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Abstract

Handling preferences in presence of constraints is an
important concept in many applications. The main pur-
pose of this paper is to provide a new non-classical logic
for representing and reasoning with preferences and
functional constraints in uncertain environments. This
logic, called Conjunctive Choice Logic (CCL), aims to
determine feasible solutions in such environments and
evaluate their satisfaction degrees. Our logic extends the
propositional logic with a new logical connective called
ordered conjunction. This operator, viewed as a kind of
prioritized conjunction, is used when there are prefer-
ences and constraints between pieces of information.

Introduction
In decision theory, handling human preferences in presence
of constraints is a very important concept which has been
extensively studied in different research areas (Chabakauri
2014; Schermann and Ennser-Jedenastik 2014; van Cranen-
burgh, Chorus, and van Wee 2014; Zou et al. 2014). The
main purpose is to provide efficient and effective models for
handling preferences and constraints in a compact way.

As an example, let us consider the travel reservation sys-
tem ”E-travel” 1 used by different companies, such as CNRS
(French national center of scientific research)to buy or to ob-
tain information about flights and trains. When users’queries
concern information about direct flights between two cities,
such as the price of travel tickets, the system is often sat-
isfactory. The situation becomes more complex when one
considers indirect flights which may involve other means of
transportation like trains. In this case, the number of possible
solutions becomes very significant and even increases expo-
nentially. To deal with this situation, a user may purchase a
ticket based not only on general flight parameters, but also
on personal preferences such as departure/arrival date/time,
airports, airlines, total travel time, connection airports and
other preferences (Johnson, Hess, and Matthews 2014; Ro-
man and Martin 2014). For example, a user may look for
a trip between Paris and Mexico with a connection outside
USA (a strong preference), a price ≤ 300 $ and if possible
duration ≤ 2 hours. Given these preferences, trips with an
USA airport stop are unacceptable. For remaining solutions,

1Amadeus e-Travel Management. http://www.amadeus.com.

those where both price ≤ 300 $ and duration ≤ 2 hours are
satisfied are the most preferred ones. Then solutions where
only price ≤ 300 $ is satisfied are more preferred to solu-
tions where only duration ≤ 2 hours is satisfied (Benferhat
and Boudjelida 2011).

Recently, a set of logical and graphical settings have been
proposed for representing, learning and reasoning with pref-
erences (Domshlak et al. 2011; Dubois and Prade 2014; Liu
and Liao 2015; Pedersen, Dyrkolbotn, and Agotnes 2014;
van Benthem, Girard, and Roy 2009). In (Boutilier 1992;
Boutilier et al. 2004), conditional and qualitative preferences
were expressed through a graphical structure called Con-
ditional Preference networks (CP-nets). Preference elicita-
tion in such a framework appears to be natural and intu-
itive and different extensions of CP-nets have been proposed
(Brafman and Domshlak 2002; Li, Vo, and Kowalczyk 2015;
Wang et al. 2012). Possibilistic logic is another framework
for representing preferences (Dubois and Prade 2004a). It
handles pairs of propositional logic formulas associated with
priority levels.

A logic for representing choices and preferences called
Qualitative Choice Logic (QCL) has been proposed in
(Brewka, Benferhat, and Berre 2004) (see also (Benfer-
hat and Sedki 2008; Bouzar-Benlabiod, Benferhat, and
Bouabana-Tebibel 2015) for its variants). QCL is an exten-
sion of propositional logic for representing alternatives, or
ranked options for problem solutions. QCL uses a disjunc-
tive interpretation of preferences. If the first option, for in-
stance, is satisfied then there is no need to consider other
alternatives. This may be useful in some applications where
all options are mutually exclusives. However in practice, one
may consider other options even if the first option is satis-
fied.

