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In the last few years we faced an increased popularity of stereo imaging as an effective tool to investigate
wind sea waves at short and medium scales. Given the advances of computer vision techniques, the
recovery of a scattered point-cloud from a sea surface area is nowadays a well consolidated technique
producing excellent results both in terms of wave data resolution and accuracy. Nevertheless, almost all
the subsequent analyses tasks, from the recovery of directional wave spectra to the estimation of sig-
nificant wave height, are bound to two limiting conditions. First, wave data are required to be aligned to
the mean sea plane. Second, a uniform distribution of 3D point samples is assumed. Since the stereo-
camera rig is placed tilted with respect to the sea surface, perspective distortion do not allow these
conditions to be met. Errors due to this problem are even more challenging if the optical instrumentation
is mounted on a moving vessel, so that the mean sea plane cannot be simply obtained by averaging data
from multiple subsequent frames. We address the first problem with two main contributions. First, we
propose a novel horizon estimation technique to recover the attitude of a moving stereo rig with respect
to the sea plane. Second, an effective weighting scheme is described to account for the non-uniform
sampling of the scattered data in the estimation of the sea-plane distance. The interplay of the two
allows us to provide a precise point cloud alignment without any external positioning sensor or rig
viewpoint pre-calibration. The advantages of the proposed technique are evaluated throughout an ex-

perimental section spanning both synthetic and real-world scenarios.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years there has been a growing interest in remote
and proximal observation of sea surface waves. New classes of
instruments (e.g. radars, laser scanners, optical) have been placed
aboard satellites, airplanes, or ships at sea, facing the need for new
processing tools for specific tasks. In this context, observations of
sea surface fields by means of optical-based stereo systems, after
the pioneering work of Schumacher (1939), Holthuijsen (1979),
and Banner et al. (1989), are nowadays becoming accessible to a
large number of scientists given the advances in the processing of
digital images (Kosnik and Dulov, 2011; Gallego et al., 2011; Ben-
etazzo et al, 2012, 2015). The efforts made to develop both
hardware and software for stereo processing has allowed stereo
wave imaging to become a well consolidated and accurate tool for
wave observations, that indeed is providing new insights into the
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field of sea surface waves (Banner et al., 2014; Leckler et al., 2015;
Yurovskaya et al., 2013). So far, snapshots of the sea surface have
been mostly taken from fixed platforms at sea, as this condition
greatly eases the cameras deployment and the image processing.
Indeed, the time-constant rigid-motion that places all the acquired
surfaces into a common geo-referenced frame can be estimated a
priori exploiting the statistical nature of the waves (Benetazzo
et al., 2016). However, this design for stereo systems is starting to
become too restrictive for oceanographers, who need to collect
wave data in as many different conditions and locations as pos-
sible, eventually where the use of a fixed platform is unfeasible.
Thus, first applications of stereo systems mounted on oceano-
graphic vessels is taking place, facing the nontrivial task of ac-
counting for the camera motion during the stereo processing
(Brandt et al., 2010).

In this study we present an analysis of spatio-temporal 3D
wave fields that take advantage of a multi-view horizon estimate
approach for compensating ship motion. The paper is organized as
follows. We start with an overview of the related work in the field
of horizon estimation, highlighting the novelties of our proposed
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approach with respect to the literature. Then, in Section 2 we
describe the stereo system used to reconstruct the sea surface. In
Section 3 we present our multi-view horizon estimation approach
to recover the sea surface plane normal. Then, in Section 4 we
describe how to use the recovered normal to estimate a homo-
graphy relating to the camera and sea plane. Such homography is
used to define a spatial density estimator to weight the 3D point
samples and account for perspective distortion. This allows a ro-
bust recovery of plane distance and, consequently, a precise
alignment of the scattered point data. An extensive experimental
part (Section 5) demonstrates the strengths of our method com-
paring with both synthetic and real-world data acquired in a
controlled environment (i.e. a fixed oceanographic platform).
Furthermore, a use-case is presented to show the behaviour of the
approach “in the wild” while investigating the wave statistics on a
moving ship during a cruise. Finally, in Section 6 we draw some
concluding considerations.

1.1. Related work

Being able to recover the attitude and position of a moving
vehicle subject to 6 degrees of freedom has been a topic of pivotal
importance for both aerial and marine operations. With the for-
mer, the recent availability of inexpensive unmanned aerial ve-
hicles to be used in dangerous or remote situations raised the need
to improve the automatic control and stabilization beyond the
accuracy obtainable with purely inertial sensors. In the latter, the
precise estimation of ship motion is an aid for navigation safety
(Liu et al., 2008), vessel detection (Fefilatyev et al., 2007) or en-
vironmental sciences (Williams and Howard, 2011).

In this plethora of different applications, vision based ap-
proaches have gained an increased popularity due to their po-
tential ability to hinge the estimation on well-localizable visual
features occurring on the landscape. Among all, the horizon line is
usually the weapon of choice as is expected being always visible if
no other assumptions can be made to the application scenario.
Even if seeing the horizon is not a sufficient condition to recover
the full 6 degrees of freedom of a vessel (the estimation is re-
covered up to any rotation around an arbitrary axis orthogonal to
the ground plane), position can be usually obtained with enough
accuracy through GPS sensors and is less critical with respect to
attitude recovery. In fact, by constraining to a physically plausible
kinematics of a ship, statistical filtering methods can improve the
accuracy of common marine GPS to tens of centimeters. Given the
importance of the horizon as a visual feature, sophisticated tech-
niques have been proposed to provide a precise estimation even
when the acquired images are affected by cluttering objects or
optical artifacts (sun-glares, fog, low-contrast, etc.).

