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Abstract—Automatic surveillance systems for the maritime
domain are becoming more and more important due to a constant
increase of naval traffic and to the simultaneous reduction of
crews on decks. However, available technology still provides only
a limited support to this kind of applications. In this paper,
a modular system for intelligent maritime surveillance, capable
of fusing information from heterogeneous sources, is described.
The system is designed to enhance the functions of the existing
Vessel Traffic Services systems and to be deployable in populated
areas, where radar-based systems cannot be used due to the high
electromagnetic radiation emissions. A quantitative evaluation
of the proposed approach has been carried out on a large
and publicly available data set of images and videos, collected
from multiple real sites, with different light, weather, and traffic
conditions.

Index Terms—video analysis, infrared surveillance, object de-
tection, sensor fusion.

I. INTRODUCTION

Automatic surveillance of coastal areas is gaining im-
portance due to the increasing global ship traffic: Tankers,
container ships, and bulk carriers are the most important means
of transportation of our time [1]. The simultaneous reduction
of crews on decks makes the adoption of automatic tools a
necessary requirement for port management. Moreover, the
presence of environment protection issues and new dangerous
threats coming from the sea, including illegal smuggling
and fishing, immigration, oil spills and piracy, encourage the
development of intelligent monitoring systems.

A possible strategy to develop a robust maritime surveil-
lance solution is to gather and merge data from multiple
heterogeneous sensors [2]. Examples are systems combining
Automatic Identification System (AIS) data with Synthetic
Aperture Radar (SAR) imagery (e.g., [3]), buoy-mounted
sensors with land radars (e.g., [4], [5]), visual- with radar-
based surveillance (e.g., [6]) and multiple ship-based sensors
- e.g., [7].

In this paper, we focus on Vessel Traffic Services (VTS)
systems, which combine radar and AIS data and are often
equipped with long-range surveillance cameras, both electro-
optical (EO) and infra-red (IR). However, using radar and AIS
data only is not sufficient to ensure a complete solution for the
maritime surveillance problem, due to two strong limitations:
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1) AIS signal may be not available (AIS device not acti-
vated or malfunctioning) or illegally manipulated

2) radar-based systems are not suitable for vessel traffic
monitoring in populated areas, due to the high electro-
magnetic radiation emissions.

Replacing radar sensors with cameras is a feasible solution for
the maritime surveillance task, without the need of placing
radar antennas in populated areas [8]. Here, we propose a
modular architecture that extends the capability of currently
available VTS systems, together with a prototype system that
allows adds a novel visual dimension to the common VTS
features. The architecture is designed for:

1) detecting boats through a classifier-based method, which
can work with both EO and IR moving cameras.

2) tracking multiple ships, even in presence of occlusions
3) fusing data from existing VTS systems with visual

information from cameras
4) deployable in populated areas

The main contribution of this paper is to provide a general
scheme with a suitable approach for combining AIS and visual
(EO and IR) data in a unique view. The system resulting
from the implementation of the scheme has been quantitatively
evaluated on real and publicly available1 data coming from
different currently working VTS systems.

The rest of this paper is organized as follows. Related work
is discussed in Section II, while the system overview is given
in Section III. Vessel detection with moving and zooming
cameras is detailed in Section IV; tracking and data fusion are
described in Section V. The experimental results are shown in
Section VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORK

Surveillance systems for the maritime domain have to deal
with a set of challenges, including:
• wide areas to be monitored
• weather issues, such as heavy rain or fog
• night-time monitoring, with the need of suitable sensors
• varying size (ranging from few to hundreds of meters in

length) of the relevant objects
• multiple objects to be tracked, with possible partial and

total occlusions
In order to perform an accurate and effective monitoring of
coastal areas, it is thus necessary to collect and combine
data from multiple and heterogeneous information sources.
Existing approaches addressing information fusion solutions
for maritime surveillance can be grouped according to the

1All data used in this work can be found at http://goo.gl/jTYuTi
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Fig. 1. Modular architecture of the system. The output is a unique view
containing both VTS and visual data.

nature of the main sensors used: (i) radar, (ii) satellite, (iii)
sonar, and (iv) camera. In this paper, we focus on systems
where visual information is available, thus this section contains
a discussion about camera-based solutions. Reviews about
maritime surveillance systems relying on radar, satellite, and
sonar sensors can be found in [9] and [10].

