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Abstract

Belief revision is the process of revising epistemic states
in the light of new information. In this paper epistemic
states are represented in the framework of Spohn’s Ordi-
nal Conditional Functions (OCF). The input is a consis-
tent set of propositional formulas issued from different
and independent sources.
We focus on the so-called multiple iterated belief c-
revision recently proposed by Kern-Isberner. We pro-
pose a computation of c-revision when epistemic states
are compactly represented by weighted propositional
knowledge bases, called OCF knowledge bases.

Introduction
Intelligent agents need to update their knowledge, or epis-
temic states, on the basis of new observations on their envi-
ronment. This problem is known as the one of belief revision
and is axiomatically characterized by the well known AGM
postulates (Alchourrón, Gärdenfors, and Makinson 1985;
Hansson 1997).

There are at least three issues that need to be addressed
when modeling a belief revision problem.

The first issue concerns the representation of initial epis-
temic states. An epistemic state should at least contain a set
of accepted beliefs. It also contains some meta-information
which is very useful for defining a meaningful belief revi-
sion operation. A simple representational format of an epis-
temic state is a closed set of propositional formulas, called
a belief set. However, epistemic states have in general a
complex structure. They can be represented by a total pre-
order over a set of propositional interpretations (Katsuno
and Mendelzon 1991), a probability distribution, a possi-
bility distribution (Dubois and Prade 1988), an ordinal con-
ditional function or simply an OCF function (Spohn 2012;
Williams 1995; Beierle, Hermsen, and Kern-Isberner 2014;
Benferhat et al. 2002), a set of conditionals (Kern-Isberner
2004; 2001; Kern-Isberner and Eichhorn 2014; Benferhat,
Dubois, and Prade 1999; Goldszmidt and Pearl 1997), a
partial pre-order over a set of interpretations (Benferhat,
Largue, and Papini 2005; Touazi, Cayrol, and Dubois 2015;
Ma, Benferhat, and Liu 2012).

The second issue concerns the representation of the input
or the new information. The input can be a simple obser-
vation over a static world, a result of an action or even a

result of an intervention (external action) that forces some
variables to take specific values (Pearl 2000). The input can
be simply a propositional formula, a set of propositional
formulas, a partial or total pre-order on a set of interpre-
tations, a set of uncertain and mutually exclusive formulas
inducing a partition of a set of interpretations (Jeffrey 1965;
Dubois and Prade 1997), etc.

The third issue concerns the definition of a revision op-
eration where from an initial epistemic state and the input
produces a new epistemic state. This new epistemic state
should at least satisfy two requirements. Firstly, it should ac-
cept the input. Secondly, it should be as close as possible to
the initial epistemic state. Depending on the representation
of epistemic states and on a the nature of the input, a large
number of revision operations (e.g. (Benferhat et al. 2000;
Falappa et al. 2012; Hansson 1998; Konieczny, Grespan,
and Pérez 2010; Papini 1992)) or contraction operations
(e.g. (Adaricheva et al. 2012; Booth, Meyer, and Varzinczak
2009; Delgrande and Wassermann 2010)) has been pro-
posed in the literature. Other approaches that deal with in-
consistency have also been proposed in (e.g. (Konieczny,
Lang, and Marquis 2005; Qi, Liu, and Bell 2006; Benferhat,
Dubois, and Prade 1993; 1998)).

The framework considered in this paper for representing
epistemic states is the one of ordinal conditional functions
OCF (Spohn 2012). We will analyze the so-called multiple
iterated propositional c-revision recently proposed in (Kern-
Isberner and Huvermann 2015). An important feature of c-
revision is that it can be iterated since initial and revised
epistemic states are both represented by OCF distributions.
The iterated belief c-revision has as input a consistent set of
propositional sentences S assumed to be provided by differ-
ent and independent sources. The revised ordinal conditional
distribution should accept all sentences of the input. Inde-
pendence relations between information sources are repre-
sented by the fact that counter-models of S are ranked with
respect to the number of falsified propositions in S. Namely,
the more an interpretation falsifies formulas in S, the less it
is a preferred interpretation.

Multiple iterated belief c-revision has been shown to
satisfy all natural and rational properties given in (Kern-
Isberner and Huvermann 2015). However, c-revision is only
defined at the semantic level (over the set of interpreta-
tions) which is impossible to be provided in pratice if the



set of variables is important. This paper addresses this is-
sue by providing an equivalent characterization of c-revision
defined on a compact representation of ordinal conditional
functions over the set of interpretations. An OCF over a set
of interpretations will be compactly represented by a set of
weighted formulas called OCF knowledge bases.