Following the taxonomy introduced by Shabayek et al. (2012),
horizon line estimation methods are essentially divided into two
categories. In the former, a Sky/Ground segmentation is performed
by means of statistical models over the feature space being either
color (Gallagher et al, 2004), textures (Cherian et al., 2009;
Schwendeman and Thomson, 2015), polarization (Shabayek et al.,
2012) or a combination of the previous (Todorovic et al., 2003). In
the latter, the horizon line is directly estimated by extracting sig-
nificant image edges (usually after a sequence of multiple filtering
stages) and a statistically robust aggregation of contour segments
composing the horizon or localizing vanishing points. For instance,
Wang et al. (2009) propose an horizon extraction method from
ocean observations by weighting the color channels to enhance
sky and sea signals while reducing the effect of noise and high-
lights. Thereafter, contours are extracted with Canny edge detec-
tion and the predominant line clustered with a classical Hough
transform. Similarly, Williams and Howard (2011) describe a ra-
ther sophisticated sequence of adaptive histogram thresholding,

region growing and Gaussian mixture model to preprocess the
images before binarization and contour extraction.

When horizon estimation is used to control an UAV, temporal
coherency can be exploited to aid the extraction considering
multiple video frames (Bao et al., 2003). Moreover, optical flow can
be extracted between subsequent images as an aid to cluster
horizon edges from spurious clutter arising from natural or hu-
man-made features on the landscape (Dusha et al., 2007). When
an inertial measurement unit (IMU) is available, its data can be
used as an initial prior to limit the image analysis on a reduced
area of the image (Hugues et al., 2014). Furthermore, Angelino
et al. (2013) suggest the usage of an Unscented Kalman Filter (UKF)
to describe the dynamic system non-linear equations to effectively
fuse attitude information coming from GPS, IMU and cameras.

If stereo vision is available, the complete pose can be obtained
as a natural consequence of multi-view triangulation. For instance,
Wang et al. (2005) use stereo vision to recover the full position and
attitude of a UAV flying near the ground whereas Eynard et al.
(2010) use an hybrid stereo system composed of a central and a
fish-eye camera to measure the altitude without any external
sensor. However, stereo reconstruction can only be used for pose
estimation if we assume a non-moving set of landmarks being
present in a scene. This is obviously not the case when observing
the continuously changing sea surface.

1.2. Contributions

In this paper we propose a novel horizon estimation technique
to recover the stereo rig attitude with respect to the sea surface.
Once the relative orientation of the rig and the sea plane is as-
sessed (up to a rotation around the plane normal, that cannot be
inferred by the horizon alone), its distance is estimated in a robust
way that compensates the non-uniform distribution of all the re-
constructed point samples.

With respect to the aforementioned existing approaches, our
method introduces several novelties. To our knowledge, it presents
the first intrinsically multi-view approach being able to fuse the
horizon line estimates coming from different images. In our case,
just the two images of the stereo rig are used but the method itself
is flexible enough to comprise many different (pre-calibrated)
image sources. Second, we use a prior given by the 3D re-
construction as a first guess to refine the estimated horizon line. In
this sense, our method is more like an horizon refinement ap-
proach rather than a full estimator being able to locate the horizon
anywhere in the image. Nevertheless, this prior allows us to pose
the problem as an energy optimization spanning the entire image
domain and avoiding voting schemes such as the commonly used
Hough Transform. This both improves the accuracy of the method
and reduces the computational effort. Third, our method is not
based on a preliminary edge extraction step. Instead, it directly
operates on image pixels in a way similar to active contours (Kass
et al., 1988). This has the double benefit of getting rid of multiple
edge extraction parameters and allowing a better line localization
since no information is loss due to binarization.

The horizon line allows to recover the parameters defining the
normal of the sea plane. This is of crucial importance for the
alignment of the reconstructed data, that can be directly rotated so
that the sea plane normal coincides with the z-axis. Also, we can
exploit the relative angles to correct for perspective distortion in
an optimal way to account for the non-uniform sampling of the
reconstructed points with respect to the sea plane. This non-uni-
formity is typical of all the stereo methods that operate by
matching corresponding pixels directly on the image space. These
methods are the only feasible on a moving scenario (like the one
investigated in this work) for which the pose of the cameras from
the observed scene cannot be reliably provided a priori. On the
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contrary, when the pose can be properly calibrated, methods that
directly operate on the object space like the variational approach
in Gallego et al. (2008) can estimate a smooth spatially uniform
triangulated surface at a cost of being computationally intensive
for long sequences.

2. The WASS pipeline

Before proceeding with the description of the sea plane align-
ment technique, we give a brief description of the 3D re-
construction machinery and algorithms used in this work. Our
Wave Acquisition Stereo System (WASS) is essentially composed of
two digital cameras firmly placed side-by-side looking toward the
sea surface. Each camera is equipped with a 5.0 mm low radial
distortion lens and a CCD with a pixel size of 3.45 pm producing
images with a resolution of 2048 x 2456 pixels. An electronic
trigger ensures the synchronized acquisition of the frame pairs at a
frequency that can be adjusted from 1 to 15 Hz. The internal
properties of the lenses (i.e. focal-length, aperture, etc) are con-
figured during the installation and therefore remain constant
during the acquisition.

Both the cameras composing the stereo rig are tilted with re-
spect to the sea surface so that the horizon is visible in the upper
part of each image. This setup is quite common for this type of
instrumentation as it offers a good trade-off between the size of
the reconstructed area and the height of the stereo rig with re-
spect to the sea, which is generally bounded by the characteristic
of the ship.

Similarly to the system presented by Benetazzo et al. (2014), a
target-less calibration technique allow us to recover the relative
orientation (i.e. extrinsic parameters) of the two cameras whereas
the focal length, optical center and the polynomial radial distor-
tion parameters are estimated in the lab with a calibration target
(Albarelli et al., 2010). After the intrinsic properties of the two
cameras and their relative position is calibrated, stereo geometry
can be used to obtain a dense reconstruction of the sea surface
with respect to the reference frame of one of the two cameras. The
outcome of the reconstruction process is a scattered cloud of 3D
points which is further refined to filter out possible spikes and
high-frequency noise.

