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Preface

Since the inception of the canonical version of Transparent Intensional Logic (TIL
for short) with the publication of Tichý’s seminal book The Foundations of Frege’s
Logic (FFL for short) almost 30 years ago, there has not yet been any successful
attempt at providing full-fledged deduction system for it. I struggled with it as
well, tried many different approaches and hit a lot of dead ends along the way.1

All that time I was failing to ask the most basic question of every inquiry – why?
With this newly acquired perspective I took a step back and started rereading

FFL again. Slowly it became evident that TIL as presented there relies on a lot of
implicit assumptions and that much human insight is needed in order to make it
work due to the absence of any rules.2

Hence, my new recourse was clear: try to unearth these implicit assumptions
via use of explicit rules. The initial aim of developing deductive calculus for TIL
thus slowly transformed into developing calculus that would enable us to work
explicitly with information previously directly inaccessible in TIL.

That being said, I do not see my investigations as invalidating the current body
TIL works. It is rather alternative approach, an extension to TIL. Ideally, my
intention is to preserve the past TIL research as it is and just provide explicit
grounds for it that correspond much more closely to the way TIL is actually used
in practice. As it usually is, however, this ideal was not achievable in all cases and
I was forced to make various concessions in the process. Eventually, it became

1In hindsight, each failure brought me closer to the current system. To name the most promi-
nent ones: Gabbay’s Labelled Deductive Systems (LDS) [11], Shroeder-Heister’s Definitional
Reasoning (DR) [34], Martin-Löf’s Constructive Type Theory (CTT [19]), and Dalrymple’s Glue
Semantics (GS) [4]. The system presented here draws inspiration from all of these systems.

2Parallels can be drawn to Peano’s Arithmetices principia: nova methodo exposita (1889) [23],
no doubt ingenious work, yet ultimately informal. See e.g., [41], p. 84.
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Chapter 0. Preface v

a balancing act. Trying to be as faithful as possible to the original underlying ideas
contained in FFL, while simultanously importing new ideas when necessary.

My project can be perhaps liken to those of Gentzen or Martin-Löf, i.e., an at-
tempt of formalizing (via offering explicit set of rules) previously rather informal
areas of reasoning:

Gentzen:3

Die Formalisierung des logischen Schließens, wie sie insbesondere durch
Frege, Russell und Hilbert entwickelt worden ist, entfernt sich ziemlich weit
von der Art des Schließens, wie sie in Wirklichkeit bei mathematischen Be-
weisen geübt wird. Dafür werden beträchtliche formale Vorteile erzielt. Ich
wollte nun zunächst einmal einen Formalismus aufstellen, der dem wirk-
lichen Schließen möglichst nahe kommt. So ergab sich ein “Kalkül des
natürlichen Schließens”.

([12], p. 176)

Martin-Löf :

What we do here is meant to be closer to ordinary mathematical practice.
We will avoid keeping form and meaning (content) apart. [...] Thus we
make explicit what is usually implicitly taken for granted. When one treats
logic as any other branch of mathematics, as in the metamathematical tradi-
tion originated by Hilbert, such judgements and inferences are only partially
and formally represented in the so-called object language, while they are
implicitly used, as in any other branch of mathematics, in the so-called met-
alanguage.

[...]

Our main aim is to build up a system of formal rules representing in the best
possible way informal (mathematical) reasoning.

(Martin-Löf, [19], pp. 3–4)

3English translation: “The formalization of logical deduction, especially as it has been devel-
oped by Frege, Russell, and Hilbert, is rather far removed from the forms of deduction used in
practice in mathematical proofs. Considerable formal advantages are achieved in return.

In contrast, I intended first to set up a formal system which comes as close as possible to actual
reasoning. The result was a ‘calculus of natural deduction’...” (Gentzen, [13], p. 68).
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Analogously, we also try to set up a system of formal rules that comes as close
as possible to actual reasoning done in TIL. In other words, we attempt to put as
much as possible from TIL metatheory into the object language.4 What we get in
return is eTIL (for explicit TIL) calculus.

However, it is important to note that from Tichý’s point of view, our approach
would be rather retrogressive in many respects: he used TIL to deal with formal
languages, while we here use formal language to deal with TIL.

To whom is this text intended

We will not be explaining here the fundamentals of TIL-based semantic analysis.
There are already plenty of quality resources that thoroughly deal with this topic
(and much more): starting with FFL itself [38] and continuing to e.g., [20], [21],
[9], [30], [32] and we see no point in adding just another one.

Instead we will focus on the core principles that fuel this semantic analysis.
Thus, my target reader is either a TIL newcomer, someone who is completely
new to the system and just wants to learn about the mechanisms of TIL without
actually diving into natural language analysis itself, or a TIL veteran, someone
who is already well acquainted with TIL, but is interested in new approaches to it.
To put it briefly, the topic of this thesis is TIL itself, not what we can do with it,
once we accept it.

That said, there are topics discussed here that, we believe, could be of interest
to anybody who is interested in formal semantics, logical analysis of natural lan-
guage, and in proof-theoretic semantics with focus on natural languages. In even
broader terms, the intended audience for this thesis should lay somewhere at the
intersection of philosophy of language, logic, linguistics, and computer science.

4In a way we are approaching Tichý’s logic in similar way he approached Frege’s logic, i.e.,
trying to reveal implicit principles.
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Chapter 1

Introduction

Summary Our initial goal was to develop deductive system (i.e., set of inference rules)
for Transparent Intensional Logic (TIL) as presented in Tichý’s seminal work The Founda-
tions of Frege’s Logic (FFL for short). In doing so, however, we hit upon several obstacles
stemming from the very core of TIL itself. Most importantly, the formalization of TIL is
rather removed from the way that it is used in practice and lot of things are left implicit.
Considerable advantages in regard to analysis of natural language are achieved in return,
however, at the cost of its deductive capabilities.

We tried to overcome these hindrances by providing alternative, more explicit for-
malization that would keep as close as possible to the actual reasoning done in TIL. This
eventually led to a development of whole new calculus called eTIL (for explicit TIL).

1.1 Aim

The main aim of this thesis is to develop deduction system for Transparent In-
tensional Logic (TIL for short) as presented in The Foundations of Frege’s Logic
(FFL for short) [38] that would correspond to the way TIL is used in practice.1

In return we hope to contribute to the development of TIL as a unifying frame-

1We take TIL presented in FFL [38] as the definitive (i.e., most developed) version of TIL as
Tichý himself envisioned it. So, whenever we talk about TIL without any further specification, we
will be referring to the system presented in this book. It follows that we will disregard to a large
extent his work from earlier papers and deem them outdated and surpassed by TIL as presented in
FFL. Therefore, FFL will be our primary source and also the ultimate judge in all disputes over
possible interpretations of various aspects of TIL (should any arise).

1



Chapter 1. Introduction 2

work capable of semantic analysis of both non-empirical (i.e., formal/artificial
languages) as well as empirical (natural languages) discourse.2

1.2 Opening problem

TIL provides very powerful and expressive language. High expressiveness, how-
ever, came at the price of virtually non-existent deductive system. More specif-
ically, FFL presents no calculus (no inference rules) for TIL. And although it
contains Chapter 13 titled Inference, it deals with deduction only on broader philo-
sophical and conceptual level, no concrete rules for TIL are offered.

Earlier papers are much better in this respect (various rules for earlier versions
of TIL are explicitly presented, see [22], [36], [37] or [39]). Unfortunately, we
can only guess how much Tichý saw as compatible, and hence transferable to his
later incarnation of TIL (with ramified type theory) as presented in FFL.3 Thus,
we will devise deductive system for TIL from the ground up based solely on the
ideas and principles contained (either explicitly or implicitly) in FFL.

This, however, proved to be difficult due to insufficiently explicit character of
TIL. The general method of solution to this problem, which will be developed
here, may be described briefly as follows: so called constructions, which consti-
tute the main subject matter of TIL, are assigned lower-level derivations and then
rules are developed for manipulating these lower-level derivations.

As a result, we get an alternative approach to TIL that does not invalidate the
current body of work, but offers a different perspective. To put it differently, we
will explore and attempt to reconstruct the foundations of TIL in our own way.4

2Something other frameworks with similar goals are often struggling with, especially in con-
nection with meaning of atomic sentences. See e.g., CTT [19], [33], [44].

3The most likely answer is: not much, since he chose not to mention any of it in FFL, not even
among references. Hence, since none of it was actually included, it seems reasonable to assume
that Tichý viewed it as either surpassed or outdated.

4Simply put, the main subject matter for us will be TIL itself and its metatheory rather than
what can we do with TIL once we accept it. In other words, we want to provide deductive system
based on rules of TIL, rather than on rules for TIL.
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1.3 Context of the thesis

1.3.1 General context of TIL

TIL is one of the very few frameworks that pursue the ambitious (and nowadays
almost “old-fashioned”) goal of being the universal language of science by offer-
ing full-scale system that can deal with both natural and formal languages, thus
embodying the Leibnizian ideal of being characteristica universalis as well as cal-
culus ratiocinator (cf. [15], [16]).5

Consequently, it is difficult to pigeonhole TIL. Perhaps most accurately it can
be described as general framework laying at the crossroads of philosophy of lan-
guage, logic, and linguistics. This lack of rigid boundaries is, however, not an
accident arising from insufficient focus. On the contrary, it is by design and it
stems from its “all-encompassing” and not too humble goal mentioned above.

The motivation for undertaking such grand project is generally two-fold:

1. theoretical – we want as few basic principles as possible explaining as much
as possible in regard to the meaning of both empirical and non-empirical
language realms.

2. practical – we want to develop machines that can assist us in reasoning,
which requires inference engine that can “reason” about both non-empirical
as well as empirical problems.

In other words, we want to have everything under one roof, so to speak. Relying
just on single “all-in-one” environment leads to easier implementation and overall
ease of use.

1.3.2 General context of the present work

The calculus eTIL presented here is probably best seen as a result of applying
some of the key tools and mechanisms of proof-theoretic semantics (PTS) [35] to
TIL. More specifically, eTIL is in many important aspects inspired by the works

5Only few other contemporary systems attempted this bold endeavourer as well. To mention
some of the two most prolific ones: Martin-Löf’s CTT [19] and Gabbay’s LDS [11], which I also
discussed in [26].
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of Gentzen [12] (meaning via rules, dual rules) and Martin-Löf [19] (judgements,
explicit typing). Consequently, eTIL is rather detached from the initial philosophy
that stood behind the development of TIL.

1.4 Related work

Due to the distinct nature of our investigation in comparison to the more traditional
approaches to TIL (TIL is not our starting point, but rather a goal we want to arrive
at), there are only few works on TIL that are in any way relevant to our current
endeavour.6

1.5 Structure of thesis

In chapter 2 Revisiting FFL we return to FFL and examine the six foundational
constructions of TIL one by one. Our main claim will be that TIL suffers from
lack of explicitness (it provides no rules for dealing with constructions are given
and lot of things are only implicitly assumed.).

In chapter 3 Developing eTILC we propose explicit rules for handling construc-
tions that try to alleviate some of the shortcomings of the original specification of
constructions discussed in the previous chapter. New notions of judgement and
type stack are introduced.

Chapter 4 Case studies: eTILC will be devoted to concrete examples of ap-
plication of our eTILC system, thus demonstrating it in practice. Specifically, we
will be showing how various TIL analyses are to be translated into our system.

In chapter 5 Generalizing eTILC into eTIL we further generalize system eTILC

The resulting system will be called eTIL. This generalization will permit us to
introduce new notions and provide analyses previously unobtainable due to our
restrictions to first-order constructions only.

Chapter 6 Case studies: eTIL will be dedicated to various examples demon-
strating in practice new notions introduced in the previous chapter (higher-order
constructions, improper constructions, higher-level rules,...).

6Possibly our closest ally is Aleš Horák. In his PhD thesis [17] he sketches rule scheme for
TIL that is in principle similar to ours (example is offered in later section 2.4).
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Revisiting FFL

Summary In this chapter we revisit FFL and examine the six foundational constructions
of TIL one by one. Our main claim is that TIL suffers from lack of explicitness – no rules
for dealing with constructions are given and lot of things are just implicitly assumed. The
main purpose of this chapter will be to demonstrate these aspects. No prior knowledge of
TIL is assumed on the side of the reader. And this will hold for the rest of the thesis as
well.

2.1 Introduction

High aptitude of TIL in precise case-by-case analysis of various intricate aspects
of natural language phenomena is generally known and well examined (recently,
see e.g., [8], [6], [9] [31], [7], [21], [28]). However, the bedrock of TIL itself,
namely the six basic constructions upon which the whole system stands (i.e., Vari-
able, Trivialization, Execution, Double execution, Composition, and Closure), is
considerably less explored.1

The canonic version of TIL was established by Tichý’s book The Foundations
of Frege’s Logic [38]. There, at the beginning of Chapter 5 in Section 15 titled
Five modes of forming constructions on pages 63–65, he presented five non-simple
constructions (i.e., Trivialization, Execution, Double execution, Composition, and
Closure) that establish together with Variable (the only simple construction intro-
duced in previous Chapter 4) the basis of “language of TIL constructions”.

1Recent exception to this is [32].

5
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We start by introducing and examining these six constructions one by one.2

2.2 TIL constructions

2.2.1 Variable

In FFL Tichý introduces novel notion of Variables that do not take values, but
rather retrieve them.3 Tichý defines them as follows:

Definition 1 (Variable).

Let R be an arbitrary non-empty collection. By an R-sequence we shall
understand any infinite sequence

(s) X1,X2,X3,X4, ...

(with or without repetitions) of members of R.

For any natural number n let |R|n be the (incomplete) [i.e., depending on
external sequence – author] construction which consists in retrieving the
n-th member of an R-sequence. Constructions of this form will be called
variables.

([38], p. 60)

Definition 2 (Valuation).

In this more general case [where various logical types are needed – author] we shall
need whole arrays of sequences containing an Ri-sequence for each type Ri. We
shall call such arrays valuations. Thus, where R1,R2,R3,R4, ... is an enumeration
(without repetitions) of all the types, a valuation is an array of the form

2Some of the criticism that will be presented here stems not really from properties of TIL itself,
but rather from the fact that we approach it with different set of expectations and demands of what
logical system should do and provide than did Tichý himself. For example, it is clear that for Tichý
the matter of deduction was not as important topic as for the present author. After all, he omitted
it almost completely from the FFL book. From this point of view, aspects of our criticism can be
viewed as unfair – criticizing TIL for something it was not meant to be doing.

3We write ‘Variable’ with capitalized first letter in order to better distinguish Tichý’s notion of
variable from the more traditional ones.
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(v)

X1
1 ,X

1
2 ,X

1
3 ,X

1
4 , ...

X2
1 ,X

2
2 ,X

2
3 ,X

2
4 , ...

X3
1 ,X

3
2 ,X

3
3 ,X

3
4 , ...

X4
1 ,X

4
2 ,X

4
3 ,X

4
4 , ...

...

where X i
1,X

i
2,X

i
3,X

i
4, ... is an Ri-sequence. Let v be this valuation. Relative to v,

variable |Ri|n constructs X i
n, i.e., the n-th term of the Ri-sequence occurring in v.

([38], p. 61)

For example, let’s have the following valuation-array (or valuation for short) v1:

v1 =

 true1
1 f alse1

2 · · ·
12

1 22
2 32

3 · · ·
Alice3

1 Bob3
2 Cecil3

3 Dana3
4 · · ·


Then, e.g., Variable |R1|2 receives through v1 as value f alse, |R3|1 retrieves Alice,
etc. So what is Variable on Tichý’s account? It is essentially search and retrieve
mechanism that takes as input the coordinates 〈i,n〉 and some valuation-array vm

and returns object at that position.
All TIL objects including constructions themselves receive type. From type-

theoretical perspective, the valuation-array v1 would look something like this:

(v1t) =

 o o · · ·
ν ν ν · · ·
ι ι ι ι · · ·


where o, α , ι represent types of truth values, natural numbers and individuals (so
called first-order objects in Tichý’s terminology), respectively. But what about
Variables |Ri|n themselves? What type do they have? Tichý offers the following
answer:

(cni) Let τ be any type of order n over B. Every variable ranging over τ is a
construction of order n over B. If X is of (i.e., belongs to) type τ then 0X,
1X, and 2X are constructions of order n over B. Every variable ranging over
τ is a construction of order n over B.

Let ∗n be the collection of constructions of order n over B.

([38], p. 61)
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Let types o, α , ι from our example above constitute type base B1. Then, by def-
inition 16.1.– 1.(t1i),4 o, α , ι are types of order 1. Further, let’s have Variables
|R1|1, |R2|1, |R3|1 that range over objects of types o, α , ι , respectively. By defi-
nition 16.1.–2.(cni) above, they are constructions of order 1 and hence all receive
the same type ∗1. Thus, we end up with Variables whose types do not match the
types of their values. That might sound odd, but remember that in TIL Variables
do not really take values, they rather fetch them.

This complicates things, however, because from the type of Variable alone we
cannot tell the type of its value. E.g., the only information we can gather from
Variables |R1|1, |R2|1, |R3|1 of type ∗1 (assuming base B1) is that these three Vari-
ables take as values (= retrieve) either truth values, natural numbers or individuals.
It is only after we supply some valuation-array v we can learn what types of values
they will actually take.

This dependency on valuation-arrays is exactly the reason why Tichý calls
Variables incomplete (or heteronomous) constructions ([38], p. 60). In other
words, Variables need some “external” building material, in this case valuation-
arrays, to be able to construct anything.

2.2.1.1 Summary

When stating that “variable x has type α” what is usually meant by it is that the
variable x in question takes as values only objects of certain type α . E.g., if x is
of boolean type, then x can take as values either true or f alse; if x has type of
natural numbers, then x can accommodate values such as 1,2,3, ..., etc. In TIL,
however, this is not the case. Types of TIL Variables are different from types of
their values. Hence, from the type of Variable alone we cannot tell what values
should it retrieve (or construct in Tichý’s nomenclature).

2.2.2 Trivialization

Trivilization construction is the first non-simple construction introduced in FFL.
Informally, it is possibly best understood as a primitive computation.

4See [38], p. 66, or appendix A.
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Definition 3 (Trivialization).

Where X is any entity whatsoever, we can consider the trivial construction
whose starting point, as well as outcome, is X itself. Let us call this rudi-
mentary construction the trivialization of X and symbolize it as 0X. To carry
0X out, one starts with X and leaves it, so to speak, as it is.

([38], p. 63)

Thus, going by the specification above, Trivilization takes object of certain lower
type (o,α, ι , ...,∗1, ...) and “packs” it into another higher type (∗1, ...,∗2, ...). If we
form Trivialization from, let’s say, number 3 of type α , we get construction 03
with the nearest higher type, which is in this case ∗1 (type of first-order construc-
tions, i.e., constructions of first-order objects). Analogously, if we form Trivial-
ization from construction 03 of type ∗1, we get (higher-order) construction 0(03)
of type ∗2 and so on. The idea is then that construction 03 constructs the number
3.

Note the slight peculiarity that sneaks into the definition. Tichý starts by stat-
ing that Trivialization can be formed from any entity whatsoever, i.e., either from
non-constructions (objects of type o,α, ι) or other constructions (objects of type
∗1,∗2, ...). Let’s assume it was formed from non-construction, specifically from
number 3, thus we get 03. But at the same time, it is this Trivialization construction
03 that is used to construct number 3 (Tichý explicitly writes “...03 v-constructs
3...”). Thus, we form 03 from 3 and at the same time we use 03 to construct 3.

Remark Although Tichý always talks about “v-constructing” (i.e., constructing
relative to some valuation v), we will talk explicitly about v-constructing only in
those cases where it actually matters. E.g., it seems redundant to say that construc-
tion 03 v-constructs 3 (i.e., that it constructs 3 relative to some valuation v) when
the result does not actually depend on any specific valuation at all. In other words,
although all constructions v-construct, we will mention the valuation v explicitly
(i.e., “v-constructing”) only when it affects the outcomes of constructions.