Camera-based systems. Bechar et al. [11] address the
problem of near real-time video analysis of a maritime scene
using a moving airborne RGB video camera for vessel de-
tection. The approach uses a fusion of spatio-temporal un-
certainty, which has been recast as an energy minimization
problem. The main drawback is the use of multiple hard
coded parameters, tuned according to the experience of the
authors. Histogram of Oriented Gradients (HOG) are used
in [12]. Since the calculation of the detection features in-
volves a significant amount of computational resources, real-
time performance can be obtained only adopting hardware
acceleration with programmable components (e.g., FPGAs).
Bousetouane and Morris [13] investigate the use of Convo-
lutional Neural Networks (CNNs) for vessel classification.
They found that OverFeat features outperform other state-of-
art CNN architectures for a commercial fishing harbor data
set. Qi et al. [14] propose an approach for fast detecting
small maritime objects in IR images. The method is based
on the local minimum patterns (LMP). Using a saliency map
via background subtraction, potential objects are extracted by
means of an automatically estimated threshold based on the
LMP. It tooks 10 ms to process a 352×288 image.

Multiple sensor fusion. An open problem in the maritime
scenario is how to fuse information from the different sensors.
Bustamante et al. [15] propose a multi-agent system (MAS)
architecture for automatically controlling the camera, radar,
and AIS modules. The data fusion system is represented
as an additional source sensor, which allows the agents to
collaborate for avoiding redundancy. However, the conflict
solving mechanism between agents can cause lost time. Marti
et al. [16] propose a fusion system that combines information
coming from the on-board sensor together with the messages
from collaborative entities and static databases. Even if the
approach can achieve good results, the participation of an
external user is often needed for obtaining satisfactory per-
formance during the fusion procedure.

Fig. 2. Video Processing Unit. The detection is based on a Haar classifier,
while the visual tracking module uses the PTracking library [17].

In this paper, our aim is to describe an approach for
enhancing the traditional VTS system functions with visual
information. VTS systems provide information, denoted from
now on as VTS data, combining radar and AIS tracks. To this
end, we propose a camera-based architecture in which visual
sensors (both EO and IR) can be used alone or in combination
with VTS data to obtain a vessel traffic monitoring system with
a high accuracy. The system is deployable both in a site where
a VTS is already present and where it is not possible or not
convenient to install a radar.

III. SYSTEM OVERVIEW

The modules of the proposed architecture are shown in Fig.
1. An EO/IR camera is the main sensor and it can be moved
by a human operator. The Camera Control module provides
the current orientation and field-of-view (FOV) of the camera
to the Video Processing Unit (VPU), which is responsible to
detect and track the vessels using only visual information.
Since the camera can move and zoom, the detection task is
rather complex, since it is not possible to create a model of
the observed scene.

The Data Fusion module receives data from both the VPU
and the VTS system. Its role is to fuse the visual tracks coming
from the video analysis with the tracks generated from an
existing VTS system. In this way, it is possible to provide
the user with a novel visual dimension in addition to the
traditional geo-referenced, radar-like VTS view. Moreover, the
Data Fusion module can send feedback information to the VTS
system, in order to adapt the radar parameters for improving
the detection accuracy (see [18] for details).

In the following section, the visual detection process is de-
scribed, while the tracking and data fusion steps are discussed
in Section V.

IV. VISUAL DETECTION

The Visual Detection module is part of the VPU and its aim
is to find the objects of interest in the current input image.
Since the detection accuracy affects all the stages in the VPU
process flow, it must be as high as possible, while maintaining
an acceptable computational load. The three main components
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Fig. 3. a) Types of Haar-like features used for detection. b) Multiple boats.
c) Reflections on the water surface. d) Boat wakes. e) Cruise ship. Pictures b)
and c) are from MarDCT data set [24], while d) and e) are from the PASCAL
VOC data set [20].

of the VPU, namely the Haar classifier, the horizon line
detector, and the noise filter, are shown in Fig. 2.

Haar classifier. We assume that the camera can be freely
moved by the user, thus a foreground/background modelling
approach (e.g., background subtraction) to detect the boats
is ineffective. A possible solution consists in developing a
classification-based detector, since it can operate on still im-
ages, thus avoiding the need of creating and updating a model
of the background. To build the classifier it is necessary to
learn a model from a set of labelled data instances (training
phase). Then, in the testing phase, the learned model can be
exploited to classify a test instance [19]. Different methods
can be used to create the classifier (e.g., [6], [20]). The Haar-
like features based approach described in [21] works in real-
time, differently from other existing methods (e.g., [22], [23]),
which are more computationally expensive. In particular, three
different types of Haar-like features are used: Edge, line, and
center-surround features (see Fig. 3a).

