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Abstract

Advanced collaborative environments need to transfer multimedia
data streams with bandwidths comparable to the capacities of net-
work links. The problem of finding the right distribution paths with
minimal transmission latency has been called the media streams plan-
ning problem (MSPP). The aim of this work is to present an imple-
mentation of a scheduler for the problem using a freely distributable
mixed integer linear programming (MIP) solver. The performance of
the implementation is described, and the results are compared with
a scheduler that uses the proprietary MIP solver Gurobi. In over-
all Gurobi manages to plan the data routes faster, but the freely dis-
tributable MIP solver’s performance is still sufficient for the use in
typical collaborative environments.
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Chapter 1
Introduction

Modern computer networks allowing high-bandwidth data trans-
missions are becoming more and more common nowadays. The wide-
spread of these networks enabled the development of many new
collaborative applications requiring high-quality video for transmis-
sion. As an example we could mention remote lectures followed from
different places or videoconferences of multiple users communicat-
ing in real-time. These kinds of applications usually need to transfer
data streams from one or more sources to multiple receivers, and
they very often require bandwidths comparable to the capacities of
network links.

Managing collaborative environments and finding correct, latency-
minimal distribution paths for high-bandwidth data streams is a non-
trivial and complicated task. The applications have to establish com-
munication in real-time and need to react to the network environ-
ment changes without loss of performance. For the automatization
of these processes the framework CoUniverse was created. CoUni-
verse is a framework used for building real-time self-organizing col-
laborative environments that can work with high-bandwidth media
applications on high-speed networks [1].

Due to the amount of transferred data, traditional routing mech-
anisms, like hop-by-hop routing, may not be sufficient to find an
optimal or even correct solution. Therefore, we need more sophis-
ticated methods to schedule media streams, which take into account
transmission requirements as well as link capacities. The problem of
choosing the right distribution paths in the network has been for-
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1. INTRODUCTION

mally defined as the media streams planning problem (MSPP) [2].
The given network contains a set of data sources, which need to
transmit their data to a predefined set of media applications. The
MSPP can be then considered as a problem of finding a distribution
tree for every data source, while the overall transmission latency of
the transmitted streams stays as minimal as possible.

One of the possible approaches to find a solution for the MSPP is
to use the methods of mixed integer linear programming (MIP) [2].
MIP is a linear programming optimization method in which some
of the variables need to take integer values. It tries to minimize or
maximize an objective function subject to some given constraints.
These constraints are linear inequalities representing restrictions on
the given problem. For example, in MSPP they could represent the
limitations of the media applications and the properties of the net-
work. The objective function expresses the goal of the problem, in
our case it would be the minimization of the overall transmission
latency. The constraints, the objective function and the variables to-
gether form an integer programming model.

A solver for the MSPP based on the integer programming model
from the works [2, 3] has been already implemented in the CoUni-
verse. It uses a MIP proprietary solver called Gurobi to solve the cre-
ated model. Unfortunately, Gurobi’s license does not allow it to be
freely distributable with the rest of the software.

The aim of this work was to implement a solver for the MSPP us-
ing a freely distributable MIP solver. First, I had to choose a suitable
non-commercial MIP solver with the best possible performance. Af-
terwards, I had to make the necessary changes, so that the chosen
MIP solver could be used for solving the MSPP problem instead of
the commercial solver Gurobi. The final part of the work was to mea-
sure and analyse the performance of the implemented MSPP solver
and compare the results with the performance of the actual imple-
mentation.



Chapter 2
Problem Description

In this chapter we are going to introduce the concept of media
streams planning problem (MSPP), describe the structure of the net-
work representation and define the basic notations, which will be
used throughout the whole thesis.

2.1 Media Streams Planning Problem

Since traditional network routing technologies may lead to net-
work congestion, we need different planning methods when deal-
ing with high-bandwidth applications. The problem of finding the
best routes for the transmission of high-bandwidth data streams has
been called the MSPP [4]. Since a data source can have more than one
destination for its data delivery, it is possible that multiple copies of
the stream have to be created. Therefore the objective of the MSPP
may be considered as computing a distribution tree for all of the data
sources and their corresponding destinations. Usually the transmis-
sion of all of the streams takes place at the same time and from the
point of enjoyability it is very important that the streams have the
smallest possible latency. Another important requirement is that the
planning should be done quickly and the scheduler should be able
to react to the changes in the network in real-time.

2.2 Network Representation
For being able to describe the problem more precisely, we are go-

ing to introduce some formal notations on the basis of the given
network. Actually by the term network we do not necessarily mean
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2. PROBLEM DESCRIPTION

the real physical network. In previous approaches for finding a so-
lution to the MSPP only the application level knowledge of the net-
work was used, hiding the underlying physical network infrastruc-
ture, likewise in P2P applications [2]. In this kind of representation
the links between the network nodes represent the end-to-end con-
nections of the data processing applications. The main advantage of
this principle is that the end users are able to use the planning meth-
ods even if no information about the actual physical network topol-
ogy is available. The only problem with this kind of representation is
that multiple end-to-end links may share the same physical network
links, what can change the properties of the links in the application
level. Especially the capacity of the given link can be influenced sig-
nificantly, by transmitting data on another link which shares some of
its physical links. This can lead to a network congestion, which needs
to be detected. For that reason CoUniverse has to monitor the links
periodically. If a congestion is detected, then the scheduler needs to
invoke a replanning and send the data streams accordingly.

There are some situations, however, when the user might have
some information about the underlying physical network topology.
For example, he may know that during a communication where the
participating sides reside on different continents, all of the streams
need to be sent through a single sub-oceanic link. If this kind of
knowledge is available, it is possible to use more advanced planning
methods which could avoid possible congestions in the network and
decrease the number of required replannings.

