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Abstract

We study the problem of finding a recommendation for an un-
informed user in a social network by weighting and aggregat-
ing the opinions offered by the informed users in the network.
In social networks, an informed user may try to manipulate
the recommendation by performing a false-name manipula-
tion, wherein the user submits multiple opinions through fake
accounts. To that end, we impose a no harm axiom: false-
name manipulations by a user should not reduce the weight of
other users in the network. We show that this axiom has deep
connections to false-name-proofness. While it is impossible
to design a mechanism that is best for every network subject
to this axiom, we propose an intuitive mechanism LEGITT,
and show that it is uniquely optimized for small networks.
Using real-world datasets, we show that our mechanism per-
forms very well compared to two baseline mechanisms in a
number of metrics, even on large networks.

1 Introduction

Consider the following problem. An agent wants to receive a
recommendation on a specific item—say, a movie the agent
has not previously watched. Others have evaluated this item,
perhaps by giving it a “thumbs up” or “thumbs down” (0
or 1), or by rating it on a more detailed scale, say, from 0
to 5. We want to give the agent in question an aggregate
rating, such as “73% positive” or 2.7. Alternatively, perhaps
the question is merely whether to recommend this item to
the agent at all, in which case the aggregate outcome must
be binary. How should we arrive at this aggregate outcome?

For simplicity, let us assume that we do not have any in-
formation about which agents have preferences most simi-
lar to the agent in question. In this case, a natural approach
is to simply take the average of all the ratings so far. One
problem is that if ratings are not binary, this is not strategy-
proof: when the current average is 2.7, an agent who feels
the item is a 4 may prefer to report 5 to pull the average
closer to his evaluation. As is well known in social choice
theory, a good alternative is to choose the median rating in-
stead: this is in fact group-strategy-proof (when preferences
are single-peaked, as is likely to be the case here) (Moulin,
1980; Barbera, Sonnenschein, and Zhou, 1991; Border and
Jordan, 1983). Note that for binary ratings, the median is
simply the majority choice.

The median, however, remains vulnerable to another type
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of manipulation, commonly known as false-name manipu-
lation (Yokoo, Sakurai, and Matsubara, 2004): an agent can
rate the same item many times by opening fake accounts,
and move the median closer to his evaluation. Thus, the me-
dian is not false-name-proof. In fact, without imposing fur-
ther structure on the problem, no reasonable rule is false-
name-proof (Conitzer, 2008; Todo, Iwasaki, and Yokoo,
2010, 2011). On the other hand, if we assume that agents are
organized as the nodes of a (say, undirected) social network,
possibilities open up (Conitzer et al., 2010). For example,
rather than reporting to the agent the median of all the rat-
ings, we can simply report the median of his friends’ ratings.
Assuming that the agent will not be duped into befriending
fake accounts, this will in fact be false-name-proof.

The downside of this methodology is that, with the ex-
ception of very popular items, none or very few of the
agent’s friends may have rated the item. Consequently, the
median-of-friends rule conveys too little information. Could
we include the friends of the agent’s friends as well? Done
naively, this may give the friends an incentive to create
many fake friends of their own. But more subtly, when a
friend does not rate the item, we can pretend that his rat-
ing was the median of his friends’ ratings. This does not
give the friends an incentive to create fake accounts: all this
would do for them is change their own hallucinated rat-
ings, but they can more easily just specify those ratings di-
rectly. This median-of-medians approach closely resembles
the majority-of-majorities rule from Andersen et al. (An-
dersen et al., 2008). Note, however, that this rule ends up
double-counting the rating of an agent who is a friend of two
of the agent’s friends. Can we circumwent this issue? Also,
can we retrieve ratings from deeper in the social network?

Our results. In this paper, we focus on a two-step approach.
In the first step, we use a weight-selecting mechanism to as-
sign weights to the agents offering an opinion/rating, called
voters, without looking at their opinions (thus, looking only
at the network structure). In the second step, we perform
a weighted aggregation of the opinions to output a recom-
mendation by only looking at the weights assigned to voters
and their opinions. To make the weight-selecting mechanism
robust to false-name manipulations, we impose a no harm
axiom: false-name manipulations by an agent should not re-
duce the weight of other agents in the network.