It is worth noticing that the Haar classifier has been
originally designed for face detection, thus we have suitably
adapted it for detecting boats. In particular:
• a 60 × 30 rectangular window is used, instead of a

squared one
• median filtering is applied to smooth the image in input

to reduce the presence of wakes
• the thresholds of the Canny edge detector are determined

to focus on long edges. In particular, in our OpenCV im-
plementation, we have empirically set the two threshold
values to min = 50 and max = 70 for all the images

We have decided to create a unique binary classifier, training
it with samples containing multiple types of vessels captured
from different view angles. To this end, we have exploited the
OpenCV function opencv_traincascade that can train
a cascade of boosted classifiers from a set of samples. The
used sample data set2 contains 1549 positive images (taken
mostly from the Internet) and 4000 negative images (without
boats). In particular, the positive set contains bulkers (247
samples), cruise ships (85), ferry boats (87), fishing vessels
(253), naval ships (71), sailing boats (169), yachts (217), and
small boats (420). The training stage has been stopped when
the false alarm rate reached 5 × 10−6, obtaining a 24-level
binary classifier capable of detecting boats of different size,

2Positive and negative images can be found at http://goo.gl/TuUpkg

Fig. 4. Horizon line detection. a) Source image. b) Extracted Hough lines.
c) Sample points used for validating the line (two corresponding pairs are
highlighted).

Fig. 5. a) Water-sky line. b) Water-coast line: The rich texture of the coastal
background increases the probability of finding false positives. c) Horizon line
detection in presence of fog. Pictures a and b are from the PASCAL VOC
data set, c from the Internet.

with blurring noise, in presence of boat wakes and reflections
on the water surface (see the examples in Fig. 3).

Horizon line detector. Along with the boats, it can be very
useful to detect also the limit of the sea surface to discard
false positives. The image in input (Fig. 4a) is processed by
extracting the edges and then applying the Hough transform
to the edge map, thus creating a list of candidate lines (Fig.
4b). Each candidate line is validated with respect to a set of
sample points belonging to a rectangular region above and
under it (see Fig. 4c). The grayscale intensity values of the
points above the candidate line are compared with the values
of the corresponding points under the line. If more than 90%
of the compared pairs present different intensity values, then
the line is considered valid. In such a way, long wakes can be
filtered out since corresponding pairs above and under wakes
have similar intensity values. An example is shown in Fig.
4b, where the lower line is discarded, while the upper line is
considered a valid horizon line, since there is a considerable
difference between the intensity values of the points over and
under it.

Depending upon the heading of the camera, the horizon line
detector differentiates between the water-sky and the water-
coast line (Fig. 5). Indeed, the probability of finding false
positives increases in presence of the coast, due to the rich
texture of the background; thus, it is convenient to filter out
the detections laying well above the water-coast line (Fig. 5b).
The approach is rather robust and can work also in presence
of fog (Fig. 5c).

Noise filter. To filter out false positives caused by waves
and boat wakes, an additional level for the classifier has
been created by using a special negative set of 4000 images,
containing wakes and other false positive detection examples
generated by the original 24-level classifier (see Fig. 6).

Moreover, to avoid false observations due to reflections,
a filtering is carried out by counting the number of SURF
[25] key points present in each potential observation in the
current image (bounding box). If the number of key points
in the bounding box is negligible, then the observation is
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Fig. 6. An additional weak-classifier (25th level) is used for wake removal.
4000 wake images are used as negative samples to train the new level.

Fig. 7. False detections caused by reflections can be filtered out by analyzing
the SURF key points. Dashed line bounding boxes are rejected detections.

discarded. Indeed, since SURF detection is not invariant to
mirror reflections, the number of key points generated by
reflections on the water surface is usually limited (an example
is shown in Fig. 7).

IR data. The same classifier used for the EO images has
been tested also with IR data. Differently from the approach
adopted for the EO data, a pre-processing step has been
performed for the IR images, in order to improve the results of
the horizon-line detection. In particular, a normalization step is
used to scale and to shift the source image (see Fig. 8). Since
the classifier has been trained using only EO images, the fact
that it can be successfully used on IR images supports the
hypothesis that a Haar-like features based approach is suitable
for boat detection. Moreover, the well-known uncalibrated
polarity and halo issues in thermal imagery, which provoke
problems in thresholding based method due to bright halo
around dark objects and dark halo around bright objects, can
be avoided by adopting a classifier based detection approach.

V. TRACKING AND DATA FUSION

The approach described in this paper aims at enhancing
the current VTS functions, generating a unique view where
the information coming from the camera and the VTS tracks
are merged together. We propose here a distributed tracking
approach, able to fuse data from multiple heterogeneous and
not synchronized sources. The input observations are provided
by the above described Visual Detection module.