A new kind of approach for planning, which considers some part
of the physical network to be available, has been already implemented
in the CoUniverse [3]. This new approach combines the knowledge
of the network on both levels, the one in the application level as well
as the one in the physical level, into one network representation. This
way we are able to represent networks even if there is no information
about their underlying physical topology or if part of the topology is
missing. Now we are going to describe the main entities of the net-
work and introduce their formal definitions and notations.



2. PROBLEM DESCRIPTION

2.2.1 Network Nodes and Links

Probably the most common way of describing a network topol-
ogy is by a graph. A graph is defined by a set of vertices and a set
of edges. The vertices represent the actual nodes in the network and
the edges represent the corresponding links between the nodes. Since
we consider a partially known network topology, we need three kinds
of network nodes and two kinds of links. The set Vi represents the
endpoint network nodes, which are the actual servers and desktop com-
puters running the data processing media applications. The second
type of network nodes are the physical network nodes represented by
the set V. They include the entities on the lower layers of the ISO
OSI model, like routers and switches. The last set V; of the unknown
network nodes represents the part of the network, where the actual
physical network topology is not known.

Because between some of the nodes we may need to transmit data
in both directions, we consider a directed graph with directed links.
There are two kinds of links connecting the network nodes. One of
them is represented by the set Ly of physical links containing all the
existing connections on the network and link layers of the ISO OSI
model. Basically they can connect any kinds of network nodes, but
endpoint network nodes are typically not connected directly. We con-
sider only one property of a physical link h € Ly, its capacity, de-
noted as cap(h). Usually there is no information about the latency of
a physical link and also it is not easy to measure, so we do not con-
sider it as a property.

The other set L;, of logical links on the other hand can connect only
the endpoint network nodes. For a proper definition, we first need
to define network interfaces. Let the set I be the set of all network in-
terfaces. On each of the endpoint nodes v € Vg there is at least one
interface. If the interface i is configured on the node v, we denote it
by ¢ € v. Every interface has an important property, the transmis-
sion capacity capl(i). The main purpose of the interfaces is to connect
somehow the particular endpoint nodes on the application level of
the network. This is achieved with the help of subnetworks. If an in-
terface ¢ € v belongs to a subnetwork s, then the node v has access to
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2. PROBLEM DESCRIPTION

the physical subnetwork s. Each interface must belong to exactly one
subnetwork. Two network nodes connected to the same subnetwork
(through some of their interface) are considered mutually reachable.

Now we can describe, how the logical links interconnect the end-
point network nodes. Each logical link is defined as a directed end-
to-end link which connects two interfaces belonging to the same sub-
network. These interfaces are not allowed to be configured at the
same node. Although logical links formally connect the interfaces,
we usually speak about them as they connect nodes. A logical link
connects the nodes vy, v, if and only if it connects the interfaces i1, i5
and i; € v; A iy € vy. We denote the connected nodes of the link [ as
begin(l) and end(l), depending on the direction of the link. Also every
logical link / has two important attributes. The first is the maximum
capacity, denoted as cap(l), which is determined by the capacity of the
endpoint interfaces of the link or by network monitoring. The other
attribute is the transfer latency of the link, denoted as latency(l). The
latencies of the links are determined only by the help of network
monitoring.

It is important to mention that the set of logical and physical links
are related to each other. Each physical link # is related to a set logi-
cal(h) which contains logical links that use the link / during their data
transmissions. Similarly, each logical link [ is related to a set phys-
ical(I) which contains physical links representing the path between
the endpoint nodes of the link /.

2.2.2 Media Applications

Media applications are the applications running on the endpoint
network nodes. All of the applications need to processes a given me-
dia stream. Let S be the set of all streams in the given network topol-
ogy. Every stream s € S has a bandwidth required for the transmis-
sion of the stream, denoted as bw(s).

We can distinguish three kinds of media applications. The producer
p € P creates a data stream and sends it somewhere further in the
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network. The distributor d € D receives the data, creates multiple
copies of it and transmits the copies to some other network applica-
tions. It is also possible for the distributors, to not create any copies
of the received data, but just simply forward the received stream di-
rectly to one of the other applications. Finally, the consumer c € C just
receives the stream from the network. All of these applications are
capable of processing at most one data stream, so none of them can
produce, distribute or consume more than one stream. Each stream s
is produced by a producer, denoted as producer(s) € P and is deliv-
ered to set of consumers consumers(s) C C. It is important that the
stream has to be produced by exactly one producer and it needs to
have at least one consumer.

For every application « € PUD UC we define the set ing(a),
which is a set of all physical links that end in the endpoint node
which runs the application a. The set outy (a) is defined similarly for
the outgoing physical network links.

There are some restrictions regarding what kinds of applications
can run together on a given network node. The first rule is, if there
is a distributor on the given node, then no other applications can
run there. Consumers and producers are allowed to run on the same
node, but all of them have to process a different media stream. This
means, that if a consumer receives a stream s, then no other media
application on the same node is allowed to produce or consume the
same stream s. Although more media applications are allowed to re-
side on a single network node, it is not typical, in practise usually
every application runs on a different network node due to their high
requirements on computational resources.

Despite the fact that multiple copies of a given stream can be cre-
ated, all of the packets need to be sent from a producer to a single
consumer along the same path. Therefore, distributors are not al-
lowed to split the stream to smaller streams and send them through
different network links. If it was allowed, then packet reordering
could occur on the receiving node, which could have negative af-
fection on the performance.
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Now we can describe the MSPP a little bit more precisely. Every
stream s € S needs to be transferred from a producer to its con-
sumers by a distribution tree having the producer in the root, the
consumers at the leaves and the distributors in the internal nodes
of the tree. Each distribution tree has to satisfy some restrictions, de-
pending on the type of the used media applications and on the capac-
ities of the network links inside the network. Also, the transmission
of every media stream has to occur at the same time and their overall
transmission latency needs to be as minimal as possible.



