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Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several
environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify
these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in
protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular
mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted
environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd
and As for humans is given by cigarette and cigar smoke. We investigated the role of AM fungus Fun-

iﬁ”ﬁ;‘;' neliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schii8ler in protecting Nicotiana tabacum L. (cv.
Arsenic Petit Havana) from the above-mentioned metal(loid) stress. Our findings proved that the AM symbiosis is
Cadmium effective in increasing the plant tissue content of the antioxidant glutathione (GSH), in influencing the
Cigarettes amount of metal(loid)-induced chelators as phytochelatins, and in reducing the Cd and As content in
Glutathione leaves and roots of adult tobacco plants. These results might also prove useful in improving the quality of
Mycorrhiza commercial tobacco, thus reducing the risks to human health due to inhalation of toxic elements con-
Smoking tained in smoking products.

Tobacco

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction As for humans, and the constant inhalation of these carcinogenic

elements, i.e. from cigarette/cigar smoke, can be a cause of severe

Arsenic (As), a metalloid belonging to the group VA of the pe-
riodic table, and cadmium (Cd), a transition metal of the group IIB,
are very toxic pollutants released from natural and, mostly,
anthropogenic sources (Nagajyoti et al., 2010). Neither Cd and As
are essential elements for plants (Mertz, 1981), but they may be
easily absorbed through the root system by using the same trans-
porters of some essential nutrients, and then accumulated in
planta, thus entering the food chain (Verbruggen et al., 2009). In
addition to food, smoking can represent a relevant source of Cd and

Abbreviations: AM, arbuscular mycorrhiza; Fm, Funneliformis mosseae; GSH,
reduced glutathione; PC, phytochelatin.
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diseases (Bernard, 2008; IARC, 2012).

Normal levels of Cd in uncontaminated soils range from 0.01 to
0.7 mg/kg (Nagajyoti et al., 2010; Sanita di Toppi and Gabbrielli,
1999), but this threshold is often exceeded because of several hu-
man activities. Cd*>* competes with other cations for root intra-
cellular access, using the same membrane transporters for the
uptake of essential ions, such as Ca>*, Fe?*, Mg?*, Cu®>* and Zn?**
(Papoyan et al., 2007; Roth et al., 2006). Damage caused by Cd in
plant tissues may be partly correlated to its high affinity with thiol
(SH) groups of structural proteins and enzymes, whose functional
structure and activity and/or redox regulation can be totally
compromised by this metal. In non-hyperaccumulator plants [i.e.,
plants which are not able to translocate and accumulate very high
concentrations of one or more metal(loid)s in the shoots without
showing severe toxicity symptoms (Baker et al., 2000)], the main
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detoxification mechanism of Cd is the complexation with thiol-
peptides and the subsequent sequestration in the vacuoles of root
cells (Verbruggen et al., 2009). Acropetal Cd translocation from root
to shoot takes place through the xylem vascular elements,
following the transpiration-driven water flow, possibly both in free
and complexed form, such as Cd-organic acids or Cd-
phytochelatins, as suggested by Senden et al. (1995) in tomato,
and by Gong et al. (2003) in Arabidopsis thaliana, respectively.

Arsenic is present in soil essentially in the form of inorganic
compounds, i.e. arsenate (As¥) and arsenite (As"!): the former is the
main form in aerobic soils (Zhao et al., 2009), where tobacco and
most plants grow. Arsenate is an analog of phosphate (P;) and
competes with it for the uptake by plant roots through membrane
P; transporters (Meharg and Macnair, 1990, 1992); arsenite is more
mobile in the soil, and is instead absorbed through P; -independent
mechanisms (Verbruggen et al.,, 2009). Inside the plant tissues,
arsenate may interfere with phosphate metabolism, replacing it in
ATP molecules, whereas arsenite may inactivate several enzymes
because of its high affinity for SH groups (Talano et al., 2014). Plants
may detoxify AsV by reducing it to As'!, which can be then sub-
tracted from cytosol by complexation with thiol-peptides, such as
the tripeptide glutathione in its reduced form (GSH) and its de-
rivatives (Raab et al., 2004; Verbruggen et al., 2009), as is the case
with Cd ions (see below). However, in As-non-hyperaccumulating
plants, a large fraction of As'' may be also removed from the root
through an efflux mechanism (Verbruggen et al., 2009; Xu et al,,
2007). In these plants, As'! seems to be the main form trans-
ported in xylem sap, as demonstrated in tomato by Xu et al. (2007).