The problem of tracking multiple objects by using multiple
sensors can be formulated as follows. Let O = {o1, . . . , on}
be the set of all the moving objects, each one having a different
identity, and S = {s1, . . . , sS} be the set of all sensors,

Fig. 8. IR detection. a) Source image. b) Normalized image. c) Candidate
lines extraction. d) Detection with false positives over the the water-sky line
discarded.

each one having an associated FOV, typically covering only
a limited area of the scene. The total number n of objects
that will be observed is unknown and the number l of the
current objects in the scene, with 0 ≤ l ≤ n, can change
over time. The set of measurements (observations) about the
objects in the FOV of a sensor s ∈ S at a time t is denoted
by zs,t = {z(1)s,t , . . . , z

(l)
s,t}, where a measurement z(i)s,t can

be either an actual object or a false positive. The set of all
the measurements gathered by all the sensors at time t is
denoted by zS,t = {zs,t|s ∈ S}. The history in time of
all the measurements coming from the sensors is defined as
zS,1:t = {zS,j : 1 ≤ j ≤ t}. Since the sensors can have
different refresh rate, we do not assume that the measurements
generated by the sensors are synchronized.

The goal is to determine an estimation of the positions
xs,t = {x(1)s,t , . . . , x

(l)
s,t} for all the objects in the scene at

time t in a distributed fashion, i.e., exploiting all the available
sensors. In order to achieve this goal, a possible solution is to
use the Bayesian recursion approach, defined as follows

p(xs,t|zS,1:t) =
p(zS,t|xs,t)p(xs,t|zS,1:t−1)∫

p(zS,t|xs,t)p(xs,t|zS,1:t−1)dxs,t
(1)

p(xs,t|zS,1:t−1) =

∫
p(xs,t|xs,t−1)p(xs,t−1|zS,1:t−1)dxs,t−1

(2)
Eq. 1 and Eq. 2 represent a global recursive update that can
be computed if and only if a complete knowledge about the
scene is available. Since this is not the case, we approximate
the above exact optimal Bayesian computation by means of
a Distributed Particle Filter-based algorithm (see Fig. 9). In
particular, we extend to a multi-sensor scenario the PTracking3

method, which is an open-source tracking algorithm based on
a Distributed Multi-Clustered Particle Filtering [17], [26], [27].

The estimation of the positions xs,t is given by the vectors
Is,t,Λs,t,M s,t,Σs,t containing information about the iden-
tity (I), the weight (Λ), the mean (M ) and the standard de-
viation (Σ) of each object, represented as a Gaussian Mixture

3PTracking can be found at https://github.com/fabioprev
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Input: Measurements zs,t, local track numbers is,t−1, global
track numbers Is,t−1

Data: Set of local particles ξ̃s,t, set of global particles ξ̃S′,t,
local GMM set L, global GMM set G

Output: Global estimations xs,t = (Is,tΛs,t,M s,t,Σs,t)

// Local Estimation Layer
begin
ξ̃s,t ∼ πt(xs,t|xs,t−1, zs,t)
Re-sample by using the SIR principle

L ← KClusterize(ξ̃s,t)

(is,t,λs,t,µs,t,σs,t)← DataAssociation(L, is,t−1)

Communicate belief (is,t,λs,t,µs,t,σs,t) to other sensors
end

// Global Estimation Layer
begin

Collect LS′ from a subset S ′ ⊆ S of sensors within a ∆t

ξ̃S′,t ∼ π̃ ←
∑

s∈S′ λs,tN (µs,t,σs,t)

Re-sample by using the SIR principle

G ← KClusterize(ξ̃S′,t)

(Is,t,Λs,t,M s,t,Σs,t)← DataAssociation(G, Is,t−1)
end

Fig. 9. PTracking algorithm. Each sensor runs this two-tired architecture to
perform the tracking in the local and global reference frames.

Model (GMM). The size of the vectors can vary during the
execution of the tracking algorithm, depending on the number
of detected objects.

The estimation process is made of three main steps: (i)
the prediction step, which computes the evolution of the
estimations xs,t given the observations zs,t provided by the
sensors; (ii) the clustering step, which groups the estimations
determining their GMMs parameters; (iii) the data association
step, which assigns each observation to an existing track by
considering the history of all the existing tracks.

Prediction. The Particle Filter uses an initial guessed
distribution, based on a transition state model. Then, using
the previous state xs,t−1, the transition model, given by the
measurements zs,t, is applied. From this guessed distribution,
a set of samples is drawn and weighted exploiting the current
observation zs,t. Finally, the Sampling Importance Resampling
(SIR) [28] principle is used to re-sample the particles, which
are then clustered to determine the parameters of the final
GMM model.