Chapter 3
Mixed Integer Linear Programming

3.1 Linear Programming

Linear programming (LP) is a mathematical method that is used to
solve optimization problems. Its aim is to find an optimal solution
to a linear objective function under a given set of linear constraints. By
tinding an optimal solution we usually mean to find the minimum or
maximum value of the objective function. There are many practical
problems that can be solved by LP techniques. Some of the most typ-
ical are planning problems, like farm planning or food manufactur-
ing, telecommunication tasks, and production deployment problems

[5].

The main elements of every linear program are:

o Decision variables. At the beginning their value is not known.
The aim of LP is to find values for them which will provide
optimal solution for the objective function.

° Objective function. A linear function that combines the vari-
ables to express our goal. Its value is required to be minimized
or maximized.

o Constraints are linear inequalities combined from the decision
variables. They represent the restrictions that the solution of
the optimization problem is required to satisfy.

° Variable bounds determine the intervals in which the variables
are allowed to take a value.
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3. MIXED INTEGER LINEAR PROGRAMMING

More formally a linear programming model with m variables and
n constraints can be written as:

m

Minimize Z CjT;
j=1
m
subject to Z a;jr; <b, i=1..n
j=1
l; <az; <wy, J=1...m

where z1, s, ..., z,,, are decision variables, ¢, ¢y, ..., ¢,,, are objec-
tive coefficients, a1, a1o, ..., a,,, are constraint coefficients, Iy, lo, ..., [,,
are lower bounds of variables and u4, us, ..., u,, are upper bounds of
variables. Note that in case we would like to maximize the objective
function it would be enough to negate the value of all of the objective
coefficients c;.

A feasible solution of a LP problem is a valuation of the decision
variables which satisfies all the linear constraints, while the variables
remain within their bounds. An optimal solution is a feasible solution
that minimizes or maximizes the value of the objective function. An
optimal solution, however, does not necessarily exist. The problem
can contain a set of constraints that can not be satisfied at the same
time. Some unbounded variables may also cause that for any exist-
ing feasible solution another feasible solution can be found which
further improves the objective function.

Many algorithms exist that are capable to solve LP problems in a
reasonable amount of time. As an example we can mention the primal
simplex, dual simplex, or various interior point methods [6]. Probably
the most used of them are the variants of the simplex method, but the
actual performance of the algorithms heavily depends on the type of
the given problem [7].

Some of the variables in LP may require to take integer values. In
this case we talk about mixed integer linear programming (MIP). If all

11



3. MIXED INTEGER LINEAR PROGRAMMING

of the variables have to be integers, then the problem is called inte-
ger programming. As we can see in [6], this seemingly minor change
makes the whole problem much more difficult to solve. LP prob-
lems can have a totally different solution if some of their variables
are changed to integers. There are many methods for solving MIP
problems, but their performance is highly dependent on the type of
the particular problem [6].

3.2 Integer Programming Model

Now we are going to introduce the integer programming model
of the MSPP. It is important to note that this model has already been
proposed and all the information about it is processed from [3]. The
model considers a partially known network topology. It consists of
an objective function, some linear constraints and two kinds of inte-
ger variables.

3.2.1 Elimination process

First of all, it is important to note that not all of the network links
inside the network are used to create the actual integer programming
model. There are many links which are unusable, and they are elim-
inated from the network before creating the model. A network link
is considered unusable if it has too small capacity for the transmis-
sion of any of the media streams, or if it has inappropriate media
application on some of its endpoint nodes. For example a link with
a consumer on its beginning node, or with a producer on its ending
node, will be eliminated. Therefore, when we talk about the sets Ly
and L;, below, we consider only the links which remained inside the
graph after the elimination process.

3.2.2 Streamlinks

Streamlinks represent the actual integer variables in the model. As
we mentioned before, there are two types of variables. The first of
them are the physical streamlinks y,j for every pair of stream s € S
and physical link 2 € L. A physical stream link y;, ; represents the

12



3. MIXED INTEGER LINEAR PROGRAMMING

number of copies of the stream s sent through the physical link .
The maximum value it can take is the number of consumers of the
stream s, but only if link & has an appropriate bandwidth for such
a transmission. Otherwise, it is the maximum number of copies of
the stream that can be transmitted through the link at the same time.
More formally:

cap(h)
bw(s)

0 <ysp < min <Hconsume7’s(s)]|, { J) Vs e SYh € Ly

The other type of variables are the logical streamlinks. For each pair
of stream s € S and logical link [ € L, there is a logical streamlink
xs,;. Its value determines whether the link [ transmits the stream s.
Since logical links are allowed to transmit only one stream at a time,
logical streamlinks can have only two possible values: one or zero.

3.2.3 Constraints

As we already mentioned in Chapter 2, there is a relation between
logical and physical links. For every stream s transmitted through
the physical link A has to exist a logical link [ € logical(h) which
carries the same stream s. The constraint (3.1) defines this relation.

Yeh = > T Vs € SVYh e Ly (3.1)

lelogical(h)

The total bandwidths of the streams transmitted through a given
link can not exceed the capacity of the link. We assume that the ca-
pacities of the logical links can be measured by network monitoring.
On the contrary physical link capacities do not necessarily have to
be available. Let L; C Ly be the set of physical links with a known
capacity. Then, the constraints (3.2) and (3.3) guarantee that the ca-
pacities of the links are not exceeded by the transmitted streams.

Z bw(s) - ysn < cap(h) Vh € LYy (3.2)

ses
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Z bw(s) - xs; < cap(l) Vie L (3.3)

seS

Every producer is required to create a single stream and send it to a
single media application. Therefore, only one of its outgoing physical
links transmits the created stream (3.4).

Z Ysh =1 Vs € S,p € P:p= producer(s) (3.4)

heouty (p)

Since a stream is required to be sent from a producer to a con-
sumer along a single path, every consumer has to receive its required
stream only by one of its incoming physical link (3.5).