In this paper, we propose a conjunctive interpretation of
preferences. More precisely, we propose a new logic that we
call Conjunctive Choice Logic (CCL) which can be viewed
as a counterpart of QCL for representing conjunctive prefer-
ences. Our logic is also an extension of propositional logic.
The non-standard part of CCL logic is a new logical con-
nective called ordered conjunction and denoted by ~� . In-
tuitively, if A and B are propositional formulas then A ~�
B means: ”if possible satisfy both A and B, but if not then
falsifying B is preferred to falsifying A”. Our operator ex-
tends propositional conjunction when there are preferences



and constraints between pieces of information. As will see
later, even if intuitively our logic CCL looks like a coun-
terpart of QCL, it cannot be simply defined from QCL. In-
deed, handling ordered conjunctions raises new issues that
are not encountered with standard QCL. In fact, QCL ex-
presses weak preferences (a preference over disjunctions)
while here CCL expresses strong preferences (a preference
over conjunctions).

The rest of the paper is organized as follows. Section 2
introduces the syntax and semantics of formulas using CCL
language. More precisely, we introduce basic conjunctive
choice formulas which represent simple forms of ordered
propositional conjunctions and general conjunctive choice
formulas which can represent complex rules that involve
preferences for arbitrary formulas. We also define models of
a set of formulas and show how to determine the preferred
ones. Section 3 presents the notion of equivalence between
two CCL formulas and shows how to translate a set of gen-
eral conjunctive choice formulas into a set of basic conjunc-
tive choice formulas. Section 4 concludes the paper.

The CCL language
As advocated in the introduction, CCL is an extension of
propositional logic. The non-standard part of the CCL lan-
guage is a new logical connective ~� . Intuitively, if A and
B are propositional formulas then A~�B means: if possible
satisfy both A and B, but if not then falsifying B is preferred
to falsifying A. Namely, solutions where both A and B are
true are more acceptable and preferred to solutions where
only A is true. Solutions where A is false are considered as
unacceptable and should be rejected. Hence, the first option
is reserved for integrity constraints that should absolutely be
satisfied. When there is no integrity constraints, the first op-
tion is simply represented by a tautology.

We call the new connective ordered conjunction , denoted
by ~� . It is viewed as a kind of prioritized conjunction.
In particular, it is not symmetric A~�B is different from
B ~�A. However, it is associative namely (A~�B)~�C =
A~� (B ~�C).

Basic Conjunctive Choice Formulas (BCCF)
We will follow the same structure as the one used in
(Brewka, Benferhat, and Berre 2004) for describing the lan-
guage. We first present a simple form of preferences called
basic conjunctive choice formulas where the new connective
operator ~� can only be applied between propositional for-
mulas. Then we introduce the general language where the
operator ~� can appear everywhere in a formula.

Syntax We denote by PS the set of propositional symbols
and by PROPPS the set of propositional formulas that can
be built using classical logical connectives (¬,∧,∨,⇒,⇔)
over PS .

Given a set of propositional formulas A1, . . . , An, the for-
mula A1 ~� . . . ~�An, called Basic Conjunctive Choice For-
mulas (BCCF), is used to express basic forms of ordered
conjunctions. Such formulas are constructed in the follow-
ing way:

Definition 1 The language composed of basic conjunctive
choice formulas, denoted by BCCFPS , is the smallest set of
formulas defined inductively as follow:

1. if F ∈ PROPPS , then F ∈ BCCFPS .
2. if F1, F2 ∈ BCCFPS then (F1 ~�F2) ∈ BCCFPS .
3. Every basic conjunctive choice formula is only obtained

by applying the two rules above a finite number of times.

BCCFPS can be viewed as simple forms for representing
prioritized information. As we will see later, a basic con-
junctive choice formula A1 ~� . . . ~�An induces an order-
ing on possible solutions or interpretations in a very natural
way. Intuitively, solutions where A1 ∧ . . . ∧ An is true are
the preferred ones. If A1 ∧ . . . ∧ An is false then falsifying
An is preferred to falsifying An−1 and falsifying An−1 is
preferred to falsifying An−2. More generally falsifying Ai

(while A1, . . . , Ai−1 are satisfied) is preferred to falsifying
Aj (while A1, . . . , Aj−1 are satisfied) when i > j.