Clustering. A novel clustering algorithm, called KCluster-
ize (see Fig. 10), is used for the clustering phase. KClusterize
is designed for fulfilling the following requirements: (i) the
number of objects to detect is not known a priori; (ii) low
computational load is needed for real-time applications; (iii)
each cluster has a Gaussian distribution. First, the particles
are grouped into clusters. Then, a validation step is applied to
verify that each cluster actually represents a Gaussian distri-

Input: Particle set P = {p1, . . . , pm}
Data: Set of centroids F , cluster of particles ci, sets of

Gaussian clusters Q and C
Output: GMM set (λ,µ,σ)

initialize F = ∅
for all pi ∈ P do

if ∀fk ∈ F {‖pi, fk‖ > δmodel} then
F ← F ∪ {pi}

ci = ∅ ∀i ∈ [1, |F|]
for all pi ∈ P do

for all fk ∈ F do
if ‖pi, fk‖ < δmodel then
ck ← ck ∪ {pi}

initialize C = ∅
for all ci do

if ci 6∼ N (µ, σ) then
Q ← KClusterize(ci)
for all qj ∈ Q do

if qj ∼ N (µ, σ) then
C ← C ∪ {qj}

compute (λ,µ,σ) from C

Fig. 10. KClusterize algorithm.

bution. All the non-Gaussian clusters are split (if possible) in
Gaussian clusters. Finally, the obtained clusters form a GMM
set (λs,t,µs,t,σs,t) representing the estimations performed by
the sensor s at time t.

As a difference with other clustering methods (e.g., k-means,
EM, BSAS or QT-Clustering), KClusterize does not require
to know in advance the number of clusters, has a linear
complexity, and all the obtained clusters reflect a Gaussian
distribution.

Data association. An identity (i.e., a track number) has to
be assigned to each object, by associating the new observations
to the existing tracks. This is the crucial step for any tracking
algorithm: The direction, the velocity, and the position of the
objects are the features involved in the association algorithm
(Fig. 12). We consider two moving tracked objects having the
same direction if the angle between their trajectories is less
than 10◦.

The data association step is further complicated by complete
and partial occlusions, which can occur when boats are aligned
with respect to the camera view or when they are close to each
other. Our solution is to consider the collapsing tracks as a
group, instead of tracking them separately (see Fig. 11). When
two or more tracks have their bounding boxes moving closer to
each other (Fig. 11a), the tracker saves their color histograms
and starts considering them as a group (Fig. 11b and Fig. 11c)
— the histograms are used as models for re-identifying the
objects when the occlusion phase is over (Fig. 11d). A group
evolves taking into account both the estimated trajectory and
the observations coming from the detector. When an occluded
object becomes visible again, the stored histograms are used
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(a) (b)

(c) (d)

Fig. 11. Group tracking. Occlusions are handled by considering the collapsing
tracks to form a group instead of tracking them separately.

Input: GMM set (Λs,t,M s,t,Σs,t), global track numbers
IS′,t−1

Data: es estimation performed by the sensor s, set of estima-
tions to fuse A

Output: Global estimations xs,t = (Is,t,Λs,t,M s,t,Σs,t)

for all s ∈ S ′ ⊆ S do
A = ∅
for all es ∈M s,t do
A ← A∪ {es}
for all s̃ ∈ S ′ ⊆ S, s 6= s̃ do

for all es̃ ∈M s̃,t do
if sameDirection(es, es̃) and sameModule(es, es̃)
and close(es, es̃) then
A ← A∪ {es̃}

IA ← Re-Identification(A)

// Re-Identification has failed, we assign a new track
number
if IA is invalid then
IA ← maxTrackNumber + 1

xs,t ← xs,t−1 ∪ FuseData(A,Λs,t,Σs,t, IA)

Fig. 12. Data Association algorithm.

to re-assign the correct identification number, belonging to the
corresponding previously registered track.

Data fusion. As discussed above, the information coming
from the camera and the VTS system are fused in order to
generate an enhanced and reliable believe-state of the tracked
boats (see figures 13, 14, and 15). The Data Fusion stage
is complicated by the lack of a common reference frame:
Indeed, the calibration parameters of the camera are often
not available. To cope with this problem, we devised the
following algorithm. Let vCi be the velocity vector of the boat
i in the camera reference frame C, and VR be the set of
velocity vectors of boats in the VTS reference frame R. The
best matching candidate in VR to be fused with the boat i in

(a) (b)

(c) (d)

Fig. 13. Data fusion. a) Output provided by the detection algorithm. b) Output
of the PTracking algorithm for the camera sensor. c) Output of the PTracking
algorithm for the VTS sensor. d) Final output: VTS information are provided
into the visual frame.