Even if the produced cloud is more than adequate to extract
valuable wave statistics, it cannot be used as is. Indeed, it has to be
firstly aligned to a sea reference frame with the z-axis pointing
upward the sea surface and then uniformly resampled into a
regular surface grid so that two-dimensional spectral representa-
tion can be computed with FFT. As described by Gallego et al.

(2008), the rotation R, and translation 7’; that align the re-

constructed data can be obtained by the sea plane
nX+nY+nZ+d=0as
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Notwithstanding the importance of obtaining a good estimate
of sea plane parameters for all the subsequent wave analysis, this
topic has been commonly sorted out in the literature by a simple
linear least square fitting (LLS) of the plane to the point cloud
samples. Given the quasi-Gaussian nature of sea waves elevation,
this is a quite good approximation provided that a significant
number of samples is given. This is true if the cameras are fixed
(for instance, when mounted on a non-floating offshore platform),

so that the mean plane can be obtained by averaging the re-
constructed clouds over time. In many cases this assumption does
not hold. The data produced by a single stereo frame (i.e. at a
specific time) is in general not sufficient to obtain a good estimate
if the mean wavelength is similar to the size of the reconstructed
area (Benetazzo et al, 2016). It is easy to imagine that, if we
consider a scenario in which only a portion of a high wave is
visible to the camera, the estimated plane would necessarily fol-
low the slope of the surface. This can be even worse if the wave is
moving towards the camera so that the falling part of the wave is
occluded by the rising. This problem is usually solved by averaging
all the planes obtained by many subsequent frames (Benetazzo
et al.,, 2012) but this option is only viable if the camera rig position
and attitude remain constant throughout the acquisition and the
acquired area comprises at least 4 x 4 wavelengths (Benetazzo
et al,, 2016).

Second, least squares estimates are not robust to outliers or
heteroscedastic errors (Seber and Lee, 2012). The former may rise
from wrongly matched point correspondences during the stereo
process. The latter is naturally occurring since the rig optical axis is
not orthogonal to the sea plane. As a consequence, point cloud is
denser and with less error closer to the camera than far away.
Furthermore, closer points tend to be better localized along the xy-
axes than on the z whereas, for distant points, the vice versa is
valid.

Finally, even if we ignore reconstruction errors, the non-uni-
form spatial density of the point cloud produces an implicit dif-
ferent weighting of samples with respect of their distance. In
Benetazzo et al. (2016) this is partially accounted considering a
weighted linear regression whose weight is proportional of the
point Z-coordinate expressed in camera world. This workaround
partially mitigates the problem, although it was not supported by a
theoretical motivation.

3. Sea plane normal estimation

The first step to align the reconstructed stereo data is to esti-

mate the normal 77 = (n, n, nZ)T of the sea plane g with respect to
the camera reference frame. We start by considering the case of a
single camera oriented toward the surface so that the image plane
is not parallel to ¢ (the trivial case in which they are parallel
would not produce significant perspective distortion). In this
context, the second camera of the rig is just used to perform 3D
triangulation so that the reconstructed point cloud lies onto the
first camera reference frame. Finally, we assume that the radial
distortion has been calibrated, producing two undistorted images
I; and I, for each frame together with the intrinsic camera ma-
trices K; and K, and the rigid transformation R,; and f;l describing
the relative motion that transforms the second camera reference
frame onto the first.

We approximate the Earth surface as being planar so that the
horizon line is located at the infinity. Since the Earth average ra-
dius is orders of magnitude greater than our reconstructed area
(which is less than 100 x 100 m), this simplification allows us to
use projective geometry concepts to compute 1 while still pro-
ducing accurate results. Indeed, if we suppose no atmospheric
refraction, the Earth being spherical (with a radius of r,=6371 km)
and a camera placed h meters above the sea level, we can derive
the horizon distance hy as

h2 =, + h? - r?hy = 2r,h + B ~ [2r,h = 3570Vh )

see Fig. 1(a) for details. As a consequence, horizon distance is
approximately 3570 times the square root of the camera height h,
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Fig. 1. (a) With some simplifications, the horizon distance can be computed from the observer height h and the Earth radius r.. (b) Geometrical relations between the sea
plane, the image plane, the horizon and a hypothetical plane parallel to the sea plane but passing through the optical center.

which is roughly 15 m above the sea level in a common WASS
scenario. This places the horizon line ~14000 m away from the
camera which is roughly 7000 times our baseline distance. Con-
sidering the optics and resolution of our cameras, this would
produce a disparity of ~0.05 pixels between the two projections of
an hypothetical point lying at the horizon, which is less than the
accuracy we can pursue with the dense stereo estimation (an
optimistic estimate is about 1/10 of a pixel).

Every plane in an affine 3-space intersects the plane at infinity
in a unique line (Pedoe, 1970). Therefore, the intersection of the
sea plane g with the plane at infinity z, would result in a line Z,
placed itself at infinity. Since the camera is calibrated and there
exists a bijection between z_ and the image plane (Hartley and
Zisserman, 2004), £, can be projected to produce a line £, (onto
the image plane) called horizon. Algebraically, we can represent ¢
as a vector in P?* so that every image point (x, y)| (in pixels) lying
on ¢ satisfies the equation #f(x y 1)T =0.

Moreover, since every set of parallel planes would intersect into
the same line at infinity (Hartley and Zisserman, 2004), to esti-
mate 7 we can restrict the analysis to a plane g, which is parallel
to g but passing through the camera optical center O (Fig. 1(b)).
This actually makes sense since we expect that the apparent po-
sition of the horizon on the image plane remains fixed if we just
translate the camera without changing its orientation.

