
Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Validating Formal Descriptions of TCP/IP
Experimental Formal Semantics

Michael Norrish
Michael.Norrish@nicta.com.au

NICTA

September 2007

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Background

• This is joint work with Peter Sewell, Keith Wansbrough,
Tom Ridge, Steve Bishop, Andrei Serjantov, Michael
Fairbairn and Michael Smith (all at University of
Cambridge).

• Project began in 2001(?), with work on UDP by Sewell,
Serjantov and Wansbrough.

• UDP is a simple protocol, but work on a detailed
semantics became overwhelming for pen-and-paper
techniques.

• I joined the project to see if mechanical support might
be helpful (hence the choice of HOL4...)

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Work on UDP

• The mechanised semantics for UDP was not too large:
I proved a simple safety property in HOL.

• By hand, we also proved
• a timing property
• correctness properties for a heart-beat program built

using the sockets interface to UDP

• Next step was clear: move to TCP.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

1 Introduction
Beginning a TCP Specification

2 The Segment Level Specification
Use of HOL

3 Specification Validation
As a Theorem Proving Problem

4 The High Level Specification

5 Conclusion

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Motivation

TCP is critical Internet infrastructure.

Time spent specifying it is time well-spent:

• Users of the API know what to expect

• Future implementors have a better idea of what they
have to do

• It can be studied mathematically, not just empirically.

...implementing TCP correctly is very difficult
—Vern Paxson (SIGCOMM’97)

To which we add:

Using TCP and the Sockets API correctly is also
difficult

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Networking: The TCP/IP Protocols

TCP ICMP UDP

IP

sockets interface (C)

IP (Internet Protocol): unreliable asynchronous small
messages, delivered to IP addresses such as
128.34.1.14.

UDP (User Datagram Protocol): as above, but delivered to
IP address/Port pairs.

TCP (Transmission Control Protocol): duplex streams, with
retransmission, flow control, congestion
control, etc. Messages between IP/Port pairs.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Networking: The Sockets API

The Sockets API gives programmers levers with which to
control of the various internet protocols:

• Expression in C is ghastly (ntohs,
struct inaddr *. . .)

• Even stripped of C-isms, there are a plethora of
confusing entry-points (bind, listen, accept, connect,
close, socket, dupfd. . .)

• Specified in POSIX and the various implementations
(including Windows)

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Post Hoc Specification

We cannot tell the world’s TCP and OS implementors what
to do.

Our specification must reflect not only the existing
“specifications”:

• RFCs, POSIX, . . .

But also current practice, as enshrined in representative
implementations: Windows, BSD and Linux.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Writing a Huge Specification

This project was a test of theoretical machinery:

• An operational semantics with almost 200 reduction
rules (no recursion though)

• Handling of non-determinism
• timing: modelling the interleaving of asynchronous and

synchronous system calls, as well as packet arrival and
dispatch

• choices of values: under-specified behaviours cause
semantic states to take on constrained values for
attributes

• Quantified time: TCP is full of timed quantities, and
counters representing the passage of time.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Writing a Huge Specification

In addition to “inherent complexities”, we contended with
20–30 years of haphazard code evolution, resulting in

• the warped sockets API;

• specifications allowing a great deal of implementation
latitude;

• numerous ugly corner cases

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Specification: Where to Cut?

TCP ICMPUDP

IP

TCP ICMPUDP

IP

Global Application Global Application

IP network

Prog. Language

Dist. LibrariesDist. Libraries

Prog. Language

Sockets API

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Specification: Where to Cut?

TCP ICMPUDP

IP

Sockets API

Wire interface

tid ·vtid ·bind(fd , is ′

1, ps
′

1
)

msg

h

8

>

>

<

>

>

:

msg

The specification describes the evolution of hosts, which are
involved in six sorts of behaviours:

system calls in; syscall returns out; messages in; messages
out;

time elapsing; internal/unobservable state-changes.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Specification Language

The specification is written in higher-order logic.