Example 2 Let us consider the example given in the intro-
duction. We define the BCCFPS language for representing
simple preferences and queries of a travel reservation sys-
tem such E-travel. We will denote by:
• ϕ = {V1, V2, ..., Vn} the set of variables representing E-

travel system queries attributes.
• DVi = {v1i , v2i , ..., v

mi
i } the domain that each variable Vi

can take.
As an example of attributes that E-travel uses to compose a
query we can list :
• ϕ = { DA (departure airport), AA (arrival airport), DD

(departure date), AD (arrival date), CO (travel company),
CL (travel class) }

As an example of values that these attributes can take :
• DDA = {L (Lille), P (Paris), Q (Quebec City)}
• DCO = {AF (Air France), AC(Air Canada)}
• DCL = {E (Economy), F (First)}

We represent by Vi = vji , with Vi ∈ ϕ and vji ∈ DVi an
atomic formula in the BCCFPS language. Formally, given
a set of symbols : v1, v2, ..., vn representing values (or in-
stances) associated with the set of attributes V1, V2, ..., Vn.
An E-travel query is a conjunction of (attributes, values) of
the form : V1 = v1 ∧ . . . ∧ Vn = vn.

Now, in some situations, a user may express a preference
over attributes. In this case, an initial query in E-travel can
be represented as basic conjunctive choice formula (BCCF)
as follows : V1 = v1 ∧ . . . ∧ Vk = vk ~� . . . ~�Vn = vn. A
query of a user who looks for a simple flight between Lille
and Quebec City for the ’31/12/2015’ with Air France in
first class as options will take the following basic conjunc-
tive choice form :
Q1 : DA = ”L” ∧ AA = ”Q” ∧ DD =
”31/12/2015”~�CO = ”AF”~�CL = ”F”

In this example, travels where :
DA = ”L”∧AA = ”Q”∧DD = ”31/12/2015”∧CO =
”AF” ∧ CL = ”F” . . . (1)
are the preferred ones.
If (1) is not satisfied, then falsifying CL = ”F” is preferred
to falsifying CO = ”AF”.



Semantics A propositional interpretation I will be repre-
sented by the set of its satisfied atoms. Ω denotes the set of
all possible interpretations. The semantic of BCCFPS for-
mulas is based on the degree of satisfaction of a formula in a
particular model I . Intuitively, this degree can be viewed as
a degree of acceptability associated with each interpretation
or solution: the lower the satisfaction degree of an interpre-
tation the more preferred it is.

Given a basic conjunctive choice formula : F1 =
A1 ~� . . . ~�An, an interpretation or a solution I satisfies
F1 to degree 1 if it satisfies all options of F1. This rep-
resents an ideal solution. Now, interpretations that satisfy
(A1, . . . , An−1) and only falsify An are considered as the
second best solutions. They will get the degree 2. The
third best solutions (having degree 3) are those that satisfy
(A1, . . . , An−2) but falsify An−2. And so on. More gener-
ally, an interpretation satisfies F1 to a degree n− k + 2, if it
falsifies the kth option of F1 (namely Ak) and satisfies the
first (k − 1) options of F1.

Lastly, the first option is viewed as a constraint that should
be satisfied. Hence, interpretations where the first option is
falsified is considered as unacceptable, and get the highest
possible value (+∞).

For propositional formulas F1, there is only one degree of
satisfaction (namely 1) obtained when F1 is satisfied by I .
If F1 is not satisfied, then again the satisfaction degree will
be simply equal to infinity.

Definition 3 Satisfaction degree of interpretations with re-
spect to BCCFPS formulas

1. Let F = A1 ~� . . . ~�An ∈ BCCFPS , and let I be an
interpretation which satisfies F to a degree k, then I |=k

F and :

k =


1 iff I |= (A1 ∧ . . . ∧An)

n−min{j | I 6|= Aj}+ 2 iff j > 1

∞ iff I 6|= A1

2. Let F ∈ PROPPS , I |=1 F iff I |= F , and I |=∞ F iff
I 6|= F .

Example 4 The following table gives satisfaction degrees
obtained by applying all possible interpretations to query
Q1 given in example 1. These satisfaction degrees are ob-
tained after assigning truth values True(T), False(F), to the
formulas composing the query Q1. The symbol (*) in the
table represents all possible values. Table 1 shows that Q1

Table 1: Example of Satisfaction degrees of a BCCFPS for-
mula

DA = ”L” ∧ AA = ”Q” ∧
DD = ”31/12/2015”

CO =

”AF”

CL =

”F”

Satisfaction
Degree

F * * ∞

T F * 3

T T F 2

T T T 1

has one preferred solution (satisfaction degree = 1) when

all atomic formulas are true. Q1 is not satisfied if the first
choice formula is false.