Thus, even though 03 is suppose to construct number 3, it in itself is not num-
ber 3. In other words, meaning of 03 is not 3 but rather “take 3 and return 3”.
It follows that 03 and 3 are, of course, objects of different types, i.e., ∗1, α , re-
spectively. Consequently, since TIL deals explicitly only with constructions, we
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can never directly work with first-order objects. It always has to done via certain
proxies (i.e., constructions).5 To put it differently, in language of TIL there are no
numbers, functions, truth values, etc., only constructions of thereof.6

Remark One might want to argue that “trivialized first-order objects” are essen-
tially just first-order objects, that there is no substantial difference. We disagree
for the simple fact that e.g., 3 and 03 are objects of different types, hence eligible
to different operations. E.g., we cannot add (subtract, multiply,...) constructions
and simultaneously we cannot have first-order objects (i.e., non-constructions)
constructing anything upon execution, etc.

2.2.2.1 Summary

The idea of Trivialization is in itself quite unproblematic. Concepts of similar kind
can be also found e.g., in Haskell programming language [24] under the moniker
of monads (Trivilization roughly corresponds to return operation and “Trivial-
ized” objects to “monadic values”). Unfortunately, the nature of Trivialization
effectively prevents us from working directly with first-order objects. E.g., even
though Trivialization construction 03 is suppose to be formed from 3, the 3 itself
can never explicitly appear in TIL language.

2.2.3 Execution

Execution (or alternatively Single execution) construction seems to be the most
problematic construction of all.7

Definition 4 (Execution).

For any entity X we shall also speak of the execution of X and symbolize it as
1X. If X is a construction, 1X is X. (The construction consisting in executing,
or carrying out, construction X is clearly none other than X itself.)

([38], p. 63)

5We can always say things like “03 (v-)constructs 3”, but then we are leaving the language of
TIL constructions and moving into metatheory.

6This, of course, follows from the fact that Tichý strictly upholds Frege’s distinction between
sense and denotation [14].

7With the obvious exception of Double execution, which presupposes this one.
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This notion of execution presented in the above definition seems particularly puz-
zling. We would say that it is far from being clear that execution of certain con-
struction (which are often likened to procedures or calculations) is the same as
the construction itself. Shouldn’t execution of construction yield rather its result?
Stating that Execution of construction is the same as the construction itself is hard
to reconcile with most intuitions that are hold about what does it mean to execute
some procedure or calculation.8

E.g., let’s have the following construction:9

[0+ 05 07]

and its corresponding Execution

1[0+ 05 07]

By the above definition, this should result back into [0+ 05 07]. But how is that
possible? Shouldn’t 1[0+ 05 07] (i.e., execution of [0+ 05 07]) construct the number
12 rather than return the original construction? This certainly seems as the more
intuitive option of the two. However, this conception is in clear discord with
the above definition (“...[E]xecuting [...] construction X is [...] X itself.”). In
other words, it seems to me that X (“a procedure”) and 1X (“an execution of
a procedure”), inherently, carry different sort of information. It is perplexing to
say that Execution of certain construction yields that very construction back.

And possibly most importantly, Tichý specifies the behaviour of other con-
structions (and hence their “procedural” meaning) with explicit recourse to exe-
cution.10 Hence, we have constructions that were specified using execution, but
at the same time Execution is also introduced as a stand-alone construction in its
own right. But, surely, if constructions are specified via the notion of execution,
then Execution construction cannot be taken just as another “regular” construc-
tion. (We will return to this topic in later section 3.3.2.2.)

8We will write ‘Execution’ when referring to the construction specified in the above quotation,
and ‘execution’ when referring to the general concept and its intuitive understanding.

9It is a construction called Composition, which will be discussed in more detail in the following
section 2.2.5.

10The only exception being Closure constructions, where it is, arguably, implicitly presupposed.
For more, see section 2.2.6.
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It is also not without its own interest that Tichý never actually used Execution
construction in the whole FFL book. He just introduced it and never did anything
with it. Its specification is the first and the last time we see it.

Of course, if we are to side with Tichý and accept that 1X is indeed just X,
then his omission of Execution from the whole book starts to make sense. There
is simply no need. So every time we see ‘X’ it is just a syntactic shorthand for
‘1X’. With every construction X we can imagine the little ‘1’ in the upper left
corner and nothing changes.

In other words, the lack of use of Execution construction directly follows from
Tichý’s specification of it (1X is X). However, although this answers the question
why he never used it, it hardly answers the much more important question what
is actually Execution in the first place. Does it mean that all constructions are in
some sort of state of endless execution? Or that every construction is its own Ex-
ecution? Or maybe that the notion of executing X is somehow already implicitly
assumed with X?

Whatever the case maybe, both the introduction of Execution constructions
and then the subsequent identification of 1X with X is very puzzling. (As already
mentioned, we will return to this topic in section 3.3.2.2.)

Remark In [32] is explored different explanation of Execution construction. More
specifically, Tichý’s original dictum “1X is X” is interpreted as “1X is v-congruent
with X” (i.e., X and 1X are considered to be different constructions constructing
the same result). However, we do not adopt it here because it seems to be clashing
with Tichý’s specification of constructions that relies on the assumption that 1X is
X (see e.g., the specificaiton of Composition in section 2.2.5).

To recapitulate, there are two main argument lines against Execution construc-
tion:

• empirical: Tichý never actually uses Execution – he just specifies it and
then never mentions it nor uses it again. And even if he would use it, there
would be very little to gain from it. Of course, this is hardly surprising,
since the very specification of Execution itself renders it superfluous. Why
then adopt it as one of the six main building blocks of TIL?
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• technical: various problems stemming from the way how Execution should
work – when specifying constructions Tichý makes use of the notion of ex-
ecution, yet simultaneously considers execution as one of the constructions
as well. This fact is hard to reconcile.

Thus, the case for Execution as a construction is indeed a very difficult one.
We have both empirical (no occurrence in whole book or subsequent works) as
well as conceptual (it is used to specify the behaviour of other constructions, dif-
ficulties of coming up with useful examples despite it being one out of six foun-
dational constructions of the whole TIL) arguments against it. And the fact that
many TIL authors (see next section) often completely neglect it also doesn’t help
the case much.11

2.2.3.1 Others on Execution

In [6] Duží treats execution as “mode of construction” (p. 484). This piece of key
information is, however, mentioned only in a footnote without any further clari-
fication. Trend that is often repeated. E.g., in [20] executions are not mentioned
at all as constructions. In [21] it is at least acknowledged that they exist, but not
much more is explained:

We can do without Tichý’s constructions called execution and double execu-
tion.

([21], p. 36)

Argument or demonstration why we can disregard whole one third of the original
fundamental constructions of TIL is, unfortunately, never presented.

Or compare e.g., with [9], where they write (again, only in a footnote):

It turns out, however, that we occasionally also need a fifth and a sixth con-
struction, called Execution and Double Execution.

([9], p. 6)

In their specifications of other constructions (i.e., Variable, Trivialization, Com-
position, and Closure) no appeal to execution is made at all contrary to Tichý. But

11Noteworthy exception to this is [32].
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this, however, does not stop them from talking about “executing constructions”.
E.g., on p. 45 they write:

Remark. 1X is the procedure of executing X . Thus, if X is a construction
then the execution of 1X consists in executing X .

([9], p. 45)

So they are essentially stating that execution of executing X consists in executing
X .

2.2.3.2 Summary

It is not clear what exactly is the role of the Execution construction. Stating
that execution of a construction is the same as the construction itself seems to
go against deeply rooted intuitions about what execution in general is suppose to
represent.

Moreover, if 1X is the same as X, why even introduce it as a new construction,
since it adds no new information? And most importantly, the notion of execution is
employed when specifying the behaviour of constructions, hence it seems strange
to simultaneously regard it as a standalone construction as well.

These reasons lead us to the conclusion that Execution is not a construction at
all (at least not in the same sense as the rest).

2.2.4 Double execution

Double execution is essentially just two stage Execution. Tichý specifies it as
follows:

Definition 5 (Double execution).

If what is constructed by X is itself a constructions, one can execute X and
go on and execute the result. We shall speak of this two-stage construction
as the double execution of X and symbolize it as 2X. For any entity X, the
construction 2X is v-improper (i.e., yields, relative to v, nothing at all) if X
is not itself a construction, or if it does not v-construct a construction, or if it
v-constructs a v-improper construction. Otherwise 2X v-constructs what is
v-constructed by what is v-constructed by X.

([38], p. 64)
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The notion of Double execution construction clearly presupposes Single execution
construction. And since we have excluded the latter from constructions, we have
to exclude even the former. For this reason, we will not discuss it separately
here.12

Remark It is unexpected that Double execution 2(0[0+ 05 07]) constructs 12, but
1[0+ 05 07] is [0+ 05 07]. Shouldn’t Single execution of [0+ 05 07] yield rather the
number 12? After all it does precisely this in the case of Double execution: its
second stage is the Single execution of [0+ 05 07] which yields 12. So why does
it behave differently in the case of Single execution alone?

2.2.5 Composition

Composition construction is essentially TIL variant of function application but
with couple of important differences.

Definition 5 (Composition).

Let X0 ,X1, ...,Xm be arbitrary constructions. By the composition [X0 X1...Xm]

of X0 ,X1, ...,Xm (in this order) we shall understand the construction which
consists in: executing X0 to obtain m-ary mapping, executing X1, ...,Xm to
obtain an m-tuple of entities, and then applying that mapping to the m-tuple.
Thus for any v, [X0 X1...Xm] is v-improper if one of X1, ...,Xm is v-improper,
or if X does not v-construct a mapping which is defined at the m-tuple of en-
tities v-constructed by X1, ...,Xm. If X0 does construct such a mapping then
[X0 X1...Xm] v-constructs the value the mapping takes at the m-tuple.

([38], p. 64)

So, in case of the simplest Composition [X0 X1] (just one function and one argu-
ment) the square brackets ‘[ ]’ represent the following 3-step procedure:

1. execute X0 to get its result (i.e., a function);

2. execute X1 to get its result (i.e., an argument);

3. apply the result of X to the result of X1.

12We will return to Double execution in later section 6.5.
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For example, to execute Composition [0+ 05 07] from earlier we have to, subse-
quently (recall that α is type of natural numbers):

1’. execute construction 0+ and get its result, i.e., addition function + of type
(ααα);13

2’. execute construction 05 and get its result, i.e., number 5 of type α; the same
goes for 07.

3’. apply function + to numbers 5 and 7, which results in the number 12 of
type α .

As you can see, this is quite a departure from the run-of-the-mill application as
known from lambda calculus, i.e., apply some function f to an argument a.

Firstly, notice the change in the notion of Execution construction. By previous
definition, if X is a construction, then its execution should yield back this very
construction X. But now, executing X (let’s say, construction of a function) re-
sults in the object constructed by X (i.e., some function) and not X itself as the
definition of Execution suggests.

Secondly, and this follows directly from our earlier point that in TIL we can-
not talk directly about non-constructions (i.e., results of first-order constructions),
Composition tries to do too much at the same time. And, consequently, it leaves
too much information hidden away from the reader. All the executions, returning
results and their consequent applications as well as results of those are “running in
the background”, and hence are not explicitly accessible to us. It is all happening
under the hood of TIL, so to speak.

Thirdly, there is a puzzling aspect about the type signature of Composition.
Tichý defines the behaviour of Composition from type-theoretical perspective in
the following manner (for full definition, see appendix A):

(cnii) If 0<m and X0 ,X1, ...,Xm are constructions of order n then [X0 X1...Xm]

is a construction of order n over B. ...

([38], p. 66)

Let’s examine the Composition [0+ 05 07] again. All constructions 0+, 05, 07
construct first-order objects, therefore they are constructions of type ∗1. Now, if

13The notation ‘(α3α2α1)’ can be alternatively written as ‘(α1→ α2→ α3)’, i.e., type of func-
tion that takes two arguments of types α1 and α2 and returns value of the same type α3.
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we put them into a Composition, then, by (cnii), we also have a construction of
type ∗1. So [0+ 05 07] is also of type ∗1. I.e.,:

[0+ 05 07] –– ∗1

| | |

∗1 ∗1 ∗1

Thus, somewhat strangely, we have an object of type ∗1 that contains three other
objects of the very same type ∗1.

What it effectively means is that from the type of the Composition [0+ 05 07],
i.e., ∗1, we learn nothing about how it operates, e.g., how many arguments are be-
ing constructed and so on. Or to put it differently, first-order Composition seems
to take an arbitrary number of constructions of type ∗1 and then flatten them to-
gether into type ∗1. E.g., different Composition [0+[0+ 05 07] 012] would receive
the same type as [0+ 05 07], i.e., ∗1.14

Remark Sometimes TIL constructions are likened to programs. If this metaphor
is expected to uphold, then type of constructions should correspond to the pro-
gram specification. This is, however not the case in TIL. E.g., ∗1 cannot be taken
as a specification of the “program” λx [0Succ x]15 for the simple fact that it does
not actually specify anything. It tells us nothing about the behaviour of the con-
struction itself.16

2.2.5.1 Summary

Even though the notation ‘[X0 X1]’ of Composition suggests that it is simple,
straightforward operation, in reality it is quite complex process (paragraph with
nine lines of informal explanation was needed in the original Tichý’s book to ex-
plain how does it suppose to work). Additionally, Composition behaves oddly

14Of course, we could say e.g., “Composition [0+ 05 07] of type ∗1 contains three Trivializations
of type ∗1 that construct objects of type (ααα), α and α , respectively”, but that would again pull
us straight out of the object language and into metatheory.

15This is a construction known as Closure, which will be the topic of the next section 2.2.6.
16There is a sharp contrast with lambda calculus with so called Curry-Howard-de Bruijn corre-

spondence, see [3], [18], [5]. E.g., lambda term/program λx.t would receive type α → β , but in
TIL type of the corresponding construction (i.e., Closure) would be simply ∗1.
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from type-theoretical point of view, since it receives the very same type as the
constructions it contains.

2.2.6 Closure

The last construction we will briefly inspect is the Closure construction.

Definition 6 (Closure).

...[L]et τ be a collection, x1, ...,xm distinct variables ranging over the re-
spective collections ξ1, ...,ξm, and v a valuation. Any construction Y can
be used in constructing a mapping from ξ1, ...,ξm into τ; we shall call this
latter construction the τ-closure of Y on x1, ...,xm, or briefly [λτx1...xmY].
For any v, [λτx1...xmY] v-constructs the mapping which takes any X1, ...,Xm

of the respective types ξ1, ...,ξm into that member (if any) of τ which is
v(X1/x1, ...,Xm/xm)-constructed by Y, where v(X1/x1, ...,Xm/xm) is like v
except for assigning X1 to x1, ..., and Xm to xm.

([38], p. 65)

Due to its close resemblance to ordinary λ -abstraction (note that throughout its
definition there are no explicit mentions of execution or “carrying out”), Closure
construction seems to be least problematic construction.17

2.2.6.1 Summary

Closure construction is reminiscent of typical function abstraction as known from
lambda calculus. Consequently, it seems largely unproblematic. Nevertheless,
there are some ambiguities regarding its formation, especially its relation to the
other construction that is capable of constructing functions, i.e., Trivialization (we
will return to this topic later in later section 5.6).

2.3 Further examination of TIL

Aside from constructions themselves, there are at least three other more general
aspects of TIL that also deserve a closer look. The first of them, our inability

17This, however, changes once we adopt β - and η- conversions, which are not present in FFL.
More on this in later section 5.6.
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to talk directly about non-constructions, has been already discussed. The second
of them is type declaration, which we only briefly touched upon throughout our
examination of constructions. The third one is lack of assertoric force in con-
structions.18 In the following two sections we will examine the last two in more
detail.

2.3.1 On type declaration

By type declaration is usually understood explicit assignment of types to certain
objects so that the corresponding logical system (whatever it may be) can work
with them correctly.19

For example, if we declare that objects 0,1,a and a function Addition have the
following types

0 has type number

1 has type number

a has type letter

Addition has function type (number→ number→ number)

then the corresponding system will “know” e.g., that Addition function cannot be
applied to arguments of type letter. In other words, it will “learn” that it makes
no sense to add together numbers and letters.

Tichý does this implicitly via tables (see e.g, [38], p. 67):

entity type description:
0 α the number nought
1 α the number one
Suc (αα) the successor mapping, i.e., the mapping which

takes 0 to 1, 1 to 2, etc.
...

...
...

or e.g, ([38], p. 202):
18There is one more general problematic aspect of TIL, specifically the notion of constructing

itself, to which we will return later in section 5.5.
19For the origins of explicit typing, see e.g., [1].
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office type description:
A ιτω the office of the author of Waverly
Ai ιτω the office of the author of Ivanhoe
Sf (ιτω)τω the office of Scott’s favourite ι-office
P oτω the proposition that the author of Waverly is a poet
...

...
...

And repeatedly on many other places in FFL.
And even though Tichý presents these tables only as examples, what he is

effectively doing is introducing objects and declaring their types, which he then
later uses to form various constructions. Without tables such as these we would
not know that e.g., Suc is suppose to be treated in TIL as a successor function of
type (αα).20

Remark The symbol ‘/’ is used by Tichý, Duží et al. [9] and Raclavský et al.
[32] with different meanings. In all these works we can encounter the following
three different forms of expressions:

i) A/φ

ii) 0A/ψ

iii) 0A/φ

where φ is type of any non-construction and ψ is type of construction of any order.
For example:

i)’ Alice/ι

ii)’ 0Alice/∗1

iii)’ 0Alice/ι

20Note the order of business here: Tichý first prepares the building blocks by introducing and
typing first-order objects/non-constructions, then he uses them to build constructions. This will
become important in later section 3.3.
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Expressions of the form i) and ii) are used e.g., in [9] and the symbol ‘/’ is
read as “has type”, “is of type”, etc.

Expressions of the form iii) are used e.g., in [32] and ‘/’ is read as “constructs
object of type”.

Expressions of the form i) are used by Tichý in pre-FFL era. Its meaning
is, however, difficult to discern. As already mentioned, in FFL he is not using
this symbol at all and its role is effectively replaced by “typing tables” discussed
above.21 And in his earlier papers, where it is used, he didn’t yet introduced
Trivialization ‘0’ (or higher types ∗n) and also considered non-constructions (first-
order objects) as constructions constructing themselves. So, it can go either way
and the ‘/’ in Alice/ι could be read both ways.

2.3.2 On assertoric force of constructions

What information does construction

[0Odd 03]

alone actually convey? It cannot be that number 3 is odd. If it did, then

[0Odd 02]

would tells us that 2 is odd as well, since both formally and procedurally there is
no difference between them.

The fact is that in this form it is nothing more than just a query about the
“oddness” of 3. What we need to make it informative is to convey somehow that
the former constructs true, while the latter f alse.22

Note that forming some auxiliary construction

[[0Odd 03] 0= 0true]

21Again, one could only speculate as to why. But whatever the reason was due to its omittance
we will not use it here either.

22This is exactly the reason why we introduce higher-level judgements of the general form A⇒
a, where A is construction and a constructed object, in later chapters. Thus we get [0Odd 03]⇒ true
and [0Odd 02]⇒ f alse, respectively. And while [0Odd 03] alone cannot be considered as a fact,
[0Odd 03]⇒ true can be. But more on this in the dedicated section 5.1.
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won’t solve anything. The same problem appears again, since there is nothing
preventing us from forming also the construction

[[0Odd 02] 0= 0true]

And if the former tells us that 3 is odd, then the second must be doing the same
but with number 2. And so on and so on (i.e., [[[0Odd 03] 0= 0true] 0= 0true] and
[[[0Odd 02] 0= 0true] 0= 0true],...). So, clearly, something different is needed.

And, of course, it is the same case with mathematical calculations such as

[[0+ 05 07] 0= 012]

and
[[0+ 05 07] 0= 011]

and so on. If the first is to be taken as stating a fact, then so must be the second.