. T
We parametrize g, as the vector (n, n, n, d) € P** so that, for
any projective point p = (x, y, z, w)' lying on g,, the equation

g0 =0 A3)
holds. It is easy to demonstrate that:
by=aT Ki! “

where « is any non-zero scale factor. Indeed, let p € P? be a hor-
izon point in homogeneous coordinates. By definition, p lies on g,
and projects on . So, p is a point satisfying:

gup =0 @

T =\, _
47 K1(R1|E)p—0 (b) ®)

where R, is the 3 x 3 identity matrix and i) = (0, 0, 0) since we
are working on the reference frame of the first camera. By com-
paring Eqgs. (5) we get:

i Kl( Rl”i)P =agyp )

T bt T
Zy Kl( R1|T1)P =ag,D @
T T
¢hKy=a(n, n, n,) ®)
by=aT Ki!

n=an K €))

where a is any non-zero scale factor and Eq. (8) was obtained by
dropping the last component since both d and w are always 0 (for
the former, d=0 since g, passes through the origin. For the latter,
w=0 since p € g,).

So, from (4), it is easy to recover the sea plane normal 7 (ex-
pressed in the first camera reference frame) by first extracting the
horizon line ¢, from I, then multiplying #; by K; and finally
normalizing the result to fix the scale to unitary norm. Since
knowing two points is a sufficient condition to uniquely describe a
two-dimensional line, one way to recover #; is to extract two
vanishing points from a set of coplanar parallel lines in the image
(Zhang and Koch, 2013). However, since we cannot exploit prop-
erties of parallel lines given the wavy nature of the sea surface, we
make sure that the horizon line is always visible in the acquired
frames and pose the problem of estimating 7 as the problem of
finding the best possible #; according to the image data.

3.1. Accurate horizon line fitting

The vast majority of techniques to extract salient linear features
from images comprises a pre-processing step to extract significant
edges from the boundaries of objects composing the scene. Then,
with some pixel labelled as “edges” by a threshold or a more so-
phisticated classification, a clustering operation groups them
maximizing their fitness to a linear model.

Edge extraction usually takes place by analyzing image partial
derivatives. Indeed, it is natural to think of an edge as a local
maximum with respect to the rate of change of pixel color or in-
tensity. One example of this approach is the so popular “Canny
edge detector” (Canny, 1986). Robust grouping of edges into lines
can be performed with a RANSAC approach or a voting
scheme (Duda and Hart, 1972).

Given the nature of our problem, we propose to tackle the
horizon estimation from a different point of view. First, we observe
that it is not necessary to extract all the significant lines from an
image since we can easily obtain an initial horizon guess by fitting
a plane to the scattered point cloud. This has been proved to be an
acceptable approximation whenever the data cannot be averaged
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among multiple frames (Benetazzo et al., 2014). Second, classifying
a pixel of being either edge or not requires a tricky tuning of some
image-dependent parameters and discards useful information like
the direction of the image gradient. This can be even worse con-
sidering that the sharpness of the horizon line is affected by at-
mospheric conditions that may result in a over-smoothed per-
ceived transition between sea plane and the sky.

Let I(s) € 2 c R?> - R be the image function giving the intensity
(i.e. brightness) of the acquired scene at a pixel s = (u,v). We
formulate the horizon line estimation as the following constrained
minimization problem:

sTay?

_ 5 2H) 100
arg;:ax /!; e o Vi) 010
¢, dssubject to £}
1 0 0
0 1 0 t
0 0 0
=1 (10)

Before giving a possible numerical solution to the proposed
optimization, we would like to spend some words to explain the
motivations of our formulation. Ignoring the constraints, what we
are trying to maximize in (10) is essentially the correlation be-
tween the image gradient VI(s) and a function giving the response
(in terms of its partial derivative) of the line feature described by
¢y- Indeed, the function f, : @ — R?

o' ap?
ffH(p) —e [] 0 O]fH

010 an
defines a vector field over £ where each vector is orthogonal to
the line #,; with a magnitude inversely proportional to the distance
between p and the line (Fig. 2, left). Similarly, the vector field VI(s)
would exhibit a similar structure, with a strong gradient ortho-
gonal to the horizon line fading toward the quasi-uniform
brightness of the sky (Fig. 2, right). As a consequence, the scalar
product of the two would result in a higher correlation the more
¢y is describing a line near the horizon. With our formulation, we
explicitly consider the orientation of #, normal vector as we as-
sume that the sea always appear darker than the sky. Additionally,
since the distance between a point s and ¢ is scaled by the norm
of the first two components of ¢, a constraint is imposed to the
optimization to forbid the resulting correlation value to increase
just by scaling #; accordingly (recall that g ¢ is representing the
same line for each non-zero scale factor j).

To solve (10) we start by observing that both the optimized
function and its constraint have continuous first partial deriva-
tives. Hence, using Lagrange Multipliers we re-write the problem
as the unconstrained maximization:

argmax A(¢y, 4)

HA
"o’
—argmax [ e o VIS 100 ¢y ds
) 010
100
- eifo 1 ol -1
000 (12)
Setting VA = 0, we obtain the system of equations:
oA 1 2 T T
pr 204 + fg Ey,WI(5) = =5,E 84V Uty ds 3

A ) 2 T T

E =205 + _/QEMHVYI(S) - ;syEsts tyVI(s)y Uty ds 14)

oA 2 T T

—=— [ ZE s ¢,VIs) Uty ds

o /!20 s CVIS) U (15)
100

%‘ =1-/Yo 1 ol
000 (16)

_Tey?
where E, =€ ° 5= (505, U= ((1) (1) 8) and

by = £y, ¢4, ¢3). Considering the image [ as a discrete set of
pixels I, = {s...s,} C R? the integral over @ is reduced to a sum-
mation over I,,,. The gradient VI, can be computed numerically by
convolving the image with a derivative of Gaussian kernel. At this
point, we recover an initial guess for the line #; by applying Eq. (4)
to the (approximate) plane normal estimated from the given point
cloud. Then, we optimize iteratively the non-linear least squares
fitting problem

N
argmin ||[VA@Zy, 4) — 0 |
‘ot a7
via Levenberg-Marquardt (Levenberg, 1944), with the initial
value of #; computed from the point cloud and A empirically set to
1.!