General Conjunctive Choice Formulas (GCCF )
The GCCF language not only allows to represent simple
and basic forms of preferences, but can also represent com-
plex rules that involve conjunctive preferences for arbitrary
formulas. General Conjunctive Choice Formulas represent
any formulas that can be obtained from PS using connec-
tors ¬,∨,∧, ~� .

Definition 5 The language composed of general conjunc-
tive choice formulas, denoted by GCCFPS , is defined in-
ductively as follow:

1. if F ∈ BCCFPS , then F ∈ GCCFPS .
2. if F1, F2 ∈ GCCFPS then ¬F1 ∈ GCCFPS , F1 ∨ F2 ∈

GCCFPS , F1 ∧ F2 ∈ GCCFPS , F1 ~�F2 ∈ GCCFPS .
3. Every general conjunctive choice formula is only ob-

tained by applying the two rules above a finite number
of times.

Items (1) simply says that basic conjunctive choice for-
mulas are also general conjunctive choice formulas. Item (2)
states that general conjunctive choice formulas can be com-
bined using conjunction ∧, disjunction ∨, negation ¬ and
ordered conjunction ~� .

Example 6 The initial queries language used in Example 1
does not offer the possibility to express different users con-
straints. Clearly there is a need to use a richer language
combining all possible attributes to form a general query.
Since the initial language only contains basic conjunctive
choice formulas, one may need to use a language which will
contain negation, conjunction and disjunction operations.
Formally, a user query on a set of attributes V1, V2, ..., Vn

can be expressed in the following way :

((V1 = v11 ∧ ... ∧ Vk = v1k)~� ... ~�Vn = v1n) ∨ ... ∨ ((V1 =

vm1
1 ∧ ... ∧ Vk = vmk

k )~� ... ~�Vn = vmn
n )

Each literal vji represents the value that an attribute Vi

can take.
For example a user can launch a query with a constraint

of having either travels to Quebec City on the ’30/08/2015’
with Lille as departure airport or travels from Paris to Que-
bec City on the ’31/08/2015’. In the first case he prefers to
travel with Air France in the economic class and in the sec-
ond case he prefers to travel with Air Canada in the first
class.

Thus the query in GCCFPS answering to these con-
straints will be: Q2 : ((DA = ”L” ∧ AA = ”Q” ∧DD =
”30/08/2015”)~�CO = ”AF”~�CL = ”E”) ∨ ((DA =
”P” ∧ AA = ”Q” ∧ DD = ”31/08/2015”)~�CO =
”AC”~�CL = ”F”)

Semantics The semantic of GCCFPS formulas depends
on the satisfaction degree of this formula in a particular
model I . Consider F ′ = (F1 ~�F2) ∈ GCCFPS and I an
interpretation. Two situations arise here. The first one is that
I satisfies F1 to a degree 1 and F2 to a degree k. In this case,



the satisfaction degree of F ′ depends only on the satisfaction
degree of F2 and it will be k. The second situation occurs
when I satisfies F1 to a degree k 6= 1, then the satisfaction
degree of F ′ in this case, depends on the number of possible
satisfaction degrees or options that F2 admits. Hence, if we
assume there are j such options for F2, F ′ will be satisfied
in the (j + k)th best possible way which will represent its
satisfaction degree.

In the following, we denote by npsd(F2) the num-
ber of possible satisfaction degrees of F2. Intuitively, if
npsd(F2) = n, then there may be nth best way of satisfying
F2. There is only one way to satisfy propositional formulas,
hence they all have an npsd equal to 1.