Remark Tichý writes:23

It is arguable that there is little reason to distinguish between construction
[0Odd 03] and the fact that 3 is odd. [0Odd 03] is a decision procedure,
and a decision procedure which comes out positively (it can be argued) is
naturally called a fact. ([38], p. 69)

Putting aside that he never actually argues for it, we don’t think there is any-
thing natural about calling positive decision procedures as facts. Aren’t “facts”
(both mathematical and empirical) the very things by which decision procedures
are decided? Surely, result of the decision procedure [0Odd 03] depends upon
the “mathematical fact” whether 3 is odd or not (or more precisely, whether it is
a multiple of 2 or not). These two things cannot be conflated together.

Tichý seems to be aware of this, so he tries to explain:

But a decision procedure cannot depend for its integrity on being a fact.
[0Odd 02] is just as good a decision procedure as [0Odd 03], because the
concept Odd can be applied to 2 just as well as it can be applied to 3.

([38], p. 69)

23In quotations I retain the original notational styles of the source material, unless there is
a conflict with our own notation (see section 3.1.1). E.g., in the quote above there is ‘[0Odd 03]’,
while in the FFL itself it is written down as ‘[Odd3]’.
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In conclusion, decision procedures cannot be considered as replacements for
facts. Saying that positive decision procedures are facts cannot be taken as any-
thing more than just a figure of speech.

Remark Of course, the fact that [0Odd 03] constructs true does not depend on
reasoner’s individual knowledge. Saying, however, that [0Odd 03] carries the same
information as “[0Odd 03] constructs true” is simply untenable.

If it did, then we would learn nothing new if we would move from

(1) [0Odd [0− [0× 01909 02] [0÷ 019075 05]]

to

(2) [0Odd [0− [0× 01909 02] [0÷ 019075 05]] constructs true

but the fact is that (2) saves us the calculation. Sure, we still do not know what
number are we talking about exactly, but we know it is an odd number. And
principally, there is no difference to just “[0Odd 03] constructs true”. However,
in the case (1) a calculation has to be performed in order to conclude whether it
constructs true or f alse. Different possible conclusions must mean that (1) and
(2) carry different information.

To reiterate, we cannot conflate procedures (no matter what the outcome is)
with facts. Not to mention, claiming that e.g., construction such as

[0Odd [0− [0× 01909 02] [0÷ 019075 05]]

expresses a fact seems counter intuitive, to say the least.

Remark Tichý writes on ([38], p. 72):

To assert that the division of 3 by 0 is undefined is to say that the construc-
tion [0÷ 03 00] does not belong to that class [i.e., class of proper construction
Pr1 of type (o∗1)]. In other words, it is to assert the second order construc-
tion

[¬[Pr1
0[0÷ 03 00]]]

[emphases author]

([38], p. 72)



Chapter 2. Revisiting FFL 24

So Tichý himself sees a difference between construction and its assertion (note the
phrase “...to assert (...) construction...’). In other words, by simply writing down
‘[¬[Pr1

0[0÷ 03 00]]]’ we are not asserting anything, we are just formulating (deci-
sion) procedure. What does it even mean to assert construction in TIL? Arguably,
it means to state that it constructs true, however, we have no tools for declaring
this in TIL presented in FFL.24

2.4 Summary

In this chapter we have identified several issues with TIL constructions. Briefly,
we can sum them up as follows (“proposed fixes” will be the topic of the next
chapter):

1. Variable – type of Variable alone does not tell us what type of object it
should construct.

proposed fix: introduction of explicit formation rules and explicit typ-
ing including the type of constructed object.

2. Trivialization – analogous issue as above.

proposed fix: same as above.

3. Execution – ambiguous nature of Execution as a construction (What is it
exactly, how does it suppose to work and to what purpose?).

proposed fix: excluding Execution from constructions and turning it
into an explicit rule.

4. Double execution – presupposes Execution.

proposed fix: same as above.
24It is true that Tichý discusses assertions in Chapter Ten: Church’s Logic of Sense and Deno-

tation, section 33. Assertion ([38], pp. 162–167), however, he never actually carries it over to TIL
system itself – he considers it only in connection with Church’s system. In earlier papers (see e.g.,
[22], [36], recently it reappears also in [32]) Tichý utilizes the notion of match that can emulate
the role of assertions to a certain degree, however, it is not carried over to FFL.
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5. Composition – tries to do too many things at once and all of them are im-
plicit; also similar issue as with Variable.

proposed fix: introduction of explicit execution rules and explicit typ-
ing.

6. Closure – similar issues as with Variable. (Additional problems appear
when we introduce β - and η-conversions).

proposed fix: introduction of explicit execution rules and explicit typ-
ing.

Additionally, we have also discussed three other issues, which are linked with
the general lack of explicit information in TIL. More specifically:

1. No possibility to talk directly about first-order objects (non-constructions).

proposed fix: introduction of judgements.

2. Types of objects are assumed in metatheory, they are not explicitly declared
in TIL language.

proposed fix: same as above.

3. No assertoric force of constructions.

proposed fix: introduction of higher-level judgements.

Thus, the main claim of this chapter can be summed up as: TIL from FFL is
insufficiently explicit. Consequently, this lack of explicit formalization hinders
attempts at providing suitable deduction system.

How can insufficient formalization negatively impact development of rules?
Suppose, e.g., that I want to devise rule that would tell us how to “execute” (carry
out, evaluate, compute,...) the Composition construction

[0+ 05 07]
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and all others that share this general form (i.e., construction capturing the process
of addition of two numbers). Such rule has to contain the addition operation and
its operands (i.e., they have to be present in the rule) – recall that 05 and 07 are not
numbers, but constructions of numbers, therefore we cannot add them together
directly. What we can add together is only the results of these constructions.
And it goes analogously for the 0+ construction. Yet with the tools of TIL it is
not possible to formulate such rule, since first-order objects are not part of the
language at all.

Remark To give some samples for better comparison, in Peano arithmetic the
“rule” for addition looks as follows:

a+0 = a

a+S(b) = S(a+b)

Note that all the symbols ‘a’, ‘+’, ‘0’ appearing above stand for first-order objects
from TIL perspective.

It is the same case in Martin-Löf’s CTT:

a ∈ N
a+0 = 0 ∈ N

a ∈ N b ∈ N
a+ succ(b) = succ(a+b) ∈ N

In other words, in these systems we deal directly with first-order objects, some-
thing that is not feasible in TIL.

Horák [17] seems to be aware of this issue as well. His example of addition
rule for TIL looks as follows (p. 126):

a :: A b :: B add(a,b) = c
(+R)

[A 0+ B]→ 0c

Note specifically that the addition function add is applied to what must be first-
order objects (otherwise it would not make sense that the result equals to “non-
trivialized” c) and the result is then returned back to the “construction” level via
Trivialization.25 (We will return to this topic later in section 5.5.)

25Horák’s general inference rule (or reduction rule as he calls it) schema looks as follows
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P1; ... ;Pn (rR)
C1→C2

Note the distinct nature of these rules. They just tell us how to rewrite one construction (C1) into
another (C2), the whole constructional realm (“...construction constructs...”) is not involved at all.



Chapter 3

Developing eTILC

Summary In this chapter we propose explicit rules for handling constructions that try to
alleviate some of the shortcomings of the original specification of constructions discussed
in the previous chapter. New notions of judgement and type stack are introduced.

3.1 Preliminary notes

In this chapter we focus only on a fragment of TIL containing ∗1 as its highest
order of constructions (more on this topic in section 5.4) and having no improper
constructions (we will return to this topic in section 5.3).

3.1.1 Notation

In the upcoming chapters we adopt the following notation changes.

Instead of unwieldy superscript ‘0’ to mark Trivialization we will use boldface
font.1 Hence ‘0A’ becomes ‘A’, ‘[0Succ 00]’ becomes ‘[Succ 0]’, etc. Addition-
ally, Trivializations of the most common arithmetic operators and logical connec-
tives will be also written without the superscript. Hence ‘0+’ becomes ‘+’, ‘0⊃’
becomes ‘⊃’, etc. Same will hold also for equality, so ‘0=’ becomes ‘=’.

Similarly to Tichý, we omit the subscript ‘τ ’ at ‘λτ ’ (see 2.2.6) and we will

1Tichý utilizes this convention later in FFL as well, however, we will use serif font, so Tichý’s
‘A’ becomes ‘A’.

28
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write Closures of the general form

[λw[λ t [[A w] t]]]

in simplified manner as ‘λwλ t [[A w] t]’.2

In place of ‘α’, ‘o’, ‘ι’, and ‘∗1’ we will write ‘N’, ‘B’, ‘I’, and ‘C’, respec-
tively.

Further, we will use:

• A,B,C, ... as metavariables for any objects (either constructions or non-
constructions),

• A,B,C, ... as metavariables for constructions,

• a,b,c, ... as metavariables for non-constructions,

• α,β ,γ, ... as metavariables for types,

• x,y,z, ... as metavariables for (TIL) Variables.

3.1.2 Constructions and construction terms

We will conflate constructions and construction expressions (terms, diagrams,...),
since distinguishing between them makes from a technical standpoint little differ-
ence. The argument goes as follows:

Tichý states:

A linguistic expression serves as a symbolic diagram, or picture, of a definite
construction.

([38], p. 203)

A diagram is a graphic representation of a complex object. It need not re-
semble the object in appearance, but must exhibit the relationships between
its various parts. (...) In general, a diagram represents, or stands for, a com-
plex objects, and its parts stand for parts of that object.

([38], p. 10)

2Tichý then proceeds further and simplifies this into ‘λwλ t.Awt ’. Analogously, he writes Com-
positions of the form [[A W ] T ] as ‘AWT ’. But we will not adopt this notation here, mainly because
the appearance of what is essentially function arguments and variables in the subscript can be often
unnecessarily confusing.
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Individual constituents of the expression are understood to represent parts of
the referent, and the way the expression is composed from those constituents
is understood to represent the way the referent is composed from its parts.
An expression is an icon of what it stands for.

([38], p. 224)

Of course, Tichý’s construction terms such as e.g., ([38], p. 203)

λwλ t.Awt

are themselves nothing more than just linguistic expressions. Their structure,
however, is suppose to closely represent the structure of the corresponding con-
struction. As he puts it:

The construction which is mirrored in the syntactic structure of an expres-
sion must be conceived not as a way of arriving at the referent but as the
referent itself. Reference is a paradigmatic cognitive attitude. Hence, if,
in general, cognitive attitudes are attitudes to constructions, so is reference.
Constructions must be what we talk about and what expressions through
which we communicate stand for.

([38], p. 224)

And at the end of FFL Tichý claims the following:

It is true, however, that in the case of arithmetic, or (the ‘classical’) quantifi-
cation theory, it is of little practical moment whether on insists that a for-
mula expresses a construction which in turn determines an object or whether
one thinks of the object as connected with formula directly. The notation of
arithmetic as well as the notation of quantification theory was devised in
the pre-modern era, when it still went without saying that the purpose of
a formula is to represent a definite calculation. Thus every arithmetical or
predicate-logic formula does, as a matter of fact, depict a calculation com-
posed of the objects named by the symbols which appear in the formula.
Thanks to this perfect fit it matters little whether the practitioner takes him-
self to be dealing with logical constructions or with the formulas which rep-
resent them (provided that he does not traffic in partial functions and does
not need to quantify over constructions).

([38], p. 284)
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To sum up the last quote up: since mathematical/logical expressions mirror the
structure of the corresponding constructions (“a perfect fit”), we can deal only
with the former and ignore the latter.3

But notice that we can apply the very same argument Tichý uses above to the
expressions of TIL as well. After all, they were designed by Tichý himself to
be mirroring constructions – to be a perfect fit, as he puts it. Hence, since TIL
expressions reflect the structure of the corresponding constructions, we can deal
just with the former and disregard the latter (or at least by Tichý’s reasoning).

To summarize the whole argument:

P1: If we have a perfect fit between notation and the subject matter, we can deal
just with the notation.

P2: We have a perfect fit between TIL notation and TIL subject matter (i.e.,
constructions).

C: Hence, we can deal just with TIL notation.

Hence, our investigation will be of syntactic nature: constructions will be con-
flated with the expressions representing them and not regarded as extra-linguistic
entities as is common in TIL literature.

3.2 Judgements and type stacks

Before we get to the construction rules themselves, we have to first introduce two
new notions that our rules make use of, namely, judgements and type stacks.

3Somewhat surprisingly, at the very end of FFL ([38], p. 284) Tichý openly admits that his
framework makes little difference to a working mathematician or logician. In other words, if
I am logician or mathematician that does not make use of partial functions and quantifying over
constructions, TIL has virtually nothing to offer me and constructions become just dispensable
proxies for formulas.
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3.2.1 Judgements

In the previous chapter 2 we have encountered several issues connected with the
lack of explicitness of TIL. Specifically, inability to talk directly about first-order
objects, lack of explicit typing, and lack of assertoric force:

1. We can say that 5 constructs 5, but we cannot state this fact in TIL.

2. We can say that 5 has type N, but we cannot state this fact in TIL.

3. We can say that [⊃ A A] constructs true, but we cannot state this fact in TIL.

All these limitations follow directly from the simple fact that constructions are
procedures and procedures cannot be taken as statements (facts, declarative sen-
tences,...).4

In order to amend these shortcomings, we introduce new notion of judgement.
Judgements will take the form

A : α

which can be read as “object A (either non-construction or construction) has type
α”.5 Judgements will occur as premisses and conclusions of our rules.6

Additionally, the fact that some construction A of type C was formed from
some object a of type α will be written as ‘A : Cα ’. The superscript labels will be
used for better book-keeping during derivations, i.e., they will keep track of the
way each construction was formed and consequently what it will construct upon
execution.

Some examples of judgements: 5 : N, 5 : CN, x : CN, etc.

4Recall that the argument was roughly as follows: if [= [+ 5 7] 12] is to be considered as stating
the fact that 5 plus 7 equals 12, then [= [+ 5 7] 11] must considered as stating the fact 5 plus 7
equals 11, which is clearly incorrect. For more, see section 2.3.2.

5Not to confuse with Tichý’s earlier notion of match written as ‘a : A’. For more, see e.g., [22],
[36].

6In pre-1988 TIL (i.e., before FFL) we can encounter expressions of the form A/α with similar
informal meaning as A : α (recall section 2.3.1). However, the important difference is that in our
system such expressions belong to the object language (rules operate on them, etc.), they are not
just metalanguage commentary as in the pre-1988 TIL.
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3.2.1.1 Judgements and explicit typing

Once we adopt judgements we can properly formalize the information contained
in Tichý’s “typing tables”. For example our judgement

succ : (NN)

corresponds to
Suc (αα)

which appeared in the table discussed earlier in section 2.3.1. But the crucial
difference is that succ : (NN) is a part of the system itself and hence rules can
operate on it. It is not just a metatheory consideration. In other words, the fact that
function Suc has type (αα) is only implicitly assumed as a part of TIL metatheory
and it cannot be declared directly in TIL.7

To demonstrate this further, the information contained in the following “typ-
ing” table ([38], p. 67)

entity type ...
0 α ...
1 α ...
Suc (αα) ...
...

...
...

can be formalized in our system as:

0 : N
1 : N
succ : (NN)

Further, e.g, ([38], p. 202):

office type ...
A ιτω ...
Ai ιτω ...
Sf (ιτω)τω ...
P oτω ...
...

...
...

7Sometimes we can encounter notation ‘Suc(αα)’ with similar informal meaning as our ‘succ :
(NN)’ (see e.g., [2]). There is, however, important difference, while Suc(αα) is just a function
with subscript, succ : (NN) is a judgement. In other words, while latter declares that function succ
has type (NN), the former presupposes that.
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can be formalized as:

authorWaverly : ((IN)W)

authorIvanhoe : ((IN)W)

scottFavourite : ((((IN)W)N)W)

authorIvanhoePoet : ((BN)W)

Remark Note that even equipped with judgements we are still unable to declare
the statements in points (1) and (3) above, only (2). For expressing (1) and (3) we
will need to introduce higher-level judgements, which will be discussed in later
section 5.1.

3.2.2 Type stacks

The main idea behind the introduction of type stacks is to avoid type-flattening
done by Composition, which we discussed earlier in section 2.2.5. Recall that the
issue was that no matter how we form Composition (how many constituents it will
have), it will always get the flat type C. E.g., constructions [Succ 0] and [+ 5 7]
would be regarded as constructions of the same type C.

Hence, we introduce new notion of type stack:

(α,β1, ...,βm)

where α and β1, ...,βm are types of first-order constructions.
More specifically, if α , β1, ...,βm are types of first-order constructions, then

(α,β1, ...,βm) is also a type of first-order constructions. Type stack is just a het-
erogenous list of types (i.e., list type) and it will replace Composition’s nonspecific
type C. Sometimes we will use ‘(C)’ as a metavariable for types and type stacks,
i.e., in its place we can imagine type stacks as well as “ordinary” (i.e., non-stack)
types.

Some examples: [Succ 0] : (C(NN),CN), [+ 5 7] : (C(NNN),CN,CN), [+ [+ 5 7] 3] :
(C(NNN),(C(NNN),CN,CN),CN), etc.

Type stacks will also allow us to type valuation-arrays. For example, the type
of the previously discussed valuation-array v1 true1

1 f alse1
2 · · ·

12
1 22

2 32
3 · · ·

Alice3
1 Bob3

2 Cecil3
3 Dana3

4 · · ·
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would be: ((B1
1,B1

2, ...),(N2
1,N2

2, ...),(I3
1,I

3
2, ...)). Thus(

true1
1 f alse1

2 · · ·
12

1 22
2 32

3 · · ·
Alice3

1 Bob3
2 Cecil3

3 Dana3
4 · · ·

)
: ((B1

1,B1
2, ...),(N2

1,N2
2, ...),(I3

1,I
3
2, ...))

For brevity, we will sometimes write just ‘(v1)’ instead of(
true1

1 f alse1
2 · · ·

12
1 22

2 32
3 · · ·

Alice3
1 Bob3

2 Cecil3
3 Dana3

4 · · ·

)

and non-specific ‘array1’ instead of

((B1
1,B1

2, ...),(N2
1,N2

2, ...),(I3
1,I

3
2, ...))

to save some space. Hence, the above will become (v1) : array1, etc. Additionally,
(v) and array will be used as metavariables for valuation-arrays and their types,
respectively.

3.3 Formation and Execution rules

Aside from the introduction of judgements and type stacks, the last major depart
from TIL will be the exclusion of Execution (as well as Double execution) from
constructions.

However, that does not mean we get rid of it completely. We reintroduce
Execution as one of the two principal rules governing constructions, namely Ex-
ecution rules (or E-rules for short) and the other being Formation rules (F-rules).
The rationale behind introduction of F/E-rules is quite simple: formation and ex-
ecution seem to be the most basic operations associated with constructions: either
we can form them or execute them.8

Thus, for each of the remaining construction (i.e., Variable, Trivialization,
Composition, and Closure) we will have two types of rules:

• Formation rules, telling us how to form constructions (either from non-
constructions or other constructions), and

8F/E-rules are loosely based on the intuitions behind Gentzen’s Introduction and Elimination
rules [12] and Martin-Löf’s Formation and Computation rules [19].
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• Execution rules, telling us how these constructions construct.

In other words, each construction will have pair of rules associated with it.
In the following sections we will explain why it makes sense to take forma-

tion and execution as the most basic operations associated with constructions, and
hence why we base our dual rules on them.

3.3.1 Formation and execution: a motivation

One of the first instances of construction forming can be found in FFL [38] on
p. 67. Tichý starts there by describing types of the “building material” he will
later use

entity type description:
0 α the number nought
1 α the number one
Suc (αα) the successor mapping, i.e., the mapping which

takes 0 to 1, 1 to 2, etc.
...

...
...

then he follows:9

Where x is variable ranging over α , the following is an example of first-
order construction: [Suc x]. If v is a valuation which assigns 0 to x, then this
construction v-constructs 1.

