype of our ordering algorithm de-
ployed on top of the SCRIBE publish/subscribe middleware, or the algorithm
presented in [16]. In the latter case, we consider a single coalition of size k.
Nodes within a data center are connected through a high speed local network
[2], while the WANem emulator is used to emulate the presence of a WAN
between the two data centers, with mean link delay set to 21 milliseconds.

We consider the information stored in the database system as divided in
categories, each one representing a different topic. As an example, if a set
of replicas stores information about sport, wear and gadget categories, we
consider those cloud nodes as producers and consumers of events of three
different topics. Despite typical database systems are divided in several sets
of replicas, for simplicity sake we consider a single set in which cloud nodes
are producers and consumers of events of a number of topics varying in the set
{1, 5, 10, 15, 20, 30}. In addition, we model the topic selection for a database
read or write operation by a uniform distribution.

The metrics we evaluate in our experiments are the end to end latency
and the percentage of rollbacks, as previously defined, while the parametres
we vary are the event rate, in the range [1-100] events/sec, and the buffer size,
in the range [0-100]. Finally, each reported value is the mean of at least three
different experiments over the entire set of nodes, in runs of five minutes each.

4.3.2 Results

Figure 4.3 shows the percentage of rollbacks between our algorithm, referred
to as TO, and the one presented in [16], referred to as UEC. In this experiment
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we vary the event rate from 1 to 100 events/sec, while the number of topics is
fixed to 5. For the UEC algorithm we consider the cases in which the coalition
size k is 1, 2 or 3. The Figure shows that TO largely outperforms UEC with
2 and 3 sequencers, and for a lower event rate also the solution with a single
sequencer.
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Figure 4.3: The collaborative timestamp generation process in TO largely

reduces the percentage of rollbacks with respect to UEC.

The rationale behind this result lies in the way the two algorithms assign
sequence numbers: while TO relies on a cooperative procedure that generates
a non decreasing sequence of timestamps, as described in Section 3.2.2, the
coalition members in UEC may generate a not consecutive sequence of values.
As an example, consider the following scenario, with a coalition formed by
three members, p1, p2 and p3, respectively with process identifier 1, 2 and 3.
Let us consider three consecutive sequence numbers assigned by p2: according
to the formula sn = n|c| + pid, p2 generates the sequence 2, 5, 8. Now
let us further consider two sequence numbers generated by p3 and p1: they
respectively assign 3 and 1. Because the correct (total) order is 1, 2, 3, 5, 8,
the delivery of events with sequence numbers assigned by p3 and p1 require two
rollback operations. This phenomenon is further exacerbated by a high event
rate and the presence of a WAN, that may also prevent an ordered delivery of
events timestamped by the same sequencer.

Augmenting the event rate, Figure 4.3 also shows that the percentage of
rollbacks for TO is higher than the one for UEC with one sequencer. However,
the rationale behind this result is shown in Figure 4.4: the UEC algorithm (in
presence of 1, 2 and 3 sequencers) discards events when the event rate reaches
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50 or 100 events/sec. This behavior is motivated by the gossip algorithm used
for event dissemination: due to the probabilistic nature of gossip-based proto-
col, we noticed that an event in UEC needs to be sent almost five times more
than in TO, in order to reach all destination sites. This obvioulsy generates
an overhead that leads cloud nodes to discard a fraction of events when the
event rate increases.
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Figure 4.4: Augmenting the event rate, UEC discards events due to the usage

of a gossip based protocol.

The reduction of the percentage of rollbacks obtained with TO comes at
the cost of a higher latency by increasing the number of topics from 1 to 30.
Figure 4.5 shows that, while UEC delivers always the same performance, the
latency for TO increases almost linearly with the number of topics. This is due
to the timestamp generation procedure, that involves an increasing number of
topic managers.

Finally, we also evaluated the trade-off between the percentage of roll-
backs and the latency for the TO algorithm. We fixed the event rate to 50
events/sec, the number of topics to 5 and the buffer timeout for each event
to 1 second. Figure 4.6 shows how the need for a recovery procedure can be
further mitigated by increasing the buffer size, at the cost of a higher latency.
On the contrary, a buffering technique is meaningless for the UEC protocol,
as also stated in [16], because each event brings no information about other
possible events in transit1.

1A buffering technique is used in presence of several coalitions. In the scenario simulated

above, in presence of a single coalition, the usage of a buffer brings no benefit to the algorithm.
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Figure 4.6: A buffering technique can reduce the percentage of rollbacks with

TO at the cost of a higher notification latency.

The little improvement that we have when moving from buffer size 0 to 40
is due to the fact that the buffer is too small to accomodate events published
at a rate of 50 per second. As such, the buffer is always full, and the event at
the head of the buffer, say e, has to be delivered as soon as a new one has to
be enqueued, even if the notification of e should wait the notification of prior
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events. In addition, Figure 4.6 shows another interesting result: after a given
size, i.e., 70 events, there is no benefit of using a larger buffer. This is motivated
by the way in which the TO algorithm builds timestamps. In particular, the
following scenario may occur: an application publishes n events on the most
popular topic, say T . Later, the application publishes two different events e′

and e respectively on the topic following T in the popularity order, say T ′,
and on T . The events e′ and e have a timestamp {< T, n >,< T ′, 1 >} and
{< T, n + 1 >} respectively. A subscriber that receives both e′ and e cannot
infer which of the two should be notified first. This is due to the fact that the
timestamp of e′ includes also a sequence number for events published on topic
T , but the timestamp of e does not include information about publication on
T ′. The choice we did in the design of the TO algorithm was to reduce the
overhead due to the use of timestamps, by modifying at run-time the topic
order to reflect the publication popularity. In the context of active database
in cloud computing, this choice imposes a trade-off between overhead and
percentage of rollbacks, that, however, is limited to a mean value of 21% for
a medium/high event rate.

4.4 Future work

In this Chapter we have shown how our total order algorithm can be used to
ensure eventual consistency in a database cloud reducing the need for rollback
operations. In the close future we plan to extend our evaluation to a more
complex scenario, in which the database system is composed by more than two
data centers, each one with several sets of replicas (i.e., cloud nodes are sub-
scribed to different topics). In addition, we think to extend this evaluation by
comparing the TO algorithm with a solution based on a group communication
toolkit like JGroups. In this case, an interesting aspect would be to evaluate
the trade-off between notification latency and number of events delivered to
subscribers that do not belong to their subscriptions. A group communication
toolkit, in fact, is known to provide a fast event diffusion within a single group
of processes, even if we have already shown that the performance may degrade
in WAN (see Figure 3.24 in Section 3.5.2). As such, due to the presence of
several sets of replicas, cloud nodes will also receive events to which they are
not subscribed. On the contrary, in the TO algorithm each node receives only
events published on subscribed topics, which largely reduce the usage of net-
work resources. On the other hand, the time spent to generate a timestamp is
affected by the number of topics, due to a cooperation among topic managers.

Finally, another aspect that we plan to investigate is how the throughput
varies augmenting the event rate and the number of topics in the system.



Chapter 5

Timeliness and reliability

issues

Information over wide area communication channels may be affected by link
failures and network device congestions, which can determine burst of message
losses [85] or delays. A similar behavior can compromise the execution of a
critical infrastructure: as such, the publish/subscribe middleware should strive
to enforce a reliable and timely event notification to all intended destinations.
As an example, in the ATC case study presented in Section 1.2.4 we described
the flight plans exchange scenario between several flight processors. We stated
that this data contains information about the trajectory and the coordinates
of an aircraft en route; if such an event is lost or delayed, a flight processor
may not be able to infer the current position of the aircraft and to detect
possible collisions.