Expressive:

• Supports natural, mathematical idiom

• Rich types (lists, sets, finite-maps, N, R)
• + user defined types (records, algebraic types)

• Captures non-determinism and under-specification easily

Clear:

• Has well-defined semantics

• Easy to write (non-expert CS people picked it up in a
week or so)

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

The Segment Level Specification

Our segment level specification (the “low level spec”)
describes

• the “on the wire” behaviour of hosts: the packets they
emit

• what programmers using the sockets API can expect

• the internal (hidden) state of hosts supporting the above

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

The Segment Level Specification

Our segment level specification (the “low level spec”)
describes

• the “on the wire” behaviour of hosts: the packets they
emit

• what programmers using the sockets API can expect

• the internal (hidden) state of hosts supporting the above

We have

• validated the specification against real implementations

• found bugs in the implementations

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Important Types: Segments

tcpSegment = 〈
is1 : ip option; (* source IP *)
is2 : ip option; (* destination IP *)
ps1 : port option; (* source port *)
ps2 : port option; (* destination port *)
seq : tcp seq local; (* sequence number *)
URG ,ACK : bool;
PSH ,RST : bool;
SYN ,FIN : bool;
win : word16; (* window size (unsigned) *)
mss : word16 option; (* maximum segment size *)
· · ·

〉

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Important Types: Hosts

host = 〈
arch : arch; (* architecture *)
privs : bool;
socks : sid 7→ socket;
ts : tid 7→ hostThreadState timed; (* threads *)
listen : sid list;
iq : msg list timed; (* messages in *)
oq : msg list timed; (* messages out *)
ticks : ticker
· · ·

〉

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Specification: A Sample Rule

bind 5 rp all: fast fail Fail with EINVAL: the socket is already bound to

an address and does not support rebinding; or socket has been shutdown for

writing on FreeBSD

h〈[ts := ts ⊕ (tid 7→ (Run)d)]〉

tid·bind(fd,is1 ,ps1)
−−−−−−−−−−−−→ h〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer)]〉

fd ∈ dom(h.fds) ∧ fid = h.fds[fd] ∧

h.files[fid] = File(FT Socket(sid),ff) ∧

h.socks[sid] = sock ∧

(sock .ps1 6= ∗ ∨

(bsd arch h.arch ∧ sock .pr = TCP PROTO(tcp sock) ∧ ...))

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Specification: A More Complicated Rule

deliver in 1 tcp: network nonurgent

Passive open: receive SYN, send SYN,ACK

h 〈[socks := socks ⊕ [(sid , sock)]; (* listening socket *)

iq := iq ; (* input queue *)

oq := oq]〉 (* output queue *)

τ
−→

h 〈[socks := socks ⊕
(* listening socket *)

[(sid ,Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es , csm, crm,
TCP Sock(LISTEN, cb, ↑ lis ′, [], ∗, [], ∗,NO OOB)));

(* new connecting socket *)

(sid ′,Sock(∗, sf ′, ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗, csm, crm,
TCP Sock(SYN RCVD, cb ′′, ∗, [], ∗, [], ∗,NO OOB)))];

iq := iq ′;
oq := oq ′]〉

(* check first segment matches desired pattern; unpack fields *)

dequeue iq(iq , iq ′, ↑(TCP seg)) ∧
(∃win ws mss PSH URG FIN urp data ack .

seg =
〈[is1 := ↑ i2; is2 := ↑ i1; ps1 := ↑ p2; ps2 := ↑ p1;

seq := tcp seq flip sense(seq : tcp seq foreign);
ack := tcp seq flip sense(ack : tcp seq local);
URG :=URG;ACK :=F;PSH := PSH ;
RST :=F;SYN :=T;FIN :=FIN ;
win :=win ;ws := ws ; urp := urp;mss := mss ; ts := ts ;
data := data

]〉 ∧
w2n win = win∧ (* type-cast from word to integer *)

option map ord ws = ws ∧
option map w2n mss = mss) ∧

(* IP addresses are valid for one of our interfaces *)

i1 ∈ local ips h.ifds ∧
¬(is broadormulticast h.ifds i1) ∧ ¬(is broadormulticast h.ifds i2) ∧

(* sockets distinct; segment matches this socket; unpack fields of
socket *)
sid /∈ (dom(socks)) ∧ sid ′ /∈ (dom(socks)) ∧ sid 6= sid ′ ∧
tcp socket best match socks(sid , sock)seg h.arch ∧
sock = Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es , csm, crm,

TCP Sock(LISTEN, cb, ↑ lis , [], ∗, [], ∗,NO OOB)) ∧

(* socket is correctly specified (note BSD listen bug) *)

((is2 = ∗ ∧ ps2 = ∗) ∨
(bsd arch h.arch ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2)) ∧
(case is1 of ↑ i1 ′ → i1 ′ = i1 ‖ ∗ → T) ∧
¬(i1 = i2 ∧ p1 = p2) ∧

(* (elided: special handling for TIME WAIT state, 10 lines) *)