Plants may adopt different strategies to counteract toxicity
caused by metal(loid) exposure, both at cytological and at molec-
ular and biochemical level. A common mechanism is the synthesis
of phytochelatins (PCs), Cys-rich thiol-peptides, with the general
structure (y-Glu-Cys),-Gly (with n more commonly ranging from 2
to 5), which are able to chelate various metal(loid)s by their SH
groups, and thus neutralize their harmful effects to some extent
(Grill et al., 1985; Yadav, 2010). In response to several metal(loid)s,
such as Cd, Zn, Hg, Cu, Pb, As, PCs are rapidly synthesized in the
cytosol. PC synthesis starts from GSH, and occurs by means of a
transpeptidation catalyzed by the constitutively-expressed enzyme
phytochelatin synthase (PCS), whose activity is triggered by the
presence of metal(loid)s. PC synthesis has not only been detected in
higher plants, but also in bryophytes, some algae, yeasts and ani-
mals (Petraglia et al., 2014, and references therein). It has been
demonstrated that the PC-Cd, GSH-Cd, PC-As"' and GSH-As™
complexes can be transported through the tonoplast into the vac-
uole and then promptly sequestered in this compartment
(Verbruggen et al., 2009). Moreover, PCs and GSH may play an
important role in the long-distance Cd transport between root and
shoot, carrying the metal in the form of PC-Cd or GSH-Cd com-
plexes, respectively (Gong et al., 2003; Mendoza-Cozatl et al., 2011).
However, the mechanisms that regulate Cd and As root-to-shoot
translocation in tobacco are not completely clear, as they have
not been fully investigated at this time.

A protective role from metal(loid) stress in plants may be per-
formed by arbuscular mycorrhizal (AM) fungi (Gamalero et al.,
2009; Hildebrandt et al., 2007), belonging to the Phylum Glomer-
omycota, which establish mutualistic symbiosis with the roots of
most land plants. AM fungi improve mineral nutrition of their
hosts, in particular by favoring the root absorption of P;, even in
metal(loid)-polluted soils (Gohre and Paszkowski, 2006). In
particular, the AM mycorrhizal Glomus spp. may be widespread in
the rhizosphere of plants growing in metal(loid)-contaminated
soils (Garg and Bhandari, 2014). It has been demonstrated that
these fungi may secrete compounds, as the glycoprotein glomalin,
which binds the pollutants present in the soil, or may immobilize

them by passive adsorption to the hyphae's cell walls (Bedini et al.,
2009; Gonzalez-Chavez et al., 2004); in addition, they may chelate
metal(loid)s inside their cells, e.g. possibly by means of metal-
lothioneins (Cys-rich oligopeptides different from PCs). Thus, AM-
mycorrhized plants often show an enhanced metal(loid) tolerance
(Garg and Bhandari, 2014; Gohre and Paszkowski, 2006, and ref-
erences therein). However, the role of these fungi in the plant up-
take and translocation of Cd is not clear, as it is influenced by many
factors (Garg and Bhandari, 2014; Janouskova et al., 2005), and
there are few data on As, particularly as regards non-
hyperaccumulator plants (Hua et al., 2009; Liu et al., 2005). In the
As-hyperaccumulator fern Pteris vittata, hosting the AM symbiosis
with Glomus mosseae (now renamed Funneliformis mosseae, see the
M&M subsection 2.1.), an increase in both the As translocation
factor from roots to fronds and in overall As tolerance, has been
shown (Bona et al., 2011; Trotta et al., 2006).

Nicotiana tabacum (tobacco) is a crop featured by an expanded
root system, which favors the interception of Cd and As in the soil.
Tobacco is able to accumulate these pollutants both in root and
shoot, although it is not a hyperaccumulator species (Keller and
Hammer, 2005). Studies on As detoxification by means of PCs or
other mechanisms are scarce in this species (Wojas et al., 2010a).
Conversely, the synthesis of PCs in tobacco seedlings and young
plants, after treatment with Cd, has been demonstrated (Nicotiana
rustica: Vogeli-Lange and Wagner, 1990, 1996; N. tabacum:
Krystofova et al., 2012; Pomponi et al., 2006; Wojas et al., 2008,
2010b), alongside their ability to promptly detoxify this metal.

It is known that leaves of field-grown tobacco can accumulate
relatively high levels of Cd, usually ranging from about 0.5 to
5 mg kg~! DW (Lugon-Moulin et al., 2004), and the common long-
term use of phosphate fertilizers for tobacco production may
enhance the metal amount in the soil and, consequently, in the
plant organs (Lugon-Moulin et al., 2006b). Plasma mass spec-
trometry analyses of leaf samples of selected cvs. used for human
consumption (i.e.: Flue-cured, Burley and Oriental), collected in
several tobacco-producing regions around the world, have detected
concentrations of Cd and As up to 6.78 mg kg~! DW and
8.5 mg kg~! DW, respectively (Lugon-Moulin et al., 2006a, 2008).
The greatest damage for human health derives from the direct
inhalation of these toxic elements by active and passive smokers
(Bernhard et al., 2005; IARC, 2004).