For conjunction and disjunction options we obtain the
maximum number of possible satisfaction degrees of
the sub-formulas. For instance, if npsd(F1) = j and
npsd(F2) = k with j < k, then F1∨F2 and F1∧F2 cannot
have more then k options.
Definition 7 The npsd of a formula indicates the number of
satisfaction degrees that a formula can have. Let F1 and F2

be two formulas in GCCFPS and A a propositional atom.
npsd(A) = 1
npsd(¬F ) = 1
npsd(F1 ∨ F2) = max(npsd(F1), npsd(F2))
npsd(F1 ∧ F2) = max(npsd(F1), npsd(F2))
npsd(F1 ~�F2) = npsd(F1) + npsd(F2)

It easy to check that npsd is associative. In particular, the
two formulas ((F1 ~�F2)~�F3) and (F1 ~� (F2 ~�F3)) have
the same npsd, namely :
npsd((F1 ~�F2)~�F3) = npsd(F1 ~� (F2 ~�F3)) =
npsd(F1) + npsd(F2) + npsd(F3).

The following definition gives the CCL satisfaction rela-
tion denoted by |∼CCL. The relation is indexed according to
the degree of satisfaction of a formula in a model.
Definition 8 Let F1 and F2 be two formulas in GCCFPS

and A a propositional atom.
1. I |∼CCL

k A and

k =

{
1 iff A ∈ I

∞ iff A 6∈ I

2. I |∼CCL
k F1 ∧ F2 and

k =


max(m,n) iff I |∼CCL

m F1 and I |∼CCL
n F2

and m 6=∞ and n 6=∞
∞ iff I |∼CCL

∞ F1 or I |∼CCL
∞ F2

3. I |∼CCL
k F1 ∨ F2 and

k =


min(m,n) iff I |∼CCL

m F1 and I |∼CCL
n F2

and m 6=∞ or n 6=∞
∞ iff I |∼CCL

∞ F1 and I |∼CCL
∞ F2

4. I |∼CCL
k F1 ~�F2 and

k =


m + npsd(F2) iff I |∼CCL

m F1 and m 6= 1

and m 6=∞
m iff I |∼CCL

1 F1 and I |∼CCL
m F2

∞ iff I |∼CCL
∞ F1

5. I |∼CCL
1 ¬F1 iff I |∼CCL

∞ F1.

Item (1) of Definition 5 states that propositional atoms
that compose an interpretation I have degree 1 while the
others (those that are not true in I) have the highest impos-
sibility degree∞.

Item (2) expresses that if I is unacceptable with respect to
F1 or F2 then it remains unacceptable for their conjunction.
This confirm the conjunctive understanding of ’∧’ where
both F1 and F2 should be acceptable in I to declare that ’~� ’
is also acceptable. Now, if I is somewhat acceptable to both
F1 and F2, then the acceptability degree of F1 ∧ F2 should
be equal to the maximal acceptability degree of F1 and F2.
Clearly, if F1 and F2 are propositional formulas then ’∧’
recovers the propositional conjunction.

Item (3) is clearly dual to item (2) and again disjunction
used in GCCFPS recovers propositional disjunction when
both F1 and F2 are propositional formulas.

Item (4) states that if F1 is unacceptable, then F1 ~�F2 is
also unacceptable. Intuitively, F1 is unacceptable means that
the first option (which reflects some strong preferences) is
not satisfied. This also means that the first option in F1 ~�F2

is also not satisfied, hence I is unacceptable. Now, if F1 is
fully satisfied then the satisfaction of F1 ~�F2 is the same as
the one of F2. If I satisfies F1 to a degree k and n is the
number of options in F1 then this means that I falsifies the
(n−k+2)th option in F1 and the npsd(F2)+(n−k+2)th

option in F1 ~�F2. From item (4), one can check that the
conjunctive preference operator ~� is associative.

There are different ways to define negated preference
¬F1. The one used here is the absence of satisfaction of F1

to some degree.

Preferred Models in GCCFPS

In the following, a set of available preferences formulas (ba-
sic and general) will be denoted by T . Propositional formu-
las will be denoted by K.

Definition 9 Let T be a set of formulas. An interpretation I
is a model of T if it satisfies each formula in T with a degree
6=∞. Otherwise it is called a counter model of T .