The research community on publish/subscribe services has investigated
proper methods to implement a reliable event dissemination, and several ap-
proaches, such as [27, 71, 92] have been already proposed in the last decade.
Most of the current solutions for a reliable event dissemination only focus
either on the use of the TCP transport protocol, or on retransmission tech-
niques, and any reliability improvement is always gained at the expenses of
severe performance overhead or fluctuations. Therefore, these approaches are
not suitable for modern SoS where timeliness matters as well as fault-tolerance.

In this Chapter we aim to fill this gap by proposing a strategy to achieve
both reliability and timeliness in event dissemination performed by publish/
subscribe services over WAN. To this end, we combine coding and gossiping so
to achieve the best from both: coding is known to reduce the notification deliv-
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ery time [78], while gossiping is known to improve the reliability. We consider
a publish/subscribe middleware deployed over Internet links that exhibit a non
negligible probability to have bursty losses. Subscribers apply a gossip strat-
egy to recover from possible lost events, with the possibility to exchange coded
information, too. In the remainder of the Chapter, we provide a theoretical
model to evaluate the potential benefit of coding on the information delivery
performance. These results are also confirmed by an experimental analysis
conducted on a real air traffic control workload, which evidences how coding
mitigates latency and overhead penalties to ensure reliable event notification.

5.1 System model

We consider each system node implementing the architecture shown in Figure
5.1, where the Timeliness and Reliability layer is deployed on top of a generic
topic-based ENS.

Figure 5.1: Architectural view that shows how the timeliness and reliability

module acts as a mediating software layer between the applications and an

existing event notification service.

We assume that links among nodes are not reliable, and exhibit a loss
pattern characterized by Packet Loss Rate (PLR), which is the probability to
lose a packet, and Average Burst Length (ABL), which is the mean number
of consecutive lost packets. In particular, the adopted network model is the
Gilbert-Elliott [47, 59], one of the most-commonly applied in performance
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evaluation studies, due to its analytical simplicity and the good results it
provides in practical applications on wired IP networks [75, 116]. As depicted
in Figure 5.2, the Gilbert-Elliott model is a first order Markov chain with two
states: “Good”, with a state-dependent error rate equal to 1−K, and “Bad”,
with a state-dependent error rate equal to 1 − H. Typically, K is assumed
equal to 1 so that the ”Good” state implies that no losses are applied, while
in our model we assume that 1−H is equal to PLR.

Figure 5.2: The Gilbert-Elliott model as a 2-state Markov process.

The adopted network model is characterized by four transition probabilities:

• the probability P to pass from state “Good” to state “Bad”;

• the probability 1− P to remain in state “Good”;

• the probability Q to pass from state “Bad” to state “Good”;

• the probability 1−Q to remain in state “Bad”.

Given PLR and ABL, it is possible to compute P and Q as follows [63]:

P =
PLR ·Q
1− PLR

Q = ABL−1

In addition, K = 1, means that no packets are lost when the model is in
the “Good” state, while H = 0, means that all packets are lost when the model
is in the “Bad” state. It is simple to demonstrate that, given such a model,
the probability to lose a packet is equal to the mean PLR over time. Finally,
the assumed fault load consists in omissions only, that have been applied at
the overlay level. This is motivated by the consideration that it is possible to
have a simple estimation of losses due to the Internet by means of application-
level measurements, while network-level measurements are difficult, or even
impossible to obtain.
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5.2 Introduction to network coding and gossiping

Linear network coding. Linear network coding [56] is a technique that al-
lows to convey the information content of n original packets, x1, x2, ...xn, as a
set n linearly independent combinations (encoded packets) and to easily gener-
ate redundancy virtually for any lost packets by means of linear combinations
of original data. Each linear combination is given by

yi =

n∑
i=1

cixi

where coefficients ci are taken uniformly at random over the set 0, ..., q − 1,
with the all zero coefficients case excluded. All operations are performed over
the Galois Field GF (2w), with 2w = q. Each coded packet yi is equipped
with the coefficients ci used to produce that packet and that will be used by
destinations in the decoding phase. Note that the overhead due to coefficients
is very modest, as it is equal to send nw additional bits (for example, for n =
10 and q = 8 this means just 30 bits; considering a typical packet size of 1KB,
the overhead is less than 0.4%).

Linear network coding increases the capacity of a network for multicast
flows [56, 78]. Consider, as an example, a network with M sources and N
destinations [56]. By assuming that, without network coding the source rates
are such that the network can support each destination in isolation (as it
was the only destination in the network), in [78] the authors show that, in
presence of coding and with an appropriate choice of linear coding coefficients,
the network can support all destinations simultaneously. As such, when the
N destinations share the same network resources (physical or overlay links),
each of them can receive information at the maximum rate, as it was using
those resources by itself. This clearly improves the throughput and reduces
the event distribution latency.

To get a better insight of the benefit of coding, let us compare a protocol
that uses coding against a plain protocol. The power of network coding with
respect to a plain data dissemination is particularly evident when a node
introduces a redundancy. Let us consider two different cases:

• a node sends n plain packets plus a encoded packets, with a < n, gener-
ated as previously described;

• a node sends n+ a plain packets, with a < n.

Now let us consider a receiver that receives just n′ out of the n packets (i.e.,
n− n′ packets have been dropped by the network); in addition, it receives all
redundant packets, such that the total number of received packets is n′+a ≥ n.
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In case of coding, if coefficients ci are independent, then any of the a additional
packets can be useful to fully reconstruct the information. On the contrary,
without coding, the a packets could be just a copy of the n′ packets; in this
case, the redundancy is not useful to reconstruct the whole information. This
characteristic of network coding also allows a node to generate redundancy
(i.e., linear combinations) even if it has received just a partial information.

Gossip-based solutions. The gossip paradigm [74] is based on the so-called
epidemic approach, where an event is disseminated like the spread of a con-
tagious disease or the diffusion of a rumor. Specifically, in a gossip-based
protocol, a node stores a received message in a buffer of size b, and forwards
it a limited number of times t to a randomly-selected set of nodes of size f .
Many variants of gossip algorithms exist [46]:

1. Push Approaches: messages are forwarded to the other nodes as soon as
they are received;

2. Pull Approaches: nodes periodically send to other nodes a set of recently-
received message identifiers; if a missing message is detected by com-
paring the received set with the local history, then a transmission is
requested;

3. Push/Pull Approach: a node forwards to the other nodes only the iden-
tifier of the last received message; if one of the receivers does not have
such a message, then it makes an explicit pull request.

Gossip algorithms are characterized by two parameters:

1. Fanout, f : the number f of contacted nodes by a gossiper during a single
gossip round.

2. Fanin, t : each node has an history of the identifiers of received events
that is accessed when a pull or push/pull round starts. The fanin indi-
cates the number of rounds t that an identifier is sent to gossip partners,
after which it is deleted from the history.

Gossip-based protocols have several advantages that have been thoroughly
studied: few initial infection points are sufficient to quickly infect the whole
population as the number of infected processes grows with an exponential
trend. Moreover, these algorithms are also strongly resilient to the prema-
ture departure of several processes, making them very robust against failures.
The gossip approach has been successfully applied to a variety of applica-
tion domains such as database replication [46], cooperative attack detection
[117], resource monitoring [107], and publish/subscribe based data dissemina-
tion [41]. Taking into account the properties of an ideal event dissemination
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service, most of such algorithms based on the gossip paradigm are able to
deliver a huge amount of events in a geographically distributed setting with
nice reliability properties. Thanks to the quick spread of infection also the
time figures are very interesting.