For the reasons just described, it is important to develop a valid
natural system for reducing Cd and As accumulation in tobacco
leaves. Until now, little research has been performed on the effects
of AM fungi on Cd and As root uptake and leaf accumulation in
tobacco. Thus, the hypothesis to be verified in this work is that the
AM colonization by the Glomeromycota E mosseae might limit the
root uptake and, above all, the leaf accumulation of Cd and/or As in
adult tobacco plants. The results show the possibility of reducing,
through the above mycorrhizal symbiosis, metal(loid) accumula-
tion in tobacco cvs. used for manufacturing cigarettes/cigars and
other smoking-derivatives.

2. Materials and methods

2.1. Plant material, growth conditions, metal(loid) treatments, and
evaluation of the mycorrhizal colonization

Seeds of Nicotiana tabacum L. (tobacco, cv. Petit Havana) were
sterilized in 10% sodium hypochlorite for 10 min, carefully washed
three times with sterile deionized water, and germinated for 1
week in Vitro Vent vessels (Duchefa Biochemie, Haarlem, NL), on
sterile MS medium (Murashige and Skoog, 1962) provided with 1%
sucrose and 1% agar. Subsequently the sterile plantlets continued to
grow in the same vessels for a further 7 weeks, and were then
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transplanted into pots filled with sterile quartz sand, fed everyday
with Long Ashton nutrient solution, pH 5.6, containing 32 pM
phosphorus (in the form NaH;PO4) (Trotta et al., 1996). Half of the
plants were inoculated with the arbuscular mycorrhizal (AM)
fungus Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A.
SchiiBler (SchiiBler and Walker, 2010) — hitherto named Glomus
mosseae (T.H. Nicolson & Gerd.) Gerd. & Trappe — and henceforth
indicated as Fm, whereas the other half were not. The Fm inoculum
(INOQ GmbH, Schnega, Germany) was mixed 10% (v/v) with sterile
quartz sand.

After another 6 weeks of growth in a controlled chamber (16/8 h
light/dark photoperiod, 145 pmol m~2 s~! PPFD and 23 + 1 °C), 70
non-mycorrhized and 70 mycorrhized tobacco plants were treated
with Cd or AsY, in the forms of CdCl, and Na;HAsO4- 7H-0,
respectively, dissolved in Long Ashton solution at concentrations of
0 (control treatment), 1 uM and 30 M (14 non-mycorrhized plants
and 14 mycorrhized plants per each treatment). Following 28 days
of Cd or AsV exposure, all plants were harvested, thoroughly
washed with deionized water, and then separated into roots and
leaves. Root and leaf fresh weights (FW) were taken, part of the
samples were frozen in liquid nitrogen and placed at —80 °C for
thiol-peptide analysis; part of the root samples was conserved in
70% ethanol for mycorrhizal evaluation. The dry weights (DW) of 5
root and leaf samples, cut from 5 non-mycorrhized and 5
mycorrhized plants per treatment, were measured after being
dehydrated in an oven at 80 °C for 12 h. The remaining roots and
leaves were dried at 80 °C for 16 h and used for metal(loid) con-
centration analysis.

For evaluation of mycorrhizal colonization, 40 randomly chosen
1 cm-long pieces were cut from tobacco roots, fixed in 70% ethanol,
cleared in 10% KOH for 45 min at 60 °C, stained with 1% methyl blue
in lactic acid and mounted on glass slides for examination under a
light microscope. Mycorrhizal colonization was estimated accord-
ing to Trouvelot et al. (1986).

2.2. Determination of Cd and As concentrations in roots and leaves

For As determination, aliquots of about 0.15 g of root and leaf
samples were completely digested with 2 mL of concentrated
H5S04, 2 mL of 30% H,0, and 4 mL of H;0 in closed Teflon PFA
vessels for 30 min at 170 °C, using a microwave sample digestion
system (CEM MDS 2000) with a maximum operating power of
630 W. The resulting digests were quantitatively transferred into
25-mL volumetric flasks and made up to volume with H,O. Deter-
mination was performed by hydride generation-atomic absorption
spectrometry (HG-AAS) using a Varian SpectrAA-250 Plus spec-
trometer equipped with a Varian VGA-77 vapor generation acces-
sory. For Cd determination, aliquots of about 0.15 g of plant tissue
samples were digested completely with 4 mL of H;0, 4 mL of
concentrated HNO3 and 4 mL of 30% H,0; in a closed teflon PFA
vessel for 54 min at 170 °C, using a microwave system with a
maximum operating power of 630 W. The resulting digests were
quantitatively transferred into 25 mL volumetric flasks and made
up to volume with Milli-Q (Millipore) water. Cd determination was
performed by a Varian 250 plus spectrometer equipped with a
Varian GTA-96 graphite furnace. The certified reference material
used to validate the analytical method and to assess precision and
accuracy was a BCR sample of Olea europaea m. G2 (Commission of
the European Communities) with a certified concentration of Cd
(0.12 + 0.02 mg kg~ ! DW) and of As (0.20 + 0.02 mg kg~! DW). The
digestion and analysis protocols proved to be reliable and consis-
tent, respectively giving a Cd concentration of 0.13 + 0.01 mg kg~
DW and an As concentration of 0.21 + 0.01 mg kg~! DW.