(* place new socket on listen queue *)

accept incoming q0 lis T ∧
(* (elided: if drop from q0, drop a random socket yielding q0’) *)

lis ′ = lis 〈[q0 := sid ′ :: q ′

0]〉 ∧

(* choose MSS and whether to advertise it or not *)

advmss ∈ {n | n ≥ 1 ∧ n ≤ (65535− 40)} ∧
advmss ′ ∈ {∗; ↑ advmss} ∧

(* choose whether this host wants timestamping; negotiate with other
side *)
tf rcvd tstmp′ = is some ts ∧
(choose want tstmp :: {F;T}.
tf doing tstmp′ = (tf rcvd tstmp′ ∧ want tstmp)) ∧

(* calculate buffer size and related parameters *)

(rcvbufsize ′, sndbufsize ′, t maxseg ′, snd cwnd ′) =
calculate buf sizes advmss mss ∗ (is localnet h.ifds i2)

(sf .n(SO RCVBUF))(sf .n(SO SNDBUF))
tf doing tstmp′ h.arch ∧

sf ′ = sf 〈[n := funupd list sf .n[(SO RCVBUF, rcvbufsize ′);
(SO SNDBUF, sndbufsize ′)]]〉 ∧

(* choose whether this host wants window scaling; negotiate with other
side *)
req ws ∈ {F;T} ∧
tf doing ws ′ = (req ws ∧ is some ws) ∧
(if tf doing ws ′ then

rcv scale ′ ∈ {n | n ≥ 0 ∧ n ≤ TCP MAXWINSCALE} ∧
snd scale ′ = option case 0 I ws

else

rcv scale ′ = 0 ∧ snd scale ′ = 0) ∧

(* choose initial window *)

rcv window ∈ {n | n ≥ 0 ∧
n ≤ TCP MAXWIN∧
n ≤ sf .n(SO RCVBUF)} ∧

(* record that this segment is being timed *)

(let t rttseg ′ = ↑(ticks of h.ticks , cb.snd nxt) in

(* choose initial sequence number *)

iss ∈ {n | T} ∧

(* acknowledge the incoming SYN *)

let ack ′ = seq + 1 in

(* update TCP control block parameters *)

cb ′ =
cb 〈[tt keep := ↑((())

slow timer TCPTV KEEP IDLE
);

tt rexmt := start tt rexmt h.arch 0 F cb.t rttinf ;
iss := iss ; irs := seq;
rcv wnd := rcv window ; tf rxwin0sent :=(rcv window =0);
rcv adv := ack ′ + rcv window ; rcv nxt := ack ′;
snd una := iss ; snd max := iss + 1; snd nxt := iss + 1;
snd cwnd := snd cwnd ′; rcv up := seq + 1;
t maxseg := t maxseg ′; tadvmss := advmss ′;
rcv scale := rcv scale ′; snd scale := snd scale ′;
tf doing ws := tf doing ws ′;
ts recent := case ts of

∗ → cb.ts recent ‖

↑(ts val , ts ecr) → (ts val)TimeWindow

kern timer dtsinval
;

last ack sent := ack ′;
t rttseg := t rttseg ′;
tf req tstmp := tf doing tstmp′;
tf doing tstmp := tf doing tstmp′

]〉) ∧

(* generate outgoing segment *)

choose seg ′ :: make syn ack segment cb ′

(i1, i2, p1, p2)(ticks of h.ticks).

(* attempt to enqueue segment; roll back specified fields on failure *)

enqueue or fail T h.arch h.rttab h.ifds [TCP seg ′]oq
(cb
〈[snd nxt := iss ;

snd max := iss ;
t maxseg := t maxseg ′;
last ack sent := tcp seq foreign 0w;
rcv adv := tcp seq foreign 0w

]〉)cb ′(cb ′′, oq ′)

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Specification Tools

Somewhat more than just “vanilla” HOL4.

I wrote very little of the specification.

Specifiers who were new to HOL wrote the specification.
They:

• were happy with straight HOL syntax (didn’t want to
develop their own custom language and parse this to
HOL);

• developed a type-setting tool that was fed stereotyped
HOL script (would have surely been happy with
Isabelle’s facilities)

• blithely wrote in a style that was elegant, mathematical
and hard to execute

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Stress-Testing HOL4

Experience was a great opportunity to test and improve the
implementation:

• Error-reporting was improved.
E.g., Keith “welcome-to-the-1980s” Wansbrough
implemented line-number reporting on parse errors.