5.3 Achieving reliability and timeliness in WAN

5.3.1 The protocol

We consider the Timeliness and Reliability layer as a composition of two in-
dependent blocks: (i) one implements a network coding protocol that aims
to reduce the delivery time of an event over the entire set of subscribers, as
motivated in the previous Section, and (ii) one implements a gossip-based al-
gorithm to recover from possible event losses. To this end, we assume that
each node can access a peer sampling primitive [66, 86] to obtain a sample
(i.e., another subscriber interested in the same topic) to gossip with.

The protocol we use to reliably and timely deliver events to subscribers is
composed by two phases:

1. Dissemination: the publisher divides an event into n plain packets and
publishes them over the ENS. Moreover, a additional packets are also
published. We call these the redundancy of the protocol. We separately
consider two different cases: (i) no-coding: the a packets are randomly
selected among the n plain packets; (ii) coding: the a packets are linear
combinations of the n packets;

2. Recovery: subscribers use a gossip protocol to gather possible lost events.
This phase strictly depends on the gossip style in use: if the push or the
push/pull strategy is enabled, then, a subscriber that notifies an event
(i.e., it has received enough packets to reconstruct the whole event)
disseminates to the other f subscribers the received packets or the event
identifier respectively. When the pull style is enabled, periodically a
subscriber disseminates to other f nodes the identifiers of the last notified
events.

A consideration needs to be done: the delay introduced by encoding and
decoding operations is low for two reasons: (i) on the encoding side, the oper-
ations take not so much time because they are simple linear combinations and
several libraries can be used to perform them efficiently; (ii) on the decoding
side, operations are progressive, i.e., they are based on a decoding matrix that
is built concurrently with the reception of packets. The decoding matrix is
maintained in the triangular form by using Gaussian elimination [56]. Each
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time a new encoded packet arrives, it is inserted into the matrix only if the
new carried coefficients increase the rank of that matrix. Therefore, the de-
coding delay overlaps with the transmission delay. Further details about the
delay penalty introduced by the coding operations can be found in [56].

In the following, before describing the algorithm in detail, we introduce
the local data structure maintained by publishers and subscribers.

Local data structure to each publisher pi: each publisher maintains
locally the following data structures:

• ide: is a unique identifier associated to an event e produced by pi.

• packets: is a set variable, initially empty, that contains all packets in
which an event is fragmented.

• redundancy: is a set variable, initially empty, that contains redundant
packets: they can be plain or coded packets.

• coding: is a variable that indicates if coding is enabled.

• publishedEvents: is a set variable, initially empty, that contains the
triple {e, redundancy, T}, where T is the topic on which that event has
been published.

Local data structure to each subscriber si: each subscriber maintains
locally the following data structures:

• coding: is a variable that indicates if coding is enabled.

• incomingPacketside : is a set variable, initially empty, that contains all
packets received for the event with identifier ide.

• notifiedEvents: is a set variable, initially empty, that contains the tuple
{e, eid, T, t}, where t represents the gossip fan− in.

• lastNotifiedEvents: is a set variable, initially empty, that contains the
identifiers of the recently notified events and it is used during a pull-
based gossip recovery procedure.

• gossip mode: is a variable that indicates the gossip strategy used in the
recovery phase of the algorithm.

• contacts: is a set variable that contains the identifiers of the nodes
returned by the peer sampling service.
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publish() Operation. The algorithm for a publish() operation is reported
in Figure 5.3. To simplify the pseudocode, we defined the following basic
functions:

• fragment(e): fragments an event e in n plain packets.

• encode(packets, a): implements the coding operation by generating a
linear combinations of the n plain packets contained in packets.

• selectPacket(packets, a): randomly selects a plain packets among the n
contained in packets.

The publish() operation works as follows: the event e is fragmented in n plain
packets and stored in the packets data structure (line 01). Then, a redundant
packets are generated (lines 02-05): depending on the variable coding in line
02, these packets can be linear combinations of the original n packets (line
03), or random packets selected among the original ones (line 04). The n +
a packets are published on the ENS (lines 06-11) and, then, stored in the
publishedEvents data structure (line 12).

operation publish(e, T ):

(01) packets← fragment(e);

(02) if (coding = TRUE)

(03) then redundancy ←encode(packets, a);

(04) else redundancy ←selectPacket(packets, a);

(05) endif

(06) for each (pkt ∈ packets);

(07) ENSpublish (< pkt, FALSE, ide >, T );

(08) endfor

(09) for each (red ∈ redundancy);

(10) ENSpublish (< red, coding, ide >, T );

(11) endfor

(12) publishedEvents← publishedEvents ∪ {e, redundancy, T};

(13) packets← {};

Figure 5.3: The publish() protocol for a publisher pi.

Note that each published packet is also provided with the identifier ide and
a boolean value that indicates if coding is enabled. The n original packets are
always published without coding (07).
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notify() Operation. The algorithm for a notify() operation is reported
in Figures 5.4 and 5.5. To simplify the pseudocode, we defined the following
basic functions:

• decode(pkt, ide): it implements the decoding process by maintaining a
triangular matrix for packets related to the event with identifier ide. It
returns a decoded packet.

• canReconstructEvent(incomingPacketside): it is a boolean function that
checks if the received packets are enough to fully reconstruct the event
with identifier ide. If so, the function returns TRUE, otherwise FALSE.

• reconstructEvent(incomingPacketside): it actually reconstructs an event
e with identifier ide from the packets contained in the incomingPacketside
data structure.

• getPeer(f, T ): it provides access to the peer sampling service by return-
ing f random nodes currently subscribed to the topic T . f represents
the fan− out of the gossip algorithm.

• pushEvent(e, ide, T, sj): this function starts a push-based gossip proce-
dure by sending to a subscriber sj the received event e.

• pushEventId (ide, T, sj): this function starts a push/pull-based gossip
procedure by sending to a subscriber sj the identifier ide of the received
event e.

• sendRecentHistory(lastNotifiedEvents, sj): this function starts a pull-
based gossip procedure by sending to a subscriber sj the identifiers of the
last received events contained in the lastNotifiedEvents data structure.

The notify() operation works as follows: upon receiving a packet, the han-
dlePacket function is called (line 01). This function implements the core ac-
tivity for each received packet; we decided to separate it from the notify()
operation in order to reuse handlePacket also for processing the incoming
retransmitted packets during the recovery phase of the protocol. Depending on
the kind of received packet (plain or coded, line 02), it can be simply added to
the set of the incoming packets (line 03) or it requires a decoding process first
(line 04). At each received packet, the algorithm checks if there are enough
packets to reconstruct the event (line 07). If so, the reconstructEvent function
actually reconstructs that event (line 08). Recall from Section 5.2 that receiv-
ing a number of packets equal or higher to n is a necessary but not sufficient
condition to fully reconstruct an event. In fact, without coding it is required to
receive n different packets, while with coding n independent linear combina-
tions are needed. When an event is fully reconstructed, the subscriber triggers
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upon ENSnotify(< pkt, coding, eid >, T ):

(01) handlePacket(pkt, coding, eid, T );

————————————————————————————————

function handlePacket(pkt, coding, eid, T ):

(02) if (coding = FALSE)

(03) then incomingPacketside ← incomingPacketside ∪ {pkt};

(04) else incomingPacketside ← incomingPacketside ∪ {decode(pkt, ide)};