Shortly put, construction [Succ x] v-constructs 1, if v assigns 0 to x.10

So, before we can introduce the construction [Succ x] (i.e., before we can form
it), we have to be in possession of at least two things:

1. We have to have function Suc and know its type (αα).

2. We have to have Variable x and know it ranges over type α .

9We paraphrase here slightly for reader’s convenience. The original wording is: “Where x
[...] [is variable] ranging over α [...], the following are examples of first-order constructions [...]:
[Suc x]... (If v is a valuation which assigns 0 to x... [the mentioned construction] v-construct(s)
1...)” ([38], p. 67)

10Recall that ‘[Suc x]’ is Tichý’s notational variant for our ‘[Succ x]’.
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Only after we know these things, we can form the Composition [Succ x] (via
instructions specified in 2.2.5). These considerations are, however, not explicitly
reflected in TIL and are left upon the reader and her grasp of TIL metatheory.
Hence, although not explicitly stated, the process of getting to [Succ x] clearly
consists of at least two reasoning steps: (I) typing objects (the building blocks
for constructions – even if it is just in our mind) and (II) the formation of the
construction itself.

Analogously, there are also at least two things we need to have (some valuation
v and previously defined function Suc) and two reasoning steps we have to carry
out, if we want to find out what this construction constructs when executed: (I)
performing valuation v that assigns 0 to x and (II) knowing that executing Succ
constructs function Suc and that its application to argument 0 yields number 1.
Again, these reasoning steps are left out of TIL and require some insight on the
side of the reader.

The most important thing to take away from all this is that all these crucial
reasoning steps (specification of types, formation of construction, finding out what
it constructs upon execution,...) are done in metatheory, i.e., outside of scope of
TIL, where they are just implicitly assumed. Our goal is to make them explicit.

3.3.2 Formation and execution: a closer look

It is important to emphasize that the ideas that we have to form constructions
and then execute them to get their results is nothing new injected into TIL. These
notions are already present (and implicitly used) in FFL, however, never really
fully elaborated on upon.

3.3.2.1 Constructions as being formed

The idea of construction formation is clearly stated in the following places in FFL:

15. Five modes of forming constructions

...[W]e must first specify the modes of forming constructions (from non-
constructions and other constructions). [emphasis author]

([38], p. 63)

[...]
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This completes the list of the five modes of forming constructions. [emphasis
author]

([38], p. 65)

3.3.2.2 Constructions as constructing upon execution

The way that Tichý specifies the behaviour of construction explicitly involves the
notion of execution:

To carry out [i.e., execute] 0X, one starts with X and leaves it, so to speak,
as it is.

[...]

The construction consisting in executing, or carrying out, construction X is
clearly non other that X itself.

[...]

...[C]ompound construction which consists in executing F, thus obtaining a
mapping, then executing X, thus obtaining an argument...

[...]

...[O]ne can execute X and go no and execute the result.

[emphases author]

([38], pp. 63–64)

...carrying the calculation out to see which particular number it produces.

([38], p. 5)

...construction which consists in carrying out F...

([38], p. 10)

And implicitly it is also present in Tichý’s deliberations on Variable construction
on p. 60, [38].11 So it seems safe to say that for Tichý constructions and execu-
tions were deeply interconnected notions. This is perhaps best evidenced by the
second quote above:

11Tichý compares Variable to a machine that yields/produces certain output. Of course, machine
does not produce anything on its own, first we have to run it, and hence, execute it.
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The construction consisting in executing, or carrying out, construction X is
clearly non other that X itself.

([38], p. 63)

It could be perhaps paraphrased into: being a construction presupposes execution.
Or alternatively, if it cannot be executed, then it is not a construction. Hence, for
every construction Tichý seems to be implicitly assuming its execution.12 So the
idea that we have to carry out/execute construction to find out what it constructs
seems to be shared between us and Tichý.

Someone might want to argue: if constructions really construct upon execu-
tion, why did Tichý never explicitly mention it? Well, in a way he did. Recall
the specification of Execution construction. He states that there is no difference
between construction of execution of X and construction X itself. This statement
makes sense only when we assume that the execution is somehow already assumed
with X. Hence, there is no reason to mention it every time explicitly.

Whatever the case, Tichý’s constructions require execution in one way or an-
other, that much is indisputable (see Tichý’s original specifications of Composi-
tion, Trivialization,...). Hence, we say that constructions construct upon execu-
tion, which, we think, best describes Tichý’s position as well. Or it is at least
compatible with it.

Remark By execution we do not mean any concrete process localizable in space
and time (i.e., concrete execution by some reasoner or machine, which requires
certain resources such as time, memory, etc.), but the abstract notion of execution,
i.e., how should the construction proceed – what are its steps (execution in abstract
sense).

Remark Once we know that e.g., [+ 5 7] constructs upon execution 12, we can
speak more generally and omit the explicit mention of execution and state simply
that [+ 5 7] constructs 12. But it is important to remember that the second reading
presupposes the first one.

12That, we think, is also the best way to make sense of the statement “1X is X” we discussed
earlier in section 2.2.3.
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Remark We do not want to imply that results of constructions somehow depend
on the fact whether someone or something executes them or not. Our point is sim-
ply that without the notion of execution stating that e.g., constructions (procedure,
program, calculation,... i.e., something to be done) 5 constructs (yields, results,
returns, produces,...) 5 makes very little sense. And Tichý seems to be well aware
of this, as evidenced by his specifications of constructions.

Remark The position that constructions construct upon execution (i.e., that we
have to execute them to get their result) is also present in [17].

...[R]unning or executing it [construction] to obtain whatever it constructs.

([17], p. 53)

Unfortunately, the explanation of Execution that follows suffers from the same
flaws as Tichý’s original specification. Horák writes:

By execution of a construction C we obtain the same construction (1C =C)...

([17], p. 53)

So, executing a construction yields its result (by the first quote), but execution of
a construction yields back the same constructions (by the second quote – also note
the use of the some word “obtain” in both quotes)? So executing construction is
something different than execution of construction? How are we to understand
this? Surely, these are just two stylistically different ways of stating one and the
same thing.

3.3.3 Summary

To sum up, our dual F/E-rule rule scheme is based on the core principles of TIL
(i.e., formation and execution of constructions) and tries to deal with them explic-
itly:

• Formation rules: they tell us how to form new constructions (either from
non-constructions or other constructions),

• Execution rules: they tell us how these constructions construct upon execu-
tion.
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3.4 Construction rules

Now we finally get to the rules themselves. The set of all the rules presented in
the upcoming sections 3.4.1–3.4.4 will be denoted as ReTILC and it will constitute
the basis of the system eTILC.

As already mentioned above, ReTILC rules will come in pairs and are based
on already existing mechanisms in TIL. These mechanisms, however, often lack
formal character and also leave a lot of things unsaid. From this perspective, our
set of rules just tries to make the informal and implicit parts of TIL formal and
explicit, changing as little as possible along the way.

Remark Since the behaviour of these rules is directly lifted from Tichý’s own
specification discussed in previous chapter 2, they are, in a sense, self-justifying.
In other words, we ought to recognize the validity of the rule once we understand
it. This approach is similar in kind to that of Martin-Löf:

The rules should be rules of immediate inference; we cannot further anal-
yse them, but only explain them. However, in the end, no explanation can
substitute each individual’s understanding.

([19], p. 13)

3.4.1 Variable rules

((v) : array)
...

ai
n : α

VFv|xi|n : Cα

v|xi|n : Cα (v) : array
VE

ai
n : α

Remark Recall that ‘A’ stands for ‘0A’. Also vertical ellipsis ‘
... ’ will be used to

indicate omitted derivation(s).

Variable Formation rule (VF): We set up new Variable in the following way:
first, we assume some valuation-array (v) of type array, pick the desired object
ai

n of some type α , and then “abstract” away from it (i.e., we keep the super-
script determining the type, but not the subscript determining concrete object),



Chapter 3. Developing eTILC 42

thus forming a Variable v|xi|n of type Cα for the type α , where v is the initial
valuation. E.g., assuming 2 is row of natural numbers, by setting i to 2, we are
effectively forming a Variable v|x2|n of type CN ranging over natural numbers.

Often we will omit the assumption brackets as well as the vertical dots and
write just:

(v) : array

ai
n : α

VFv|xi|n : Cα

Variable Execution rule (VE): Informally, the rules takes a Variable with co-
ordinates, the corresponding valuation-array, and retrieves the designated object
(essentially the reverse of (VF)).

For example:

(3.1) true1
1 f alse1

2 · · ·
12

1 22
2 32

3 · · ·
Alice3

1 Bob3
2 Cecil3

3 Dana3
4 · · ·

 : array1

12
1 : N

VF
v|x2|1 : CN

(3.2)

v|x2|1 : CN

 true1
1 f alse1

2 · · ·
12

1 22
2 32

3 · · ·
Alice3

1 Bob3
2 Cecil3

3 Dana3
4 · · ·

 : array1

VE
1 : N

In the rest of the thesis, we will omit the vertical bars as well as the coordinates
in v|xi|n, v|yi|n, v|zi|n,... and write Variables simply as x,y,z, ...
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3.4.2 Trivialization rules

(a : α)

... TFA : Cα

A : Cα

TEa : α

Trivialization Formation rule (TF): Informally, assuming a is an object of type α

(either function or non-function type), we can form a construction A of type Cα

that constructs this object of said type. Regularly, we will omit the assumption
brackets, the rule label as well as the ellipsis and write simply:

a : α

A : Cα

Note that the rule (TF) preserves types of the original objects. In TIL, all
Trivializations of first-order objects such as e.g., 5, Alice, true, etc. would receive
the same type C, hence we would lose the information about their original types
(i.e., N,I,B, respectively).

Trivialization Execution rule (TE): Given that A is construction of type C con-
structing object of type α , i.e., Cα , we can execute this construction and get its
result, i.e., object a of type α .

For example:

(3.3)

5 : N
5 : CN

(3.4)

5 : CN
TE

5 : N
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3.4.3 Composition rules

Composition is the first construction that can be formed only from other construc-
tions.

A : C(αβ1...βm) B1 : Cβ1 ... Bm : Cβm
CF

[AB1...Bm] : (C(αβ1...βm),Cβ1, ...,Cβm)

[AB1...Bm] : (Cαβ1...βm ,Cβ1 , ...,Cβm)

(v) : array

[AB1...Bm] : (C(αβ1...βm),Cβ1 , ...,Cβm)

[a b1...bm] : ((αβ1...βm),β1, ...,βm)
CEc : α

Composition Formation rule (CF): Informally, the rule takes construction A of a
function of type (αβ1...βm) and construction(s) B1, ...,Bm of its argument(s) of
type β1, ...,βm and puts it into a Composition [AB1...Bm] of type
(C(αβ1...βm),Cβ1 , ...,Cβm).13

Remark The meaning of C(αβ1...βm) in (C(αβ1...βm),Cβ1, ...,Cβm) is the following:
construction of type C(αβ1...βm) constructs a function that takes m number of ar-
guments of types β1, ...,βm and returns object of type α . For example, let’s have
(C(NNN),CN,CN), here m = 2, (αβ1β2) = (NNN), β1 = N, and β2 = N.14

Composition Execution rule (CE): The rule for execution is slightly more tricky.
First, recall that Composition actually comprises of two operations: first it exe-
cutes all its constituents, then it proceeds to perform function application of the
results, hence, strictly speaking, Composition consists of two distinct processes
carried out subsequently, that are, however, masked as one. However, in order to
avoid splitting Composition into two separate rules, we integrate the batch exe-
cution step as a second premiss (under the assumption that the Composition was
correctly formed, hence all constituent constructions construct what they should
given the type signature).

13C(αβ1...βm),Cβ1 , ...,Cβm can be either direct constructions of objects of types
(αβ1...βm),β1, ...,βm or other type stacks that construct these types of objects after their
executions.

14For those already familiar with TIL type stacks might seem as unnecessary clutter. This is,
however not the case. Their presence is necessitated by our F/E-rule scheme. More specifically, it
is a technical device that allows us to track explicitly the structure of Composition constructions.
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Thus, the second premiss can be read as follows: “Assuming [AB1...Bm] (and
explicitly valuation-array (v) if there are any free Variables, otherwise it is omit-
ted), we can construct [a b1...bm]” (this transition is justified via (CF) and (TE)
rules and our starting premisses). Hence we execute all constituents of Composi-
tion at once, but not the Composition itself. So, strictly speaking, it is a “halfway-
execution”, sort of a middle step.

To put it all together, informally, the rule (CE) says the following: take a Com-
position and, under the assumption it was correctly formed, you execute it to get
the function a and argument(s) b1, ...,bm and apply the former to the later, which
gets you c , i.e., the result of applying a to b1, ...,bm.15

For example, the formation of Composition [+ 5 7] : (C(NNN),CN,CN) and its
execution will look as follows (we suppress the type information at the assump-
tions of (CE) to save some space and gain more readability):

(3.5)

add : (NNN)
+ : C(NNN)

5 : N
5 : CN

7 : N
7 : CN

CF
[+ 5 7] : (C(NNN),CN,CN)

[+ 5 7]
[add 5 7] : ((NNN),N,N)

CE
12 : N

Note that the initial assumptions add : (NNN), 5 : N, and 7 : N of the derivation
(3.5) are effectively “withdrawn” during the execution of the Composition and as
a result we get back 12 : N.16

Remark Note that we use ‘add’ for representing the addition function and ‘+’
for representing the construction that constructs it (specifically, the trivialization
of add). This is to better distinqusih between first-order objects and first-order
constructions. Tichý uses ‘+’ for the former and ‘0+’ for the latter, which, I think,

15Recall that eTILC deals with proper constructions only (and hence, only total functions are
allowed). If we take into account improper constructions as well, we have to add condition that
whenever any of the constructions A,B1, ...,Bm is improper, then application of the rule (CE)
produces nothing. For more on the topic of improper constructions, see later section 5.3.

16The expression [add 5 7] : ((NNN),N,N) and others like this one (i.e., appearance of non-
constructions inside square brackets, list type with no constructions) cannot appear outside of the
(CE) rule, since it is not, strictly speaking, a proper judgement, just an intermediate step of (CE)
rule. Hence, it cannot appear e.g., as premise or conclusion in any other place.
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can easily lead to severe confusions. Although they look syntactically very sim-
ilar, they are actually objects of completely different types, (NNN), and C(NNN),
respectively, and even more importantly, the former is a non-construction, while
the latter is a construction.

Another example, now with free Variable:

(3.6)

add : (NNN)

+ : C(NNN)
5 : N

5 : CN

(v) : array1

a : N
VF

x : CN
CF

[+ 5 x] : (C(NNN),CN,CN)

(vx
7) : array1

[+ 5 x]

[add 5 7] : ((NNN),N,N)
CE

12 : N

Remark The notation ‘(vx
7)’ means that Variable x retrieves from valuation-array

v the value 7.

Or simpler example:17

(3.7)

succ : (NN)
Succ : C(NN)

0 : N
0 : CN

CF
[Succ 0] : (C(NN),CN)

[Succ 0]
[succ 0] : (NN,N)

CE
1 : N

Remark Derivations such as (3.7) or (3.5) might be at first slightly perplexing.
We start with a function and argument(s), then “pack” them into constructions,
then “unpack” them, and then finally apply the original function to the original
argument(s). Aren’t we back at were we initially started? What was the point of
it all? Isn’t it circular?

17Note that the [succ 0] is again the result of “half-executing” [Succ 0], as it were, i.e., a func-
tion ready to be applied to its argument, which constitutes the second half of the execution of
Composition [Succ 0].
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Well, not really. Take e.g., derivation (3.7). Note that we start with succ : (NN)
and 0 : N and we end up with the application of the former to the latter, i.e.,
[succ 0] : ((NN),N) – so in a sense the derivation is used, among other things, to
glue together the function with its argument(s).18 From this perspective, we can
view constructions as providing a (non-functional, hyperintensional) framework
for working with functions (and other first-order objects).19

Remark Note that execution rules are not, strictly speaking, computation rules.
E.g., (CE) rule tells us only how Composition generally works, not how each
separate function that can enter into it works. Recall e.g., derivation (3.5) – sure,
we know that if we apply addition function to 5 and 7 we get 12, but we have
never properly specified it in our system (we will return to this topic in section
5.5).

3.4.4 Closure rules

Closure, similarly to Composition, can be formed only from other constructions.
And although Tichý allowed formation of Closure from any construction, for sim-
plicity we will consider formation of Closure from Composition constructions
only.

[AB1...Bm] : (C(αβ1...βm),Cβ1 , ...,Cβm)

B1 : Cβ1

x1 : Cβ1 · · ·
Bm : Cβm

xm : Cβm

ClF
λx1...xm [Ax1...xm] : C(αβ1...βm)

λx1...xm [Ax1...xm] : C(αβ1...βm)

ClE
f : (αβ1...βm)

Closure Formation rule (ClF): Informally, the rules takes Composition [AB1...Bm]

of type (C(αβ1...βm),Cβ1, ...,Cβm), Variables constructing objects of the same type
as the constructions of arguments that are to be abstracted away from, replaces

18Similar mechanisms for “explicit application” can be e.g., also found in Martin-Löf’s CTT,
specifically the operator Ap, see [19].

19This approach directly follows from the fundamental assumption of TIL that all calculations
(computations,...) are constructions, thus we cannot have judgements such as e.g., 5+7 : N.
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all the desired constructions of arguments by these Variables, and then finally λ -
binds them. The type of resulting Closure is then the leftmost type in the leftmost
type stack of the original Composition.20

Closure Execution rule (ClE): Briefly put, Closure upon execution returns the
object (a function f ) indicated by the superscript on the type C, modulo the argu-
ments for the constructed function that are already present.21

For example, we can form Closure from [Succ 0] in the following way:

(3.8)
...

[Succ 0] : (C(NN),CN)

0 : CN

x : CN
ClF

λx [Succ x] : C(NN)

The execution of the Closure λx [Succ x] will be then:

(3.9)
...

λx [Succ x] : C(NN)
ClE

succ : (NN)

Another example:

(3.10)

add : (NNN)
+ : C(NNN)

1 : N
1 : CN

(v) : array1

a : N
VF

x : CN
CF

[+ 1 x] : (C(NNN),CN,CN) x : CN
ClF

λx [+ 1 x] : C(NNN)

20There are exceptions to this when we are dealing with composed functions. For more, see
later section 4.2.2.

21The reasons for including the second clause will become clear later, see e.g., derivation (4.1).
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Remark Note that the second premise in (ClF) rule is, strictly speaking, unnec-
essary, since we already know that Variable x constructs objects of type N. Con-
sequently, no assumptions are needed, so the premise x : CN just reiterates what
we already know in order the (ClF) rule can proceed on.

Hence, when unnecessary (i.e., when we already poses all the information
required) we will omit the right premise of (ClF). Hence the above derivation
would become:

(3.11)

add : (NNN)
+ : C(NNN)

1 : N
1 : CN

(v) : array1

a : N
VF

x : CN
CF

[+ 1 x] : (C(NNN),CN,CN)
ClF

λx [+ 1 x] : C(NNN)

In this particular case the additional premise x : CN was not essential, because we
already have in our disposition Variable x of type CN.

Example of Composition with Closure:

(3.12)

...
λx [Succ x] : C(NN)

...
1 : CN

CF
[λx [Succ x] 1] : (C(NN),CN)

[λx [Succ x] 1]
[succ 1] : ((NN),N)

CE
2 : N

Remark Should the necessity arise we could additionally introduce rules for for-
mation (and execution) of Closure from other constructions as well. E.g., in the
case of Variable the rules might go as follows:

a : α

x : Cα

ClFV
λx x : C(αα)

λx x : C(αα)
ClEV

a : (αα)
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For example:

(3.13)

...
x : CN

ClFV
λx x : C(NN)

(3.14)

...
λx x : C(NN)

ClEV
id : (NN)

3.5 Concluding remarks on F/E-rules

What construction constructs is determined by the parts it was formed from. This,
of course, makes intuitive sense. We cannot hope to construct anything, if we
do not have the appropriate building blocks. E.g., we cannot construct number
from truth values only, what we need are other numbers and/or functions returning
numbers.