2.3. Separation and quantification of thiol-peptides

Root and leaf samples (300 mg each) were homogenized in a
mortar in the presence of ice-cold 5% (w/v) 5-sulfosalicylic acid
containing 6.3 mM diethylene-triaminepenta-acetic acid (DTPA),
mainly following de Knecht et al. (1994). After centrifugation at
10,000 x g for 10 min at 4 °C, the supernatants were filtered
through Minisart RC4 0.45 um filters (Sartorius, Goettingen, Ger-
many) and immediately assayed by an autosampler-equipped HPLC
system (model 200/225, Perkin—Elmer, Norwalk, CT). Thiol-peptide
compounds were separated through a reverse-phase Pur-
ospherLiChroCART C18 column (Merck GmbH, Darmstadt, Ger-
many), by injecting 200 pL of each extract. Separation was achieved
by means of a 0—26% acetonitrile gradient (Merck, Germany) con-
taining 0.05% trifluoroacetic acid, at a flow rate of 0.7 mL min~.
Thiol—peptide compounds were detected by post-column deriva-
tization with 300 uM Ellman's reagent [5,5'dithio(2-nitrobenzoic
acid)] at 412 nm (Series 200 detector, PerkinElmer). Identification
of GSH and of the individual oligomers PC, and PC3; was based on
comparing their retention times with standard GSH (Merck) and PC
samples from Silene vulgaris (Moench) Garcke. Total PC concen-
trations were evaluated in roots and leaves in terms of the sum of
the oligomers PC, and PCs. A calibration curve for standard SH
groups was used for quantification of thiol-peptides in extracts.

2.4. Statistics

The experiments were conducted in a completely randomized
design with five independent replicates (n = 5). Data were
expressed as means + standard error (SE). Results were analyzed by
performing two-way analysis of variance (ANOVA), with treatment
and mycorrhization (presence/absence of Fm) as factors, followed
by LSD test, using the SPSS Statistic 17.0 software package (SPSS
Inc., Chicago, US-IL). Different letters indicate significant differ-
ences at p < 0.05.

3. Results

3.1. Mycorrhizal colonization percentage, metal(loid)
concentrations and dry weight measurements of plant organs

At the end of the pot culture, as useful indicators of the fungal
colonization degree, both the percentage of mycorrhizal coloniza-
tion (M%) and of arbuscules (A%), with respect to total intraradical
mycelium, were evaluated in mycorrhized (Fm) roots (Table 1A, B).
Firstly, we verified that M% was 0 in the roots of plants not inoc-
ulated with the fungus. M% was, on average, about 74% in non-Cd/
As¥-treated mycorrhized plants (controls) (FmO; Table 1B). The
treatments with As" did not affect this value, whereas Cd at 1 and
30 uM reduced the mycorrhizal colonization by ca. 30 and 40%,
respectively. In addition, A%, equal to about 36% in control roots,
was significantly lowered (—-55% and —60%, respectively) in the
presence of 1 and 30 uM Cd, while, A% did not change significantly
with AsY at both concentrations, thus reflecting a trend similar to M
% (Table 1B). It is interesting to note that, if compared with the
initial value (Table 1A), i.e. just before the metal(loid) treatment
(and equal to ca. 43%), M% increased in control roots of 70% after 28
days, while the increase was less than 20% in roots treated with
1 uM Cd, and completely annulled in the presence of 30 uM Cd. On
the contrary, As" at both concentrations seemed not to affect the
increase of this parameter over time, when compared with control
roots.

In general, Cd or As concentrations measured in roots and leaves
were dependent on the supplied metal(loid) concentrations. In
roots of the 30 uM Cd-exposed non-mycorrhized plants, the metal
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Table 1

E. Degola et al. / Plant Physiology and Biochemistry 92 (2015) 11—18

(A) Evaluation of mycorrhizal colonization in tobacco roots 6 weeks after the inoculation with F. mosseae, and (B) after further 28 days in the
absence (control, FmO) or in the presence of 1 uM Cd (FmCd 1), 30 uM Cd (FmCd 30), 1 uM As¥ (FmAs 1), 30 uM As" (FmAs 30). M%, mean
percentage of the root system colonized by the fungus; A%, mean percentage of arbuscules; V%, mean percentage of vesicles. M% was 0 in
plants which were not inoculated with the fungus. Mean values + SE, n = 5. Within each column, different letters indicate significant

differences at p < 0.05 (two-way ANOVA followed by LSD test).