In Fig. 3 we show an example of the result before and after the
optimization process for the same input image shown in Fig. 2,
right. The initial #; guess (blue line), computed from the 3D point
cloud only, lies near the expected horizon line but still not close
enough to provide a consistent alignment across multiple frames.
After the optimization (red line), the correct orientation and po-
sition of the image is recovered even in the presence of high fre-
quency noise, highlights and clutter (for example, the mountains
on the left). After the line fitting process, we can go back to the sea
plane normal by inverting Eq. (4).

3.2. Dealing with multiple views

Our formulation is posed in terms of a discrete vector field VI,
sampled at points s;...s,. Those samples cover the entire set of
pixels of an image but, in practice, we never make use of their
regular grid distribution. Unlike methods based on an initial edge
detection step, which implis the knowledge of the neighboring
pixels of a point, our method would work even if s,...s, are not
equally distributed or sampled at sub-pixel locations. We take
advantage of this to provide multi-view horizon line estimation
without modifying the core formulation of our approach.

We suppose to have two discrete images I, and I, . Since the
horizon is assumed to be infinitely distant (i.e. it lies on z_), and
the cameras are calibrated (both in the intrinsic and extrinsic
parameters), all the I, points can be projected into the first
camera image space. This is essentially the same concept exploited
by panorama-stitching techniques that compose multiple different
images of the same scene into a single ultra-wide image. To pro-
duce correct results, panorama-stitching assumes that all the
views are created just by rotating the camera around the optical
center so that there is no observable disparity between objects.
Under this condition, the transformations relating points among

! The initial value of A has been empirically determined so that, for our tests, it
was always close enough to the optimum to let the optimization converge to a
satisfactory solution.
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Fig. 2. Left: vector field generated by f, foro=4and /= (- 11, 0). All the vectors are orthogonal to the line and with a magnitude inversely proportional to the distance.
Right: gradient of a horizon image in our dataset. Note that, since the sea appears darker than the sky, the gradient is oriented upward nearby the horizon line.

— Initial plane

——~Refined plane

Fig. 3. Left: horizon line estimation process. The initial #; guess (blue line) gets refined by the optimization process according to the image gradient. The resulting optimized
¢y (red line) properly follows the correct horizon line. Right: magnification of a part of the left image. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this paper.)

image spaces are planar homographies. In our case, we need a
strong disparity between the cameras to reconstruct the point
cloud. However, for all the points lying at the infinite, the disparity
is negligible and so the behavior of points at infinity is similar to
what happens for all other points in case of pure rotations. This is
true since every set of parallel planes would intersect into the
same line at infinity (see Section 3). Thus, since camera translation
would not change the orientation of the plane, the projection of
the horizon line on each camera depends only by its orientation
(i.e. the rotation matrix) and not the spatial position (i.e. transla-
tion vector).

We perform our horizon line estimation working on the first
camera image space. This time, before starting the optimization,
we merge the vector field VI, with VI, transformed into I,
space. Let:

V()

Vi ® =\ 5,109

18)

be the vector field of the second camera image gradient computed
over the discrete set of points g;...q,, C R2. As before, Vi, is nu-
merically obtained for each pixel by convolving the image with a
derivative of Gaussian. All the Imz points q, = W, vi)T, i=1...mcan
be transformed into the first camera space via the matrix of the
infinite homography trough the projection:

BN u U
L (u VY. _
4 = (W W) ’ v | = KRy K3 v;
w 1 (19)

Similarly, the gradient VI, sampled at g; can be transformed
into the first camera space sampled at g;

0 Vb ()
0 KR, K" VL@ |-
0 (20)

o 0
Vlmz(q,') = 1

1
0

To summarize, we start by computing the image gradients VI,
and Vi, over the pixels of the first (s;...s,) and the second (g;...q,,)
image respectively. Then, we transform the vector field of the
second camera into the first by using (19) and (20). Finally, we
combine the vector fields VI, and VI, to obtain the new vector
field used for horizon line recovery as described in Section 3.1.
Even if we restrict our application to stereo images, this approach
could easily be extended to handle any number of different views.

4. Plane distance recovery

So far we showed that plane normal T can be estimated
without the reconstructed point cloud through the horizon line



F. Bergamasco et al. / Computers & Geosciences 95 (2016) 105-117 1m

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

i it St Sttt Mttt St

i
450 ) 0 2

Fig. 4. Effect of the rectification of an image through the homography H,. Left: original image. Right: rectified image as seen by a camera with an optical axis orthogonal to

the sea plane. Note that the scale of the right image is arbitrary (see text for details).

extracted from an image frame. From the normal 7, a transfor-
mation H, mapping points from the first camera image plane to an
ideal camera whose optical axis is orthogonal to the sea plane can
be recovered up to scale. This transformation is particularly in-
teresting for two reasons: it allows the rectification of the acquired
image to remove the perspective distortion (Fig. 4) and gives clues
on how the space around a sea plane point get distorted when
projected onto the image plane.

Following Hartley and Zisserman (2004), if we suppose to have
two cameras looking at points p,_; , lying on a plane 11, the
projection of p; on the first camera is related to its projection onto
the second through the relation:

- 5T

tn

pj(Z) = KZHKl_lpj(]) =K R - Kl_lpj(l)

@21

where (R, ?) is the relative pose of the first camera with respect to
the second, d is the plane distance from the first camera and
p'", p? are the projections of p; onto the first and second camera
image planes respectively.

Since our only requirement is to transform to a camera with the

optical axis orthogonal to 17, we can safely assume that T=0 (i.e.
we rotate around the optical center), d is an undefined positive
value and the new rectified camera has unitary focal length and
principal point lying at the origin. Consequently, we let K, be the
identity matrix, R = R,, and compute H, as

H, = R, K. (22)

With H, and its inverse we can go back and forth between the
first camera image plane and a normalized plane /7 parallel to the
sea plane. Specifically, given an image point s = (u, v, 1) (where
u, v are pixel coordinates), we can project to /7 by a projection
through H,.