What is the general relationship between F/E-rules? Consider e.g., the deriva-
tion:

5 : N TF
5 : CN

TE5 : N

It seems rather pointless, but—given what we said earlier—that is to be expected,
since there isn’t much we can construct with just 5. We need other building ma-
terial as well to construct something more interesting. Similarly, we cannot build
much with just one Lego brick, we need others to create something “noteworthy”.

To demonstrate this point consider only slightly more complex derivation (3.15).
Specifically, we add two new building blocks: addition function and one more
number.
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12 : N

[add 5 7] : ((NNN),N,N)

[+ 5 7]

[+ 5 7] : (C(NNN),CN,CN)

7 : CN

7 : N

5 : CN

5 : N

+ : C(NNN)

add : (NNN)

Figure 3.1: Derivation as manual for construction

(3.15)

add : (NNN)
+ : C(NNN)

5 : N
5 : CN

7 : N
7 : CN

CF
[+ 5 7] : (C(NNN),CN,CN)

[+ 5 7]
[add 5 7] : ((NNN),N,N)

CE
12 : N

Suddenly, we have constructed something new, specifically number 12. In our
Lego bricks analogy, we can think about our derivations as instruction manuals
for putting these bricks together and thus creating something new. Constructions
serving as the studs and tubes, i.e., the interlocking mechanism that keeps pieces
“glued” together – see schema 4.1 where this is showed more explicitly. So what
is the relationship between F/E-rules? Briefly put, F-rules supply material and
E-rules glue it together.

3.5.1 F/E-derivations

Depending on the last rule used we will distinguish between F-derivation and E-
derivation:

• F-derivation – derivation that ends up with formation rule (last rule applied
is F-rule)
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• E-derivation – derivation that ends up with execution rule (last rule applied
is E-rule)

For example:

(3.16)

add : (NNN)
+ : C(NNN)

5 : N
5 : CN

7 : N
7 : CN

CF
[+ 5 7] : (C(NNN),CN,CN)

[+ 5 7]
[add 5 7] : ((NNN),N,N)

CE
12 : N

is E-derivation, while

(3.17)

add : (NNN)
+ : C(NNN)

5 : N
5 : CN

7 : N
7 : CN

CF
[+ 5 7] : (C(NNN),CN,CN)

is F-derivation.

Remark We would like to reemphasize that with F/E-rules we do not derive con-
structions from other constructions, but judgements (about constructions or non-
constructions) from other judgements (about constructions or non-constructions).

Often, however, we will be sloppy and say things like “5 :CN constructs 5 :N”.
Strictly speaking, this is incorrect, since 5 : CN is a judgement, not a construction,
hence it cannot construct anything. The proper way of phrasing it would be: “from
5 : CN is derivable 5 : N via (TE) rule”, “5 : CN yields upon application of execu-
tion rule 5 : N”, “5 : CN entails 5 : N” or alternatively just “5 constructs 5”.

Remark Note that ‘CN’ can be read as both “type of construction that was formed
from N” and “type of construction that constructs N”. It depends on context in
the derivation, i.e., whether the corresponding construction was just formed using
F-rule, or it is about to be executed by applying E-rule.

Remark Our ReTILC rules of eTILC can be perhaps thought of as some kind of
metarules for TIL. We are not against such view, however, much more suitable
would be to think of them as rules that try to capture the mechanisms behind TIL,
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and thus provide new way of looking at TIL itself via the rules that govern it.
In other words, we are interested in the logic behind TIL and our system tries to
bring it into the foreground. That being said, they can be considered as metarules
for TIL in the sense that they deal explicitly with information that was previously
accessible only in metatheory.



Chapter 4

Case studies: eTILC

Summary This chapter will be devoted to concrete examples of application of eTILC

system, demonstrating it in practice. Specifically, we will be showing how various TIL
analyses are to be translated into our system.

4.1 Natural language analysis

So far we have been interested almost exclusively in analysis of simple mathe-
matical examples. However, TIL as well as our system of rules can deal with
empirical/natural language examples as well.

In [9] is utilized so called three-step method of logical analysis of language,
which consists in:

1. type-theoretical analysis (type assignment),

2. synthesis (construction formation), and

3. type-checking,

respectively. For example, the three-stage analysis of the English sentence

“Alice is a girl.”

would go roughly as follows:1

1We retain the original notation from [9], p. 78, where ‘(oι)τω ’ stands for the type (((oι)τ)ω)

and ‘0isGirlwt ’ for the construction [[0isGirl w] t]. In TIL, τ represents type of real numbers, ω

type of possible worlds.

54
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((oτ)ω)

(oτ)

o

ι

0Alice]

(oι)

τ

t]

((oι)τ)

ω

w]

(((oι)τ)ω)

[[[0isGirlλ w λ t

Figure 4.1: Type-checking tree

1. Type assignment 2. Synthesis 3. Type checking

Alice/ι λwλ t [0isGirlwt
0Alice] See Figure 4.1.

isGirl/(oι)τω

At first glimpse it is all quite straightforward, however, these three steps are rather
separate and informal.

For example, (Q1) what exactly are the expressions ‘Alice/ι’ and
‘isGirl/(oι)τω ’? Their intuitive meaning is clear enough, but it is far from obvious
what they are in correspondence to TIL language as a whole. As it is, in [9] they
are just metalanguage commentary.

Secondly, (Q2) how exactly do we perform the synthesis? No explicit rules
are given to guide the formation of the corresponding construction.

Thirdly, (Q3) what exactly is the type-checking tree figure? No explicit defi-
nition is given.

And what is possibly the most important, all three steps are performed in iso-
lation, in its own respective sub-systems, so to speak. We have a system for typ-
ing objects, a system for forming constructions, and a system for building type-
checking trees.
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Our system combines all these informal sub-systems into a single formal one.
For demonstration, we show that the whole original analysis above can be recre-
ated (with lot more additional information) in our system eTILC as follows (we
use N as a stand-in for the original type τ , i.e., type of real numbers; also note the
addition of a new type of possible worlds W, originally denoted as ‘ω’):2

(4.1)
isGirl : (((BI)N)W)

isGirl : C(((BI)N)W)

world : W
w : CW

CF
[isGirl w] : (C(((BI)N)W),CW)

time : N
t : CN

CF
[[isGirl w] t] : ((C(((BI)N)W),CW),CN)

Alice : I
Alice : CI

CF
[[[isGirl w] t] Alice] : (((C(((BI)N)W),CW),CN),CI)

t
t : CN

ClF
λ t [[[isGirl w] t] Alice] : C(((BI)N)W)

w
w : CW

ClF
λwλ t [[[isGirl w] t] Alice] : C(((BI)N)W)

ClE
isGirlAlice : ((BN)W)

Task of all three of the above mentioned sub-systems (i.e., type assignment, syn-
thesis, and type checking) are effectively done by a single derivation in our sys-
tem. Furthermore, it also provides answers to our three questions from earlier
(i.e., (A1) judgements, (A2) with ReTILC , (A3) a derivation tree constructed via
ReTILC).

Remark Recall that ‘λwλ t [[[isGirl w] t] Alice] : C(((BI)N)W)’ stands for
‘[λw[λ t [[[isGirl w] t] Alice]]] : C(((BI)N)W)’, but we omit these extra brackets to
simplify the notation. Also remember that the form of the type stack in the pre-
viously formed judgement [[[isGirl w] t] Alice] : (((C(((BI)N)W),CW),CN),CI) is
(((C,C),C),C), the superscripts are just labels that help us keep track of addi-
tional information.

Now assume that Alice is indeed a girl at world w and time t. Then the initial
Composition [[[isGirl w] t] Alice] would construct:

(4.2)

...
[[[isGirl w] t] Alice] : (((C(((BI)N)W),CW),CN),CI)

...
CE

true : B
2About the type of the conclusion: because one of the arguments for the constructed function

is already present, specifically Alice of type I constructed via Alice of type CI, we construct just
function of type ((BN)W) instead of (((BI)N)W) (recall section 3.4.4).
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Of course, we could get to the same result if we compose the Closure from the
previous derivation with newly supplanted w and t (i.e., world, time, respectively
– in both of which Alice is still a girl):

(4.3)

...

λwλ t [[[isGirl w] t] Alice] : C(((BI)N)W)

world : W
w : CW

CF
[λwλ t [[[isGirl w] t] Alice]] w] : (C(((BI)N)W),CW)

time : N
t : CN

CF
[[λwλ t [[[isGirl w] t] Alice]] w] t] : ((C(((BI)N)W),CW),CN)

...
CE

true : B

Now what would the Composition containing free Variables

[[[isGirl w] t] Alice] : (((C(((BI)N)W),CW),CN),CI)

construct? That would depend on specific valuation-array (v). For example, as-
suming it supplants our earlier world and time, we get again:

(4.4)

...

[[[isGirl w] t] Alice] : (((C(((BI)N)W),CW),CN),CI)

(vw,t
world,time) : array1

[[[isGirl w] t] Alice]
[isGirlAlice world time] : (((BN)W),W,N)

CE
true : B

Remark The notation ‘(vw,t
world,time)’ can be read as “valuation v assigns to Vari-

able w value world and to t value time” (or alternatively, Variables w, t retrieve
from valuation array (v) values, world and time, respectively).

4.2 Construction formation

In this section we will demonstrate explicit formation of various constructions
from FFL in eTILC system.
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4.2.1 Example 1

Construction ([38], p. 211)
λwλ t.UwtS

which is equivalent in our notation to

λwλ t [[[isPoet w] t] Scott]

will get the following F-derivation

(4.5)

isPoet : (((BI)N)W)

isPoet : C(((BI)N)W)

world : W
w : CW

CF
[isPoet w] : (C(((BI)N)W),CW)

time : N
t : CN

CF
[[isPoet w] t] : ((C(((BI)N)W),CW),CN)

Scott : I
Scott : CI

CF
[[[isPoet w] t] Scott] : (((C(((BI)N)W),CW),CN),CI)

t
t : CN

ClF
λ t [[[isPoet w] t] Scott] : C(((BI)N)W)

w
w : CW

ClF
λwλ t [[[isPoet w] t] Scott] : C(((BI)N)W)

Notice the often repeated processes of first forming Compositions of the form
[[... w] t] via application of (CF) rules and then forming the corresponding Clo-
sures of the form λwλ t [[... w] t] via application of (ClF) rules. Sometimes we
will condense these derivation steps into a single one and indicate this compres-
sion with double inference line ‘=========’. Hence, e.g.,

isPoet : (((BI)N)W)

isPoet : C(((BI)N)W)

world : W
w : CW

CF
[isPoet w] : (C(((BI)N)W),CW)

time : N
t : CN

CF
[[isPoet w] t] : ((C(((BI)N)W),CW),CN)

becomes

isPoet : (((BI)N)W)

isPoet : C(((BI)N)W)

world : W
w : CW

time : N
t : CN

CF
[[isPoet w] t] : ((C(((BI)N)W),CW),CN)
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However, it is important to remember that this is just syntactic “short-cut” and not
a proper derivation step. Additionally, we will also omit redundant premises for
both Composition and Closure formations (see e.g., later derivation (4.8)).

E.g., the whole above derivation (4.5) can be shortened (assuming the men-
tioned sub-derivations were already carried out) to

(4.6)

isPoet : (((BI)N)W)

isPoet : C(((BI)N)W)

world : W

w : CW

time : N

t : CN
CF

[[isPoet w] t] : ((C(((BI)N)W),CW),CN)

Scott : I

Scott : CI

CF
[[[isPoet w] t] Scott] : (((C(((BI)N)W),CW),CN),CI)

t

t : CN

w

w : CW

ClF
λwλ t [[[isPoet w] t] Scott] : C(((BI)N)W)

When is the double inference line shorthand used for Composition or for Clo-
sure formation will be obvious from the context of the derivation as well as from
the accompanying rule labels. E.g., in the above derivation, the first double line
condenses two applications of (CF) rule into a single step, the second one con-
denses two applications of (ClF) rule into a single step.

To slim the derivation even further down, we can optionally omit the construc-
tion types to get

(4.7)

isPoet : (((BI)N)W)

isPoet
world : W

w
time : N

t
CF

[[isPoet w] t]

Scott : I

Scott : CI

CF
[[[isPoet w] t] Scott]

t
t

w
w

ClF
λwλ t [[[isPoet w] t] Scott]

But this is generally not advised, since types carry crucial information. Also it
can lead to unnecessary confusions (rules operate on judgements, not on con-
structions). However, sometimes it can be useful just for illustrative purposes.
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4.2.2 Example 2

Construction ([38], p. 212)

λwλ t.¬[λwλ t.UwtS]wt

which is equivalent in our notation to

λwλ t [¬[[λwλ t [[[isPoet w] t] Scott]] w] t]

is established via the F-derivation (4.9) (or its compressed version (4.10)).

And finally, the most condensed version, where we omit even the reoccurring

premises for (CF) and (ClF) rules (specifically, world : W
w : CW , time : N

t : CN , t
t : CN

, and
w

w : CW ):

(4.8)

isPoet : (((BI)N)W)

isPoet : C(((BI)N)W)

world : W
w : CW

time : N
t : CN

CF
[[isPoet w] t] : ((C(((BI)N)W),CW),CN)

Scott : I
Scott : CI

CF
[[[isPoet w] t] Scott] : (((C(((BI)N)W),CW),CN),CI)

t
t : CN

w
w : CW

ClF
λwλ t [[[isPoet w] t] Scott] : C(((BI)N)W)

CF
[[λwλ t [[[isPoet w] t] Scott] w] t] : C(((BI)N)W))

neg : (BB)

¬ : C(BB)
CF

¬[[λwλ t [[[isPoet w] t] Scott] w] t] : (C(BB),((C(((BI)N)W),CW),CN))
ClF

λwλ t [¬[[λwλ t [[[isPoet w] t] Scott] w] t]] : (C(BB),C(((BI)N)W))

Remark Note that the final construction, somewhat unexpectedly, has type stack
(C(BB),C(((BI)N)W)). The reason for this is that although the construction con-
structs a function from w and t to truth values, it still has to negate the resulting
value accordingly to the ¬, hence the additional C(BB). It cannot be just C(BB),
as might be expected from our initial specification of (ClE) rule, because the re-
sulting function still expects the world and time arguments, not just another truth
value. Essentially, we are constructing a composed function (“get world and time,
return truth value, and then negate it”), which necessitates the appearance of type
stacks.
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4.2.3 Example 3

Construction ([38], p. 204)

λx.+[Gx][Hx]

which is equivalent in our notation to

λx [+ [G x][H x]]

is derivable as

(4.11)

add : (NNN)

+ : C(NNN)

G : (NN)

G : C(NN)

(v) : array1

a : N
VF

x : CN
CF

[G x] : (C(NN),CN)

H : (NN)

G : C(NN)

(v) : array1

a : N
VF

x : CN
CF

[H x] : (C(NN),CN)
CF

[+ [G x] [H x]] : (C(NNN),(C(NN),CN),(C(NN),CN)) x : CN
ClF

λx [+ [G x] [H x]] : (C(NNN),CN,CN)

Remark Note that we do not have to form new Variable x “from scratch” for the
Closure formation, because we already have it at our disposal, we just need to
bind it.

4.2.4 Example 4

Construction ([38], p. 203)

λwλ t.HwtAwt

which is equivalent in our notation to

λwλ t [[[isOfheight w] t][[authorOfWaverly w] t]]

is derivable as (4.12) (or its condensed version (4.13)).
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4.2.5 Example 5

Construction ([38], p. 263)

&[Dtwt x][Pswt x]

which is equivalent in our notation to

[∧ [isDetective w] t] [smokesPipe w] t]]

can be derived as (4.14) (or its condensed version (4.15)).

4.3 Construction execution: logical connectives

In TIL Tichý specifies explicitly behaviour of only one logical connective, nega-
tion (see [38], p. 67):

entity type description:
¬ (oo) negation, i.e., the mapping which takes T to F and F

to T

Tichý intents this to be just an example, however, that does not change the fact
that this is the only explicit definition at our disposal of how function ¬ should
behave in TIL.

Of course, it is not difficult to guess what the rest of the table should look like:

entity type description:
⊃ (ooo) implication, i.e., the mapping which takes T and T

to T, T and F to F, F and T to T, and F and F to T
∧ (ooo) conjunction, i.e., the mapping which takes T and T

to T, T and F to F, F and T to F, and F and F to F
∨ (ooo) disjunction, i.e., the mapping which takes T and T

to T, T and F to T, F and T to T, and F and F to F
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To sum it up, the behaviour of classical connectives can be described as fol-
lows

• v([¬A]) = true iff v(A) = f alse

• v([A∧B]) = true iff v(A) = true and v(B) = true

• v([A∨B]) = true v(A) = true or v(B) = true

• v([A⊃ B]) = true v(A) = f alse or v(B) = true

‘v([¬A]) = true’ can be read as “construction [¬A] constructs true if valuation v
assigns value f alse to Variable A”. Analogously in all other cases.

Note, however, that this specification is still largely informal, since it is not
really explained what exactly is the ‘v([A∧ B]) = true’. As it stands it is just
metalanguage commentary.3

Often we will shorten v(A) = true and v(B) = true as ‘(vA,B
true,true)’. Analo-

gously in other cases. Hence, we will get

• v(A) = true iff (vA
true)

• v([¬A]) = true iff (vA
f alse)

• v([A∧B]) = true iff (vA,B
true,true)

• v([A∨B]) = true iff (vA;B
true; f alse)

• v([A⊃ B]) = true iff (vA;B
true;true)

where ‘true, true” shortens “true and true”, ‘true; f alse” shortens “true or f alse”.
Analogously in the cases of A,B and A;B. The whole ‘(vA,B

true,true)’ can be read as
“valuation v assigns true to A and true to B’.

For example, the execution of the construction [⊃ A B] with v(A) = true and
v(B) = f alse would go as follows:

3More proper formalization will be offered later in section 6.2
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(4.16)

imp : (BBB)

⊃: C(BBB)

(v) : array1

true : B
VF

A : CB

(v) : array1

true : B
VF

B : CB
CF

[⊃ A B] : (C(BBB),CB,CB)

(vA,B
true, f alse) : array1

[⊃ A B]

[imp true f alse] : ((BBB),B,B)
CE

f alse : B

Remark Note that the letters ‘A’, ‘B’ are used here as Variables, not as metavari-
ables.



Chapter 5

Generalizing eTILC into eTIL

Summary In this chapter we further generalize system eTILC by including higher-order
constructions, higher-level judgements and rules, and improper constructions. The result-
ing system will be called eTIL. Additionally, this generalization will permit us to intro-
duce new notions and provide new analyses previously unobtainable due to our restric-
tions to first-order constructions only.

5.1 Higher-level judgements

Let’s take a look at one of our earlier derivations (3.5):

add : (NNN)
+ : C(NNN)

5 : N
5 : CN

7 : N
7 : CN

CF
[+ 5 7] : (C(NNN),CN,CN)

[+ 5 7]
[add 5 7] : ((NNN),N,N)

CE
12 : N

Note that this derivation essentially establishes that construction

[+ 5 7] of type (C(NNN),CN,CN) constructs 12 of type N.

This piece of information, however, cannot be directly stated in our system of
rules ReTILC . In order to amend this we introduce higher-level judgements (or
H-judgements for short). Shortly put, it is a judgement about the derivations es-
tablished via ReTILC such e.g., (3.5). Their general form will be

A : α ⇒ a : β

68
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which can be read as “construction A of type α constructs upon execution object
a of type β”. Consequently, judgements of the form A : a will be retroactively
called lower-level judgements (or L-judgements).

Depending on context (i.e., if it does not lead to any confusion) this can be
shortened to just

A⇒ a : β

where the type of construction is suppressed, or further into

A⇒ a

where the types of both construction and its result are omitted. ‘A⇒ a’ can be
read as “A constructs a” or more properly as “A constructs upon execution a”.