The rest of this paper is organized as follows. Section 2
gives a refresher on OCF distributions and on their compact
representations OCF knowledge bases. Section 3 presents
the multiple iterated belief c-revision defined on OCF dis-
tributions. Section 4 shows how multiple iterated belief c-
revision can be directly defined on OCF knowledge bases.
Section 5 concludes the paper.

OCF-based representations of epistemic states
Let L denote a finite propositional language and Ω be the
set of propositional interpretations. We will denote by ω an
element of Ω. Greek letters φ, ψ, ... represent propositional
formulas. � denotes a propositional logic satisfaction rela-
tion.

In belief revision, epistemic states represent a set of all
available beliefs. There are different representations of epis-
temic states: an uncertainty (probability, possibility, etc)
distributions, a total pre-order over Ω, a partial pre-order
over Ω, etc. In this paper, we use ordinal conditional func-
tions (OCF) to represent epistemic states (Spohn 2012;
Touazi, Cayrol, and Dubois 2015; Williams 1995).

An OCF distribution can be simply viewed as a function
that assigns to each interpretation ω of Ω an integer denoted
by k(ω). k(ω) represents the degree of surprise of having
ω as being the real world. k(ω) = 0 means that nothing
prevents ω for being the real world. k(ω) = 1 means that
ω is somewhat surprising to be the real world. k(ω) = +∞
simply means that it is impossible for ω to be the real world.

Example 1: Let a and b be two propositional symbols. Table
1 gives an example of an epistemic state represented by an
OCF distribution k:

ω k(ω)
ab 4
¬ab 1
a¬b 1
¬a¬b 0

Table 1: An example of an OCF distribution

From Table 1, the most normal state of world is the one
where both a and b are false. A surprising world (with a
degree of surprise 1) is the one where either a or b is true.
A more surprising world (with a degree of surprise 4) is the
one where both a and b are true.

From an OCF distribution k, one can induce a degree of
surprise over formulas φ of L, simply denoted by k(φ) and
defined by:

k(φ) = min{k(ω) : ω ∈ Ω, ω � φ}. (1)

For example, from Table 1 we have k(¬a ∨ ¬b) =
min(k(¬a¬b), k(¬ab), k(a¬b)) = 0 while k(a ∨ b) = 1.

Given an OCF distribution, a set of accepted beliefs is a
propositional formulas such that its models are those having
minimal surprise degrees in k. In Example 1, the set of ac-
cepted beliefs is represented by the propositional formulas
¬a ∧ ¬b.

In practice, an OCF distribution k cannot be provided
over a set of interpretations Ω (except if the number of
propositional variables is small). A compact representation
may be provided using for instance the concept of OCF
networks (Kern-Isberner and Eichhorn 2013; Benferhat and
Tabia 2010; Darwiche and Goldszmidt 1994; Eichhorn and
Kern-Isberner 2014) or the concept of weighted proposi-
tional knowledge bases.

In this paper, we only consider weighted propositional
knowledge bases, simply called OCF knowledge bases and
denoted by K. An OCF knowledge base is a set of weighted
formulas of the form K = {(φi, αi) : i = 1, .., n} where
φi’s are propositional formulas and αi’s are positive inte-
gers. The higher is the certainty degree αi, the more certain
is the formula φi. When αi = +∞ this means that φi repre-
sents an integrity constraint that should absolutely be satis-
fied. Formulas with a certainty degree equal to ‘0’ are not
explicitly stated in K. Weighted or prioritized knowledge
bases have been intensively used in the literature for han-
dling uncertainty (such as in a possibilistic logic framework
(Lang 2001; Benferhat 2010)) or for handling inconsistency.

Given an OCF knowledge base K, one can induce a
unique OCF distribution, denoted by kK and defined by:

∀ω ∈ Ω,

kK(ω) =

{
0 if ∀(φi, αi) ∈ K, ω � φi

max {αi : (φi, αi) ∈ K, ω 2 φi} otherwise.
(2)

Namely, kK(ω) is associated with the highest certain for-
mulas in K falsified by ω. Models of formulas in K are con-
sidered as the most normal interpretations (hence they have
a surprise degree equal to 0). Clearly, the concepts of OCF
distributions and OCF knowledge bases are very close to the
concepts of possibility distributions and possibilistic knowl-
edge bases used in a possibility theory framework (Dubois
and Prade 1988), where instead of using a set of integers, the
unit interval [0,1] is used.