Remark 10 Sometimes preferences are considered as dif-
ferent from ”flexible” constraints. In the sense that prefer-
ences should not exclude feasible solutions. Namely, for any
preference formula F1 ∈ T , there should be some k such
that I |=k F1. A possible way to recover this interpreta-
tion of preferences without modifying our semantics is to re-
place each preference formula F1 by >~�F1, which guar-
antee each preference to be satisfied to some degrees.

When dealing with preferences, it may happen that there
is no solution that satisfies all conjunctive preferences to a
degree 1. In this case, it is important to rank-order all solu-
tions to determine the preferred ones. We use a lexicographic
ordering which is based on the number of formulas satisfied
to a particular degree used also in QCL (Brewka, Benferhat,
and Berre 2004). The preference relations between solutions
is defined as follows:

Definition 11 Let Mk(T ) denotes the subset of formulas
of T satisfied by a model M to a degree k. A model M1



is K ∪ T -preferred over a model M2 if there is a k such
that |Mk

1 (T )| > |Mk
2 (T )| and for all j < k: |M j

1 (T )| =

|M j
2 (T )|. M is a preferred model of K ∪ T if:

1. M is a model of K ∪ T ,
2. M is a maximally K ∪ T -preferred model.

Intuitively, a preferred model of K ∪ T is a model of
K ∪ T which satisfies the maximal number of best options
of CCL formulas. This leads to an approach where solutions
are preferred when they contain the highest number of most
preferred options.

The lexicographic ordering (known also as cardinality-
based ordering) has been used in different context such us
in belief revision or in inconsistency handling of prioritized
propositional knowledge.

Example 12 Let F1, F2, F3 be three CCL formulas with
three options each : F1 = A1 ~�A2 ~�A3, F2 =
B1 ~�B2 ~�B3 and F3 = C1 ~�C2 ~�C3.

Let M1 be a model falsifying A3, B3 and C1. In this model
F1 and F2 are satisfied with degree 2 and F3 is not satisfied.
Let M2 be another model falsifying A2, B2 and C3. In this
model F1 and F2 are satisfied with degree 3 and F3 is satis-
fied with degree 2. In this example, M1 is preferred over M2

because it contains the highest number of most preferred op-
tions. Namely, M1 has two formulas satisfied with degree 2,
whereas the number of formulas satisfied in M2 with degree
2 is only one, although the rest of formulas in M1 are not
satisfied and the rest of formulas in M2 are satisfied with
degree 3.

Normalization form
In this section, we show that any set of GCCFPS formulas,
can equivalently be transformed into a set of basic conjunc-
tive choice formulas. This normalisation is useful for com-
putational issues, however for representational purpose it is
more convenient to use GCCFPS than BCCFPS . We first
need to introduce the notion of normal form function, which
associates with each general conjunctive choice formulas in
GCCFPS , its corresponding basic conjunctive choice for-
mulas. This normal form function is denoted by NCCL.

Definition 13 We define a normal function denoted by
NCCL, a function from
GCCFPS −→ BCCFPS , such that :

1. Normal form of basic conjunctive choice formulas and
propositional formulas are these formulas themselves:

(a) ∀F1 ∈ BCCFPS ,NCCL(F1) = F1.

2. The normal form is decomposable with respect to nega-
tion, conjunction, disjunction and ordered conjunction of
general conjunctive choice formulas:

(a) ∀F1 ∈ GCCFPS and F1 6∈ BCCFPS ,
NCCL(¬F1) = NCCL(¬NCCL(F1))

(b) ∀F1, F2 ∈ GCCFPS and (F1 6∈ BCCFPS or
F2 6∈ BCCFPS ) ,
NCCL(F1 ∧ F2) = NCCL(NCCL(F1) ∧NCCL(F2))

(c) ∀F1, F2 ∈ GCCFPS and (F1 6∈ BCCFPS or
F2 6∈ BCCFPS ) ,
NCCL(F1 ∨ F2) = NCCL(NCCL(F1) ∨NCCL(F2))

(d) ∀F1, F2 ∈ GCCFPS and (F1 6∈ BCCFPS or
F2 6∈ BCCFPS ) ,
NCCL(F1 ~�F2) = NCCL(NCCL(F1)~�NCCL(F2))

3. Normal form of negated, conjunction and disjunction
of basic conjunctive choice formulas are : Let F1 =
a1 ~� . . . ~� an and F2 = b1 ~� . . . ~� bm be two formu-
las ∈ BCCFPS such that ai’s and bi’s are propositional
formulas.