For example, the information conveyed by the above derivation (3.5) can be
stated by the following higher-level judgement

[+ 5 7] : (C(NNN),CN,CN)⇒ 12 : N

which can be shortened to
[+ 5 7]⇒ 12 : N

or even further to
[+ 5 7]⇒ 12

Other examples:

[⊃ A A] : (C(BBB),CB,CB)⇒ true : B

[⊃ A A]⇒ true : B

[⊃ A A]⇒ true

In case the result of construction depends on some valuation-array (v) (i.e., if
it contains free Variable(s)), we write A : α ⇒v B : β .
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Consider e.g., the derivation

(5.1)

add : (NNN)
+ : CNNN

5 : N
5 : CN

(v) : array1

a : N
VF

x : CN
CF

[+ 5 x] : (C(NNN),CN,CN)

(vx
7) : array1

[+ 5 x]

[add 5 7] : ((NNN),N,N)
CE

12 : N

or simpler

(5.2)

...
[Succ y] : (C(NN),CN)

(vy
0) : array1

[Succ y]
[succ 0] : ((NN),N)

CE
1 : N

The corresponding H-judgements will be

[+ 5 x]⇒vx
7

12 : N

and
[Succ y]⇒vy

0
1 : N

respectively. The notation ‘vx
7
’ is a shorthand for “valuation v assigns 0 to y”.

Derivations such as (3.5) operating with lower-level judgements will be re-
garded as proofs of the corresponding higher-level judgements (e.g., [+ 5 7]⇒
12 : N).

For example, the corresponding H-judgements for the derivations (4.1), (4.2),
and (4.4) from section 4.1 would be, respectively:

λwλ t [[[isGirl w] t] Alice] : C(((BI)N)W)⇒ isGirlAlice : ((BN)W)
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[[[isGirl w] t] Alice] : (((C(((BI)N)W),CW),CN),CI)⇒ true : B

[[[isGirl w] t] Alice] : (((C(((BI)N)W),CW),CN),CI)⇒vw,t
w,t

true : B

In other words, these three higher-level judgements will be regarded as proved via
derivations (4.1), (4.2), and (4.4), respectively.1

Remark Note that expressions of the form A⇒ a : β allow us to work more
explicitly with constructions. Constructions are often thought of as determined by
(1) the object it constructs and (2) the way it constructs this object (see e.g., [32],
p. 17). Both of these aspects are explicitly present in our H-judgements.

Remark We might be tempted to interpret ‘A⇒ a’ as “A evaluates to a” or ‘A
reduces to a”. This view is, however, incorrect, because A is object of different
type than a. (We will return to this topic in the later section 5.5.)

5.2 Higher-level rules

The addition of higher-level judgements opens up the possibility of formulating
higher-level rules (or H-rules for short) operating on them. Consequently, ReTILC

rules will be retroactively called lower-level rules (or L-rules).
The general form of higher-level rules will be:

A : α ⇒ a : β B : γ ⇒ b : δ

C : ε ⇒ c : ζ

In case we are not interested in the types of constructions (or it is obvious from
the context), we can simply write

A⇒ a : α B⇒ b : β

C⇒ c : γ

or just

A⇒ a B⇒ b
C⇒ c

1We will return to this topic in section 5.2.1.
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if we wish to suppress the type information all together. In contrast to L-rules, H-
rules will not come in pairs of formation and execution rules, but in more common
pairs of introduction and elimination rules (Intro-rules and Elim-rules for short).

Derivations established via such higher-level rules will be called higher-level
derivations (or H-derivations). Consequently, derivations established via ReTILC

will be retroactively called lower-level derivations (or L-derivations).

Remark Sometimes in TIL literature (see e.g., [9]) we can encounter expressions
of the form C/∗1 →v α (read as: “construction C of type ∗1 v-constructs object
of type α”), which, more or less, corresponds to our A : α ⇒v b : β . But there
are three crucial differences: first, we explicitly state the constructed object, not
just its type, secondly, A : α ⇒v b : β is an expression of our object language,
while C/∗1→v α is metalanguage commentary, and thirdly and most importantly,
H-judgments of the form A : α ⇒v b : β can be derived via L-derivations.

To briefly demonstrate the usefulness of higher-level judgements and rules
consider the following example. Suppose we want to prove that

[⊃ A [⊃ [⊃ A B] B]]⇒ true

in other words, that [⊃ A [⊃ [⊃ A B] B]] is a theorem. Since this is a H-judgement
its proof will be a L-derivation (recall that lower-level derivations can serve as
proofs for higher-level judgements), and more specifically E-derivation.

The corresponding proof would look roughly as follows:2

(5.3)

imp : (BBB)

⊃: C(BBB)

(v) : array

true : B
VF

A : CB

(v) : array

true : B
VF

B : CB
CF

[⊃ A B] : (C(BBB),CB,CB) ⊃: C(BBB) B : CB
CF

[⊃ [⊃ A B] B] : (C(BBB),(C(BBB),CB,CB),CB)

...

[⊃ A [⊃ [⊃ A B] B]] : (C(BBB),CB,(C(BBB),(C(BBB),CB,CB),CB))

(vA,B
i, j ) : array

[⊃ A [⊃ [⊃ A B] B]]

...
CE

true : B

2Demonstrating this in full is rather lengthy task, hence we will skip it here and return to it
later in dedicated section 6.2.
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Although there is nothing wrong with this proof, it is a lot of tedious work to prove
just one simple theorem.

This is where our newly introduced notion of higher-level rules comes in
handy. We can simplify the whole task of proving [⊃ A [⊃ [⊃ A B] B]]⇒ true
by introducing two new higher-level logical rules for implication (borrowed from
Natural Deduction, also note the change from prefix notation for ⊃ to infix nota-
tion.)

(A⇒ true)
...

B⇒ true ⊃Intro
[A⊃ B]⇒ true

[A⊃ B]⇒ true A⇒ true
⊃ElimB⇒ true

and prove the initial theorem much more simply (from a higher-level, so to speak)
as

(5.4)

[A⊃ B]⇒ true A⇒ true
⊃ElimB⇒ true ⊃Intro

[[A⊃ B]⊃ B]⇒ true
⊃Intro

[A⊃ [[A⊃ B]⊃ B]]⇒ true

And, of course, we can import all the other rules from Natural Deduction as well,
not just (⊃I) and (⊃E) rules. (We will return to the topic of logical higher-level
rules and all the accompanying notions later in section 6.2.)

Remark Note that since we are starting with TIL on “sub-atomic” level, our
higher-level logical rules correspond to ordinary logical rules. In other words,
what is usually considered as sub-atomic level (see e.g., [43]) is for us atomic
level.

Remark Can we somehow reconcile our system of rules with the fact that Tichý
advocated the so called two-dimensional inference (see [38], chapter 13 or [27]
and [25])? There are two basic options (1) we are dealing with calculus of TIL,
not for TIL (as mentioned already in chapter 1), hence we do not need to feel tied
by this requisite and/or (2) expressions of the form A⇒ a (i.e., H-judgements)
can be understood as sort of entailments in their own right. After all, stating that



Chapter 5. Generalizing eTILC into eTIL 74

A yields a (in the sense that the former constructs the latter) is not that different
on intuitive level from stating that A yields a (in the sense that the latter can be
inferred from the latter). In both cases it is something that always holds no matter
what. Interestingly, Tichý himself used the word “yield” in both of these senses,
i.e., yielding-as-constructing (see e.g., [38], p. 60, p. 87, p. 207, p. 225) and
yielding-as-resulting from inference (see e.g., [38], p. 119, p. 235).

5.2.1 Semantic vs. syntactic rules

The general reasoning behind higher-level rules can be described roughly as fol-
lows: “Assuming these constructions construct these results, we can derive that
this construction will construct this result”. In other words, we assume from
higher level results on the lower level (via H-judgements) and use them to rea-
son to other, further results on the lower level (via H-rules). For example, we do
not need to derive on lower level that some construction A constructs true, we can
just directly assume it on higher level and use it to derive other conclusions.

Note, however, that this also means that the meaning of higher-level judge-
ments is dependent on lower-level derivations. In other words, H-judgements are
“semantically” justified by the L-derivations. From this perspective, we can view
H-rules which operate with H-judgements as syntactic rules (which follow the
Intro/Elim-rule scheme) and L-rules (which adhere to the F/E-rule scheme) as
semantic rules.

For example, the meaning of construction 5 is portrayed by the following F-
derivation and E-derivation, respectively

5 : N TF
5 : CN

...
5 : CN

TE5 : N

or if we connect them together

5 : N TF
5 : CN

TE5 : N
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This derivation tells us everything we need to know about construction 5, i.e., how
it was formed, what type it has, and what does it construct.

The terminology of semantic (lower-level) rules vs. syntactic (higher-level)
rules might be slightly confusing at first. But the main idea is quite simple: it just
means that first we have to have the first kind of rules to make precise sense of the
latter kind.

Of course, that does not mean that syntactic rules are completely void of any
meaning – they offer (proof-theoretic like) meaning on higher-level. They tell
us, what can we do with higher-level judgements, but not what these higher-level
judgements are, which is the task for lower-level rules.3 To put it shortly, L-
derivations fix the meaning for H-judgements, but not for H-rules themselves.
H-rules portray the meaning in the fashion similar to proof-theoretic semantics
(see e.g., [10], [35]) by following the general Introduction and Elimination rule
scheme.

E.g., we do not need to know the exact meaning of

A⇒ true

to understand the rule:

A⇒ true B⇒ true ∧Intro
[A∧B]⇒ true

In other words, (∧Intro) rule can convey the meaning of connective ∧ but it cannot
convey the meaning of H-judgements it operates on. That’s why we call H-rules
such as this one syntactic rules.

To sum up, F/E-rules are semantic in respect to H-judgements, which are in
turn used by H-rules, which are meaning portraying in their own right. So in
a sense, both levels or rules (i.e, L-rules as well as H-rules) are semantic and
syntactic. It all depends on the point of view we take. Hence, we will prefer the
more adequate terminology lower-level vs. higher-rules as oppose to semantic vs.
syntatic rules, which might be unnecessarily confusing.

3Recall that the “meaning” of the crucial arrow ‘⇒’ in H-judgements that H-rules operate on
is established by the L-derivations which were derived via L-rules.
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5.2.2 Beyond logical fragment

So far we have been dealing with logical H-rules only. The natural question seems
to be: can we utilize higher-level judgements and rules even elsewhere?

The general relationship between L-derivations and H-judgements stays the
same even outside the realm of logical connectives. Consider e.g., the following
higher-level judgement:

[+ 5 7]⇒ 12

The corresponding lower-level derivation would be:

(5.5)

add : (NNN)
+ : C(NNN)

5 : N
5 : CN

7 : N
7 : CN

CF
[+ 5 7] : (C(NNN),CN,CN)

[+ 5 7]
[add 5 7] : ((NNN),N,N)

CE
12 : N

So even in arithmetical cases, L-derivations can be seen as establishing the mean-
ing of higher-level judgements.

But what about the relationship between L-derivations and H-derivations? Can
H-judgements such as [+ 5 7]⇒ 12 sensibly appear as premises for some H-rules
as well? As it turns out we can formulate such H-rules, but it will not be as
straightforward as in the logical case. Specifically, we will first need to introduce
new kind of judgement, so called congruency judgement. (We will return to this
in section 6.3).

Remark Note that with H-judgements we can also formulate explicit rules for
handling so called type inference in Composition.

Consider e.g., the following derivation

Succ⇒ succ : (NN) 0⇒ 0 : N
[Succ 0]⇒ 1 : N

which, among other things, tells us that if we apply function of type (NN) to
argument of type N we get result of type N.

If we generalize it, we get the rule:

A⇒ a : (αβ1, ...βm) B1⇒ b1 : β1 ... Bm⇒ bm : βm

[A B1...Bm]⇒ c : α
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5.3 Improper constructions

Tichý distinguishes between proper and improper constructions:

A construction other than a variable may v-construct nothing at all. Such
a construction will be briefly called v-improper.

([38], p. 62)

Shortly put, (v-)improper construction is a construction that fails to construct any-
thing. Sometimes we will also call them abortive constructions. If a construction
is not v-improper, than it is a proper construction.

As an example of improper construction Tichý offers the following Composi-
tion:

[÷ 3 0]

Since the function constructed by ÷ is not defined on arguments 3 and 0 con-
structed by 3 and 0 (i.e., we cannot divide by 0), this construction produces no re-
sult upon execution, hence it is an improper construction. Utilizing H-judgements,
we can write this information down as

[÷ 3 0]⇒∅

So far so good. But our question is: how did we managed to form this con-
struction? Recall that Tichý clearly states that all constructions (with the excep-
tion of Variable) are formed from non-constructions and other constructions. This
Composition is clearly formed from other three constructions ÷, 3, and 0 of types
C(NNN), CN, and CN, which were in turn formed from non-constructions div, 3,
and 0 of types (NNN), N, and N, respectively.

How does it happen then that when we put it all together (i.e., three proper
constructions), we end up with improper construction? Mind you, the type of
the above Composition is (C(NNN),CN,CN), which means that upon execution it
should construct object of type N.

Of course, we know what went wrong – we cannot divide by zero. However,
we know this from the very beginning of formation of the construction, yet the
type of the function (i.e., (NNN)) completely conceals this crucial piece of infor-
mation. To pinpoint the problem: TIL deceives us, the type of div function is not
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really (NNN), but rather something like

((maybe N)NN)

Take a look at the following table from FFL ([38], p. 67):

entity type description:
...

...
...

− (ααα) the subtraction mapping (partial)
÷ (ααα) the division mapping (partial)
...

...
...

So even though Tichý explicitly mentions the fact that division is a partial func-
tion, he omits to include this information in the type of the function.4 It is simply
not the case that for every two arguments of type α (or N in our notation) we get
another object of the same type as would the type (ααα) suggest.

We should, however, account for such possible failures that are known to us
in advance. After all, when we are forming the construction ÷ from the corre-
sponding partial function div we already know that any subsequent constructions
containing ÷ might turn out to be improper, so why not to include this impor-
tant information in the type? In other words, when we are dealing with abortive
constructions (and by extension, partial functions), error handling (e.g., that we
cannot divide by zero in case of “non-empirical” constructions, or ascribing some
property to an individual that might turn out to be actually non-existent in case of
“empirical” constructions) should be of utmost importance.

So to be as prepared as possible to potential failures we propose, as already
mentioned above, new type maybe. The value of type maybe A has two possible
values: either just A or nothing.5 Thus, properly specified for TIL, the function
div should look e.g., like this

entity type description:
...

...
...

÷ ((maybe α)αα) the division mapping (partial)
...

...
...

4Recall that Tichý used ‘α’ to denote type of natural numbers.
5We borrow this type from Haskell programming language [24].
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or in eTIL

sDiv : ((maybe N)NN)

which is a function that returns nothing if the second argument is 0, otherwise it
divides the first argument by the second.

The notation ‘(maybe α)’ can be written down in more economic way simply
as ‘ᾱ’. Hence, e.g., ‘((maybe N)NN)’ becomes ‘(N̄NN)’, etc. (We will return to
the topic of improper constructions in later section 6.4.)

Remark Since we got rid of Single and Double execution as constructions, the
only way to arrive at improper construction is via Composition,6 and, conse-
quently, via partial functions (see the second clause of Tichý’s definition of Com-
position: “...or if X0 does not v-construct a mapping which is defined at m-tuple
of entities v-constructed by X1, ..,Xm”).

5.4 Higher-order constructions

So far we have been dealing only with first-order constructions, i.e., constructions
constructing first-order objects. But in principal there is nothing that prevents us
from introducing into eTIL even higher-level constructions (see appendix A).

When it comes down to higher-order constructions, the crucial moment takes
place between the transition from first-order constructions to second-order con-
structions (i.e., from type C1 to type C2). It is then when mentioning of construc-
tions, i.e., hyperintensionality, enters the picture for the first time. The consequent
steps from second-order constructions to third-order constructions and further up
then proceed in uniform way.

To better mark the significance of second-order constructions we will use new
type symbol ‘K’ instead of the more expected ‘C2’. After that the type notation
will go as expected, i.e., ‘C3’, ‘C4’, etc.

6In TIL constructions can be improper without invoking partial functions, e.g., 13 is considered
to be improper construction. In eTIL this is not the case due to our exclusion of Execution from
constructions.
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Thus, the type of second-order construction formed from first-order construc-
tion will be written as

KC

which is, as noted above, just notation convention for ‘CC1
2 ’.

The formation and execution of constructions of type K (including type stacks)
proceeds in analogous manner as constructions of type C.

Remark Recall that initially we used ‘Succ’ as a shorthand for ‘0Succ’. Once
we enter the realm of higher-order constructions we can form constructions of the
form 0(0Succ) and so on. Here our bold font convention clearly fails.7 For this rea-
son we adopt new convention for marking Trivialization of constructions, which
we denote by double square brackets ‘J K’. Hence ‘JSuccK’ will be shorthand for
‘0(0Succ)’. Analogously, ‘[JSuccK]’ will correspond to ‘0(0(0Succ))’ and so on.
To sum up, construction in bold font represent constructions of first-order objects,
constructions in double square brackets represent second-order constructions of
first-order constructions, etc.

For example, from construction Succ of type C(NN) we can form higher-order
(second-order, to be specific) construction JSuccK of type KC(NN)

in the following
straightforward way:

(5.6)

...
Succ : C(NN)

TF

JSuccK : KC(NN)

Execution also proceeds in the analogous manner.

(5.7)
7Technically, we could make it twice, thrice as bold, etc., but the result would be rather con-

fusing than helpful.
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...
JSuccK : KC(NN)

TE
Succ : C(NN)

Remark Even though the notation such as

KC(NNN)

might seem daunting at first it just states that we are dealing with construction of
type K that was formed from construction of type C which was in turn formed
from object of type (NNN). Or alternatively (in case of E-derivation) that we are
dealing with construction of type K that constructs upon execution construction
of type C which in turn constructs upon another execution object of type (NNN).
Hence A : KC(NNN)

can be read as both

A : K was formed from B : C which was formed from c : (NNN)

and
A : K constructs B : C which constructs c : (NNN)

Also recall that the type is just K, the superscripts are only labels that help us to
keep track of what was the construction formed from/what it constructs.

Remark It is important to note that formation of higher-order construction does
not always proceed in a straightforward manner. Consider e.g., we want to form
higher-order construction from [Succ x]. After applying (TF) rule to the corre-
sponding judgement, we would get construction JSucc xK. In this Composition,
however, the Variable x is no longer free, but bound by the Trivialization (see
corresponding definitions in appendix A).

Other more complex examples:

(5.8)

calc : (BI(C))
Calc : K(BI(C))

Alice : I
Alice : CI

add : (NNN)
+ : C(NNN)

5 : N
5 : CN

7 : N
7 : CN

CF
[+ 5 7] : (C(NNN),CN,CN)

TF
J+ 5 7K : K(C(NNN),CN,CN)

CF
[Calc Alice J+ 5 7K] : (K(BI(C)),CI,K(C(NNN),CN,CN))
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(5.9)

sDiv : (N̄NN)

÷ : C(N̄NN)
3 : N

3 : CN
0 : N

0 : CN
CF

[÷ 3 0] : (C(N̄NN),CN,CN)
TF

J÷ 3 0K : K(C(N̄NN) ,CN ,CN)

prop : (B(C))

Pr : K(BC)

CF
[Pr J÷ 3 0K] : (K(B(C)),K(C(N̄NN) ,CN ,CN))

[Pr J÷ 3 0K]

[prop [÷ 3 0]] : (B(C),(C(N̄NN),CN,CN))
CE

f alse : B

Remark Recall that (C) serves us as a placeholder for construction of any type
(including type stacks). So in this particular case (B(C)) is a type of function that
takes any first-order construction and returns either true or f alse.

Notice that we can utilize H-judgements with second-order constructions in
the same manner as we did it with first-order constructions. E.g., the fact that
construction JSuccK : KC(NN)

constructs upon execution construction Succ can be
written down simply as:

JSuccK : KC(NN)
⇒ Succ : C(NN)

Or in shortened versions

JSuccK⇒ Succ : C(NN)

or

JSuccK⇒ Succ

where the types are obvious from the context, since we are now dealing only
with first- and second-order constructions. (In section 6.4 we will examine more
examples.)