Z Ysp =1 Ve e CVs € S :c= consumers(s) (3.5)

hEinH(C)

Distributors similarly to consumers can receive only one stream
and only over one link. However, it may happen that they do not
receive any stream at all (3.6).

Y <1 vde D (3.6)

s€S heing(d)

The constraints (3.7) and (3.8) guarantee that the distributors for-
ward a stream only if they also receive it. The number of forwarded
streams have to be greater than the number of received streams (3.7).
Therefore, the distributor must forward every incoming stream. Con-
straint (3.8) states that a distributor receiving the stream s, can for-
ward at most ||consumers(s)| copies of it, but it can not forward any
streams that are not received.

Yoo < Y v Vse SVde D (3.7)
heing (d) heout g (d)
||consumers(s)|| - Z Ysh = Z Ysp VseSVdeD (3.8)
heing (d) heoutp (d)

14



3. MIXED INTEGER LINEAR PROGRAMMING

Physical and unknown network nodes are allowed only to forward
incoming streams. Every instance of a received stream has to be for-
warded further (3.9).

> yen= > Yen Vs € S Vo € Vi UVy (3.9)

he€ing (v) heout i (v)

Note that the constraints representing the limitations of the media
applications contain only physical streamlinks. Since there is a much
lower amount of physical links than logical ones, the time required
to find a solution for the problem may be decreased this way.

3.2.4 Cycles

The constraints presented above do not forbid the existence of a
cycle in the solution. It may happen that a cycle appears between
some distributors which do not receive any stream from other media
applications. The approach used in this work does not prevent the
cycles in the solution, but instead eliminates them only when they
appear. Every time an optimal solution is found to the problem it
is checked whether it contains any cycles. If it does, a constraint is
added to the model for every single cycle, which prevents the exis-
tence of the given cycle in the solution. Afterwards the solution is
discarded and the solving continues from the point before when the
solution was found. This approach has been shown much more effi-
cient than including all the cycle elimination constraints in the base
model [4].

3.2.5 Objective Function

Since the main objective of the MSPP is to reduce the transmission
latency of the streams, we define the objective function as a sum of
latencies of all the active logical streamlinks.

minz Z xs; - latency(l)

ses ZGLL
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Chapter 4
Free MIP Solvers

4.1 Available Solvers

The first part of this work was to choose an appropriate freely dis-
tributable MIP solver for the implementation of the MSPP solver.
Since CoUniverse is written in Java, one of the main requirements
of the solver was to have a suitable Java library. Otherwise, the most
significant factor in the selection was the performance of the solvers.
On the web page [8] we can find a comprehensive list of the best
known MIP solvers. There are four non-commercial ones between
them with an available Java library and an appropriate performance:
lIp_solve, GLPK, CBC and SYMPHONY. In the next section we give
a brief overview about their main properties. All the information is
processed from the official websites of the solvers [9, 10, 11, 12].

4.1.1 1p_solve
° License: GNU lesser general public license
° Version: 5.5.2.0
° Website: http://lpsolve.sourceforge.net/5.5/
. Language: C
Lp_solve is a free linear and integer programming solver. It con-
tains full source, examples and manuals. It does not limit its model
size and can accept user defined input files. There are plenty of inter-

taces through which lp_solve can be called, like Java, .NET, AMPL,
MATLAB, O-Matrix, Scilab, Octave, and others.
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4.1.2 GLPK
. License: GNU General Public License
. Version: 4.51
° Website: http://www.gnu.org/software/glpk/glpk.html
. Language: C

GLPK (GNU Linear Programming Kit) is a package organized in
the form of a C callable library. It contains a standalone LP and MIP

solver. It can be used through a large number of community built
interfaces.

4.1.3 CBC

o License: Eclipse Public License
° Version: 2.8
° Website: https://projects.coin-or.org/Cbc

. Language: C++

The software CBC is an open-source integer programming solver
distributed under the COIN-OR project. It uses many other software
products from the same project for additional functionality, like the
linear programming solver Clp or the Coin Cut Generation Library.
It can be used as a callable library or as a standalone solver.

4.14 SYMPHONY

o License: Eclipse Public License
° Version: 5.5
° Website: https://projects.coin-or.org/SYMPHONY

. Language: C

17
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SYMPHONY is an open-source MIP solver. Similarly to CBC it is
distributed under the COIN-OR project and built from many other
COIN components. It has some unique advanced features, like be-
ing able to solve MIP problems with two objective functions or to
warm start the solution procedure, which allows to set an advanced
starting point for MIP optimization.

4.2 Performance Analysis

An important part of the thesis was to analyse and compare the
performance of the above described MIP solvers. For that I used inte-
ger programming models generated by the CoUniverse. These mod-
els represent some typical network topologies used in high-bandwidth
data transmissions.

4.2.1 Testing Topologies

For being able to describe the structure of the above-mentioned
testing topologies, we need to introduce the term of a network site.
A network site represents the geographical collocation between the
nodes of the given network. Typically one site contains several net-
work nodes, which represent the computers connected to the net-
work. As an example we can mention the devices responsible for the
generation or reception of the required data streams. The nodes can
run any kind of media application, the only restriction is that none of
the consumers can consume any streams produced by the producers
inside the same site.

Two kinds of communication scenarios were used for the testing.
The first one is the 1:n scenario. It represents a situation where one
of the sites transmits a data stream to all of the remaining sites and
also receives a stream from each of them. All of the sites contain a
consumer for every incoming stream, a producer, and a distributor.
It is a typical representation of remote lecturing.

The second kind of scenario is denoted as m:n. It is a classical rep-
resentation of videoconferencing, where all of the participants com-

18
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municate with each other. Every site transmits a stream to all of the
others and receives a stream from each of them at the same time.

Both of these communication scenarios can be further divided to
two types of testing topologies based on the available knowledge of
the underlying physical network. The first one is a topology with de-
tailed knowledge of the underlying physical network, where we have
complete information about the lower network levels. It is based on
the real connection of European and North American networks (Fig-
ure 4.1).