(a) NCCL((a1 ~� . . . ~� an) ∧ (b1 ~� . . . ~� bm)) =
c1 ~� . . . ~� ck
where k = max (m, n) and :

i. If m = n : ci = ai ∧ bi
ii. If m < n :

ci =

{
ai ∧ b1 iff i ≤ n−m

ai ∧ bi−n+m iff i > n−m

iii. If m > n :

ci =

{
a1 ∧ bi iff i ≤ m− n

ai−m+n ∧ bi iff i > m− n

(b) NCCL((a1 ~� . . . ~� an) ∨ (b1 ~� . . . ~� bm)) =
c1 ~� . . . ~� ck
where k = max (m, n) and :

i. If m = n : ci = ((a1 ∧ . . . ∧ ai) ∨ bi) ∧ (ai ∨ (b1 ∧
. . . ∧ bi))

ii. If m < n :

ci =



((a1 ∧ . . . ∧ ai) ∨ b1) ∧ (ai ∨ b1) iff
i ≤ n−m

((a1 ∧ . . . ∧ ai) ∨ bi−n+m)∧
(ai ∨ (b1 ∧ . . . ∧ bi−n+m)) iff

i > n−m

iii. If m > n :

ci =



(a1 ∨ (b1 ∧ . . . ∧ bi)) ∧ (a1 ∨ bi) iff
i ≤ m− n

(ai−m+n ∨ (b1 ∧ . . . ∧ bi))∧
((a1 ∧ . . . ∧ ai−m+n) ∨ bi) iff

i > m− n

(c) NCCL(¬(a1 ~� . . . ~� an)) = ¬a1



Repeated application of this definition rules moves ~�
outside (or eliminates it) until we obtain a basic conjunctive
choice formula.

Property (1) of definition 8 says that the normal form of a
basic conjunctive choice formula F1, is the formula F1.

Property 2(a, b, c, d) expresses that the normal form func-
tion is decomposable with respect to negation, conjunction,
disjunction and ordered conjunction.

Property 3(a, b, c) gives the definition of conjunction, dis-
junction and negation applied to basic conjunctive choice
formulas.

Proposition 14 Let F1 be a formula in GCCFPS and
NCCL(F1) be its normal form using Property 3 of Defini-
tion 8. Let I be an interpretation. Then :

I |∼CCL
k F1 iff I |=k NCCL(F1)

Where |∼CCL
k is given by Definition 5 and |=k is given by

Definition 2.

Example 15 Let us compute the normal form of the query
Q2 given in example 3 using Definition 8. The query Q2 is
a disjunction of two basic choice formulas. For simplicity of
writing, we will consider the following general form of Q2 :
(a1 ~� a2 ~� a3) ∨ (b1 ~� b2 ~� b3)
where : a1 = (DA = ”L” ∧ AA = ”Q” ∧ DD =
”30/08/2015”), a2 = (CO = ”AF”), a3 = (CL = ”E”),
b1 = (DA = ”P” ∧ AA = ”Q” ∧DD = ”31/08/2015”),
b2 = (CO = ”AC”), b3 = (CL = ”F”).

We first apply item 3− (b) of Definition 8 :
NCCL((a1 ~� a2 ~� a3) ∨ (b1 ~� b2 ~� b3)) = NCCL((a1 ∨
b1)~� (((a1 ∧ a2) ∨ b2) ∧ (a2 ∨ (b1 ∧ b2)))~� (((a1 ∧ a2 ∧
a3) ∨ b3) ∧ (a3 ∨ (b1 ∧ b2 ∧ b3))))

Then we apply item 2−(d) of Definition 8 (decomposition
with respect to ordered conjunction):
NCCL(Q2) = NCCL(NCCL(a1 ∨ b1)~�NCCL(((a1 ∧ a2) ∨
b2)∧ (a2∨ (b1∧ b2)))~�NCCL(((a1∧a2∧a3)∨ b3)∧ (a3∨
(b1 ∧ b2 ∧ b3))))