• Scaling problems were addressed:
• 150KB string literals
• records with 40+ fields became possible

(avoid nasty O(n2) behaviours)
• de Bruijn indices for term abstractions dropped

(and other kernel experiments)

• Spent a lot of time with the simplifier

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

How Do We Know It’s Right?

It would be surprising if a logical entity of this size did not
contain errors.

The specification is not really executable

• we did toy with the idea of trying to execute it in
concert with specially slowed-down real implementations

But we can test implementations against it.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Specification Validation and Testing
Initially, a post hoc specification must be held to be in error
if it doesn’t capture what the implementations do.

Once refined, implementations can be validated against it.

Spec.

Implementations

Validation

“Testing”

t
im

e

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Validation/Testing Problem

Observe two machines communicating.

Record trace of events (with time-stamps).

Check that trace of real-world events is compatible with
specification.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Validation/Testing Problem

Observe two machines communicating.

Record trace of events (with time-stamps).

Check that trace of real-world events is compatible with
specification.

Disagreement indicates

• specification is wrong (initially)

• a possible bug (later)

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

This is “Just” Testing

Testing programs with simple specifications is easy.

For example, simple observation + calculation can determine
if a program for calculating square roots has behaved
correctly.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

This is “Just” Testing

Testing programs with simple specifications is easy.

For example, simple observation + calculation can determine
if a program for calculating square roots has behaved
correctly.

With many tools (software model-checking, ESC/Java etc)
the programs analysed have implicit specification:

Does not do anything bad.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

This is “Just” Testing

Testing programs with simple specifications is easy.

For example, simple observation + calculation can determine
if a program for calculating square roots has behaved
correctly.

With many tools (software model-checking, ESC/Java etc)
the programs analysed have implicit specification:

Does not do anything bad.

With a specification as complicated as TCP’s, testing is a
hard problem.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Sample Trace Fragment

+0.073952s (#30)shutdown(FD 8, F, T) s
s+0.074312s (#32) Ation:TA OUTPUT �! SYN SENTsnd una=+0, snd max=+2, snd nxt=+2, iss=702020915 snd wl1=0, snd wl2=+0,snd wnd=0, snd wnd=1073725440, snd thresh=1073725440, snd reover=+0rv nxt=+0, rv adv=+57344, rv up=+0, irs=0 rv wnd=0 t maxseg=512 t dupaks=0t rttseg=73879974,702020915, ts reent=Closed snd sale=0, rv sale=0 last ak sent=0s+0.074397s (#34) ����� 702020916:0 (1:0) UAPRSF192.168.0.12:4275!192.168.0.99:200 win=57344ws=* urp=0 mss=* ts=73879977,0 len=0 �������������!s+0.074484s (#36) Ation:TA USER �! SYN SENTsnd una=+0, snd max=+2, snd nxt=+2, iss=702020915 snd wl1=0, snd wl2=+0,snd wnd=0, snd wnd=1073725440, snd thresh=1073725440, snd reover=+0rv nxt=+0, rv adv=+57344, rv up=+0, irs=0 rv wnd=0 t maxseg=512 t dupaks=0t rttseg=73879974,702020915, ts reent=Closed snd sale=0, rv sale=0 last ak sent=0+0.074567s (#38)OK() s s

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Outline

1 Introduction
Beginning a TCP Specification

2 The Segment Level Specification
Use of HOL

3 Specification Validation
As a Theorem Proving Problem

4 The High Level Specification

5 Conclusion

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

The Trace Checking Problem

Problem: Given an initial host h0 and a captured trace
ℓ1, . . . ℓn, determine if

∃h1 . . . hn. h0

τ
→*

ℓ1−→ h1

τ
→*

ℓ2−→ h2 . . .
τ
→*

ℓn−→ hn

The reduction relation, defining
ℓ

−→ (including ℓ = τ), is
given by the people writing the specification, and is subject
to change as validation proceeds.

This is “existential model checking”: can a path of the
specified type be exhibited by the given model?

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Why Validation is Hard

Specification is not (can not be) deterministic.

Though we know the initial state, and the observed
behaviours, there may be multiple paths possible

h0

ℓ1

τ
ℓ2

ℓ3

ℓ3

Xℓ2

ℓ1

ℓ2

τ
τ

ℓ3

The X indicates a state from which no τ or ℓ3 transition is
possible.

Backtracking is required from such a state.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

More Non-determinism:
Accumulating Constraint Sets

In addition to branching (“competition” between many
reduction rules), non-determinism arises within a single rule.