— T~
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______________

Figure 4.1: Example of a network with 9 sites and detailed knowl-
edge of the underlying physical topology
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The second kind of topology is with missing knowledge of the un-
derlying physical network. Here no information is available about
the lower network layers. Each site is modelled with the help of an
unknown network node, which is connected to all of the endpoint
nodes of the given site. There is also one unknown network node
which interconnects all of the sites in the network. An example with
4 sites can be found in Figure 4.2.
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[ i . \ / 1. i =
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Figure 4.2: Example of a network with 4 sites and missing knowledge
of the underlying physical topology

. Logical level Physical level
Knowledge | Scheme | Sites Vel | 12l | 11V O Vil | 1Ll
4 14 76 23 92
6 22 186 23 102
8 30 344 23 112
1n 10 38 550 23 122
12 46 804 23 132
Detailed 14 54 | 1106 23 142
16 62 | 1456 23 152
4 20 124 23 98
mn 6 42 426 23 122
) 8 72 | 1016 23 154
10 110 | 1990 23 194

Table 4.1: Parameters of testing topologies with detailed knowledge
of the underlying physical network
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. Logical level Physical level

Knowledge | Scheme | Sites Vel | 12l | 11V O Vil | 1Ll

4 14 76 5 26

6 22 186 7 40

8 30 344 9 54

1in 10 38 550 11 68

12 46 804 13 82

Missing 14 54 | 1106 15 96
16 62 1456 17 110

4 20 124 5 32

. 6 | 42 | 426 7 60

' 8 72 | 1016 9 96

10 110 | 1990 11 194

Table 4.2: Parameters of testing topologies with missing knowledge
of the underlying physical network

The number of nodes and links in the testing topologies with de-
tailed knowledge of the physical network can be found in Table 4.1,
and with missing knowledge of the physical network in Table 4.2.
The numbers of the links are shown after the elimination process,
which we have already described in Section 3.2.1.

4.2.2 Testing Methodology

The performance of the MIP solvers was measured on all of the
above described testing topologies. For every topology an integer
programming model was created, which were used as an input for
the MIP solvers. Every model was solved 8 times, but only during
the last 5 of them was the actual time of solving the model measured.
This way we could be sure that the integer programming model was
already loaded to the memory and the results were not affected by
searching for the file on the hard disk.

All of the measurements were run on a PC equipped with Intel®
Core™2 Duo CPU T6600 @ 2.20GHz dual-core processor, 3GB RAM,
running linux 3.5.0-24-generic and Ubuntu 12.04 LTS. The analysed
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freely distributable MIP solvers were lp_solve 5.5.2.0, GLPK 4.51,
CBC 2.8 and SYMPHONY 5.5.

4.2.3 Results

The results of the tests can be seen in the graphs below. The repre-
sented values are in milliseconds and were calculated as the average
of the 5 measured times for all of the testing topologies. Since the
performance of the freely distributable MIP solvers is far behind the
commercial ones, the size of the testing topologies was chosen small
enough so that all of the analysed solvers could solve them in a rea-
sonable amount of time.

10000
9000
8000
7000

6000
— |nsolve

5000 = GLPK
4000 CBC
3000 m— SYMPHONY

run time [ms]

2000
1000

4 5 6 7 8 9 10 11 12 13 14 15 16

Sites

Figure 4.3: Detailed 1:n topology

The graph in Figure 4.3 shows the result for the 1:n topology with
a detailed knowledge of the underlying physical network. The solver
lIp_solve achieved the best performance in this kind of topology closely
followed by GLPK. The performance of SYMPHONY was quite close
to them on the smaller instances, but was much slower on the biggest
instance with 16 sites.

22



4. FREE MIP SOLVERS

The results for the m:n topology with a detailed knowledge of the
physical network can be seen at the graph in Figure 4.4. The solver
GLPK achieved the best performance on all of the testing instances,
except the last one, where CBC was ahead of it by more than 4 sec-
onds.

18000
16000
14000
12000

10000 — | _solve
— GLPK

8000

CBC
6000 — SYMPHONY
4000

2000

run time [ms]

Sites

Figure 4.4: Detailed m:n topology

The results for the 1:n topology with missing knowledge are at the
graph in Figure 4.5. The fastest solver on this kind of topologies was
GLPK, closely followed by lp_solve. The results of SYMPHONY and
CBC were similar to each other, one of them being sometimes a little
slower or little faster than the other.

At last, the results for the m:n topology with missing knowledge
of the physical network can be seen at the graph in Figure 4.6. Just
like in the previous case, the best results were achieved by the solver
GLPK, with CBC closely behind it. The worst results were achieved
by SYMPHONY, which was far behind the other solvers on the big-
ger testing instances.
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Figure 4.5: Missing 1:n topology
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Figure 4.6: Missing m:n topology
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4. FREE MIP SOLVERS

Note that the type of the testing topologies had a big influence on
the results of the tests and on the behaviour of the analysed solvers.
For example, Ip_solve performed very well on both of the 1:n com-
munication scenarios, but was much slower on the m:n scenarios. On
the contrary, CBC achieved very good results on the m:n scenarios,
while being a little bit slower on the 1:n ones. GLPK had the best per-
formance on both of the testing topologies with missing knowledge
of the physical network and also achieved very good results on the
other ones. On the other hand, the performance of SYMPHONY was
probably the worst, it was much slower than the other solvers on the
bigger testing instances.