(05) endif

(06) if (|incomingPacketside | ≥ n);

(07) then if (canReconstructEvent(incomingPacketside ) = TRUE)

(08) then e = reconstructEvent(incomingPacketside )

(09) trigger notify (e, T );

(10) notifiedEvents← notifiedEvents ∪ {e, ide, T, t};

(11) if (gossip mode = PUSH ∨ PUSHPULL)

(12) then contacts← getPeer(f, T );

(13) endif

(14) if (gossip mode = PUSH)

(15) then for each (sj ∈ contacts)

(16) pushEvent(e, ide, T, sj);

(17) endfor

(18) else if (gossip mode = PUSHPULL)

(19) then for each (sj ∈ contacts);

(20) pushEventId (ide, T, sj);

(21) endfor

(22) endif

(23) endif

(24) endif

Figure 5.4: The notify() protocol for a subscriber si.

the notify operation (line 09) and inserts it in the set of received events (line
10). Then, if the push or push/pull gossip strategy is enabled, the subscriber
asks to the peer sampling service a set of f random nodes currently subscribed
to topic T (lines 11-13), and sends them the received event (lines 14-17 for the
push-based style) or its identifier (lines 18-21 for the push/pull-based style).

Figure 5.5 shows the pseudocode for a pull-based gossip strategy. Peri-
odically a subscriber generates a set with the identifiers of the last received
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upon timeout():

(01) for each (< e, ide, T, t > ∈ notifiedEvents)

(02) lastNotifiedEvents = lastNotifiedEvents ∪ {ide};

(03) t = t− 1;

(04) notifiedEvents← notifiedEvents / {< e, ide, T, t >};

(05) if (t > 0)

(06) then notifiedEvents← notifiedEvents ∪ {< e, ide, T, t >};

(07) endif

(08) endfor

(09) contacts← getPeer(f, T );

(10) for each (sj ∈ contacts)

(11) sendRecentHistory(lastNotifiedEvents, sj);

(12) endfor

(13) lastNotifiedEvents← {};

Figure 5.5: The expiration of the timeout fires a new pull-based gossip execu-

tion.

events (line 02) and sends it to f random nodes by means of the sendRecen-
tHistory function (lines 09-12). The number of times that an event identifier
can be sent to other nodes is regulated by the parameter t, i.e., the fan− in of
the algorithm. Each time an identifier is inserted in the lastNotifiedEvents
data structure, its value of t is decreased by one (line 03); when t = 0, the
tuple related to that identifier is no more updated in the notifiedEvents data
structure (lines 04-06).

Finally, it is worth mentioning that the implementations of the pushEvent,
pushEventId and sendRecentHistory functions for the push-, push/pull- and
pull-based recovery strategy respectively, can consider either the retransmis-
sion of plain packets, or the retransmission of linear combinations. In the
experimental evaluation presented in Section 5.5 we compare the two cases
in order to show the improvement in event dissemination over WAN when
random linear coding is enabled.

5.3.2 Network coding: motivations

The reason why coding is expected to highly improve a gossip based recovery
protocol comes from the following simple property. Consider the n-dimensional
vector space V over a Galois Field with base q, namely GF (q). The number
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of elements in V is qn − 1, i.e., it is given by the number of ways we can
multiply a base of V with n coefficients, excluding the all zero case. For the
same reason, a k-dimensional V ’s subspace Vk has qk − 1 elements. Hence the
ratio between the number of elements in Vk and the number of elements in Vn
is qk−1

qn−1 ≈
1

qn−k . This is also the probability that a random vector of V belongs
to Vk.

Now, consider the case when a single event e is divided into n packets,
which are transmitted to a set of destinations using different overlay channels.
Suppose that, due to packet losses, a destination gets k out of the n packets,
i.e., the destination has missed m = n − k packets. For reconstructing the
whole event the destination starts to retrieve the missed m packets through
a simple gossip mechanism consisting in contacting another destination and
pulling one random packet from it. If the packets are sent without coding and
assuming the contacted destination experienced an independent packet loss
pattern, the probability that the pulled packet is useful is clearly m

n = 1− k
n .

However, if the source node sends random linear combinations of the original
packets, then, due to the aforementioned property, the probability that the
pulled linear combination is independent from the already received ones is the
probability that the pulled linear combinations does not belong to Vk, i.e.,
≈ 1− q−m.

Figure 5.6 shows the probability as a function of m for n = 10, q = 8 in
the two cases (coding and no coding).
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While in the no coding case this probability increases linearly with the
number of missed packets m, under a coding scheme the probability increases
exponentially. In addition, for the coding case the probability to retrieve the
last packet is as small as 1 − q−1 and then can be made very close to one by
setting q to some convenient value, i.e., q = 1024. It is also worth noticing
that, under our independence assumption, the problem of retrieving the m
missed packets is the classical Coupon Collector’s Problem [55], and, hence,
the expected number of gossip rounds required to retrieve all the packets is
Θ(m log(m)), whereas using coding it is easy to see that the average number
of rounds is Θ(m).

Finally, we remark that due to the linearity of the operations, encoded
packets can also be obtained by linearly combining already encoded packets.
This allows intermediate nodes in a multicast path to add redundancy exploit-
ing the partial information content received so far thus reducing the end to
end delay.

5.4 Protocol analysis under ideal conditions

In this Section, moving from the motivations discussed so far, we provide a
theoretical analysis to show the benefit of using coding during the recovery
phase of our algorithm with respect to a plain recovery protocol. In particular,
we aim to show the reduction of the number of redundant packets and gossip
interactions to fully reconstruct an event when network coding is enabled.
Indeed, it can be considered as a means to also reduce the latency and the
overhead for a reliable event delivery. For simplicity sake and without loosing
of generality, several assumptions have been done:

• we consider a publish/subscribe middleware implemented as an overlay
network that directly connects a single source to a set of receivers (i.e.,
there is no internal node between the publisher and subscribers);

• the publisher and subscribers’ roles are played by the same node that
constitute the ENS;

• the recovery strategy is based on a pull-style gossip strategy.

Some of these assumption will be relaxed in the experimental evaluation pre-
sented in Section 5.5.

The goal of the model is to capture the number NR of gossip rounds re-
quired for a tagged destination node to retrieve an event composed by n pack-
ets. During each round, the destination performs F elementary operations,
each called contact, consisting of contacting another node and pulling useful
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data from it. The parameter F is also called fanout. We distinguish between
two cases:

1. coding : the information retrieved to fully reconstruct an event consists
in coded packets;

2. no coding : the information retrieved to fully reconstruct an event con-
sists in plain packets.

We assume a discrete-time model, in which the contacts are numbered
progressively. In the following we calculate PR(k) = Pr{NR ≤ k} for F = 1
and F > 1, i.e., the probability of retrieving the event in k rounds. We call
this probability the success rate.

5.4.1 Success rate, F = 1

To numerically compute PR(k) we will exploit a Markov chain with n + 1
states and time variable transition probabilities. The state of the chain is
the number of useful packets stored at the destination node at the end of
the gossip rounds. For the no coding case, the useful packets correspond to
packets with different identifiers, whereas for the coding case they are linearly
independent combinations.