E.g.:
0 ≤ i < h.fld2

h
ℓ

−→ h〈fld1 := i〉

Every transition becomes associated with a set of constraints
that have to be true for that transition to have occurred.

States come to have symbolic values.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Accumulating Constraint Sets

The result is the proof of a sequence of theorems :

Γ0 ⊢ h0

ℓ0−→ h1

Γ0 ∪ Γ1 ⊢ h1

ℓ1−→ h2

Γ0 ∪ Γ1 ∪ Γ2 ⊢ h2

ℓ2−→ h3

· · ·

with each Γi being the set of constraints associated with the
ith transition.

The growing constraint sets have to be checked for
satisfiability at each step.

(This is computationally horrific.)

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Accumulating Constraint Sets

The result is the proof of a sequence of theorems :

Γ0 ⊢ h0

ℓ0−→ h1

Γ0 ∪ Γ1 ⊢ h1

ℓ1−→ h2

Γ0 ∪ Γ1 ∪ Γ2 ⊢ h2

ℓ2−→ h3

· · ·

with each Γi being the set of constraints associated with the
ith transition.

The growing constraint sets have to be checked for
satisfiability at each step.

At end of process can “ground” complete trace by finding
values satisfying all constraints.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Typical Constraints

pending (cb’_0_t_rttvar =

MAX (1 / 1600)

((1 + (abs delta - 1 / 40) * 10) / 40))

pending (cb’_0_t_srtt = MAX (1 / 3200)

((2 + delta * 5) / 40))

pending (delta = r / 100 - 1 / 100 - 1 / 20)

pending (r = real_of_int (ticks_of ticks’22 -

SEQ32 Tstamp 152410675w))

MIN 64 (MAX 1 (cb’_0_t_srtt + 4 * cb’_0_t_rttvar)) = 1

r <= 6

3 <= 160 * cb’_0_t_rttvar

19 <= 400 * cb’_0_t_srtt

100 <= 25 * r

800 * cb’_0_t_rttvar <= 19

20 * cb’_0_t_srtt <= 1

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Typical Constraints

pending (cb’_0_t_rttvar =

MAX (1 / 1600)

((1 + (abs delta - 1 / 40) * 10) / 40))

pending (cb’_0_t_srtt = MAX (1 / 3200)

((2 + delta * 5) / 40))

pending (delta = r / 100 - 1 / 100 - 1 / 20)

pending (r = real_of_int (ticks_of ticks’22 -

SEQ32 Tstamp 152410675w))

MIN 64 (MAX 1 (cb’_0_t_srtt + 4 * cb’_0_t_rttvar)) = 1

r <= 6

3 <= 160 * cb’_0_t_rttvar

19 <= 400 * cb’_0_t_srtt

100 <= 25 * r

800 * cb’_0_t_rttvar <= 19

20 * cb’_0_t_srtt <= 1

What is pending all about?

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Lazy Handling of Equality Constraints

Many constraints in a Γi are equalities on freshly introduced
variables. (Often in turn derived from let expressions in the
specification.)

pending is used to “tag” equalities that shouldn’t be
eliminated, like

v = if P then e1 else e2

Only substitute out “values”. E.g.,

• v = 4

• v = SOME 4

• v = h :: t

In h :: t, sub-expressions h and t may still be complicated.
— Only substitute out the “cons”, inventing fresh

variable bindings for h and t

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Handling High-Level Specification Idioms

Specification often seemed to be written to cause me
maximum pain:

• Use of complicated set comprehensions

• Use of non-injective patterns

• General use of a declarative style

• . . .

In all cases, it’s important to keep the original specification.

• If I force the specifiers to write Prolog programs, we
lose HOL’s advantages.

• The response is to prove logical equivalences,
“translating” the high-level expressions into more
executable forms.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Non-injective Pattern-Matching

Specifiers like to write things like:

side conditions

h〈fld1 := v1〉
ℓ

−→ h〈fld1 := v2; fld2 := 10〉

When we try to discover if our current host can make this
transition, there is no unique h to choose.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Non-injective Pattern-Matching

Specifiers like to write things like:

side conditions

h〈fld1 := v1〉
ℓ

−→ h〈fld1 := v2; fld2 := 10〉

When we try to discover if our current host can make this
transition, there is no unique h to choose.