Example 2: let K = {(¬a ∨ ¬b, 4), (¬a, 1), (¬b, 1)}. This
knowledge base means that we are somewhat certain that
a and b are both false and we are even more confident if
only one of them is false. One can easily check that applying
Equation (2) to the knowledge base K will simply lead to the
OCF distribution given in Table 1. For instance, kK(a∧b) =
max {αi : (φi, αi) ∈ K, a ∧ b 2 φi} = max{4, 1, 1} = 4.

C-revision of OCF distributions
Several works have been proposed for revising OCF dis-
tributions. For instance, in (Williams 1995) a general
form of changing OCF distributions, called transmutations
(Williams 1994), has been proposed. In (Kern-Isberner



2001; Kern-Isberner and Eichhorn 2014) a revision of OCF
distributions with a set of conditionals has also been pro-
posed.

In this section, we focus on a so-called multiple iterated
belief c-revision proposed in (Kern-Isberner and Huvermann
2015) for revising an OCF distribution with a consistent set
of propositional formulas S = {u1, .., un}. In order to have a
faithfull revision operation, each propositional formula ui is
associated with an integer βi. These integers βi’s are not ex-
plicitly stated by the user, but they are implicitly constrainted
as it will be shown below. More precisely:

Definition 1: Let k be an OCF distribution. Let S =
{u1, .., un} be a consistent finite set of propositional formu-
las. Then the propositional c-revision of k with S, denoted
by k ∗ S, is defined by:

∀ω ∈ Ω, k ∗S(ω) = k(ω)− k(u1 ∧ ..∧un) +

n∑
i=1, ω�¬ui

βi,

(3)
where (β1, .., βn) are positive integers satisfying:

∀i, βi > k(u1∧..∧un)− min
ω�¬ui

{k(ω)+

n∑
j 6=i, ω�¬uj

βj} (4)

The revision process given in Equation (3) first consists
in shifting up each interpretation ω with the sum of weights
βi’s of propositional formulas ui that it falsifies. The expres-
sion “−k(u1 ∧ .. ∧ un)” is a normalization term that guar-
antees that min{k ∗ S(ω) : ω ∈ Ω} is equal to zero. Propo-
sitional formulas from S are assumed to be issued from in-
dependent sources. Hence, interpretations will be compared
with respect to the number of falsified formulas. This is re-

flected by the expression “
n∑

i=1, ω�¬ui

βi ” in the definition of

the resulted revised OCF k ∗ S.

Example 3: Let us continue our example and consider the
OCF distribution given in Table 1 (which is the same dis-
tribution as the one given in (Kern-Isberner and Huvermann
2015)). Assume that S = {a, b}. Let β1 and β2 the weights
associated with a and b respectively. We have k(a ∧ b) = 4
and using Equation (3) we get:

ω k ∗ S(ω)
ab 0
¬ab β2 − 3
a¬b β1 − 3
¬a¬b β1 + β2 − 4

Table 2: The result of revising k, given in Table 1, by S =
{a, b}

Using Table 1, Equation (4) gives: β1 > 4 −min(1 − β2)
and β2 > 4−min(1− β1) which are equivalent to β1 > 3
and β2 > 3.

Clearly, the c-revision is characterized by a set of parame-
ters (weight). Each set of parameters induces an OCF distri-
bution. In (Kern-Isberner and Huvermann 2015) a so-called

minimal c-revision has also been proposed. This is obtained
by considering only vectors of weights (β1, .., βn) that sat-
isfy Equation (4) and which are pareto-optimal. In the above
example, a minimal c-revision is obtained when β1 and β2
are both assigned the degree of 4.

Note that the input considered in multiple iterated belief
c-revision is different from the notion of uncertain input pro-
posed in (Jeffrey 1965) for conditioning probability distri-
butions. Indeed, in Jeffrey’s rule of conditioning the input
represents a partition of the set interpretations Ω, while in
c-revision the input is a consistent set of propositional for-
mulas.

Syntactic representations of c-revision
The aim of this section is to describe the syntactic represen-
tations of multiple iterated belief c-revision when OCF dis-
tributions are encoded by means of OCF knowledge bases.
More precisely, let K be an OCF knowledge base and kK
be its associated OCF distribution obtained using Equation
(2). Let S be an input. The aim of this section is to compute,
from K and S = {u1, .., un}, a new OCF knowledge base
K′ such that:

∀ω, kK′(ω) = kK ∗ S(ω),

where kK′ and kK are the OCF distributions associated with
K′ and K using Equation (2).