The state probability is denoted by πk(i), which represents the probability
that after k gossip rounds the tagged destination stores i useful packets. We
assume that the node contacted at k-th round did not execute yet the gossip
operation at that round, i.e., the contacting destination node sees the con-
tacted node as it was at the end of round k− 1. The evolution of the Markov
chain is described through the following equation:

π(k)(j) =
n∑
i=0

π(k−1)(i)Pij(k), k > 0,

where π(0)(i) is the probability of storing i packets at the end of the dissemi-
nation phase of the protocol, and Pij(k) the state transition probability from
state i to state j at gossip round k. This probability is Pij(k) = 0 for j < i (the
number of stored packets cannot decrease) whereas Pnn(k) = 1. With these
assumptions, the state n is an absorbing state and πk(n) represents the prob-
ability that at the end of round k the useful packets stored at the destination
node is n, i.e., the event is fully received. Hence, PR(k) = πk(n).

The transition probabilities as well as the initial state are computed in
terms of the following three probabilities:

• Holding probability PH(k, r): probability of contacting a node holding r
packets at the beginning of round k.
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• Increasing probability PI(j|i, r): probability that after merging two ran-
dom groups of i and r different1 packets, the resulting group has j useful
packets.

• Loss probability PL(n, d): probability of loosing d out of n transmitted
packets over a Gilbert-Elliott channel, starting from a random instant
of time.

As far as the transition probabilities are concerned, after performing a
round the destination node increases its state from i to j if and only if the
following events occur:

• The contacted node holds r packets, where r ≥ j− i+d and d ≥ 0. This
event occurs with probability PH(k, r).

• After adding these r packets the number of useful packets for the des-
tination potentially becomes j + d, i.e., the number of additional useful
packets is j + d− i. This happens with probability PI(j + d|i, r).

• The contacted node sends to the destination the j + d− i useful packets
and, during the transmissions, d packets are lost. This happens with
probability PL(j + d− i, d)

We then have:

Pij(k) =

n∑
r=j−i

r∑
d=0

PH(k, r)PI(j + d|i, r)PL(i+ d− j, d)

We now compute the key probabilities defined above as well as the initial
distribution for the coding and no coding cases.

• Holding Probability - Our model assumes that the state of a node contacted
during round k is equal to the state of that node at the end of round k − 1.
We also assume that the contacted node is itself experiencing the same sort
of evolution as the contacting node, i.e., the number of packets stored by the
contacted node follows the same statistic of the number of packets stored in
the observed node, but delayed of one unit of “time”; hence

PH(k, i) = π(k−1)(i)

• Increasing probability, baseline protocol - The probability PI(j|i, r) for the
baseline protocol can be found through a combinatorial argument. Let divide

1In the coding case different means linearly independent from each other.
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the r packets into two subsets U of a = j− i elements and U of r−a elements,
0 ≤ a ≤ r. This can be done into

(
r
a

)
different ways. Now, let examine the

packets according to some order (for example their identifiers). The first packet
in U is useful with probability n−i

n , the second one with probability n−i−1
n−1 , and

so on. Hence, the elements in subset U are all useful with probability:

pu =
n− i
n
× n− i− 1

n− 1
× . . .× n− i− d+ 1

n− d+ 1
=

(n− a)!

n!
× (n− i)!

(n− i− a)!

Similarly, the first packet in the complementary subset U is not useful with
probability i

n−d , the second one is not useful with probability i−1
n−d−1 , and so

on. Hence, all the r − a elements of U are not useful with probability:

pu =
i

n− a
× i− 1

n− a− 1
× . . .× i− (r − a− 1)

n− d− (r − a− 1)
=

i!

(i− r + a)!
× (n− r)!

(n− a)!

PI(j|i, r) is then the product of the above two probabilities times the num-
ber of possible subset of a elements:

PI(j|i, r) =

(
r

a

)
pupu

• Increasing probability, coding - In Section 5.3.2, we have shown that the
probability of a random linear combination being useful is bounded by 1− 1

q ,
with the value q that can be chosen sufficiently high to make this probability
almost one. Thus, we get:

PI(j|i, r) =

{
1 j = i+ r, i+ r ≤ n
0 otherwise

• Loss probability - This probability has been computed in several papers (as
an example [113]); as such, we do not report further details. In Section 5.1 we
assumed this probability equal to the PLR.

• Initial distribution, baseline protocol - Let assume that the source node sends
the n original packets plus a additional ones, 0 ≤ a ≤ n, in a random order,
starting from a random instant of time. As the order of packet transmissions
is random, the loss events are in turn randomized over the whole set of sent
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packets. Hence, a loss hits any of the n+a packets with the same probability.
Now, there are (

n

d1

)
×
(
a

d2

)
ways to form a pair of groups, in which the first (second) group is a subset of d1
(d2) elements, taken from a set of n (a) elements. Therefore, the probability
that n′ out of the n original packet are lost and a′ out of the a redundant
packets are also lost, given that d1 + d2 = n′ + a′ packets are lost, is

p(n′, a′) =

(
n
n′

)
×
(
a
a′

)∑n
d1=0..n

∑a
d2=n′+a′−d1

(
n
d1

)
×
(
a
d2

)
The initial distribution can be found by summing up the probabilities

associated to the following three events: (i) the total number of packet lost is
n′ + a′; (ii) among them n′ are from the original n packets and a′ from the
redundancy; (iii) the number of different packets after merging the received
n− n′ original packets and a− a′ redundant ones is i. Hence:

π(0)(i) =
n∑

n′=0

a∑
a′=0

PL(n+ a, n′ + a′)× p(n′, a′)× PI(i|n− n′, a− a′)

• Initial distribution, coding - A random linear combination is very likely to
be independent from any other group of random linear combinations. Hence,
the initial distribution of the Markov chain is well approximated exploiting
the received packet’s distribution:

π(0)(i) =

{
PL(n+ a, n+ a− i) i < n∑a

k=0 PL(n+ a, n+ a− k) i = n

5.4.2 Success rate, F > 1

In a gossip protocol with fanout F , during a round the destination node con-
tacts F nodes and pull data from them. Although in real protocols these
contacts occur in parallel, we treat them as elementary gossip operations oc-
curring in sequence and changing the state of a node. For convenience, the
initial state gets index k = −1, rounds are numbered starting from 0 and the
first elementary operation of round 0 occurs at time index k = 0. Hence, for
example, for F = 2, the contacts with number k = 0, 1 belong to round 0,
contacts 2, 3 to round 1, etc. In general, the k−th contact belongs to the round
bk/F c. The node performing round F sees the contacted node being in the
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state F bk/F c−1. Under these considerations, the previous model can be still
applied; the only formal changes are the definition of the holding probability

PH(k, i) = π(F bk/F c−1)(i)

and the fact that the meaningful probability values are those for k = jF − 1,
j = 0, 1, 2, ...

5.4.3 Results and discussion

In this Section we compare theoretical results with experimental results ob-
tained through a custom time-driven simulator. We evaluate the success rate,
i.e., the fraction of system nodes that fully recovers an event, where the sys-
tem size is 100 nodes. This value is the mean of 100 different publications,
averaged on all nodes. The network failure model is defined in terms of: (i)
Packet Loss Rate (PLR), and (ii) Average Burst Length (ABL).
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Figure 5.7: Reliability improvement in coding and no coding cases by varying

the redundancy degree.

Figure 5.7 compares the success rate in coding and no coding cases, by
varying the number of redundant packets. In both coding and no coding pro-
tocols, PLR is set to 0.2 and ABL to 2. We can see how coding exponentially
improves the reliability by augmenting the number of redundant packets. This
is direct consequence of the high probability for a linear combination to be in-
dependent from all the others. It is anticipated that a similar behavior is also
found when a real publish/subscribe protocol is used.
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Figure 5.8, instead, shows how reliability augments in presence of gossip.
In case of coding, 2 rounds are enough to fully recover the whole event. The
Figure thus confirms that coding is expected to improve the delay performance
as a consequence of a less number of rounds required to get the missed packets
in case of loss. Finally, Figure 5.9 shows the effect of fanout for PLR = 0.2
and ABL = 2. By increasing the fanout, a node pulls a larger amount of data
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per round, thus making a round more effective.