the camera reference frame is selected by computing for each
vRj ∈ VR: vRxj

vRyj


T

·

cosθ −sinθ

sinθ cosθ

 '
vCxi

vCyi


T

(3)

where the rotation parameter θ between the camera and the
VTS reference frames is calculated by means of a Policy
Gradient algorithm [29]. More specifically, the optimization
process finds the best value for θ starting from a predefined
initial value (we use θ = 15◦ in our experiments). Afterwards,
tracking and data fusion are performed by using the initial
value assigned to θ as rotation parameter between the camera
and the VTS frame to obtain quantitative results (see Section
VI-C). Then, we perform two computations in parallel that
use a lower and greater value of θ, respectively. When the
computations are done, we recompute the quantitative results,
checking for which direction the performance improve. We set
this new value as “initial value” and the algorithm is executed
until there is a significant variation in the quality metrics used
to evaluate the performance of the system. This approach to
calibrate the θ rotation parameter between the camera and the
VTS data requires either a manually labeled ground-truth of
a sequence of the input source or the help of a human user
for updating the θ parameter. In the case of multiple matches
for vCi , the Data Fusion algorithm continues to calculate the
evolution for all the current matches, until a unique match is
finally found.

VI. EXPERIMENTAL RESULTS

In order to quantitatively evaluate the performance of our
approach, we have carried out experiments — using publicly
available data set — on the main components of the archi-
tecture, i.e., the Visual Detection, the Visual Tracking, and
the Data Fusion modules. In particular, we have quantitatively
measured the detection accuracy, the tracking precision, the
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(a) (b)

(c) (d)

Fig. 14. Data fusion in the case of a total occlusion. Even if the visual
tracking provides the estimation only for the boat in the foreground, the Data
Fusion module can show also the boat in the background.

data fusion quality and the computational speed of the pro-
posed solutions. Moreover, we have tested the performance of
the whole system (i.e., tracking plus data fusion) when VTS
data are available.

A. Data Set
All data sets used in this experimental evaluation can be

found at the MarDCT Maritime Detection, Classification and
Tracking [24] database, containing images and videos with
ground-truth annotations. The videos have been recorded with
varying observing angles and weather conditions. In particular,
for each video details about the camera type (static or moving,
EO or IR) and the location and time of day, as well as fore-
ground masks to evaluate the image segmentation and ground-
truth annotations with bounding box vertices and identification
numbers to evaluate tracking results are provided. At this
moment, the MarDCT data set contains:

1) EO and IR videos recorded in a VTS centre in Italy
2) EO and IR videos taken in a Northern Europe centre
3) EO videos from the ARGOS system [8] monitoring the

Grand Canal in Venice, Italy
4) EO videos from a port in Eastern Asia

The MarDCT database also contains two examples where
visual and VTS information are recorded together to allow
data fusion tests.

B. Detection Results
The accuracy of the detection process has been evaluated

by using both EO and IR images (from real VTS centres).
Detection metrics. The detection accuracy has been

measured considering two different metrics: True Positive
Rate (also known as Recall) and False Alarm Rate (also
known as False Discovery Rate), defined as follows:

TPR =
TP

TP + FN
(4) FAR =

FP

TP + FP
(5)

(a) (b)

(c) (d)

Fig. 15. Data fusion in the case of a non-AIS boat. The visual tracker
highlights the presence of a boat, which can be recognized by as human
operator.

where TP are the true positives, i.e., correctly detected boats,
FN are the false negatives, i.e., not detected boats, and
FP are the false positives, i.e., the number of background
regions wrongly detected as objects of interest. The TPR
measures the number of true detections on the total number
of examples, while the FAR gives a measure of the false
detections over all the detections generated by the system.

Detection results on EO data. A test data set for evaluating
the detection on EO images has been created by extracting
50 frames (a frame every 5 seconds) from 9 different EO
videos, for a total of 450 EO images. The videos are recorded
with varying light conditions and camera positions in real
VTS centres and contains boats with different shape and size.
Table I shows the results. Since the videos are from different
scenarios (using varying sensors and frame size), we have
reported also the used detection size, which depends on the
zoom level. A good performance of our approach can be
observed and, in particular, a considerable reduction of the
false alarm rate is achievable by activating the horizon line
detection filter.

Detection results on IR data. The same classifier used
for the EO images has been tested with IR data. A set of 150
uniformly selected images from 3 videos (50 frames per video,
with each frame extracted every 5 seconds) recorded in a VTS
centre in Northern Europe has been considered for measuring
the detection accuracy with IR images. The results on the IR
data, shown in Table II, demonstrate the effectiveness of the
classification-based approach and the positive contribution of
the horizon line filtering. Indeed, specially when dealing with
IR images, noise sources from the coast strongly increase the
number of false positives.