To achieve this aim, we proceed in four steps:
• Compute k(u1 ∧ .. ∧ un).
• Compute the syntactic counterpart of adding an

OCF distribution k with a binary possibility dis-
tribution.
• Compute the syntactic counterpart of the c-

revision of K with S for a fixed vector of integers
(β1, .., βn) associated with formulas of S.
• Provide the syntactic counterpart of the set of

inequalities that the weights βi’s should satisfy
(see Equation (4)).

The following subsections provide details of each of the
above steps.

Computing k(u1 ∧ .. ∧ un)
The aim of this subsection is to compute k(u1 ∧ .. ∧ un)
directly from an OCF knowledge base K. As is it shown in
the following proposition, computing k(u1 ∧ ..∧un) comes
down to compute the highest rank α such that formulas of
K having a weight higher than or equal to α are inconsistent
with u1 ∧ .. ∧ un. More precisely:

Proposition 1: Let K be an OCF knowledge base and kK be
its associated OCF distribution using Equation (2). Let S =
{u1, .., un} be a consistent set of propositional formulas. Let
K≥α be the α-cut of K defined by K≥α = {φj : (φj , γj) ∈
K, γj ≥ α}. Then:

kK(u1∧..∧un) = max{αi : K≥αi
∧(u1∧..∧un) is inconsistent}.

Proof. By definition, we have:
kK(u1 ∧ .. ∧ un) = minω�u1∧..∧un kK(ω)

= minω�u1∧..∧un max{αi : (φi, αi) ∈



K, ω 2 φi}
= minω�u1∧..∧un max{αi : (φi, αi) ∈

K, ω � ¬φi ∧ u1 ∧ .. ∧ un}
= max{αi : K≥αi ∧ (u1 ∧ .. ∧ un) is
inconsistent}.

From computational point of view, computing k(u1 ∧ ..∧
un) needs O(log2m) calls to a satisfiability test of a set of
clauses, where m is the number of different degrees used in
K.

Example 4: Let us continue our example. Recall that K =
{(¬a ∨ ¬b, 4), (¬a, 1), (¬b, 1)} and that its associated OCF
distribution is given in Table 1. Let S = {a, b}. From Table
1, we have k(a ∧ b) = 4. One can easily check that:

max{αi : K≥αi
∧(a∧b) is inconsistent} = k(a∧b) = 4.

Next subsection is devoted to a syntactic computation of
the result of adding an OCF distribution with a binary OCF
distribution. A binary OCF distribution k′ is an OCF distri-
bution where the degree of surprise of each interpretation ω
is either equal to 0 (namely, k′(ω) = 0) or is equal to some
constant β (k′(ω) = β). Intuitively, a binary distribution will
represent a weighted formula (ui, βi) of the input (models of
ui will have 0 degree, while counter-models of ui will have
a surprise degree equal to βi).

Syntactic computations of adding an OCF
distribution with a binary OCF distribution
The aim of this section is to provide a syntactic counterpart
of:

∀ω ∈ Ω, k′(ω) = k(ω) +

n∑
i=1,ω2¬ui

βi, (5)

where βi’s are weights associated with each propositional
formula ui of S.

More precisely, our aim is to compute a new knowledge
base K′, from K and S = {u1, .., un}, such that

∀ω ∈ Ω, kK′(ω) = k′(ω) = k(ω) +

n∑
i=1,ω2¬ui

βi.

Equation (5) is clearly a part of the definition of c-revision
given by Equation (3).

Let us first denote kui
the binary OCF distribution associ-

ated with (ui, βi) and defined by:

∀ω ∈ Ω, kui
(ω) =

{
0 if ω � ui

βi otherwise.

Clearly, Equation (5) can be rewritten as:

∀ω ∈ Ω, k′(ω) = k(ω)+ku1
(ω)+...+kun

(ω). (6)

The following proposition gives the counterpart of com-
bining k(ω) with some individual and binary distribution
kui

:

Proposition 2: Let K be an OCF knowledge base. Let
(ui, βi) be a weighted propositional formula. Let K′ =

{(ui, βi)} ∪K ∪ {(ui ∨ φj , αj + βi) : (φj , αj) ∈ K}.
Then:

∀ω ∈ Ω, kK′(ω) = k(ω) + kui(ω),

where k and kK′ are the OCF distributions associated with
K and K′ using Equation (2).