Considering everything I have decided to choose the solver GLPK
for the implementation of the MSPP solver. In overall its performance
was better than the performance of the other solvers. Even in the
testing topologies where it was not the fastest, it was just a little bit
behind the best solver on the given topology.
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Chapter 5
Implementation

The aim of this work was to implement a scheduler for the MSPP
which would use a non-commercial MIP solver instead of the actu-
ally used proprietary MIP solver Gurobi. For that I could freely use
the implementation of the original scheduler and all the other com-
ponents in CoUniverse. My work thereby mostly consisted of mak-
ing the necessary changes so that the solver GLPK could be used dur-
ing the solving process instead of the solver Gurobi. In the sections
below I am going to describe the structure of the MSPP scheduler
and afterwards the methods and processes I have used during the
implementation of my work.

5.1 Scheduler

As it was already described in the previous chapters, the sched-
uler for the MSPP is the component responsible for planning the
routes inside the given network during actual data transmissions.
It was developed in the Java programming language like the rest of
the CoUniverse framework. The base class describing the required
functionality of a scheduler is the abstract class Mat chMaker. Every
scheduler should be implemented within a class inheriting from it.
MatchMaker declares three base methods: doMatch, getPlan and
getMapVizualization. These methods serve for launching the
planning process, retrieving the plans for the data transmission, and
for generating the visualisation of the network environment. From
the point of this work the most important is the doMatch method,
which creates the actual integer programming model and solves it
via the MIP solver.
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5. IMPLEMENTATION

The scheduler using Gurobi has been implemented inside the class
MatchMakerPKIGurobi. The doMatch method of the class can be
divided to some different phases. The first one is the elimination pro-
cess, which has been already described in Section 3.2.1. In this phase
all of the unnecessary links are eliminated from the network topol-
ogy. These include the ones with insufficient capacity for data trans-
missions or links with an inappropriate media application on some
of their endpoint nodes. Furthermore, since media applications are
aggregated into network sites, all of the links between the media ap-
plications inside the same site can be eliminated. By the elimination
process we can decrease the number of decision variables inside the
integer model and this way improve the time needed to find a solu-
tion.

During the next phase of the doMat ch method the individual de-
cision variables, constraints and objective function of the integer pro-
gramming model are created. However, we do not necessarily have
to create all of the constraints in the model. There is a class called
MatchMakerConfig, which contains information about the config-
uration of the scheduler. In this class we can explicitly specify which
of the constraints should be created.

The last phase only consists of solving the integer programming
model by the MIP solver Gurobi. A new constraint may be added
to the model if a cycle is found in the solution during the solving
process, like it was already described in Section 3.2.4.

5.2 Moving to GLPK

Since GLPK provides only a library written in C for the MIP solver,
my first task was to find a suitable Java interface for it. There are
two publicly available Java interfaces for GLPK: the project GLPK
for Java ! and the GLPK 4.8 Java Interface 2. Both of them were gen-
erated from GLPK'’s default C library through the Java Native In-

1. http://glpk-java.sourceforge.net/
2. http://bjoern.dapnet.de/glpk/
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terface, which enables to integrate non-Java language libraries into
Java applications. Because of that they declare the same methods as
the C library of GLPK and provide the same level of functionality.
However, I have discovered an error in the GLPK 4.8 Java Interface
because of what it is not capable of solving MIP problems correctly.
There is a method called setColKind, in which we can set whether
a decision variable should be of continuous or integer type. Never-
theless, in both of the cases the variable becomes of continuous type
and there is no way to change it to integer. For that reason I have
decided to use the interface GLPK for Java, where all of the methods
I have needed worked correctly.

After choosing the Java interface, my work continued by compar-
ing it to the Gurobi Java interface ® and looking for the differences in
their functionalities. Since GLPK for Java was only generated from
the default C library, most of its functionality resides in a single class
called GLPK. On the other hand, the Gurobi Java interface contains
plenty of classes which represent the components of the MIP prob-
lem. As an example we can mention the classes representing deci-
sion variables, constraints or the integer programming model. These
classes enable to easily create and modify MIP problems. Plenty of
their methods enable to do things which are achievable only by call-
ing multiple methods of the GLPK for Java library. Also, when us-
ing GLPK for Java we need to deal with things which are kept hid-
den in the Gurobi Java interface, like allocating memory before the
creation of a constraint, or initializing the control parameters of the
solver before the optimization. Therefore, I have decided to create
my own classes which would encapsulate the GLPK for Java inter-
face and provide the same functionality and method declarations as
the Gurobi Java interface.

5.2.1 Implemented Classes

I have created three different classes: GLPKVar, GLPKLinExpr and
GLPKModel. The class GLPKVar represents the decision variables of

3. http://www.gurobi.com/documentation/5.1/reference-
manual /node254#sec:Java
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the integer programming model. Every variable needs to be asso-
ciated with a GLPKModel object. Typically a variable object is cre-
ated by adding a variable to the model (using GLPKModel . addVar),
rather than by calling its constructor. Every variable contains three
attributes: the already mentioned model, a name, and the column
of the variable. The columns represent the order of the variables in-
side the model, and serve for identification purposes. The only meth-
ods of the class are for getting the values of the above mentioned
attributes.

The main purpose of the decision variable objects is to create the
instances of the GLPKLinExpr class. An instance of GLPKLinExpr
contains a list of coefficient-variable pairs representing a linear ex-
pression. A coefficient-variable pair is called a term. Usually linear
expressions are built by starting with an empty linear expression and
adding terms to it afterwards. Terms can be added individually with
the addTerm or in groups with the addTerms method. Also, with
the help of the multAdd method we can add a constant multiple of
one linear expression into another. Upon completion, the invoking
linear expression is equal the sum of itself and constant times the ar-
gument linear expression. The last method of the class is the size,
which returns the number of terms of the linear expression.

The last class, GLPKMode1, encapsulates a g1lp_prob object of the
GLPK for Java interface. The glp_prob object is a so-called problem
object, which represents the particular integer programming model.
The instances of the GLPKModel serve to create decision variables
and constraints, and to add them to the problem object. Variables
can be added by the addvar method. The method takes five param-
eters: name, lower bound, upper bound, objective coefficient, and
type. The bounds determine the interval in which the variable is al-
lowed to take a value, the objective coefficient is the coefficient value
of the variable in the objective function, and the type determines
whether the variable should be of continuous, integer or binary type.
All of these values are set by calling the appropriate methods of the
glp_prob object after the creation of the particular variable. If we
would like to modify some of them later, we can do so by calling the
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setVarName, setVarType, setVarObjCoeff or setVarBounds
methods.