5.5 Experimental evaluation

The goal of this Section is to present experimental results that validate the
theoretical analysis provided in the previous Section. We implemented our
solution by using the OMNET++ [108] simulator: for the networking compo-
nents we have used the INET framework, while as ENS we used the SCRIBE
implementation provided by the OVERSIM [23] library.

The workload used in our experiments has been taken from the require-
ments of the SESAR project, since it is representative of a real LCCI case.
Specifically, exchanged events have a size of 23KB, the event rate is fixed to
1 event/sec and the number of nodes is 40 (this is the estimated number of
ATM entities involved in the first phase of the SESAR project, deployed in
Italy, Switzerland and France). The network parameters are: link delay equals
to 50 milliseconds, PLR = 0.05 and ABL = 2 [49]. We modeled the time to
obtain a coded packet equal to 5ms, while the time for the dual operation is
equal to 10ms. We also assumed the packet size equal to the payload of MTU
in Ethernet (i.e., 1472 bytes) so that an event is fragmented in 16 packets.

Finally, without loss of generality, we considered a system with a publisher
and 39 subscribers, all subscribed to the same topic. We simulated a period
of 1000 publications and reported the average of three different experiments
on the same scenario (we did not observe standard deviation above 5% of re-
ported values, thus they are not plotted on the curves).

We evaluate the three different gossip strategies introduced in Section 5.2:
push, pull and push/pull. The metrics we consider in our study are:

Success rate: the ratio between the number of received events and the num-
ber of the published ones, and it is referred to as reliability, which is the ability
of the publish/subscribe service to deliver all the published events to all the
interested subscribers. If success rate is 1, then all the published events have
been correctly notified by all subscribers.
Overhead: the ratio between the total number of packets exchanged during
an experiment and the number of packets generated by the publisher (that is
the number of published events times the number of packets in which an event
is fragmented to be conveyed by the network). It is a measure of the traffic
load that the dissemination strategy imposes on the network, and should be
kept as lower as possible, in order to avoid congestions.
Performance: mean latency is a measure of how fast the given dissemination
algorithm is able to deliver events, while the standard deviation indicates pos-
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sible performance fluctuations due to the applied fault-tolerance mechanisms,
highlighting timing penalties that can compromise the timeliness requirement.
Dependance on Network Dynamics: mean latency in presence of differ-
ent network conditions.

The parameters we vary in our analysis are:
Redundancy degree: number of redundant packets sent by the publisher in
addition to the original ones.
Gossip fan-out.
Gossip fan-in: when not explicitly declared, we assume that the fan-in is set
to 1.

In our evaluation, we report the results obtained to reach a success rate equal
to 1 (thus, some curves may be truncated).

5.5.1 Success rate

In Figure 5.10 we compare the coding and no coding cases introduced in
Section 5.4 by varying the redundancy degree.
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Figure 5.10: Success rate when transmitting plain or coded redundant packets.

The publisher publishes an event on SCRIBE, by sending several redundant
packets. We recall that in the coding case, these packets are linear combi-
nations of the original packets that compose the event. The obtained results
confirm what we mentioned in the previous Section, i.e., coding is able to
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improve the reliability of an event dissemination protocol without requiring a
high redundancy degree. In fact, without coding a full success rate (complete
delivery) is achieved only with a redundancy equal to 29 (i.e., the event is
sent almost three times), while with coding this is obtained just with a redun-
dancy of 8. This improvement is particularly meaningful for the considered
ATC context, where real ATC systems currently ensure a complete delivery
by sending a plain event three times2.

In Figures 5.11 and 5.12 we evaluate the three gossip strategies, push, pull
and push/pull, by varying the fan-out. The publisher periodically publishes an
event on SCRIBE; in the push and push/pull cases, when a node completely
reconstructs an event, it starts a gossip procedure by contacting a subset of
the other nodes according to the fan-out value. On the contrary, in the pull
procedure the set of the last received event identifiers is sent on a periodical
basis, with the period fixed to 1.5 seconds.
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Figure 5.11: Success rate for the three gossip styles.

Figure 5.11 evidences that push is better than the other gossip styles be-
cause it forwards packets as soon as an event arrives; in pull and push/pull
strategies, in fact, the loss of a message containing the set of the last re-
ceived event identifiers or a retransmission request compromises the recovery
of a given event. However, Figure 5.12 shows an interesting trade-off between
fan-in and fan-out in the pull approach: by definition, augmenting the fan-in
augments the number of times that an event identifier is sent to other nodes,

2Private discussion with Dr. Angelo Corsaro, CTO at PrismTech and co-chair of the

Data Distribution Service Special Interest Group.
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that in turn reduces the number of partners per round to succesfully spread
this information.
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Figure 5.12: Trade-off between fan-in and fan-out to reach a full success rate

in the pull-based gossip.
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In Figures 5.13 and 5.14 we combine gossip and coding: the publisher
sends a plain event, as before, and introduces a redundancy by sending one
or two additional packets (i.e., linear combinations of that event). During the
gossip phase, nodes retransmit just the redundancy. Results show that when
gossip is teamed up with coding, a full success rate is obtained with a smaller
fan-out, due to the ability of network coding to provide useful packets to fully
reconstruct an event (under the assumption of independent coefficients) [56].
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5.5.2 Overhead

Figure 5.15 shows the overhead produced by the three gossip strategies, ev-
idencing that it only depends on the fan-out, and not on the experienced
network conditions (in fact, it does not change even varying ABL). A slight
variation is just present in the pull-based strategy. This difference is due to
its reactive nature: a retransmission request is issued only when a missing
event is detected by looking at the sets of identifiers periodically received
from other nodes. Augmenting the ABL augments the probability to loose a
packet, and then to ask for a retransmission. On the contrary, in push and
push/pull strategies, a gossip message is always sent as soon as an event is
received. Moreover, the improvement introduced by push/pull with respect to
the push style, by sending only the identifier of the received events, allows to
reduce in a remarkable manner the experienced overhead. It is worth noticing
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that the lowest overhead is in presence of pull gossip: as explained above, a
retransmission is sent only when needed, so to reduce the overall traffic load.
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Figure 5.15: Overhead for the different gossip strategies by varying the fan-
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Figure 5.16: Overhead of pull gossip by varying the fan-out for different fan-in

values.

In Figure 5.16 we separately analyze the impact of fan-in on the overhead
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for the pull-based strategy. Due to the slight difference in the overhead value
by varying the network conditions, for clarity of presentation we plot only
the case with ABL = 2. As expected, augmenting the fan-in augments the
probability that an event will be retransmitted several times, so as to increase
the measured overhead. However, we have already seen that augmenting the
fan-in reduces the fan-out to reliably notify an event.

Figures 5.17 and 5.18 show the impact of coding on push and pull gossip
styles respectively.
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We notice that the redundancy initially introduces a higher overhead, but
it is mitigated by the lower fan-out required to achieve a success rate equal to
1 with respect to the case without coding. In particular, Figure 5.18 shows
an interesting property: augmenting the redundancy in the pull strategy de-
creases the overhead to achieve a reliable delivery. This is motivated by the
fact that coding determines not only a reduction of the fan-out, as also expe-
rienced by the push style, but in this case also a reduction of the number of
retransmissions, as depicted in Figure 5.19.