(A) Initial mycorrhizal colonization

M%

4324 +3.70
A% 25.01 + 1.51
(B) Mycorrhizal colonization at the end of pot culture

Treatment M% A% V%

FmO 73.55 + 8.57° 35.78 + 12.62° 41.62 + 6.34°
FmCd 1 51.25 + 7.41° 15.99 + 5.65° 18.37 + 4.19°
FmCd 30 41.24 + 6.02° 1347 + 4.41° 18.75 + 5.82°
FmAs 1 73.22 + 3.26° 35.58 + 3.95° 33.31 + 3.04°
FmAs 30 69.10 + 6.15° 29.66 + 3.70° 31.96 + 11.08°

level (up to about 48 mg kg~ ! DW) did not vary in response to the
mycorrhization (Fig. 1A). A clear, although non-significant, down-
ward trend in Cd content was instead found in Fm plants treated
with 1 uM Cd with respect to non-mycorrhized ones (Fig. 1A). In
leaves of non-mycorrhized plants treated with the highest Cd
concentration, the metal was highly accumulated (up to
1073 + 13.7 mg kg~! DW), and the mycorrhization produced a
marked reduction in Cd level of about 40% (Fig. 1B). Unlike Cd,
when supplied at 30 uM, As was highly accumulated in non-
mycorrhized roots (158.0 + 10.7 mg kg~' DW), and the mycorrh-
ization highly reduced the As root presence by about 80% (Fig. 1C).
Vice versa, in leaves, As accumulation was quite low when the
metalloid was supplied at 30 uM (5.2 + 0.9 mg kg~ ' DW in non-
mycorrhized plants), with no difference given by the mycorrhiza-
tion at each As concentration (Fig. 1D).

Cd treatments did not significantly change the root DW, and the
mycorrhization did not influence this parameter at any treatment,
including the control (Fig. 2A). By contrast, the leaf DW appeared to
be lowered by the mycorrhization per se, and not by Cd treatments
(Fig. 2B). In the case of As”, a significant decrease in DW of the non-
mycorrhized roots resulted from both treatments, which, on the
other hand, did not significantly affect this parameter in Fm plants.

A Cd in roots
70
60
Z 50 bc
B
_9‘0 2 O no Fm
o0
£ % B Fm
10
a a
0 T
Cdo Cd1
C .
As in roots
180 b
160
140
E 120
T lgz: Ono Fm
a
iz 60 E Fm
E 40
20 a a a a “
0 T T 1
As 0 As 1 As 30

When treated with 1 uM As”, the mycorrhized roots showed a DW
much higher in comparison with non-mycorrhized ones (Fig. 2C). In
leaves, as with Cd, no apparent effects of As treatment were
observed, and only the mycorrhization in itself induced a signifi-
cant decrease in DW (Fig. 2D).

3.2. Levels of glutathione (GSH) and phytochelatins (PCs) in roots
and leaves

GSH concentrations measured in roots and leaves of metal(loid)-
untreated (Cd/As 0) non-mycorrhized plants (no Fm) were, on
average, 28.5 + 9.4 and 47.4 + 17.6 nmol SH g~! FW, respectively
(Fig. 3). The mycorrhization process per se led to a strong increase
of GSH content in roots, both in the absence and in the presence of
the metal(loid)s (Fig. 3A, C). Also in leaves, except for those from
untreated and 30 pM As"-treated plants, an increase in GSH content
in mycorrhized plants compared with non-mycorrhized ones was
observed (Fig. 3B, D). Indeed, with 1 and 30 uM Cd the increase in
leaf GSH of Fm plants was very high compared with non-
mycorrhized ones, that is at least 5-times more (Fig. 3B). Cd treat-
ments in non-mycorrhized and Fm plants failed to change the root
GSH content compared with control, except for an increase in non-

Cd in leaves
140
120
100
z
,TQ 80 O no Fm
2 w0 B Fm
g w
b b
0+ T T
Cdo Cdl1 Cd 30
D .
As in leaves
,
6
; 5
a
- 4 Ono Fm
23
’:ﬂ E Fm
g2
1 a a
0 T
As 0 As 1 As 30