Proof. Let ω ∈ Ω. We distinguish four cases depending
whether ω is a model (or not) of ui and formulas in K:

a) ω � ui and ∀(φj , αj) ∈ K ω � φj .Namely, ω is a model
of ui and satisfies all formulas in K. In this case kK′(ω) =
0 since k(ω) = 0 and kui(ω) = 0.

b) ω � ui (hence, ω � ui ∨ φj for each (φj , αj) ∈ K) and
∃(φj , αj) ∈ K such that ω 2 φi. In this case, kK′(ω) =
kK(ω) since kui

(ω) = 0.
c) ω 2 ui and ∀(φj , αi) ∈ K we have ω � φj (hence ω �
ui ∨ φj for each (φj , αj) ∈ K). Hence, kK′(ω) = ku(ω)
since k(ω) = 0.

d) ω 2 ui and ∃(φj , αj) ∈ K such that ω 2 φj . Namely, ω
is neither a model of ui nor a model of all propositional
formulas in K. Then by definition:

kK′(ω) = max{βi,max{αj : (φj , αj) ∈ K ω 2 φj},
max{αj + βi : (φj , αj) ∈ K ω 2 φj}}

= max{αj : (φj , αj) ∈ K, ω 2 φj}+ βi

= kK(ω) + ku(ω).

Note that Proposition 2 is similar to the syntactic fusion
mode proposed in (Benferhat, Dubois, and Prade 1997) in a
possibility theory framework. From Proposition 2, trivially
in the worst case the size of K′ is 2∗|K|+1, and the compu-
tation of the OCF knowledge base K′ is done in linear time
with respect to the size of K.
Clearly, the repetitive application of Proposition 2 on each
propositional formula ui of S allows us to provide the syn-
tactic counterpart of Equation (6).

Example 5: Let us continue our example. We recall that
K = {(¬a ∨ ¬b, 4), (¬a, 1), (¬b, 1)} and S = {a, b}.
Applying Proposition 2 on K and (a, β1) gives:

K′ = {(¬a ∨ ¬b, 4), (¬a, 1), (¬b, 1)} ∪ {(a, β1)}
∪ {(a ∨ ¬b, 1 + β1)}

Again, applying Proposition 2 on K′ and (b, β2) gives:

K′′ = {(¬a ∨ ¬b, 4), (¬a, 1), (¬b, 1), (a, β1), (a ∨ ¬b, 1 +
β1)} ∪ {(b, β2)} ∪ {(¬a ∨ b, 1 + β2), (a ∨ b, β1 + β2)}
Namely

K′′ ≡ {(¬a ∨ ¬b, 4), (a, β1), (b, β2), (a ∨ ¬b, 1 + β1),
(¬a ∨ b, 1 + β2), (a ∨ b, β1 + β2)}

(since (a, β1) and (¬a ∨ b, 1 + β2) leads to
(b,min(β1, β2 + 1)) and (b, β2) and (a ∨ ¬b, 1 + β1)
leads to (a,min(β2, β1 + 1)))

K′′ ≡ {(¬a ∨ ¬b, 4), (a ∨ ¬b, 1 + β1), (¬a ∨ b, 1 + β2),
(a ∨ b, β1 + β2)}.



From Table 3, we have:

∀ω ∈ Ω kK′′(ω) = kK(ω) + ka(ω) + kb(ω).

Ω ka kb kK kK′′
ab 0 0 4 4
a¬b 0 β2 1 1 + β2
¬ab β1 0 1 1 + β1
¬a¬b β1 β2 0 β1 + β2

Table 3: The resulting of adding OCF kK with two binary
distributions ka and kb

The last step is to compute the syntactic computation of
c-revision. Namely, to compute the counterpart of Equation
(3). This is the aim of next subsection.

Computing c-revision
The following Lemma will help us in providing the syntactic
computation of multiple iterated belief c-revision operation.

Lemma 1: Let K be an OCF knowledge base and S =
{u1, .., un} be a consistent set of propositional formulas. Let
K′ = {(φi, αi − k(u1 ∧ .. ∧ un)) : (φi, αi) ∈ K}. Then:

∀ω ∈ Ω, kK′(ω) = k(ω)− k(u1 ∧ .. ∧ un),

where k and kK′ are the OCF distributions associated with
K and K′ respectively.