On the contrary, this behavior is not present in the push style (5.17): due
to its proactive nature, redundant packets are forwarded as soon as an event
arrives to a subscriber. As such, augmenting the redundancy, augments also
the overhead.
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degree is varied.

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1  2  3  4  5  6  7

M
ea

n 
R

et
ra

ns
m

is
si

on
s 

pe
r 

N
ot

ifi
ca

tio
n

Fanout

Pull, No-Coding
Pull, Redundancy = 1
Pull, Redundancy = 2

Figure 5.19: Number of needed retransmissions per event in the pull gossip

when redundancy degree is varied.



108 CHAPTER 5. TIMELINESS AND RELIABILITY ISSUES

5.5.3 Performance

Figure 5.20 illustrates the mean latency of the gossip approaches to achieve
a full success rate by varying the fan-out. As expected, push and push/pull
exhibit better performance than pull gossip, due to its periodical dissemination
of the last received event identifiers.
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Figure 5.20: Mean latency for the different gossip strategies.

In addition, Figure 5.21 clearly shows that in pull gossip the fan-in further
compromises the performance: the higher the fan-in, the greater the delivery
latency. This is motivated by the trade-off between fan-in and fan-out: a
higher fan-in decreases the fan-out, but the complete reconstruction of an
event is spread over more (periodic) gossip executions.

Not surprisingly, applying coding has a good effect on the mean latency,
as depicted in Figure 5.22, due to its ability to provide useful packets during
an event recovery procedure. This result confirms what we expected from
the theoretical analysis: coding is able to reduce the interaction among nodes
during the recovery phase of the protocol, so to deliver better performance in
terms of latency.

Finally, we analyze the standard deviation of the mean dissemination la-
tency in order to detect possible fluctuations in the event delivery time that
can compromise the timeliness requirement. Figure 5.23 illustrates the stan-
dard deviation for the push and pull gossip strategies. Due to a reduction of
the fan-out and of the number of retransmissions in the pull style, coding is
able to decrease the latency standard deviation: with two linear combinations,
push and pull experience respectively a reduction of 14% and 19%.
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Figure 5.21: Mean latency of pull gossip by varying the fan-out for different

fan-in values.
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5.5.4 Dependance on network dynamics

To investigate the effect of network dynamics on the obtainable performance,
we have compared the mean latency in the push and pull gossip strategies
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when PLR is varied. The applied redundancy is composed by two linear
combinations. The results of this experiment are reported in Figure 5.24.
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Specifically, push and pull strategies show a strong improvement, respec-
tively 8% for push and 31% for pull moving from PLR = 0.05 to PLR = 0.1.
In addition, this improvement is also evident for fixed PLR values (i.e., when
we separately consider PLR = 0.05 and PLR = 0.1), especially in presence
of the pull strategy, even in this case motivated by the reduced number of
retransmissions in presence of coding (see Figure 5.19 for reference).

5.5.5 Final considerations

In the experimental analysis we evaluated the impact of coding through a
simulation-based study conducted on a real workload taken from the air traf-
fic control scenario. The obtained results state that coding helps to decrease
the number of redundant packets (Figure 5.10) and the gossip fan-out (Figures
5.11-5.14) to achieve a reliable delivery of events, due to its ability to provide
useful packets during an event recovery procedure. This obviously translates
into a reduction of the overhead (Figures 5.15-5.18) and the mean notification
latency (Figures 5.20-5.23), even when the network conditions vary (Figure
5.24). In particular, in the pull strategy this result is also obtained by the re-
duction of the number of retransmissions to fully reconstruct an event (Figure
5.19).

From a practical point of view, we have that an application with strong
timeliness requirements should use a push-based gossip recovery strategy with
coding: in the considered real workload scenario, we obtain that each event is
reliably notified by all subscribers within 500-600 milliseconds. This comes at
expenses of a higher overhead than in a pull-based strategy, where its notifi-
cation latency is however affected by the retransmission period, making this
solution suitable just in the presence of less stringent timeliness constraints.

5.6 Related work

Timeliness and reliability in publish/subscribe middleware have been consid-
ered just as separate aspects, sometimes resulting in conflict between them,
making current solutions not suitable for SoS. As a concrete example, relia-
bility is often ensured by means of retransmissions, i.e., by using TCP links
[35, 92] or Automatic Repeat reQuest (ARQ) schemes. In particular, these
schemes comprises approaches that detect any possible message omission due
to the manifestation of some kind of fault, and ask for a retransmission. De-
pending on the contacted node for a retransmission, we can have a further
classification of the ARQ schemes [68]: sender-based, i.e., all the nodes always
contact the multicaster; parent-based, i.e., a node always contacts its parent
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in a multicast tree; neighbor-based, i.e., retransmission duties are distributed
among any neighboring node. The last one is further divided in the following
techniques:

• Lateral Error Recovery (LER): all the nodes are randomly grouped in
distinct planes. The neighborhood of a node is composed by other nodes
in different planes [115].

• Cooperative Error Recovery (CER): nodes are clustered in groups whose
members are characterized by a negligible loss correlation (i.e., if a node
experiences a message loss, it is unlikely that all the nodes loose the
same message). Hence, a node selects its neighbors among the members
of its group [105].

• Gossiping algorithms: [10, 11, 40].

However, retransmission implies that the time needed to deliver an event
becomes unpredictable and highly fluctuating, so to violate timeliness, since
the number of retransmissions needed to deliver that event depends on the net-
work conditions. In the literature of reliable communications, due to its ability
to reduce the delivery time, network coding represents a valid alternative to
retransmission. As shown in this Chapter, network coding also provides a low
overhead in terms of exchanged messages, other than a potential throughput
improvement and a high degree of robustness [56]. To this end, it has been
widely applied to data dissemination in large scale systems; several works have
shown improvements in the expected file download time in content distribution
networks [60], robustness to network changes or link failures [65] and resiliency
against random packet loss and delay [37].

In this Chapter, after introducing how network coding works and the-
oretically showing its benefit on the information delivery performance, we
investigated on how network coding and gossip can ensure both timeliness
and reliability in publish/subscribe systems. Specifically, we have improved a
best-effort topic-based publish/subscribe by (i) introducing the possibility of
applying coding at the publisher, (ii) using a gossip strategy to recover any
lost data at each destination, and (iii) integrating coding within the retrans-
missions used by gossip.

The most similar work to ours is [8], where coding is combined with gossip
at receiver side: coding is used only when gossipers have to retransmit in
push mode their received data. We considerably differ from this work in the
following ways: (i) we apply coding also at the publisher site, (ii) we investigate
several gossip approaches and the benefit that coding can bring to them, and
(iii) we evaluate the effects of coding not only on the delivery performance but
also for the imposed overhead and in different network conditions. Another
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similar work is presented in [43], which differs from ours due to its theoretical
nature (i.e., dissemination approaches are only studied by means of analytical
models), and its evaluation metrics (i.e., gossip with and without coding is
studied only with respect to latency). Finally, authors in [103] propose a
combination of FEC and ARQ schemes to limit, with high probability, the
packet loss rate of overlay channels to a target vale q. Specifically, the protocol
restricts the number of retransmissions to at most one, in order to minimize the
end-to-end latency. Packets are divided into windows, each one with a FEC
redundancy factor r1. In a second round (i.e., retransmission), if a window is
non-recoverable, a node retransmits the lost packets with a redundancy factor
r2 (r1 and r2 are estimated based on the packet loss rate). The main difference
with our solution lies in the fact that the protocol presented in [103] is more
suitable for streaming applications, where a minimum packet loss rate can be
tolerated, while we concentrate on critical systems in which reliable delivery
is of paramount importance.