The homography H, cannot be used to extract all the wave
statistics that are usually computed to analyze a sea state. Indeed,
the sea surface is not planar and the scale is arbitrary by con-
struction since the horizon cannot provide us the distance be-
tween the camera rig and the sea plane. However, the projective
transformation realized through H, can be used as a clue to
quantitatively evaluate the amount of spatial distortion introduced
during the reconstruction in a neighborhood of any image point s.

With this quantity in hand, we can weight all the reconstructed
points to simulate a uniform spatial distribution and improve the
plane recovery through LLS.

Our goal is to sample points on the sea plane at locations (X;, X;)
with X; and X, being two uniformly distributed independent
random variables whose joint pdf f', v) is also uniformly dis-
tributed. The 2D location (i, v/’ of a point on the sea plane with
respect to its corresponding image plane coordinates (u, v)' is
described by h: R?> — R*:

hyu, v) _ 1 H,, 3
hy(u, v) [u] Hp | 4
Hr3 v

1

where H,,, H,, and H,; are the three rows of H,.
Since our sampling space is the image plane, an effective way to

simulate the uniform sampling is to compute the pdf over the
image plane induced by h(u, v) and use that density to weight each
sample.

Specifically, each sample in the image is assumed being ex-
tracted at the coordinates given by two random variables (Y}, Y;)
whose joint distribution is

u’

v

=h@, v) =

23)

g, v) = JIf(hyu, v), hy(u, v)) 24)

where || is the determinant operator and J is the 2 x 2 Jacobian of
h. Since f is constant everywhere inside the point sampling area
we can discard that term as it would produce a simple scaling of
all the sampling weights. Consequently, a better estimate of the
sea plane distance given the reconstructed 3D point cloud can be
obtained by weighting each sample s at image coordinates (u,v)
with the determinant of the Jacobian of h evaluated at (u,v).
Specifically, the plane distance is obtained as the dot product be-
tween the centroid of the point cloud weighted with the proposed
correction and the plane normal recovered with the horizon.

To summarize, supposing that the reconstructed 3D point cloud
is composed of a set of p,...p, 3D-points whose projections on the
first camera image plane are the 2D-points s;...sy, the density-
corrected plane distance can be computed with the formula:
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Fig. 5. Left: example image taken from a stereo rig. Center: weights computed with the proposed approach as seen by the camera. Right: the same weights as would be seen

by a camera facing downward the sea.

d= Z,‘=n] |J|(Sl) pi , Fl)
2,‘=1 |J|(Sf)

where [Ji(s;) is the determinant of the Jacobian of h evaluated at the
2D coordinates of the point s; and (-, -) represents the dot product
operation.

In Fig. 5 we show an example of the weights computed for the
sea plane observed in Fig. 4 (left). It can be observed that the
farther a point from the camera, the higher its associated weight
would be. This makes sense since the reconstructed cloud density
decreases with the camera distance. This is also coherent with the
approximation made during previous WASS installations, where
each sample was simply weighted by the z-component of each
point as a fast approximation of the distance with respect to the
camera center.

The proposed weighting criterion is theoretically correct to si-
mulate a uniform random sampling on the reconstructed plane
but has the drawback to amplify the noise since also the depth
uncertainty increases with the distance. Therefore, we face two
competing terms: with a weight proportional to the point distance
we obtain a quasi-uniform distribution but, on the other hand, we
are giving more weight to the points that are intrinsically more
uncertain because they are far away from the camera. If the re-
constructed surface were a real plane (i.e. a sea with no waves at
all), it would certainly be better to avoid the proposed weight
criterion to limit the effect of depth uncertainty on the least-
squares fitting. However, when the variability of the reconstructed
point elevation clearly dominates the variability due to the depth
uncertainty (i.e. when observing a wavy sea surface), the proposed
weighting effectively increases the plane fitting accuracy. We de-
monstrate this phenomenon with synthetic tests in the experi-
mental section.

Finally, we mind the reader that the considerations made so far
consider the sample density along the sea or image plane. How-
ever, point lying far away from the plane (either for being outliers
or belonging to rogue wave events) may receive an associated
weight not reflecting the actual space density in the neighbor-
hood. In practice, this difference is negligible and does not hinder
the improved plane estimation accuracy on the tests we made so
far.

25)

5. Experimental section

In this section we test the proposed approach under different
conditions. We start with some synthetic cases to quantitatively
evaluate the sea plane recovery accuracy in a simulated scenario.
In Section 5.3 we test the horizon estimation in a controlled real-

world environment during the acquisition of 3D data from a fixed
platform. Then, in Section 5.4 we present a real-case study of the
data acquired during a cruise over the Garda Lake, Italy.

5.1. Synthetic tests

To evaluate how the plane distance recovery presented in
Section 4 leads to a better aligned sea surface reconstruction, we
implemented a test based on purely synthetic data.

We started by generating a sequence of 100 consecutive frames
of a theoretical sea surface (with significant wave height of 1 m) by
simulating an evolving linear sea surface based upon the random-
phase/amplitude model (Pierson and Moskowitz, 1964). Such a
model assumes that a Gaussian sea surface is the result of the
summation of independent harmonic components of amplitude,
angular frequency, direction, and phase. Operatively, we used the
WAFO toolbox for MATLAB® (Brodtkorb et al., 2000), which has
been extensively applied for simulations of random seas (Gemm-
rich and Garrett, 2008). Each sea surface was generated so that the
mean sea plane lies exactly on the XY-plane and the mean eleva-
tion of all the surface points is 0. Thereafter we considered a vir-
tual non-distorted pinhole camera with a resolution of 500 x 420
pixels, a focal length of 350 pixels and a principal point located at
the image center. The camera is initially faced downward (so that
the synthetic sea plane is parallel to the image plane) at a distance
of d=100 pixels from the sea plane.