Fig.1. Cd (A, B) and As (C, D) concentrations (mg kg~! DW) in roots (A, C) and leaves (B, D) of non-mycorrhized (no Fm) and mycorrhized (Fm) tobacco plants, grown in pots in the
absence of metal(loid)s (Cd 0, As 0) or with 1 uM Cd (Cd 1), 30 uM Cd (Cd 30) (A, B), 1 uM As" (As 1), 30 uM As” (As 30) (C, D). Mean values + SE, n = 5. Different letters indicate

significant differences at p < 0.05 (two-way ANOVA followed by LSD test).
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Fig. 2. Root (A, C) and leaf (B, D) dry weights (g) of non-mycorrhized (no Fm) and mycorrhized (Fm) tobacco plants, grown in pots in the absence of metal(loid)s (Cd 0, As 0) or with
1 uM Cd (Cd 1), 30 uM Cd (Cd 30) (A, B), 1 uM As" (As 1), 30 uM As" (As 30) (C, D). Mean values + SE, n = 5. Different letters indicate significant differences at p < 0.05 (two-way

ANOVA followed by LSD test).

mycorrhized roots when the metal was supplied at the highest
concentration (Fig. 3A). Likewise, As¥ determined a significant GSH
increase in roots only at 30 pM (Fig. 3C). In leaves of non-
mycorrhized plants, Cd and As' exposure gave rise to a GSH
decrease under 1 uM treatment, followed by a return to control
levels at the highest concentration (Fig. 3B, D). Differently, in leaves
from Fm plants, the Cd treatment yielded a significant increase in
the GSH level only at 30 uM (Fig. 3B), whereas As" did not lead to
any significant effect on GSH content at either concentration
(Fig. 3D).

PCs were never detected in non-Cd/As'-treated plants (con-
trols), but their synthesis was always induced by both concentra-
tions of Cd and As" (Fig. 4). In roots, the mycorrhization appeared to
produce a significant reduction in PC induction at the highest
metal(loid) concentration of 30 pM (Fig. 4A, C), whereas no clear
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effects were evidenced at 1 uM, where the PC content increased
(1 pM Cd) or remained unaffected (1 pM As¥) with respect to non-
mycorrhized roots. The levels of PCs increased in a Cd/As"-con-
centration-dependent manner in non-mycorrhized roots, and a
similar trend was observed in As-treated-Fm roots, while the
opposite was found in Cd-treated-Fm ones (Fig. 4A, C). In leaves, the
plant mycorrhization affected negatively the PC synthesis only at
30 uM (Cd, in comparison with leaves from non-mycorrhized sam-
ples, even though in plants exposed to AsY a non-significant
downward trend, compared with the non-mycorrhized ones, was
observed (Fig. 4B, D). No differences in PC induction in response to
the two metal(loid) treatments were detected in leaves from non-
mycorrhized plants and, with AsY, also in leaves from Fm plants.
By contrast, a significant PC reduction was observed by increasing
the Cd concentration (Fig. 4B, D).
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Fig. 3. GSH concentration (nmol SH g~! FW) in roots (A, C) and leaves (B, D) of non-mycorrhized (no Fm) and mycorrhized (Fm) tobacco plants, grown in pots in the absence of
metal(loid)s (Cd 0, As 0) or with 1 uM Cd (Cd 1), 30 uM Cd (Cd 30) (A, B), 1 uM As" (As 1), 30 uM As (As 30) (C, D). Mean values + SE, n = 5. Different letters indicate significant

differences at p < 0.05 (two-way ANOVA followed by LSD test).
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Fig. 4. Phytochelatin (PC) concentrations (nmol SH g~ FW) in roots (A, C) and leaves (B, D) of non-mycorrhized (no Fm) and mycorrhized (Fm) tobacco plants, grown in pots in the
absence of metal(loid)s (Cd 0, As 0) or with 1 uM Cd (Cd 1), 30 pM Cd (Cd 30) (A, B), 1 uM As" (As 1), 30 pM As" (As 30) (C, D). Mean values + SE, n = 5. Different letters indicate

significant differences at p < 0.05 (two-way ANOVA followed by LSD test).

4. Discussion

At the end of the pot culture, the percentages of mycorrhizal
colonization were medium—high (according to Trouvelot et al.,
1986), both in the presence and in the absence of metal(loid)s
(Table 1). By comparing the final M% and A% with their initial
values, it can be deduced that the mycorrhizal intraradical growth
was slowed by Cd treatments, while As" did not affect it at the given
concentrations. Furthermore, both final M% and A% were signifi-
cantly lower only in the roots of Cd-treated Fm plants if compared
with control ones: accordingly, the fungus could suffer the effects of
Cd toxicity, but this does not seem to happen with As".