Remark Note the difference between

[÷ 3 0]⇒∅

and
J÷ 3 0K⇒ [÷ 3 0]

So while improper constructions constructs nothing upon execution, “trivialized”
improper construction constructs upon execution the improper construction itself.
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Remark If we allow in the system eTILC all the generalizations discussed pre-
viously in this chapter (i.e., higher-order constructions, improper constructions,
higher-level judgements and higher-level rules) we get system eTIL which is al-
most as expressive as TIL. To close this gap, we need to adopt additionally Double
execution rule (section 6.5) and congruency judgements with corresponding rules
(section 6.3).

5.5 Computation rules

Remark From this section onward we will be discussing subject matter that goes
mostly beyond the topics covered in FFL. In other words, we will be departing
from the canonical TIL.

5.5.1 Preliminary notes

The most basic mechanism in the background of TIL can be described as follows:

Construction A of type α constructs with respect to valuation v object B of
type β .

which is often shortened to just:

Construction A v-constructs B.

The phrase “construction constructs” is the staple of TIL. But what does it actually
mean? How or in what sense do constructions actually construct?

Let’s approach this more generally. For example, in propositional logic we
can say things like:

Proof

[A⊃ B]1 [A]2
⊃ EB ⊃ I1

(A⊃ B)⊃ B
⊃ I2

A⊃ ((A⊃ B)⊃ B)

proves A⊃ ((A⊃ B)⊃ B).

And it should be generally quite clear how it is proved.

Or, alternatively, we can say that:
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Truth table

A B (A⊃ B) ((A⊃ B)⊃ B) A⊃ ((A⊃ B)⊃ B)
1 1 1 1 1
1 0 0 1 1
0 1 1 1 1
0 0 1 0 1

shows that

A⊃ ((A⊃ B)⊃ B) is a tautology.

And again, it should be obvious how is this result achieved.

Analogously, in e.g., Peano arithmetic (or CTT, lambda calculus,...), we can
say things as

5+7 is 12

because 5+7 reduces to S(5+6), which is in the end reduced to

S(S(S(S(S(S(S(S(S(S(S(S(0))))))))))))

which is taken to be synonymous with 12. Again, it is easy to see how we can get
from 5+7 to 12 once we get acquainted with the definition of + operation.

However, if we say

Construction [A⊃ [[A⊃ B]⊃ B] constructs true.
or

Construction [+ 5 7] constructs 12.

it is not quite clear how to check it in the context of TIL.
E.g., take the case of “[+ 5 7] constructs 12”. In what way do constructions

+, 5, and 7 construct 12? Sure, we can say that + constructs function add, 5
constructs 5, and 7 constructs 7. But then analogous question appears: in what
way do objects add, 5, and 7 lead to 12? As mentioned above, both lambda
calculus and CTT can answer this.

5.5.2 Computation in TIL

Lambda calculus originally developed by Alonzo Church [2] can be regarded as
the most universal tool for expressing computations (see [40]). Single computa-
tional step then corresponds to β -reduction (i.e., function application), which is
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purely syntactic operation based on substitution.8 In other words, computation is
understood as reduction of terms (i.e., syntactic transformation). Once we reach
irreducible form, the computation stops.

If we were to import this parallelism from lambda calculus to TIL, it would
mean that computation in TIL is also just a syntactic transformation. But this is
problematic because constructions themselves should represent computations, not
syntactic transformations of thereof.9 After all, we are told that e.g., [Succ 0] (as
a result of β -reducing [λx [Succ x] 0]) constructs number 1, not that it is number 1
because it is further irreducible (and hence not computable). To put it differently,
the problem is that β -reduction is usually viewed as computation (to compute
means essentially to reduce). This, however, goes against TIL principles, where
constructions should stand for computations.

It follows that the step from [Succ 0] to 1 cannot be computational step (or at
least not in the sense that computation is understood nowadays). We can perhaps
called it a constructive step, which essentially amounts to the move from the con-
struction to the object it constructs (wrt some valuation v). E.g., the step from 5
to 5 (via (TE) rule) can be understood as an example of constructive step.

But however we call it, the end result is the same. In TIL implicitly coexist
two different notions of “computation”:

1. syntactic computation (corresponds to standard lambda calculus computa-
tion, i.e., computational step coincides with β -reduction which coincides
with function application) – takes place on the syntactic level.

2. semantic/constructional computation (unclear to what it corresponds, i.e.,
computational step does not coincide with β -reduction which does not co-
incide with function application) – takes place at the semantic level of con-
structions.

The syntactic notion of computation is well known and explored, TIL notion, how-
ever, remains rather elusive. The basic question we have to ask is: in what sense

8The topic of conversions will be discussed in more length in the next section 5.6.
9In FFL [38] Tichý explicitly identifies constructions only with calculations (see e.g., p. 7, p.

12, p. 20, p. 31, p. 82, p. 222, p. 281), not with computations in general, but it is obvious from
the way he uses constructions that this is just a matter of terminology.
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does e.g., [Succ 0] construct number 1? The problem is—at least as it appears to
me—that we cannot at the moment offer better answer than “it just does”.10

The other important question is: what is the relation between the above men-
tioned notions of computation? Is there actually any meaningful difference? Be-
cause e.g., saying that [Succ 0] constructs 1 or that it is 1, seems—at least in this
case—just as difference of terminology. In other words, at this basic level there
seems to be no technical difference whether we view ‘[Succ 0]’ as a representation
of a construction that in some further unspecified way constructs number 1, or as
a direct representation the number 1 itself.

To be even more specific consider the following case. The standard way of
dealing with calculations such as

0+1

formally is to first define numbers via 0 and successor function S (as in Peano
arithmetic), hence we get

0+S(0)

Next order of business is to define recursively the function +, which is most often
done in the following way11

a+0 = a

a+S(b) = S(a+b)

Our calculation clearly falls under the second case, so we rewrite (reduce, com-
pute,...) it into new form

S(0+0)

This new form of calculation falls under the first case, so we get the further irre-
ducible

S(0)

10It seems that it is not actually the constructions themselves that do the constructing in TIL, but
our minds. In other words, the construction [Succ 0] constructs 1 only because we, as reasoners,
already know that when we put succ and 0 together we get 1. The construction itself offers no
instructions on how to actually do it and reader’s intuitive insight is required in order to accomplish
this task.

11Note that the ‘=’ symbol essentially prescribes reductions (and hence computations), i.e., it
tells us that we can rewrite the term on the left side of ‘=’ to the term on the right side.
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which is, of course, nothing else than

1

Notice that the whole computation can be then written as

0+S(0) = S(0+0) = S(0)

i.e., all the steps were equivalent transformations. Alternatively we could write
this down as

0+S(0) S(0+0) S(0)

where ‘ ’ represents “computes to”. The important thing to notice here is that
all three involved expressions, i.e., 0+ S(0), S(0+ 0), and S(0) are taken to be
objects of the same type.

However, in TIL if we write e.g.,

[+ 0 1]⇒ 1

where ‘⇒’ is suppose to represent “constructs”, the entities on each side of the
arrow are objects of different types.

Of course, we could introduce into TIL reductions such as e.g.,

[Succ [+ 0 0]] [Succ 0]

and hence get constructions, i.e., objects of the same type, on both sides of the
“computation arrow”. However, in this scenario ‘ ’ cannot be understood as
“constructs” but it must be interpreted e.g., as “is reducible to”, “can be syntacti-
cally transformed”, “can be rewritten into”, etc.

The problem is that if we allow this notion of computation to enter into TIL,
we are effectively eliminating the whole “constructional” dimension of TIL – that
constructions suppose to be computations and that they should construct vari-
ous objects upon execution relative to valuations v.12 To put it differently, with
the notion of computation represented by ‘ ’ above we are just doing syntactic

12Either that or we would have to say that e.g., β -reduction rule is actually some sort of meta-
computation rule that takes us from one computation into another computation. However, such
notion of “metacomputation” is far from being clear.
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transformations and the whole idea of constructions constructing does not need to
enter the picture at all.

However, that is exactly the price we have to pay if we want to have explicit
computation rules. In other words, if we are to have any success at providing
computation rules for TIL, they have to be transformation rules on constructions.

E.g., rules for handling Composition that contains addition function could be
in our system defined as roughly as follows:

x : (C)
Add1

[+ x 0] x : (C)

x : (C) y : (C)
Add2

[+ x [Succ y]] [Succ [+ x y]] : (C)

To sum up, we can include computation rules into TIL, but they have to be based
on construction transformations. This goes against the core principle of TIL that
constructions themselves should be computations and not the manipulations with
them.

5.5.2.1 Summary

Computation rules for TIL are problematic. They have to operate only on con-
structions, but then the whole concept of constructing becomes rather superfluous.
Not to mention that constructions should represent computations in the first place,
so it is not at all clear, what we are doing when we are rewriting one construction
into another. Thus, we end up with constructions that suppose to represent com-
putations, yet when we actually compute we just move symbols around and the
whole notion of constructing can be disregarded.

In TIL we could never say that [λx [Succ x] 0] constructs [Succ 0]. Yet in
lambda calculus it would be perfectly fine to say that λx.succ(x) 0 computes to
succ(0). Hence, constructing and computing are very different notions. Analo-
gously, the resulting expression S(0) from above example is not possible to com-
pute anymore (it cannot be reduced any further), but in TIL the “corresponding”
construction [Succ 0] is still viewed as a computation that produces the number 1.
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5.6 β -, η-, α-conversions

Although β -, η-, α-conversions are nowadays considered common part of TIL,
in FFL they are not mentioned at all. Whatever the reason was there are couple of
problematic aspects connected with them in the framework of TIL:13

• β -reduction – in ordinary lambda calculus β -reduction captures the idea
of function application and it is essentially nothing else than substitution.
So β -reduction = function application = substitution. In TIL this is, how-
ever, not the case. Function application is one of the implicit subroutines of
Composition construction.

Consider e.g., β -reduction

[λx [Succ x] 0] β [Succ 0]

We are essentially transforming Composition of Closure and Trivialization
into a different Composition of two Trivializations.

So this transformation effectively changes the kinds of involved construc-
tions (Trivialization in general behaves differently than Closure, e.g., results
of Trivialization never depend on valuations).

• β -abstraction – classically used to capture the idea of lambda abstraction
(i.e., creating an anonymous function – by rewriting expression to an appli-
cation of a lambda abstraction to an argument expression). Again, in TIL
this cannot be the case, because function abstraction as such does not exist
in TIL (we have Closure construction).

Consider e.g., β -abstraction

[Succ 0] β [λx [Succ x] 0]

Clearly same troubles appear as above, i.e., we are rewriting one kind of
construction into a completely different kind of construction.

13Some of the troubles connected with β -reduction were already mentioned in the previous
section 5.5.2.
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• η-abstraction – classically used to capture the idea of adding abstraction
over a function. In TIL again problematic for the same reasons as stated
above.

Consider e.g., η-abstraction

Succ η λx [Succ x]

In short, it is an operation that transforms Trivilization into a different kind
of construction, namely Closure.

• η-reduction – classically used to capture the idea of dropping lambda ab-
straction.

E.g., consider η-reduction

λx [Succ x] η Succ

In TIL again problematic, since we are transforming Closure into Trivial-
ization.14

• α-conversion – renaming of Variables, the only non-problematic conversion
due to the fact that we are not transforming one kind of construction into
a different kind. In other words, α-conversion just takes us from a Variable
to a different Variable.

E.g., α-conversion

λx [Succ x] α λy [Succ y]

Remark Note all the problematic aspects discussed above stem from the fact that
in TIL “lambda terms” are considered to be constructions that can upon execution
construct (wrt to valuation) objects. Hence the behaviour of constructions signifi-
cantly differs from the behaviour of terms from classical lambda calculus that has
no v-constructing, no executions, etc., which leads to these discrepancies.

To sum up, β - and η-conversion cannot play the same role in TIL as they do
in lambda calculus due to the distinct nature of constructions. The best recourse
seems to be to take them as transformations of constructions.

14These difficulties are, of course, not limited just to Closure and Trivialization. Consider e.g.,
construction λx [s x] with free Variable s. After applying η-reduction we are effectively reducing
Closure to Variable.
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5.6.1 β ,η ,α-conversion rules

Despite the problems discussed in the previous section we can still provide basic
β ,η ,α-conversion rules for eTIL. However, it is important to keep in mind that
their role in TIL is different from the role they play in ordinary lambda calculus.

5.6.1.1 β -conversions

A(B1/x1, ...,Bm/xm) : (C(αβ1...βm),Cβ1, ...,Cβm)
β -abs

[λx1...xm A B1...Bm] : (C(αβ1...βm),Cβ1, ...,Cβm)

[λx1...xm A B1...Bm] : (C(αβ1...βm),Cβ1, ...,Cβm)
β -red

A(B1/x1, ...,Bm/xm) : (C(αβ1...βm),Cβ1 , ...,Cβm)

Remark The notation ‘A(B1/x1, ...,Bm/xm)’ can be read as “substitute B1, ...,Bm

for x1, ...,xm in A”.15

For example:

(5.10)
...

[Succ 0] : (C(NN),CN)
β -abs

[λx [Succ x] 0] : (C(NN),CN)
(5.11)

...
[λx [Succ x] 0] : (C(NN),CN)

β -red
[Succ 0] : (C(NN),CN)

(5.12)
succ : (NN)
Succ : C(NN)

0 : N
0 : CN

CF
[Succ 0] : (C(NN),CN)

β -abs
[λx [Succ x] 0] : (C(NN),CN)

β -red
[Succ 0] : (C(NN),CN)

[Succ 0]
[succ 0] : ((NN),N)

CE
1 : N

15For more on substitution, see appendix A or [32]
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5.6.1.2 η-conversions

λx1...xm [A x1...xm] : C(αβ1...βm)
η-red

A : C(αβ1...βm)

A : C(αβ1,...,βm)
η-abs

λx1...xm [A x1...xm] : C(αβ1...βm)

For example:

(5.13)

...
λx [Succ x] : C(NN)

η-red
Succ : C(NN)

(5.14)

...
Succ : C(NN)

η-abs
λx [Succ x] : C(NN)

5.6.1.3 α-conversion

λx1...xm [A x1...xm] : C(αβ1...βm)

α-con
λy1...ym [A(y1/x1, ...,ym/xm)] : C(αβ1...βm)

For example:

(5.15)

...
λx [Succ x] : C(NN)

α-con
λy [Succ y] : C(NN)



Chapter 6

Case studies: eTIL

Summary Analogously to chapter 4 the main purpose of this chapter is to demon-
strate new notions introduced in eTIL (higher-order constructions, improper construc-
tions, higher-level rules,...) in practice.

6.1 Higher-order construction formation

6.1.1 Example 1

Construction ([38], p. 72)

[¬[Pr1[÷30]]]

which is equivalent in our notation to

[¬[Pr J÷ 3 0K]]

is derivable as:

(6.1)

sDiv : (N̄NN)

÷ : C(N̄NN)
3 : N

3 : CN
0 : N

0 : CN
CF

[÷ 3 0] : (C(N̄NN),CN,CN)
TF

J÷ 3 0K : K(C(N̄NN),CN,CN)

prop : (B(C))
Pr : K(B(C))

CF
[Pr J÷ 3 0K] : (K(B(C)),K(C(N̄NN),CN,CN))

neg : (BB)
¬ : C(BB)

CF
[¬[Pr J÷ 3 0K]] : (C(BB),(K(B(C)),K(C(N̄NN),CN,CN)))

93
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Remark Recall that, technically speaking, the type of [¬[Pr J÷ 3 0K]] is (C,(K,K)),
the superscripts are just labels that help us track all the important information.

6.1.2 Example 2

Construction ([38], p. 222)

λwλ t.B1
wtG[λwλ t.=[+11]2]

which is in our notation equivalent to

λwλ t [[[Bel w] t] G Jλwλ t [= [+ 1 1] 2]K]

and in eTIL it can be established via the F-derivation (6.2) (or its compressed
version (6.3)).

At first glance the derivation (6.2) might seem excessive, but it is important
to realize that it contains the same amount of reasoning steps necessary to get to
the end construction as does the original. It just makes these steps more formal
and explicit. In other words, the derivation is no more complex than the original
construction displayed above, the only difference is that all the work is laid out
explicitly in front of us and not just assumed on the side of the reader.

Remark In (6.2) we can notice something that could be called vacuous Closure:
even though we are binding the Variable t (and later w) it itself is not a part of
the construction. Nevertheless, it has to appear in the type because it is a (TIL)
proposition, i.e., object of type ((BN)W).
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6.2 Higher-level logical rules

In order to prove
[⊃ A [⊃ [⊃ A B] B]]⇒ true

we want to show that it constructs true for all possible valuations of Variables A
and B.1 This, in turn, means deriving true : B from [⊃ A [⊃ [⊃ A B] B]] under all
four possible valuations (vA,B

true,true) : array, (vA,B
true, f alse) : array, (vA,B

f alse,true) : array,

and (vA,B
f alse, f alse) : array. This, of course, requires four separate derivations.

The first one with (vA,B
true,true) : array will look as follows

(6.4)

imp : (BBB)

⊃: C(BBB)

(v) : array

true : B
VF

A : CB

(v) : array

true : B
VF

B : CB
CF

[⊃ A B] : (C(BBB),CB,CB) ⊃: C(BBB) B : CB
CF

[⊃ [⊃ A B] B] : (C(BBB),(C(BBB),CB,CB),CB) ⊃: C(BBB) A : CB
CF

[⊃ A [⊃ [⊃ A B] B]] : (C(BBB),CB,(C(BBB),(C(BBB),CB,CB),CB))

(vA,B
true,true) : array

[⊃ A [⊃ [⊃ A B] B]]

[imp true [imp [imp true true] true]]
CE

true : B

Now, we have to show that we get the same result (i.e., true : B) for all the
remaining three valuations as well, i.e., (vA,B

true, f alse) : array, (vA,B
f alse,true) : array,

and (vA,B
f alse, f alse) : array. Of course, the proofs would proceed in the same way,

just the final step would differ (i.e., application of CE rule):

(6.5)

...

(vA,B
true, f alse) : array

[⊃ A [⊃ [⊃ A B] B]]

[imp true [imp [imp true f alse] f alse]]
CEtrue : B

(6.6)

...

(vA,B
f alse,true) : array

[⊃ A [⊃ [⊃ A B] B]]

[imp f alse [imp [imp f alse true] true]]
CEtrue : B

1Recall our definition of logical connectives from section 4.3.
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(6.7)

...

(vA,B
f alse, f alse) : array

[⊃ A [⊃ [⊃ A B] B]]

[imp f alse [imp [imp f alse f alse] f alse]]
CEtrue : B

So in the total, four distinct derivations are needed to properly establish that
the construction [⊃ A [⊃ [⊃ A B] B]]]] constructs always true.

In general, if such derivations can be established, we say that A is semantically
derivable in the system of lower-level rules (i.e., L-derivable) and write it as |=L

C A.
Hence, ‘|=L

C’ denotes the (semantic) derivability in the system of lower-level
rules, where C is the highest order of constructions. Semantic derivability means
that we can demonstrate via F/E-rules that some construction A constructs upon
execution with all possible valuations the value true. So |=L

C A essentially just
states that construction A constructs upon execution with all possible valuations
the value true.

Remark Note that the above fourfold proof is in a way nothing more than os-
tentatious truth table, however, it is necessitated by the Tichý’s core principles of
TIL. Fortunately for us, we will not need to use them in practice. For more elegant
logical proofs we have the higher-level rules. To put it differently, L-derivations
provide essential theoretical foundation. Without them there would be a hole in
our theory, so to speak (recall that they establish the meaning of H-judgements).
Hence, it is necessary to lay them down, but once we do we rarely need to return
to them ever again.