We simulate the perspective distortion occurring for stereo
reconstruction by rotating the synthetic sea surface around the
camera x-axis with an angle of @ radians and computing the 2D
intersection coordinates on the sea reference frame of each ray
exiting the camera with the sea plane. This projective-distorted
samples are then bilinearly interpolated with the sea surface ele-
vation to obtain a 3D point cloud that resembles a real stereo
acquired point cloud (we do not consider shadowing effects or
triangulation errors). Fig. 6 (left) gives an example of how the
distorted synthetic sea plane would result after a rotation of 20°,
40° and 50° respectively.

For any 6, the homography H, is known given the plane normal

= (0 sing cose)T and distance d. We compare in terms of abso-
lute mean error the 3D plane fitted on the distorted point cloud by
weighting the points with the determinant of the Jacobian (Eq.
(24)) with respect to the unweighted case. In Fig. 6 (right) we
observe how the point weighting based on sample density
(“Density sample” in the plot) almost always result in a lower
elevation error on the sea surface caused by a more accurate es-
timation of the mean plane distance. As expected, the more the sea
plane is tilted with respect to the camera, the more the density
weighting is effective to provide a precise sea distance estimation
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Fig. 6. Different LLS fits on sea plane estimation for the density weighted and un-weighed (i.e. uniform weight) case. Left: example of the synthetically generated sea surface
varying the observation angle ¢ = 20° (top), 40° (middle), 50° (bottom). Right: absolute elevation error (in meters) between the generated sea surface and the rotated sea

surface after the plane estimation for the two cases.

that is otherwise biased by the samples nearby the camera. Finally,
for both the methods the error is oscillating as the plane estima-
tion is affected by the wavy nature of the generated sea surface.
This was also expected, as it has been already demonstrated in the
literature that is impossible to obtain a consistent sea plane esti-
mation by observing a limited (in terms of number of wave-
lengths) part of the whole sea surface.

5.2. Evaluating the weighting effect on depth uncertainty

To study the tradeoff described in Section 4 for which the
proposed weighting criterion would inevitably amplify the noise

due to depth uncertainty we decided to evaluate its effect in a
purely numerical way. Since our reconstruction pipeline is com-
posed of many different filters and optimizations, it would be too
limiting to model its behavior as an ideal set of undistorted cali-
brated cameras. As a consequence, we rendered a synthetically
generated evolving wave surface using the same intrinsic and
extrinsic coefficients calibrated on the WASS device in the “Acqua
Alta” platform (See Section 5.3) and run the whole pipeline to
compare the reconstructed point cloud with the known generated
ground truth. The effect of an erroneous horizon estimation is
eliminated in this test since the stereo rig orientation with respect
to the sea plane is known so that the image-sea plane homography
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Fig. 7. Comparison of different weighting schemes on a generated sea surface rendering to include the effects of depth uncertainty in a simulated scenario. Top-left: example
of the generated sea surface image. Bottom-left: reconstructed area. Right column: absolute error of the estimated plane distance for different weightings on a generated sea

with wave amplitudes of 0.5 m (top) and 2.5 m (bottom).

H, is known a priori.

We rendered a sequence of 200 stereo images (Fig. 7, top-Left)
and run the reconstruction pipeline with the same parameters
used with real-world tests to obtain a sequence of point clouds
which were cropped to limit the reconstruction area to 51 x 44 m?
as shown in Fig. 7 (bottom-Left). Then, we estimated the sea-plane
distance using three different weighting criteria: the proposed
density correction, a weight proportional with the point distance
and no weight (i.e. uniform weighting). We performed this test
twice, one with a synthetically generated sea with a maximum sea
wave amplitude of 0.5 m (Fig. 7, top-right) and one with 2.5 m
(Fig. 7, bottom-right) to plot the estimated sea plane distance
absolute error with respect to the ground truth. In both the cases,
our proposed plane distance estimation consistently give lower
error and less variability. As proposed in Benetazzo et al. (2016),
the distance weighting criterion give better results than uniform
weighting as it partially compensates the non-uniform sampling.
In the considered reconstruction area the effect of the depth un-
certainty does not hinder the estimation even if we give more
weight to distant points.

5.3. Real world scenario

The approach discussed in Sections 2 and 4 has been tested on
real world stereo data collected in controlled conditions. Specifi-
cally, we mounted the WASS device described in Section 2 at
12.5 m above the sea level on the “Acqua Alta” oceanographic
platform located in the northern Adriatic Sea (Italy) with an angle
of 60° with respect to the sea plane normal.

Using a fixed platform allows us to test our algorithms with
real-world conditions (illumination changes, noise, atmospheric
effects, etc) but with the additional guarantees that the stereo-
camera rig is not moving during the acquisition. As a consequence,
a ground truth sea plane orientation can be obtained by averaging
the acquired sea surfaces over a long period of time.

In this experiment, we oriented the stereo rig so that the hor-
izon line is dividing the sea from the sky at about 1/6 of the entire
image seen from the left camera (see Fig. 8, bottom-left). We ac-
quired a sequence of 2000 frames and processed the whole data to
obtain a set of 3D point clouds. For each frame, we compare the
original pipeline in which the mean sea plane is fitted from the 3D
point cloud as linear least squares weighted with the point dis-
tance (3D fit in the figure) with the proposed horizon approach. In
Fig. 8 the dihedral angles of the sea plane for the two methods are
compared (top-row) together with the estimated plane distance
(bottom-right plot). Since the stereo rig is fixed, we expect the
recovered sea plane parameters being constant over time.