The constraints of the model are created by calling the addConstr
method. It has multiple overloaded versions, each of them required
to specity a left-hand side value, a right-hand side value and a rela-
tion between the values of the two sides. The types of both of the val-
ues can be either a decision variable or a linear expression. The right-
hand side value can be also a constant. The relation between the two
sides can have three possible values: equal, less than or equal, and
greater than or equal. At first a single linear expression is created, by
subtracting the right-hand side value from the left-hand side, leav-
ing only a constant on the right side. After that the created linear
expression together with the right-hand side constant are passed to
the glp_prob object to create the actual constraint.

After | have implemented the above-mentioned classes,  have mod-
ified the Mat chMakerPKTGurobi class by replacing all of the meth-
ods which call the MIP solver Gurobi by the methods of my classes.
This way I have created the Mat chMakerPKTGLPK class, which is a
scheduler for the MSPP using GLPK as its MIP solver.

5.3 Bugs

During my work on the scheduler I have managed to find an er-
ror in the Mat chMakerPKTGurobi class concerning the creation of
the constraint (3.8). This constraint should ensure that if a distribu-
tor d receives a stream s it creates at most ||consumers(s)|| copies of it.
In the implementation the left-hand side value of the constraint was
multiplied by the value |Jouty(d)| instead of ||consumers(s)||. How-
ever, this is not correct because if the value of ||outy (d)|| was smaller
than |consumers(s)||, the distributor would not be able to create a
copy of the stream for all of its consumers.

CoUniverse contains also classes which can create network topolo-
gies for testing purposes (see Section 6.1).  have found the next error
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in the creation process of these networks. As it was already stated
in Section 2.2.1, every logical link [ is related to a set of physical
links, which represent the path between the endpoint nodes of the
link . However, during the creation of the network topologies the
logical link I was associated with the physical links representing the
path from end(l) to begin(l). Since we consider a directed graph, the
associated physical links should be the ones forming the path from
begin(l) to end(l).

The last error I have managed to find considers the creation of a
network topology with detailed knowledge based on the real con-
nection of European and North American networks (see Chapter 4,
Figure 4.1). Some of the associations between logical and physical
links were not defined correctly, and because of that topologies with
more than 8 sites could not be solved.
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Chapter 6
Evaluation

This chapter is about the performance analysis of the two imple-
mented schedulers, the one using GLPK as its backend solver and
the one using Gurobi. In the sections below I am going to describe
the methodology of the testing and afterwards the results of the mea-
surements.

6.1 Testing Tools

CoUniverse already contains all the necessary tools for the per-
formance testing of the MatchMakerPKTGurobi class. The main
component responsible for the testing of the scheduler is the class
MatchMakerPKTGurobiEvaluationTest. Since CoUniverse can
be used in different kinds of networks and collaborative environ-
ments, MatchMakerPKTGurobiEvaluationTest can create four
types of testing topologies, each of them representing a different kind
of scenario. For further information see Section 4.2.1, where all of
these topologies were described in detail.

Testing topologies with detailed knowledge of the underlying phys-
ical network can be created by calling the createNetworkTopology
method of the class, and topologies with missing knowledge by the
createUnknownNetworkTopology method. Both of the methods
take parameters which specify the number of sites and the commu-
nication scenario (1:n, m:n) of the created network topology. The pa-
rameters of the actual testing topologies that were used in the testing
can be found in Table 6.1 and Table 6.2.
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. Logical level Physical level

Knowledge | Scheme | Sites Vel | 12l | 11V O Vil | 1Ll

2 6 14 23 82

4 14 76 23 92

In 6 22 186 23 102

' 8 30 344 23 112

10 38 550 23 122

Detailed 13 50 949 23 137

2 6 14 23 82

3 12 51 23 89

m:n 4 20 124 23 98

6 42 426 23 122

7 56 679 23 137

Table 6.1: Parameters of testing topologies with detailed knowledge
of the underlying physical network

. Logical level Physical level
Knowledge | Scheme | Sites Vel | 12l | 11V O Vil | 1Ll
2 6 14 3 12
4 14 76 5 26
In 8 30 344 9 54
' 10 38 550 11 68
14 54 1106 15 96
Missing 18 70 1854 19 124
2 6 14 3 12
3 12 51 4 21
m:n 4 20 124 5 32
6 42 426 7 60
8 72 1016 9 96

Table 6.2: Parameters of testing topologies with missing knowledge
of the underlying physical network

The next method of the class is the testEvaluateMatchMaker.
It calls the previously described createNetworkTopology method
to create a testing topology with detailed knowledge, and solves it
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with an instance of the Mat chMakerPKTGurobi class. The method
testEvaluateMatchMakerUnknown works analogously, with the
only difference of creating a topology with missing knowledge by
calling the createUnknownNetworkTopology method.

And finally, the method testMultiRunEvaluateMatchMaker
controls the whole process of the testing with the help of the previ-
ously described methods. It is the only public method of the class.
It controls the creation of the testing topologies, decides what kind
of topologies to create, determines the number of sites inside the
topologies, and repeats all the measurements a certain amount of
times. It creates also an instance of the MatchMakerConfig class,
where we can specify which of the constraints should be created and
what kind of cycle elimination to use in the integer programming
model.

For being able to test also the performance of the MSPP sched-
uler which uses GLPK as its backend solver, I have created the class
MatchMakerPKIGlpkEvaluationTest. It differs from the previ-
ously described class only in one thing, it creates an instance of the
MatchMakerPKTGlpk class to solve the testing topologies instead
of an instance of Mat chMakerPKTGurobi.