Finally, we can apply item 1 − (a) of Definition 8 to
normalize the obtained result (normal form of propositional
formulas):
NCCL(Q2) = (a1 ∨ b1)~� ((a1 ∧ a2) ∨ b2) ∧ (a2 ∨ (b1 ∧
b2))~� (((a1 ∧ a2 ∧ a3) ∨ b3) ∧ (a3 ∨ (b1 ∧ b2 ∧ b3)))

Table 2 gives satisfaction degrees obtained after assigning
truth values True(T), False(F), to the formulas composing
the query NCCL(Q2). Note that (*) represents all possible
values. We can check that satisfaction degrees of NCCL(Q2)
are equal to those of Q2 after applying the same interpreta-
tions.

Related works and concluding discussions
In this paper, we provided a new non-classical logic for
handling user’s basic and complex preferences in presence
of constraints. Our logic CCL shares some features of
the so-called Qualitative Choice Logic (QCL) proposed in
(Brewka, Benferhat, and Berre 2004). However, the differ-
ence between CCL and QCL is somewhat similar to the

Table 2: Example of Satisfaction degrees of normal form of
GCCFPS formulas

F1 : a1 ∨ b1

F2 : ((a1 ∧ a2) ∨ b2) ∧ (a2 ∨ (b1 ∧ b2))

F3 : (((a1 ∧ a2 ∧ a3) ∨ b3) ∧ (a3 ∨ (b1 ∧ b2 ∧ b3)))

S.D. : Satisfaction Degree

a1 a2 a3 b1 b2 b3 F1 F2 F3 S. D.
Q2

S. D.
NCCL

(Q2)

F * * F * * ∞ * * ∞ ∞

F * * T F * T F * 3 3

F * * T T F T T F 2 2

F * * T T T T T T 1 1

T F * F * * T F * 3 3

T F * T F * T F * 3 3

T F * T T F T T F 2 2

T F * T T T T T T 1 1

T T F F * * T T F 2 2

T T F T F * T T F 2 2

T T F T T F T T F 2 2

T T F T T T T T T 1 1

T T T F * * T T T 1 1

T T T T F * T T T 1 1

T T T T T F T T T 1 1

T T T T T T T T T 1 1

difference between propositional conjunction and proposi-
tional disjunction. CCL adopts a conjunctive interpretation
of preferences while QCL follows a disjunctive interpreta-
tion of preferences. Hence, in a presence of ”A is preferred
to B” with A and B are propositional symbols, then CCL
and QCL will induce two different rankings over the set of
interpretations as showed in table 3.

Table 3: Comparison between CCL and QCL rankings

A B CCL ranking QCL ranking

F F ∞ ∞

F T ∞ 2

T F 2 1

T T 1 1

CCL views A (the first option) as an integrity constraint
that should be satisfied, while CCL only requires that one
of the options should be satisfied (otherwise the solution is
unacceptable).

Our logic also differs from graphical representation of
preferences such as CP-nets (Boutilier 1992; Boutilier et al.
2004). In addition to the fact that our logic does not assume
the ceteris paribus assumption (contrarily to CP-nets), our
logic is not restricted to contextual preferences, where for



each node one has to provide a preference over this node in
the contexts of its parent. In our logic, general preferences
can be easily expressed.

Lastly, a common point between possibilistic logic
(Dubois and Prade 2004a) and CCL is that both of them in-
duces a total ordering over interpretations based on falsified
formulas or preference options. Possibilistic logic uses cer-
tainty degrees (a positive real number of [0, 1]) associated
with a formula. Contrarily to our logic, nested preferences
cannot be directly expressed in possibilistic logic.

In some situations, user’s preferences may be in con-
flict with some organizational constraints. Thus, future work
consists in providing operators enabling the fusion of these
conflicting preferences and constraints (Papini 2010). These
fusion operators can take advantage of the previous works
on possibilistic logic to handle inconsistent parts of informa-
tion (Dubois and Prade 2004a; 2004b; Schockaert and Prade
2011).
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