Our results also demonstrate that the presence of Fm may
significantly influence both Cd accumulation in leaves and As"
uptake in roots of N. tabacum plants (Fig. 1). In fact, after 28 days of
treatment with 30 uM Cd, this metal was preferentially accumu-
lated in leaves of non-mycorrhized plants, at a concentration of
more than twice of that found in roots, and the mycorrhization
reduced the Cd level in the aerial organs (Fig. 1B). Following the
30 pM Cd exposure, an approx. 40% reduction of Cd content and a
decrease of about 18% in the leaf DW, compared to leaves of non-
mycorrhized plants, were detected (Figs. 1 and 2B). Thus, the just
described decrease might be given by a real ability of the fungus to
reduce - possibly by immobilization/exclusion mechanisms - the
accumulation of high metal concentrations in tobacco leaves.
Conversely, when the metal was supplied at 1 pM, its amount in the
leaves of Fm plants did not significantly change compared with
non-mycorrhized ones (Fig. 1B). Cd levels detected in leaves of non-
mycorrhized plants were always higher than those found in to-
bacco leaves by Lugon-Moulin et al. (2006a) (up to 6.78 mg kg!
DW); however, different growth media may considerably affect the
metal bioavailability. Our plants, after the first two months of cul-
ture, continued to grow in pots containing only quartz sand as the
solid substrate, i.e. an inert material on which the metal(loid)s are
not adsorbed. The metal(loid) concentration actually available to
the plant was, therefore, certainly higher than in a soil with a
similar pH. In addition, we found a different pattern of Cd accu-
mulation in non-mycorrhized plants compared with that shown in
tobacco by other authors, e.g. Wojas et al. (2010b), who found a

higher content of Cd in roots than in leaves. However, in this case
both the metal concentration supplied (according to Janouskova
et al, 2005) and the exposure-time have to be considered,
because this species tends to accumulate higher levels of Cd in
leaves than in the roots if the exposure-time lasts more than two
weeks (G. Falasca et al, unpublished). In our experiments, the
exposure-time to Cd (28 days) was longer compared with that used
by Wojas et al. (2010b) (2 days). Accordingly, Janouskova et al.
(2007) found leaf/root Cd concentration ratios higher than 2 in
commercial cvs. of tobacco plants grown for 16 weeks in different
soils containing the metal. It is interesting to note that a leaf con-
centration over 100 mg kg~! DW (i.e. similar to that which we
found in the leaves of non-mycorrhized plants treated with 30 uM
Cd; Fig. 1B) is used as a threshold value for Cd hyperaccumulation
(Baker et al., 2000): thus, tobacco, which is not a hyperaccumulator
species, is however potentially capable of concentrating a sub-
stantial amount of this toxic metal in its aerial part, over a relatively
long lapse of time.

From the present data, root DW and Cd concentration mea-
surements (Figs. 1 and 2A) indicate that the access of Cd ions into
the root does not seem to be significantly influenced by the AM
fungus. Our hypothesis is that the symbiotic association with the
F. mosseae may affect the root-to-leaf Cd translocation, limiting it in
case of an increase of the exogenous metal concentration. Other
authors have suggested that in mycorrhized plants a reduced long-
distance translocation of the metal may take place, as shown by an
increased root/leaf ratio of Cd with respect to non-mycorrhized
ones (Garg and Bhandari, 2014, and references therein). In our
experiments this ratio increased when Cd was supplied at 30 pM
(i.e. from 0.45 in non-mycorrhized plants to 0.67 in Fm ones;
Fig. 1A, B). Moreover, considering that after treatment with 30 uM
Cd, the PC level detected in Fm roots was significantly lower than in
non-mycorrhized roots (Fig. 4A), even though the Cd concentration
remained the same, the PC pool aimed at translocating Cd towards
the leaves should be less, in accordance with a reduced transfer of
Cd to these organs. Considering that the intraradical fungal growth
seemed slowed by Cd presence, mostly at the highest concentration
(Table 1B), we are inclined to believe that part of this metal might
be sequestered by the intraradical mycelium of E mosseae. Further
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studies are, however, required, especially in adult tobacco plants. In
any case, the reduced level of PCs detected in leaves of Fm plants
treated with 30 uM Cd, compared with non-mycorrhized ones
(Fig. 4B), can be linked to the lower Cd concentration in these or-
gans (Fig. 1B). At an exogenous Cd concentration thirty-fold lower,
non-mycorrhized plants were probably able to detoxify almost
completely the metal using the PC-detoxification-strategy, and the
role of the fungus was possibly less important: indeed, it helped to
improve the plant's defensive potential, i.e. GSH synthesis, and
consequently PC synthesis, in Fm root cells.