6.2 Testing Methodology

Two values were measured during the testing process, the time
of the preparation phase and of the solving phase. The preparation
phase includes the elimination process (see Section 3.2.1), where all
of the unnecessary network links are eliminated from the network,
and the creation of the decision variables, constraints and objective
function of the model. The solving phase includes the actual call of
the MIP solver to solve the integer programming model. Since the
cycles are eliminated during the solving process (see Section 3.2.4),
the time needed for their elimination is also counted to this phase.

The actual tests were performed on all of the testing topologies
shown in Table 6.1 and Table 6.2. Every topology was tested 20 times,
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but only the last 5 measurements were taken into account. This way
the results were much less influenced by the startup delay of the Just-
in-time compilation and by the influence of the Java garbage collec-
tor. The test were run on a PC equipped with Intel® Core™?2 Duo
CPU T6600 @ 2.20GHz dual-core processor, 3GB RAM, running linux
3.5.0-24-generic and Ubuntu 12.04 LTS. The used MIP solvers for the
testing were GLPK 4.51 and Gurobi 5.5.

6.3 Results

The measured results of the tests can be found in Table 6.3 and
in Table 6.4. All of the represented values are shown in milliseconds
and were calculated as the average of the last five measured values of
the twenty performed runs. The tests were performed also on bigger
testing topologies, but increasing the number of the sites on any of
the represented topologies just by one value causes a huge rise in
the results of GLPK. For the performance of Gurobi on bigger testing
instances you can see the work [3].

Topology | Sites Preparation Solving Total
GLPK | Gurobi | GLPK | Gurobi | GLPK | Gurobi
2 30 35 13 20 43 55
4 25 43 21 49 46 92
Detailed 6 91 46 114 107 205 153
In 8 52 48 361 229 413 277
10 86 100 549 410 635 510
13 192 244 | 4789 554 | 4981 798
2 6 12 3 24 9 36
. 3 7 16 7 22 14 38
Detailed | 4 15 38| 83 3| 98 81
6 49 88 | 1136 148 | 1185 236
7 127 108 | 1746 220 | 1873 328

Table 6.3: Results measured on testing topologies with detailed
knowledge of the underlying physical network
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Topolo Sites Preparation Solving Total
poiosy GLPK | Gurobi | GLPK | Gurobi | GLPK | Gurobi
2 2 3 1 6 3 9
4 19 38 21 28 40 66
Missing 8 41 54 141 164 182 218
1n 10 67 87 373 363 440 450
14 185 210 1597 565 1782 775
18 424 444 | 3246 817 | 3670 1261
2 7 2 4 1 11 3
Missing 3 52 8 43 35 95 43
mn 4 27 29 41 67 68 96
6 44 79 540 127 584 206
8 123 154 | 4572 436 | 4695 590

Table 6.4: Results measured on testing topologies with missing
knowledge of the underlying physical network

The results of the performance tests with additional error bars dis-
played can be found in the Figures 6.1 and 6.2. They display the over-
all performance of the schedulers, that is the sum of the preparation
time and solving time. The biggest error in the case of GLPK was 811
milliseconds, while in the case of Gurobi 227.

The aim of these tests were to compare the performance of the two
schedulers and to find out for how big testing instances can GLPK be
used. If we want to provide real time communication for the users,
the scheduler should be able to plan the data transmissions within
the limit of five seconds. From the results we can see that my im-
plementation is sufficient to plan data transmissions up to 7 sites in
m:n communication scenarios and up to 13 in 1:n ones. For testing
topologies with missing knowledge of the underlying physical net-
work the scheduler managed to find the solutions a little bit faster
and was capable to solve also some of the bigger testing instances.
Notice, that the values of the preparation phase does not increase
linearly on some of the smaller topologies as it would be expected. It
is probably due to the influence of the garbage collector, which could
not be eliminated entirely.
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Figure 6.1: Results of the overall performance of GLPK

When comparing the performance of the schedulers Gurobi man-
aged to plan the data transmissions much faster than GLPK. How-
ever, this result is not surprising, considering that commercial solvers
have much better performance as non-commercial ones. In the prepa-
ration phase, however, GLPK managed to produce very similar re-
sults as Gurobi. It is the solving phase where GLPK’s performance
stays behind and becomes the bottleneck of the planning. GLPK was
able to outperform Gurobi only on some of the smallest topologies.
On the other hand, the scheduler using GLPK has adequate per-
formance for being used in typical communication scenarios, and
more importantly it can be used in the distribution of the CoUniverse
framework.
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Figure 6.2: Results of the overall performance of Gurobi



Chapter 7
Conclusions

In this thesis I have presented the implementation of a scheduler
tor the MSPP using a non-commercial MIP solver. The first part of my
work consisted of analysing the performance of the non-commercial
MIP solvers Ip_solve, GLPK, CBC and SYMPHONY. I have tested the
solvers on integer programming models representing typical types
of collaborative environments. The performance of GLPK proved to
be the best in most of the situations, and therefore I have decided to
use it for the implementation.

Before starting the actual implementation, I needed to get familiar
with the source codes of CoUniverse and to understand the imple-
mentation of the scheduler that uses Gurobi. After I understood its
functioning, I was able to implement a scheduler for the MSPP using
GLPK as its MIP solver.

The last part of my work was to analyse the performance of the im-
plemented scheduler and to compare it with the performance of the
scheduler using Gurobi. I have measured two values during the tests,
the preparation time and the solving time. As it could have been
expected, GLPK’s overall performance was not as fast as Gurobi’s.
However, the results of the preparation time of both of the solvers
were on the same level, what can be considered a good result.

Despite its weaker performance, the scheduler using GLPK can be
still used during typical data transmissions, and most importantly it
can be freely distributed with the rest of the CoUniverse framework,
while Gurobi can be used only for academical purposes.
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