From the plots, two considerations can be made. First, the
variability of the plane estimation (both by means of plane angle
and plane distance) with the aid of the horizon is significantly
lower with respect to the 3D fitting alone. This was expected since
it has already been demonstrated that the accuracy of the sea
plane estimation from 3D data depends on the number of wave-
lengths observed in the reconstruction area. With these sea con-
ditions, using the horizon from the sea plane recovery can greatly
improve the alignment between each surface. Second, we observe
a little bias with the parameters estimated from the horizon with
respect to the average of the planes fitted with LLS. In the specific,
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experiment.

the angle with respect to the y-axis is overestimated of about
0.12°, with respect to the z-axis of about 0.15° and the plane dis-
tance of ~ 20 cm. This phenomenon is probably caused by small
calibration errors in the camera intrinsics. Overall, the error in-
troduced by this small bias is less than the intrinsic variability of
the plane parameters recovered with the 3D data alone. This ex-
periment suggests that the horizon line can greatly improve the
sea plane recovery in a moving vessel scenario for which no ad-
ditional attitude estimation aids are available.

5.4. Case study: wave analysis from a moving ship

As a case study, we tested the wave data acquired from a
moving ship during a cruise (onboard the vessel Motonave San
Marco, about 32 m long) over the Garda Lake (Italy). Here, the
stereo-camera system mounted had same features as the WASS
installed on the “Acqua Alta” platform (Section 5.3), apart from the
baseline that was reduced (t = 1.07 m) as onboard cameras were
deployed at a smaller height, about 3.3 m above the mean sea
level.

An experiment was conducted starting at 11:03 UTC on De-
cember 09, 2015; at that time the wind (measured on the vessel at
about 6 m height) was blowing at approximately 5 m/s along the
lake main axis (oriented southwest-northeast). As in a previous
installation on a vessel (Benetazzo et al., 2014), WASS collected
stereo images at 15 Hz, and it was synchronized with a compass
(that provided the heading with respect to the true north) and a
global positioning system (GPS) to retrieve the WASS location on
the world reference frame (i.e., longitude-latitude oriented). From

the entire sequence of stereo images, the first 1000 pairs have
been used to assess the proposed approach to recover the attitude
of the stereo rig using the horizon line.

In this respect, we have firstly fitted, in a linear least squares
sense, the 3D data in the camera reference system to retrieve, at
each frame, a guess of the horizontal plane attitude and position,
which are required (Benetazzo, 2006) to map the stereo data onto
the sea reference frame (Fig. 9). As the stereo system onboard the
vessel qualitatively encompassed four wavelengths and four wave
crests, the study of Benetazzo et al. (2016) demonstrated that the
fitting procedures yielded, at each instance, a reliable estimation of
the mean sea plane coefficients, that is its normal (n,, n,, n,) and
distance d. Second, as a horizontal line was visible on both views
(Fig. 9), this was exploited to retrieve an additional set of coeffi-
cients. In accordance with the two methodologies just defined
above, some of the mean sea plane parameters are depicted in
Fig. 10 for both cases. The rotations around the camera y-axis are
pretty close with an average difference between the dihedral an-
gles of 0.1°, while the average difference is smaller than 0.01° in-
sofar as rotation around the x-axis is concerned. Also, even though
the fitting procedure captures slightly larger oscillations of the
distance (heave) of the cameras from the mean sea planes, the
average difference between the heaves is small, about 0.01 m.

Along with GPS and compass data, these two sets of coefficients
permitted to get two distinct space-time ensembles of sea surface
elevations mapped onto the world reference frame (Benetazzo
et al., 2016). The two sea elevation ensembles have small differ-
ences, in the order of few centimeters at most, whereas the mean
absolute difference is 0.6 cm. Not surprisingly then, comparison
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Fig. 9. Example of an acquired camera image (right) and its 3D reconstruction (left) in the sea reference frame.

suggests that the two dataset are very similar, and it indicates that
the horizon permitted to properly orient the cameras with respect to
the sea reference frame. Further confirmation is provided by the
results in Fig. 11 that shows the time series extracted from the two
ensembles at the position (x, y) = (68 m, 49 m) of the geographical
frame. The two time series show similar values, with a bias of 0.3 cm,
with the standard deviation of both series equal to about 10.5 cm.

6. Conclusions

In this paper we proposed a novel technique that exploits the
observed horizon to provide a better alignment of the re-
constructed 3D sea surface with respect to the mean sea plane. We
avoid the combinatorial search of the horizon line over an image
assuming that a 3D reconstruction of the surface have already
been produced by the stereo vision machinery and refine the in-
itial coarse estimate by means of a multi-view energy optimization
involving all image pixels. Thus, this approach recovers the sea
plane orientation with higher accuracy without pre-processing the
image to extract and classify edge features. Moreover, we propose

91.6

a point weighting criterium that compensates the non-uniform
spatial distribution of the reconstructed point cloud due to the re-
lative angle between the stereo rig and the sea surface. We em-
pirically showed that such point weighting improves the sea plane
distance estimation (that cannot be recovered by the horizon line
itself) over the common unweighted Linear Least Squares and the
previously adopted point distance weighting even considering that
such weighting would inevitably amplify also the depth error.

We tested the proposed method against real-world and syn-
thetically generated data. From the synthetic test we assessed how
the weighting scheme improves the sea plane distance estimation.
The improvement has a significant impact that if the cameras are
tilted with respect to the sea plane that is an unavoidable condi-
tion if the horizon has to be visible on the images. Furthermore,
from our test on the oceanographic research platform “Acqua Alta”
we observed that the variability of the estimated sea-plane para-
meters can be greatly reduced if the horizon is taken into account.
As a limited drawback, such estimation may be biased by the
stereo rig intrinsic and extrinsic parameters that must be precisely
calibrated. Finally, we tested the proposes method with data ac-
quired on a real vessel to demonstrate it feasibility in a real-world
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Fig. 10. Sea plane parameters evolution over time. Top: dihedral angle around the camera x-axis. Middle: dihedral angle around the camera y-axis. Bottom: camera distance
(heave) from the mean sea plane. Parameters are shown for the two sets of planes obtained fitting the 3D data (blue) and using the horizon line (black). (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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scenario. Overall, we think that this technique can offer a sig-
nificant advantage when operating on a moving vessel and no
additional position and attitude recovery devices are available.
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