Concerning the As accumulation, contrary to Cd, high levels of
this metalloid were measured in non-mycorrhized roots, when
supplied at the highest concentration (Fig. 1C). This is in accord
with Hua et al. (2009), who found a significantly higher concen-
tration of As in roots of non-mycorrhized adult plants of tobacco,
grown for 13 weeks in As-contaminated soil, when compared with
leaves. Our results show that, when As" was supplied at 30 uM, the
mycorrhization led to a marked reduction of As content in roots,
while the process did not influence As content in leaves (Fig. 1C, D).
Fm effectively limited the uptake of elevated As concentrations
through the roots, presumably immobilizing it in the cell wall or
inside the extraradical mycelium, whose growth is not expected to
change significantly in the presence of AsY, as is the case with the
intraradical part. Another possible explanation may be related to a
pH decrease in the rhizosphere, because AM fungi exude organic
acids to cope with metal(loid) toxicity (Garg and Bhandari, 2014)
and also modify the amount and composition of root exudates, thus
leading to a decreased availability of As (Hua et al., 2009). Not least,
these fungi may regulate P; uptake, so as to downregulate As’
transport into the host (Xu et al., 2008). In fact, P; and AsY are
chemical analogs and are translocated competitively across the
plasma membrane via the same system, that is high-affinity
phosphate transporters (Meharg and Macnair, 1990, 1992), some
of which have been identified in tobacco (Kai et al., 2002). These
transporters also seem active both at the hypha-soil and hypha-
root cell interface during the symbiotic interaction (Benedetto
et al., 2005; Carbonnel and Gutjahr, 2014). With 1 uM As", how-
ever, the mycorrhized roots’ DW was more than two-fold higher
than that of non-mycorrhized ones (Fig. 2C), probably related to a
better protection due to an increased GSH level (Fig. 3C) (rather
than to other fungal detoxification mechanisms): in fact, the level of
PCs in these roots did not change significantly if compared with
that of non-mycorrhized roots (Fig. 4C), in accordance with an
unchanged endogenous As concentration (Fig. 1C). Moreover, As¥ at
a low concentration would only compete minimally with the P;
uptake. In leaves, As accumulation was low and similar both in non-
mycorrhized and in mycorrhized plants, being only As'-concen-
tration-dependent (Fig. 1D). The leaf DWs from Fm plants were
lower (0 and 1 uM As") or similar (30 uM As") to those measured in
non-mycorrhized ones (Fig. 2D), and a low root-to-leaf trans-
location ability of As was noticed, with concentration values in full
accordance with those reported by Lugon-Moulin et al. (2008) (up
to 85 mg kg~! DW). Indeed, in the mycorrhized plants here
investigated, the decreased As content in roots cannot be attributed
to an incremented root-to-leaf translocation rate. Thus, a
F. mosseae-driven restriction of As root uptake, and a general alle-
viation of the AsY toxicity given by the AM fungus should be
postulated, also considering the drop of PC levels shown by the
mycorrhized plants when compared with the non-mycorrhized
ones, particularly in roots with the highest exogenous As¥ con-
centration (Fig. 4C), where the lower PC value may be related to the
lower endogenous level of the metalloid (Fig. 1C).

Interestingly, our results show that the mycorrhization process
in itself induces an enhancement of GSH concentration in roots and
leaves (Fig. 3). In this regard, it is possible that mycorrhizal fungi

may produce, on average, high amounts of GSH per se
(Schiitzendiibel and Polle, 2002), and then move it into the plant;
however, to our knowledge, there is no information on the possible
transfer of this thiol-peptide from AM fungi to the root. Indepen-
dently on the presence of metal(loid)s, of course host plants benefit
from AM symbiosis, primarily by enhanced P; uptake and, in gen-
eral, by an improved overall nutritional status. In this way, as found
by Giovannetti et al. (2014) in mycorrhized Lotus japonicus plants,
also in our system it is possible that the AM fungus F. mosseae might
influence the expression of plant sulfate transporter(s) and impact
on the overall sulfur homeostasis, thus finally leading to a higher
GSH production in planta. Indeed, GSH is reported to be in itself a
good chelator of meta(loid) ions (Sanita di Toppi and Gabbrielli,
1999; Scott et al., 1993; Verbruggen et al., 2009), and thus an in-
crease in GSH levels may partly serve also for direct Cd/As binding.

In conclusion, the endomycorrhizal symbiosis between
F. mosseae and tobacco adult plants showed to increase the plant
tissue content of the antioxidant GSH, as well as to reduce the
accumulation of exogenously-supplied elevated concentrations of
Cd and AsY in leaves and roots, respectively. For a general appli-
cation of our results it is however necessary to perform tests in the
open field. This is due to the fact that in soil other interactions may
change the effect of E mosseae on the root absorption rate of
metal(loid)s, which may also vary according to the genotype of the
plants used. By choosing an appropriate combination of tobacco
cvs. and AM fungal isolate, it appears possible to improve the
quality of commercial tobacco material, by decreasing its internal
content of highly toxic metal(loid) contaminants.
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