5.7 Future work

In this Chapter we described an algorithm for timely and reliable event dis-
semination in publish/subscribe middleware by means of network coding and
gossip. Although we showed how the joint use of these two approaches im-
proves the performance with respect to a plain protocol, we planned for the
close future to further improve our solution with several optimizations. The
first aspect that we are currently considering is how to dynamically adapt the
redundancy degree based on the network conditions. In our approach coding
is both applied at the publisher’s site and at subscribers’ site when a retrans-
mission is triggered during a gossip recovery procedure. In both cases, the
user is free to choose the redundancy degree to be applied. However, it can be
possible to properly tune this degree when applied by a subscriber during the
recovery phase of the protocol, so to increase the probability that the retrans-
mission is able to completely recover the lost event. The tuning mechanism
depends on the current network conditions; to this end, we are studying a
mathematical model that analyzes the mean number of lost packets to infer
the proper redundancy degree for a given subscriber.

Another aspect we are considering is how to select gossip partners during
the recovery phase. In this Chapter we assumed a random uniform selection
mechanism; however, we can improve the efficiency of such a solution by se-
lecting nodes with proper heuristics. To this end, we plan to use a polarized
gossip, in which a subscriber assignes a weight to a subset of other subscribers
interested in the same topic returned by the peer sampling service. The weight
assignement follows the probability that the returned subscriber has a missing



114 CHAPTER 5. TIMELINESS AND RELIABILITY ISSUES

packet. Hence, a subscriber contacts f of the highest-weighted subscribers
returned by the peer sampling service, i.e., those with the highest probability
to have a missed packet. In particular, we plan to devise two different models
for the weight assignement: one based on the current network status, which
requires to infer the mean number of lost packets for each incoming overlay
link, and another one based on the position of nodes in the diffusion overlay,
with the idea that nodes closer to the source of information have a higher
probability to have a packet.
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Conclusion

In the last few years, the publish/subscribe paradigm gained attention as a
middleware platform to connect geographically sparse systems into System of
Systems (SoS). Power grids, transport infrastructures (airports and seaports),
financial infrastructures, next generation intelligence platforms, are example
of SoS, where the information produced by multiple sources has to be delivered
to multiple destinations distributed across the world. The publish/subscribe
paradigm is appealing for its intrinsic space, time and synchronization de-
coupling properties, that satisfy the scalability requirement of SoS. Research
prototypes as well as commercial systems have been recently proposed to be
employed in several contexts. However, although many real world applica-
tions require support for a broader set of QoS aspects, other than scalability,
the majority of publish/subscribe systems either addresses those aspects in a
small scale system, or operates only on a best-effort basis. Middleware solu-
tions such as DDS, TIBCO Rendezvous are used to provide high performance
and reliable delivery in local systems, while they degrade performance when
applied in large scale environments. In addition, solutions such as SCRIBE,
IndiQoS, JEDI fit only partially the QoS requirement of large scale SoS, pro-
viding reliability, timeliness and ordering singularly and not at once.

In this thesis, we proposed to fill the gap between application requirements
and publish/subscribe QoS properties by devising novel algorithms to address
ordering, timeliness and reliability issues. Specifically, in Chapter 1 we de-
fined several QoS policies for delivery (best effort, reliable), ordering (FIFO,
causal, total, real time) and timeliness, and, then, we analyzed several case
studies, namely collaborative security, stock market, active database in cloud
computing and air traffic control to evidence which of those policies had to be
considered in these different contexts. From this analysis we highlighted the
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current gap between application requirements and middleware guarantees in
terms of QoS, by also discussing the challenges in the design of algorithms for
large scale systems.

The main contribution of the thesis was to devise a framework to ad-
dress ordering, timeliness and reliability in SoS that could be posed on top
of a generic topic-based publish/subscribe middleware, and it is described in
Chapters 3 and 5. Specifically, in Chapter 3 we proposed an algorithm for
out-of-order notification detection that guarantees that events published on
different topics will be either delivered in the same order to all the subscribers
of those topics, or tagged as out-of-order. Our algorithm is completely dis-
tributed and relies on a sequencing network of topic managers that collabora-
tively generate a timestamps for each published event. A deterministic total
ordering relation among topics determines a one-way sequence of topic man-
agers that insert a sequence number that represents the number of events pre-
viously published on their topics. This timestamp is then used on subscribers’
side to infer the correct order of events. In addition, we provided a dynamic
algorithm to modify at run-time the topic ordering relation, in order to adapt
the current publication popularity. In the experimental analysis we showed
how this dynamic adaptation is useful to decrease the notification latency, the
bandwidth overhead due to the use of timestamps and the load on topic man-
agers imposed by the timestamp generation. We also developed a prototype
of the algorithm that has been evaluated in comparison to a solution based
on JGroups, showing that our solution performs better in presence of a high
publication rate. In addition, in Chapter 4 we applied the ordering algorithm
to the context of database replication in cloud computing, and compared it
with a solution that ensures eventual consistency [16]. Our protocol proved to
reduce the number of rollbacks to consistently update database replicas even
in presence of a high event rate, at the cost of a higher notification latency
when the number of topics in the system grows. Finally, the proposed algo-
rithm improves the current state of the art by: (i) scaling over large networks;
(ii) avoiding the need of synchronization among interacting parts, as required
by the publish/subscribe paradigm; and (iii) dynamically handling subscrip-
tions/unsubscriptions, without requiring to build from skratch the brokering
network.

In Chapter 5, instead, we described an algorithm to guarantee both time-
liness and reliability in publish/subscribe systems over WAN. Typically, these
two properties are either satisfied in local networks ([3, 106]) or considered as
separate aspects, sometimes in conflict between them, with reliability obtained
by means of retransmissions (so to intoduce delay penalties), or timeliness ob-
tained by softening reliability requirements. We aimed to fill this gap by using
two different approaches, namely network coding and gossip, the former known
to improve the throughput and to reduce the delivery time in data dissemina-
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tion, the latter to improve the reliability in event delivery. We considered the
case in which a publisher divides an event in plain packets and sends them
through the network. In addition, the publisher sends redundant packets that
are linear combinations of the original plain packets. Subscribers can recon-
struct the whole information through the reception of plain and coded packets.
However, when the received packets are not enough to fully reconstruct an
event, a subscriber initiates a gossip procedure by randomly contacting one
or more subscribers interested in the same topic. We provided a theoretical
analysis that showed the benefit of using coding during the recovery of missed
packets in terms of number of gossip interactions and message overhead, with
respect to a plain recovery protocol. In addition, we also conducted an exper-
imental analysis on a real workload taken from the air traffic control scenario,
that confirmed the theoretical results and evaluated the performance of our
algorithm by applying different gossip strategies. Our solution improves the
current state of the art by: (i) introducing coding at publishers’ site; (ii) in-
vestigating several gossiping strategies and the benefit that coding can bring
to them; and (iii) evaluating not only notification latency but also the message
overhead, by considering different network conditions.

Concluding, let us remark that each proposed solution presents some open
problems that we plan to address in the close future (i.e., how to guarantee a
causality relation among events published on different topics for the ordering
algorithm, or how to improve the timeliness and reliability in event delivery by
using a gossiping recovery strategy where partners are selected based on the
probability to have a missed packet instead of a random selection). They have
been discussed in the future work of the respective Chapters of the thesis.
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