In the previous chapter, we mentioned that we can import other Natural De-
duction rules to our system, not just (⊃Intro) and (⊃Elim) rule. The result would
look as follows (rules are based on [29]):2

A⇒ true B⇒ true ∧Intro
[A∧B]⇒ true

[A∧B]⇒ true
∧ElimA⇒ true

[A∧B]⇒ true
∧ElimB⇒ true

2The symbol ‘⊥’ stands for contradiction.
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A⇒ true ∨Intro
[A∨B]⇒ true

B⇒ true ∨Intro
[A∨B]⇒ true

[A∨B]⇒ true
(A⇒ true)
C⇒ true

(B⇒ true)
C⇒ true

∨ElimC⇒ true

(A⇒ true)
...

B⇒ true ⊃Intro
[A⊃ B]⇒ true

[A⊃ B]⇒ true A⇒ true
⊃ElimB⇒ true

⊥ ⊥IA⇒ true

([¬A]⇒ true)
⊥ ⊥CA⇒ true

Special cases of implication rules:

(A⇒ true)
⊥ ¬Intro

[¬A]⇒ true

A⇒ true [¬A]⇒ true
¬Elim⊥

Furthermore, recall that in the previous chapter we proved [⊃A [⊃ [⊃ A B]B]]⇒
true using H-derivation:

(6.8)

[A⊃ B]⇒ true A⇒ true
⊃ElimB⇒ true ⊃Intro

[[A⊃ B]⊃ B]⇒ true
⊃Intro

[A⊃ [[A⊃ B]⊃ B]]⇒ true

In general, if such derivation can be established we say that A is syntactically
derivable in the system of higher-level rules (i.e., H-derivable) and write it as
`H
C A⇒ true.

Hence, ‘`H
C’ denotes the (syntactic) derivability in the system of higher-level

rules, where C is the highest order of constructions. Syntactic derivability means
that we can demonstrate via higher-level logical rules (as presented above) that
some construction A constructs true. So `H

C A⇒ true essentially just states that
construction A always constructs true.

The system of higher-level logical rules presented above behaves as ordinary
Natural Deduction for propositional logic. Consequently, the proofs of soundness
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of completeness of this propositional fragment of eTILC would proceed in usual
manner, i.e., by structural induction on the complexity of formulas.

The only slight deviation is the definition of semantics of lower-level rules.
Recall that for us valuation is not just a function, rather part of execution rules for
constructions with free Variables – see our above derivations (3.5), (6.5), (6.6),
and (6.7) as well as section 4.3 where we discussed the definition of logical con-
nectives.

Note, however, that since semantics and syntax is not really two sides of the
same coin here, rather difference of scope (lower-level rules vs. higher-level
rules), any completeness results are rather awkward, although they still make
sense. It is no longer what follows vs. what can be shown to follow, but rather
what can be shown to follow “semantically” vs. what can be shown to follow “syn-
tactically” (remember section 5.2.1). In other words, the notions of L-derivability
and H-derivability should coincide. In the propositional fragment of our system,
we should not be able to derive with L-rules something that is not derivable with
H-rules and vice versa.

Remark Note that with the help of higher-level judgements, we can explicitly
formulate the semantics for our logical constants from chapter 4.3:

• ⊥⇒ f alse

• A⇒ true iff (vA
true)

• [¬A]⇒ true iff A⇒ f alse

• [A∧B]⇒ true iff A⇒ true and B⇒ true

• [A∨B]⇒ true iff A⇒ true or B⇒ true

• [A⊃ B]⇒ true iff A⇒ f alse or B⇒ true

6.3 Higher-level non-logical rules

As we hinted in previous section 5.2.2 the utility of having higher-level rules goes
beyond just the matters of convenience in regard to logical proofs.
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For example, we can use higher-level rules for dealing with other key notion
of TIL, which is congruency:

Two constructions will be called v-congruent if they v-construct one and the
same object or are both v-improper. Moreover, they will be called congruent
if they are v-congruent for any v.

([38], p. 62)

First, we need to introduce new form of judgement, which is reserved for con-
structions only:

A∼= B : (C)α

It can be read as “construction A is congruent with construction B of type (C)α”.
Analogously, A∼=v B : (C)α will be read as “A is v-congruent with B of type (C)α”.

Remark Note that congruency judgements of the form A ∼= B : (C)α are H-
judgements, even though the missing arrow ‘⇒’ might imply otherwise.

The corresponding Intro/Elim-rules (recall that we are no longer on the lower-
level governed by F/E-rules) can be then defined as follows:

A⇒ a : α B⇒ a : α Con-Intro
A∼= B : (C)α

Informally, two constructions A,B are congruent if they construct the same object.

A⇒v a : α B⇒v a : α
Con-Intro2

A∼=v B : (C)α

Two constructions A,B are v-congruent if they construct the same object at the
same valuation.

A⇒∅ B⇒∅ Con-Intro3
A∼= B : (C)α

Two constructions A,B are v-congruent if they are both v-improper.
The Elimination rules:

A⇒ a : α A∼= B : (C)α

Con-ElimB⇒ a : α
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Informally, if construction A constructs object a of type α and A is congruent with
B, we can derive that B constructs the very same object.

A⇒v a : α A∼=v B : (C)α

Con-Elim2B⇒v a : α

Same as above, but relative to valuation v.

For example:

[+ 5 7]⇒ 12 : N [− 13 1]⇒ 12 : N
Con-Intro

[+ 5 7]∼= [− 13 1] : (C)N

[+ 5 7]⇒ 12 : N [+ 5 7]∼= [− 13 1] : (C)N
Con-Elim

[− 13 1]⇒ 12 : N

Remark Interpreting the premise [+ 5 7]⇒ 12 of above H-derivation as “Assume
that [+ 5 7]⇒ 12” might sound odd: 5+ 7 equals 12, we do not need to assume
anything you might want to say. That is true, however, remember that +, 5, and
7 are not addition function and numbers, but constructions. And since we do not
know how they were formed (for that we need L-derivations), we can only assume
what they will produce. For example, the + construction could have been formed
not from function add but from function multiply – because it looks syntactically
like plus operation does not mean it is plus operation. So assuming results still
makes sense in this setup.

Being in possession of these rules can be very useful. Consider e.g., that we
have two constructions A and B and know only the result of A, but we also know
that they are congruent. Hence, we can get the result of the second construction B
for free, so to speak – we do not have to calculate it.

For example:

[+ 1 2]⇒ 3 : N [+ 1 2]∼= [− [× 1909 2] [÷ 19075 5]] : (C)N
Con-Elim

[− [× 1909 2] [÷ 19075 5]]⇒ 3 : N

In other words, we do not need to execute the construction

[− [× 1909 2] [÷ 19075 5]]

at all to get its result. It suffices to know that it is congruent with [+ 1 2] and that
this construction constructs 3.
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Remark Tichý in FFL relies only on congruency, but in principle there is nothing
preventing us from introducing new judgement forms capturing additional infor-
mation about constructions. E.g., we could introduce β -convertibility (equality)
judgements, that would look e.g., as [Succ 0] =β [λx [Succ x] 0] : C(NN), etc.

With our congruency judgements we can formalize Tichý’s assertions such as
([38], p. 226):

J1
wtx is congruent with ∃∗1λc.&[Z1

wtxc][Q1
wtc]

as3

[[[J1 w] t] x]∼= ∃Cλc [∧ [[[[Z1 w] t] x] c] [[[Q1 w] t] c] : (C)

Remark With H-judgements and H-rules we can emulate rules and consequently
derivations presented in [32]. To briefly demonstrate this consider e.g., the fol-
lowing derivation via (0-INST) rule ([32], p. 238)

0> : [p∧q], x : 05⇒ 0> : p
0> : [p∧q]⇒ 0> : p

which essentially establishes that if 0> : p follows from premise 0> : [p ∧ q]
and some additional assumption x : 05 (i.e., that Trivialization constructions 05
is proper), then it follows even without this additional assumption.4

The corresponding derivation would look in our system roughly as follows
(assuming adoption of the corresponding rule together with sequent style of H-
rules instead of Natural Deduction style utilized so far):

[p∧q]⇒ true, 5⇒ 5 ` p⇒ true
[p∧q]⇒ true ` p⇒ true

3‘∃λx A’ is shorthand for ‘[0∃ [λx A]]’. Also note that the binding is done solely via Closure.
4Expressions of the form a : A are called matches and they are essentially used to indirectly

state the results of constructions. E.g., (satisfied) match 0> : [p∧q] states that construction [p∧q]
constructs truth value true (or more precisely, that both [p∧q] and 0> v-construct the same object
true). For more, see [32].
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6.4 Higher-level judgements and improper construc-
tions

In previous section 5.3 we discussed improper constructions. Recall that with the
help of H-judgements we can explicitly state that some construction A is improper
as

A⇒∅

For example:
[÷ 3 0]⇒∅

states that Composition [÷ 3 0] is improper.
Analogously

[÷ 3 x]⇒x,0
v ∅

states that Composition [÷ 3 x] is improper given that valuation assigns 0 to Vari-
able x.

With judgements such as these ready, we can now formulate rules specifically
for dealing with improper constructions. E.g., some of the associated rules might
look as follows:

A⇒ a [A B]⇒∅
Imp1

B⇒∅

B⇒ b [A B]⇒∅
Imp2

A⇒∅

These rules state that if we have construction A that is not improper and we com-
pose it with some other construction B and the resulting Composition is improper,
then we can infer that B itself is an improper construction. Analogously the second
rule.

6.5 Double execution rule

Since our earlier restriction to first-order constructions only has been lifted off,
we can now attempt to tackle Double execution construction as well. Recall that
Tichý defines Double execution as follows:
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Definition 5 (Double execution).

If what is constructed by X is itself a constructions, one can execute X and
go on and execute the result. We shall speak of this two-stage construction
as the double execution of X and symbolize it as 2X. For any entity X, the
construction 2X is v-improper (i.e., yields, relative to v, nothing at all) if X
is not itself a construction, or if it does not v-construct a construction, or if it
v-constructs a v-improper construction. Otherwise 2X v-constructs what is
v-constructed by what is v-constructed by X.

([38], p. 64)

So Double execution executes constructions twice over in succession. More specif-
ically, it executes the result of the first execution. Of course, in our system Exe-
cution is no longer a construction, but a construction rule. Naturally, this should
extend to Double execution as well. Hence, we will have to devise new double
execution rule for constructions.

Before we get to the rule itself, let’s take a step back and look at the executions
again. We already know that we can write down the fact that e.g., “construction
[Succ 0] constructs upon execution object 1 of type N” as

[Succ 0]⇒ 1 : N

After the introduction of higher-order constructions, we also know that we can
state the fact that “construction JSucc 0K constructs upon execution object [Succ 0]
of type (C(NN),CN)” as5

JSucc 0K⇒ [Succ 0] : (C(NN),CN)

Now, with double execution, we are essentially going to introduce new kind
of H-judgement stating “construction JSucc 0K constructs upon double execution
object [Succ 0] of type (C(NN),CN)” that we will write down as

JSucc 0K⇒⇒ 1 : N

which virtually amounts to6

JSucc 0K⇒ [Succ 0]⇒ 1 : N
5Recall that ‘JSucc 0K’ stands for ‘0[Succ 0]’.
6This is, of course, not a valid form of a judgement (notice the symbol ‘⇒’ appears twice), we

are just using it to better explain the reasoning behind double execution.
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Hence, the basic idea of double execution is the following: it conceals one execu-
tion (or rather, runs it in the background) and yields back the result of executing
the result of this “implicit” execution. Hence, if we “unpack” it correctly, we
should rather end up with something like this

JSucc 0K⇒ [Succ 0] and [Succ 0]⇒ 1 : N

Let’s try to capture this behaviour of double execution in the form of a H-rule:

A : (K)⇒ B : C B : (C)⇒ b : α
DE

A : (K)⇒⇒ b : α

Note that the rule essentially expresses certain form of “transitivity”: “if A con-
structs B, and B constructs b (on single execution), then A constructs b (on double
execution)”.

So for the case above the corresponding derivation would look as follows:

JSucc 0K : K(C(NN),CN)⇒ [Succ 0] : (C(NN),CN) [Succ 0] : (C(NN),CN)⇒ 1 : N
DE

JSucc 0K : K(C(NN),CN)⇒⇒ 1 : N

Note that the rule (DE) is general enough, so we do not need to introduce
specific double execution rule for each construction (as was required on the lower-
level). This is due to the fact that (DE) is higher-level rule, not a lower-level rule.

For example, consider the case of second-order Variable s that constructs con-
struction Succ:

s : KC(NN) ⇒v Succ : C(NN) Succ : C(NN)⇒ succ : (NN)
DE

s : KC(NN) ⇒⇒v succ : (NN)

Remark The (DE) rule can be applied only to constructions of type K and higher.
Consider e.g., we try to double execute first-order construction:

[Succ 0] : (C(NN),CN)⇒ 1 : N 1 : N⇒∅
DE

[Succ 0] : (C(NN),CN)⇒⇒∅
This derivation is, however, not possible in our system, because the second premise
of the (DE) rule requires object of type C, i.e., a construction. In other words, we
do not allow non-executable objects to be executed, which seems as reasonable
restriction. In TIL, however, derivations such as this one are theoretically possible
due to the presence of constructions such as 11 (i.e., execution of non-construction
1).
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Remark It is possible to generalize the (DE) rule further beyond second-order
constructions. The crucial information to remember is that both premises have to
be always constructions, while the construction that appears in the second premise
to the left of ‘⇒’ has to be always of one order lower than the construction that
appears in the first premise to the left of ‘⇒’. Schematically:7

A : (C)n⇒ B : (C)n−1 B : (C)n−1⇒C : (C)n−2 DE2A : (C)n⇒⇒C : (C)n−2

where n is construction order. Of course, this schema would work only for con-
structions of type C3 and higher. Once A is of type C1, i.e., once we reach the limit
case where constructions start to construct non-constructions, we have to switch
to the earlier rule (DE).

7Remember that ‘C’ and ‘K’ stand for ‘C1’ and ‘C2’.



Chapter 7

Concluding remarks

Tichý wrote:

In modern logic and metamathematics it has become customary to study
constructions in an indirect way. Instead of dealing with constructions them-
selves, one deals with formulas which serve to express those constructions
in a particular notational system. The notion of construction has dropped, in
fact, from the conceptual system of modern logic altogether.

([22], p. 62)

Consequently, he let only constructions into his language. But, in a way, he was
guilty of the same oversight he criticized in others. He condemned them for their
“no constructions” approach, while he himself championed “only constructions”
approach.

We think there is a middle ground to be found, which we tried to show in
this work. System eTIL presented here advocates a moderate position of having
in language explicitly both constructions and non-constructions, which seems to
be ultimately the more general approach (not being able to talk about procedures
seems to be just as restrictive as not being able to speak about the results of these
procedures). In doing so, however, we depart greatly from the philosophy behind
TIL.

Štěpán recently wrote:1

1In Czech original: “Srovnáme-li inferencialismus s transparentní intenzionální logikou, máme
tu dva extrémy. TIL preferuje analýzu a má pro ni dobrý aparát. Pokud jde ale o dedukci, můžeme
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If we compare inferentialism and transparent intensional logic, we have two
extremes. TIL prefers analysis and has a good apparatus for it. But when
it comes down to deduction, we can always appeal back to Pavel Tichý’s
dictum: “Once we know what we are talking about, we will also know what
follows from what.” Therefore entailment remains mainly on the intuitive
level. But maybe it would be fruitful to somehow connect these two concep-
tions.

([42], pp. 121–122)

We agree with both of his last two points: (1) entailment in TIL as presented in
FFL indeed remains mostly just a matter of intuition only and (2) tipping the scales
away from analysis and more towards deduction would be indeed beneficial. After
all, eTIL is attempting exactly this, i.e., finding balance between these two so
called extremes.

But not only that. The work offered here is also an attempt to open up TIL to
new audiences by employing new method of explicit rules. A goal whose fulfil-
ment can be ultimately judged only by the individual readers. That said, however,
with eTIL we are not trying something new just for the sake of being new. There
are important aspects of TIL (How do we form constructions? What is exactly
execution? What it means that construction constructs something? etc. discussed
at length in chapters 2, 3, and 5) that require more elucidation if we wish to move
TIL as a whole forward. And it is these features that initially sparked the cre-
ation of eTIL – a system that tries to reconstruct TIL from ground up by our new
method of explicit rules.

With eTIL we proposed formal platform with enough rules to take TIL from
FFL off the ground. However, to turn it into truly full-fledged system for anal-
ysis of natural and formal languages yet even more is needed. As it currently
stands, it is still only a little more than proof of concept. The main focus of fu-
ture development should be especially in computations rules (including so called
conversions rules, partiality, substitution, and binding of Variables) and supplying
additional higher-level rules tailored specifically for dealing with more intricate
aspects natural language analysis.

se vždy odvolat na prohlášení Pavla Tichého: “Když budeme vědět, o čem mluvíme, budeme také
vědět, co z čeho vyplývá.” Tedy vyplývání zde zůstává především na intuitivní úrovni. Možná by
ale bylo plodné nějaké spojení obou koncepcí.”



Appendix A

Definitions from FFL

Key definitions from FFL. We keep the original list labels for better cross-referencing.

Definition 16.1. ([38], p. 66)

Let B be a base.

1. (t1i) Every member of B is a type of order 1 over B.

(t1ii) If 0 < m and α,β1...βm are types of order 1 over B then the collection
(αβ1...βm) of all m-ary (total and partial) mappings from β1...βm into
α is also a type of order 1 over B.

(t1iii) Nothing is a type of order 1 over B unless it so follows from (t1i) and
(t1ii).

2. (cni) Let τ be any type of order n over B. Every variable ranging over τ

is a construction of order n over B. If A is of (i.e., belongs to) type
τ then 0A, 1A, and 2A are constructions of order n over B. Every
variable ranging over τ is a construction of order n over B.

(cnii) If 0<m and X0,X1, ...,Xm are constructions of order n then [X0 X1...Xm]

is a construction of order n over B. If 0 < m, τ is a type of order n over
B, and Y as well as the distinct variables x1, ...,xm are constructions of
order n over B, then [λτ x1...xm Y] is a construction of order n over B.

(cniii) Nothing is a construction of order n over B unless it so follows from
(cni) and (cnii).
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Let ∗n be the collection of constructions of order n over B. The collection
of types of order n+1 over B is defined as follows:

(tn+1i) ∗n and every type of order n is a type of order n+1.

(tn+1ii) If 0 < m and α,β1, ...,βm are types of order n + 1 over B then the
collection (αβ1...βm) of all m-ary (total and partial) mappings from
β1, ...,β into α is also a type of order n+1 over B.

(tn+1iii) Nothing is a type of order n+1 over B unless it so follows from (tn+1i)
and (tn+1ii).

Definition 17.1 (Freedom of Variables). ([38], pp. 73–74)

Let d be a variable.

1. d is free in d.

2. If d is free in A then d is free in 1A and 2A. If d is free in X0 or X1 or ... or
Xm, then d is free in [X0X1...Xm]. If d is free in Y and is distinct from the
variables x1,..., xm then d is free in [λτx1....xmY].

3. d is not free in any construction unless it so follows from 1 and 2.

The substitution operation can be now defines as follows:

Definition 17.2 (Substitution). ([38], p. 74)

Let C and D be constructions and d a variable. If d is not free in C then the result
of substituting D for d in C is C. Assume, therefore, that d is free in C.

1. If C is d then the result of substituting D for d in C is D. If C is 1A or 2A
then the result of substituting D for d in C is 1B and 2B respectively, where
B is the result of substituting D for d in A.

2. If C is [X0X1...Xm] then the result of substituting D for d in C is [Y0Y1...Ym],
where Y0, Y1,..., and Ym are the results of substituting D for d in X0, X1,...,
and Xm, respectively. Now let C be of the form [λτx1...xmY]; for 1≤ i≤m,
let yi be xi if xi is not free in D, and otherwise the first variable of the same
type as xi, not occurring in C, not free in D, and distinct from y1,..., yi−1;
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then the result of substituting D for d in C is [λτy1...ymZ], where Z is the
result of substituting D for d in the result of substituting yi for xi (1≤ i≤m)
in Y.
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