C. Visual Tracking Results
Three annotated video clips from three different real sites

have been used to quantitatively evaluate the Visual Tracking
results:

1) occlusions-1 containing two ferry-boats with a complete
occlusion.
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TABLE I
VISUAL DETECTION RESULTS ON EO DATA.

Video
Horizon

Detection
TPR FAR

Real
Size

Detection
Size

occlusions-1
NO
YES

0.725
0.780

0.275
0.200

704×576 704×576

occlusions-2
NO
YES

0.988
1.000

0.012
0.000

469×384 234×192

occlusions-3
NO
YES

0.993
1.000

0.007
0.000

469×384 234×192

high-view
NO
YES

0.664
0.691

0.336
0.309

853×480 234×192

boats-1
NO
YES

1.000
1.000

0.000
0.000

939×768 703×576

boats-2
NO
YES

0.821
0.842

0.179
0.158

469×384 352×288

wakes-1
NO
YES

0.825
0.853

0.175
0.147

426×320 319×240

wakes-2
NO
YES

0.763
0.781

0.237
0.219

938×768 703×576

wakes-3
NO
YES

0.939
0.959

0.061
0.041

938×768 703×576

TABLE II
VISUAL DETECTION RESULTS ON IR DATA.

Video
Horizon

Detection
TPR FAR

Real
Size

Detection
Size

ir-1
NO
YES

0.798
0.865

0.135
0.130

938×768 703×576

ir-2
NO
YES

0.583
0.612

0.388
0.417

938×768 469×384

ir-3
NO
YES

0.773
0.791

0.227
0.209

938 ×768 703×576

2) occlusions-2 showing two small sailing boats intersect-
ing their trajectories with partial occlusion.

3) high-view in which boats are seen from an high view.
The first two videos have been chosen to demonstrate the abil-
ity of our tracker to deal with partial and complete occlusions
as well as with missing observations. The third video has been
used to demonstrate the robustness of our approach even in
presence of a particular view, in which the boats are captured
from an high view. The above described videos, along with
their ground-truth data, can be downloaded from the MarDCT
database.

Tracking metrics. We use the CLEAR MOT [30] metrics
MOTA and MOTP together with Precision and Recall to mea-
sure quantitatively the performance of the tracking method.
The Multiple Object Tracking Accuracy (MOTA) is defined
as:

MOTA = 1−
∑Nframes

t=1 (cm(mt) + cf (fpt) + cs(ID-St))∑Nframes

t=1 N
(t)
G

(6)
where, after computing the mapping for frame t, mt is the
number of misses, fpt is the number of false positives, ID-St

TABLE III
QUANTITATIVE RESULTS FOR THE VISUAL TRACKING MODULE.

Video
Horizon

Detection
MOTA MOTP Precision Recall

False
Positives

occlusions-1
NO
YES

0.808
0.815

0.607
0.613

0.997
1.000

0.814
0.815

0.005
0.000

occlusion-2
NO
YES

0.905
0.910

0.542
0.554

0.952
0.955

0.939
0.955

0.062
0.045

high-view
NO
YES

0.901
0.910

0.601
0.604

0.972
0.982

0.923
0.927

0.031
0.017

is the number of ID mismatches in frame t considering the
mapping in frame (t− 1) and N (t)

G is the number of ground-
truth objects in the t-th frame. The values used for the
weighting functions in this evaluation were cm = cf = 1
and cs = log10.

The Multiple Object Tracking Precision (MOTP) is defined
as:

MOTP =

∑Nmapped

i=1

∑N
(t)
frames

t=1

[
|G(t)

i ∩D
(t)
i |

|G(t)
i ∪D

(t)
i |

]
∑Nframes

t=1 N
(t)
mapped

(7)

where Nmapped refers to the mapped system output objects
over an entire reference track taking into account splits and
merges. N (t)

mapped refers to the number of mapped objects in
the t-th frame, G(t)

i denotes the i-th ground-truth object in the
t-frame and D(t)

i denotes the tracked object for G(t)
i .

Recall is defined as in Eq. 4, while Precision is computed
as follows:

Precision =
TP

TP + FP
(8)

To obtain the precision score, we calculated the spatio-
temporal overlap between the reference tracks and the system
output tracks.

Tracking quantitative results. Table III shows the quanti-
tative results for the visual tracking module on three different
videos, which contain partial and total occlusions4. For all
the considered videos, tracking results are very good: This
is proved by the high values of MOTA and MOTP metrics.
Moreover, there are also few false positives thanks to the
proper temporal filtering performed by the PTracking method.
Complete (contained in occlusion-1 video) and partial (in
occlusion-2 video) occlusions are correctly handled by the
tracking algorithm, thanks to the use of the future object mo-
tion prediction for re-identifying previously occluded objects.