For records (like hosts), programmatically rewrite above to

side conditions

〈fld1 := v1; fld2 := v ′

2
; · · ·fldn := vn〉

ℓ
−→

〈fld1 := v2; fld2 := 10; · · ·fldn := vn〉

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Non-injective Pattern-Matching & (Finite) Maps

If a specifier writes

side conditions

h〈ts := tids ⊕ (t 7→ v)〉
ℓ

−→ h〈ts := tids ⊕ (t 7→ v ′)〉

we can’t expand the ts map into a function with a fixed
domain as we did with records.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Non-injective Pattern-Matching & (Finite) Maps

If a specifier writes

side conditions

h〈ts := tids ⊕ (t 7→ v)〉
ℓ

−→ h〈ts := tids ⊕ (t 7→ v ′)〉

we can’t expand the ts map into a function with a fixed
domain as we did with records.

Rewrite (again, programmatically!) to

side conditions t ∈ dom(f) f(t) = v

h〈ts := f〉
ℓ

−→ h〈ts := f ⊕ (t 7→ v ′)〉

(Some finite map idioms are not this simple.)

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

The Streams Level Specification

• The specification at the segment level is
• good for implementors
• bad (difficult) for users

• TCP implements an abstraction: two reliable streams
between the local and remote end-points

• Can we provide a validated streams level specification of
TCP/IP?

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

First, Write Your Streams Level Specification

The Cambridge specifiers wrote a specification that:

• replaces segment movements with reads and writes to
pairs of streams

• drastically reduces the complexity of hosts (TCP control
blocks disappear)

• retains accurate descriptions of error cases in the
Sockets API

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Second, Abstract From Low to High

The next step is to write two abstraction functions:

• One, low-state → high-state removes extraneous detail
from hosts, and calculates the state of the streams

• Another, low-label → high-label translates low-level
observations into high-level observations.

• Socket calls remain the same;
• Packet movements on the network become

unobservable τ transitions

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Third, Validate High-Level Specification

Every trace that is to be validated at the high level
has already been validated at the low level.

Consequently:

• have a sequence of low-level hosts witnessing the trace

• know which reduction rules were chosen at the low level
(high-level rules were written to correspond)

So, high-level validation is much simpler. . .

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

High-Level Validation Problem

Given concrete h0, h, ℓ and the particular rule to check
(SomeRule), determine if

h0

ℓ
−→ h

SomeRule

• There are no symbolic values in h.

• Can find witnesses for any existential variables in
SomeRule’s side conditions immediately

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Results

We ran approx. 2000 segment level tests on each of
Windows, BSD and Linux.

Over 90% of traces now succeed. (Focus on BSD’s TCP.)

So, we’re confident our specification is

• Precise

• Accurate

We also found what must be bugs. . .

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Sample TCP Bugs

• incorrect RTT estimate after repeated retransmission
timeouts

• TCPSHAVERCVDFIN wrong — so can SIGURG a closed
connection

• initial retransmit timer miscalculation

• simultaneous open responds with ACK instead of
SYN,ACK

• receive window updated even for bad segment

• urgent pointer not updated in fastpath (so after 2GB,
won’t work for 2GB)

• shutdown state changes in pre-established states

• (Linux) sending options in a SYN,ACK that were not
received in SYN

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Using Our Technology in Other Settings

Work on TCP is well-motivated.

But, the approach is well-suited to the design and testing of
new protocols too.

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Using Our Technology in Other Settings

Work on TCP is well-motivated.

But, the approach is well-suited to the design and testing of
new protocols too.

In fact, starting by writing a formal specification may make
things easier:

• Can write spec. to be executable

• Avoids dangerous hand-waving

• Gives implementors a clear target

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Functional Specifications

Writing a full functional specification can be a massive

undertaking.

Circumstances when it can be worthwhile:

• Critical applications

• When multiple (interoperating?) implementations are
expected

An ideal specification

• Is mechanically manipulable

• Is written in expressive language

• Does not specify too much

• Has a clear meaning

Validating Formal
Descriptions of

TCP/IP

Michael Norrish

Introduction

Beginning a TCP
Specification

The Segment Level
Specification

Use of HOL

Specification
Validation

As a Theorem
Proving Problem

The High Level
Specification

Conclusion

Mechanising a Specification

Specifications should be

• written in advance; and

• with mechanisation in mind

This is not difficult, and focussing the mind early is of great
benefit to a design.

A mechanised specification then allows efficient testing of a
new implementation.

This was done successfully by Ridge, Sewell, Dales and
Jansen in the design of a new optical switch (with Intel
Research).

	Introduction
	Beginning a TCP Specification

	The Segment Level Specification
	Use of HOL

	Specification Validation
	As a Theorem Proving Problem

	The High Level Specification
	Conclusion