The proof is immediate since by definition:

∀ω ∈ Ω, kK′(ω) = max{αi−k(u1∧ ..∧un) : (φi, αi) ∈
K, ω 2 φi}

= max{αi : (φi, αi) ∈ K, ω 2 φi} −
k(u1 ∧ .. ∧ un)

= k(ω)− k(u1 ∧ .. ∧ un).

Now, to get the syntactic computation of k ∗ S, (the result of
applying multiple iterated belief c-revision on k and S using
Equation (3)) it is enough to apply Proposition 2 on each
element of S, and then apply Lemma 1.

Clearly, the computation of K′ in Lemma 1 is done in
linear time with respect to the size of k (once k(u1∧ ..∧un)
is already computed).

Example 6: Let us continue our example. Recall that from
Example 5 we have:

K′′ = {(¬a ∨ ¬b, 4), (a ∨ ¬b, 1 + β1), (¬a ∨ b, 1 + β2),
(a ∨ b, β1 + β2)}.

Recall that S = {a, b} and k(a ∧ b) = 4.
Applying Lemma 1 on K′′ we get:

K∗ = {(¬a ∨ ¬b, 0), (a ∨ ¬b, β1 − 3), (¬a ∨ b, β2 − 3),
(a ∨ b, β1 + β2 − 4)}

≡ {(¬a∨b, β2−3), (a∨¬b, β1−3), (a∨b, β1+β2−4)}

One can easily check that:

∀ω, kK∗(ω) = k ∗ S(ω),

where k ∗ S(.) is given in Table 2 and kK∗ is the OCF distri-
bution associated with K∗ using Equation (2).

On the characterization of inequality constraints
It remains now to characterize the constraints bearing on
βi’s. Namely, our aim is to directly characterize from K and
S = {u1, .., un} the set of inequalities:

∀i = 1, .., n, βi > k(u1∧..∧un)−min
ω2ui

{k(ω)+
∑

j 6=i,ω2βj

βj}

The computation of such inequalities is possible thanks
to Propositions (1,2) and to Lemma 1. Indeed, Proposi-
tion 1 allows us to compute k(u1 ∧ .. ∧ un). Proposition 2
allows us, for each i, to compute the syntactic counterpart of:

∀ω, k′(ω) = k(ω) +

n∑
i=1,j 6=i

kuj (ω).

Using similar steps as in Proposition 1, we get:

min
ω2ui

k′(ω) = max{αi : K′≥αi ∧ ¬ui is inconsistent},

where K′ is an OCF knowledge base associated with

∀ω ∈ Ω, k′(ω) = k(ω) +

n∑
j=1,j 6=i

kuj
(ω).

Example 7: Let us finish our example where we have
K = {(¬a∨¬b, 4), (¬a, 1), (¬b, 1)} and S = {a, b}. Recall
that we already computed k(a ∧ b) which is equal to 4. Let
us now give the inequality relations associated with β1 and
β2.
For β1, our aim is to characterize:

β1 > k(a ∧ b) + min
ω�¬a
{k(ω) + kb(ω)}

The knowledge base associated with k(.) +kb(.) is obtained
using Proposition 2:

K′ = {(¬a ∨ ¬b, 4), (¬a, 1), (¬b, 1), (b, β2),
(¬a ∨ b, 1 + β2)}

= {(¬a ∨ ¬b, 4), (¬b, 1), (b, β2), (¬a ∨ b, 1 + β2)}
Now,

min
ω�¬a
{k(ω) + kb(ω)} = max{αi : K′≥αi

∧ ¬a is
inconsistent}

= min(1, β2).

Similar result for β2. Hence, β1 and β2 should satisfy:

β1 > 4−min(1, β2),

and
β2 > 4−min(1, β1).

Which are equivalent to β1 > 3 and β2 > 3.
These inequalities are the same as the ones given in Ex-

ample 2 but obtained here using OCF knowledge bases.
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Conclusion
The multiple iterated propositional c-revision, defined in
(Kern-Isberner and Huvermann 2015), is a revision opera-
tor that takes into account the independence relations that
may exist between propositional formulas of the input.

This paper shows that c-revision can be equivalently de-
fined using OCF knowledge bases. In particular, we provide
an explicit computation of the inequalities associated with
certainly degrees attached with formulas of the input.

In this paper, OCF distributions are obtained from OCF
knowledge bases using a translation function similar to the
one used in possibility theory. A future work is to redefine
c-revision when OCF distributions are obtained from OCF
knowledge bases using penalty logic (Darwiche and Mar-
quis 2004; Bannay, Lang, and Schiex 1994).
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