D. Data Fusion Results

We used the occlusion-1 video as benchmark for measuring
the performance of the whole pipeline (tracking plus data
fusion), since VTS data are available for it along with visual
information. In addition, we analyzed a video called three-
boats containing two large vessels equipped with AIS and a
small boat without AIS.

4The videos showing the results of the visual tracking
approach can be downloaded from: http://goo.gl/uVYm4T,
http://goo.gl/efRXVr, http://goo.gl/ySuAVM
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TABLE IV
QUANTITATIVE RESULTS FOR THE DATA FUSION MODULE.

Video
Horizon

Detection
MOTA MOTP Precision Recall

False
Positives

occlusions-1
NO
YES

0.969
0.975

0.863
0.871

1.000
1.000

0.947
0.950

0.000
0.000

three-boats
NO
YES

0.916
0.921

0.843
0.845

0.989
0.995

0.922
0.925

0.000
0.000

To evaluate the Data Fusion algorithm performance, we
considered the CLEAR MOT metrics MOTA and MOTP
together with Precision and Recall indexes, both activating
and not activating the horizon line filter. The horizon detection
can help in slightly improving the result, since the observations
generated during the detection phase are better. Table IV shows
the obtained results5. What is important to note is that the
tracking performance is significantly improved when multiple
data sources (in such a case camera and VTS) are used. Indeed,
by comparing Table III and Table IV, the MOTP raises from
0.613 to 0.871 and the MOTA from 0.815 to 0.975.

E. Runtime Performance

We have measured the runtime performance of the complete
system. The computational speed in terms of frames per
second (FPS) has been measured on live data coming from
a EO/IR camera in a real site, using an Intel Core 2 U7300
1.30 GHz, 4 GB RAM (2 cores) and an Intel Core i7 3770 3.40
GHz, 16 GB RAM (8 cores). The results are shown in Table V
demonstrating that the complete approach is scalable and that
the runtime performance increases when more computational
power is available.

F. Discussion

The analysis of the experimental results leads to the follow-
ing considerations. The Haar-like features based approach is an
effective solution for boat detection with moving and zooming
cameras in the maritime domain. A high detection rate is
obtained on real data, both EO and IR images. It is worth
noting that our detector can deal with low quality, compressed
images coming from real sites, where captured boats navigate
far from the coast. A detection approach based on a Haar
classifier inherently produces a high true positive rate, but at
the price of having an elevated false alarm rate. The horizon
line detection filter is crucial in lowering the FAR, allowing
for an improvement of the overall detection performance.

Moreover, the observations generated by the boat detector
are sent to the Visual Tracking module that further reduces
the false detections thanks to its temporal filtering. This is
demonstrated by the high MOTA values as well as by the low
percentage of false positives obtained in the experiments on
tracking (see Table III). MOTP results are related to the quality
of the observations in input, which is influenced by the low

5The two videos showing the results of the proposed data fu-
sion approach can be downloaded from http://goo.gl/7TmXTr and
http://goo.gl/Akl90H

TABLE V
COMPUTATIONAL SPEED FOR THE COMPLETE PIPELINE.

Frame Size FPS (2 cores) FPS (8 cores)
319 × 261 15.5 81.3

352 × 288 13.8 75.6

414 × 338 10.1 51.7

586 × 479 6.2 29.4

704 × 576 4.5 23.5

detection rate caused by occlusions. Finally, the approach is
suitable for a real-time application. With a commercial CPU
it is possible to achieve a real-time (29 FPS) processing speed
for 586×479 images.

VII. CONCLUSIONS

In this paper, a modular architecture for improving auto-
matic maritime surveillance systems with visual information
is presented. The key idea is to use the camera as the
main sensor, differently from the traditional VTS systems that
use radars. Replacing radar sensors with cameras allows for
deploying the system in populated areas at a lower cost. A
major advantage of the proposed approach is the possibility
of providing a global view of the captured scene, by adding a
visual dimension to radar and AIS data, which is very effective
for the user.

A quantitative experimental evaluation has been conducted
by considering a publicly available large data set, containing
images and videos from real working VTS sites. The accuracy
in both the detection and tracking phases has been analysed,
showing the effectiveness of the proposed methods in detecting
and tracking boats, while maintaining real-time performance.
Furthermore, the complete pipeline (i.e., visual tracking plus
VTS data fusion) has been tested, demonstrating that the
proposed solution is feasible for enhancing the capability of
existing VTS systems.

As future work, we intend to perform a deep analysis on the
scalability of the proposed approach in terms of the number
of objects detected and tracked. Moreover, we will investigate
possible improvements deriving from the inclusion of soft data
from human operators.
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