We show that with weighted median aggregation, the no



harm axiom implies false-name-proofness (Theorem 1) and,
under some conditions, is actually equivalent to false-name-
proofness (Theorem 2). We thus focus on designing weight-
selecting mechanisms subject to this axiom.

We focus on the case where, ideally, we would like to
weight the voters uniformly. As explained in detail in Sec-
tion 2, this is for multiple reasons. While this does not uti-
lize the network structure for inferring the closeness in opin-
ions of two nodes, it clearly outlines how to use the network
structure for a distinct purpose — achieving the no harm ax-
iom. Section 6 discusses how our results can be extended
to take into account correlation among opinions. Second,
weighting the voters equally can indeed be ideal, e.g., when
aggregating independent noisy estimates of an underlying
objective ground truth (see Section 5), or when the goal is
not to find a recommendation but to conduct a fair vote.

Unfortunately, weighting all the voters uniformly violates
the no harm axiom. What is the “most uniform” weight vec-
tor we can return subject to this axiom? In order to for-
malize what “more uniform” means, we use the classic lex-
imin criterion that compares weight vectors by their smallest
weights (preferring the vector with greater smallest weight),
and then breaks ties using the second smallest weights, and
so on. We show that a weight-selecting mechanism cannot
always return the leximin-optimal weight vector subject to
the no harm axiom (Theorem 4). We then present an intu-
itive mechanism and show that it is uniquely optimized for
small networks subject to the no harm axiom (Theorem 5),
that is, (informally) if a mechanism outputs a more uniform
weight vector than our mechanism does on some network,
then there is a strict subgraph of the network on which our
mechanism outputs a more uniform weight vector.

Using a non-trivial result from graph theory (Hopcroft and
Tarjan, 1973), we show that our mechanism can be com-
puted in linear time in the size of the network (Theorem 6).
In Section 5, we present experiments with real-world social
networks in which our mechanism significantly outperforms
two baseline mechanisms in a number of metrics.

Related work. Recommendation systems have been stud-
ied extensively in the machine learning literature, see,
e.g., (He and Chu, 2010; Adomavicius and Tuzhilin, 2005;
Ricci, Rokach, and Shapira, 2011; Bennett and Lanning,
2007). Popular techniques include content-based recom-
mendation (Pazzani and Billsus, 2007), where the decision
of whether to suggest an item to a target user is made by con-
sidering the attributes of the item and the target user’s pre-
viously expressed preferences; collaborative filtering (Gol-
beck, 2006), where the preferences of other users in the net-
work are given, and their similarity with the target user’s
preferences is learned to find a good recommendation; or,
both combined (Balabanovi¢ and Shoham, 1997). In con-
trast, we solely focus on the use of the social network struc-
ture to design recommendation mechanisms that are robust
to false-name manipulations.

Besides the works cited previously, false-name manipula-
tions have also been studied rigorously in a variety of anony-
mous environments, such as combinatorial auctions (Yokoo,
Sakurai, and Matsubara, 2001; Yokoo, 2003; Yokoo, Saku-

rai, and Matsubara, 2004; Todo et al., 2009; Iwasaki et
al., 2010), matching (Todo and Conitzer, 2013), and vot-
ing (Wagman and Conitzer, 2008).

2 Model

We are given a social network (or simply, a network), which
is an undirected simple graph! denoted G. The set of nodes
and the set of edges of G are denoted V(G) and E(G) (or
V and E, when the graph is clear from the context), respec-
tively. For ' C V, let G denote the subgraph of G induced
by T'.

Our task is to find a recommendation for a given node
v* € V. This task could arise in a number of contexts: we
may want to decide whether to recommend a given movie or
restaurant to an individual (in which case, we want a binary
recommendation), or we may want to show the rating of the
movie or restaurant (in which case, we no longer want a bi-
nary recommendation). To aid our decision-making, a set of
nodes S C V \ {v*} offer their personal opinion. We call
these nodes voters, and denote the opinion offered by voter
v € S as r,. Target node v* is not a voter itself. As we
explain in Section 3, the mechanisms of our interest must
discard voters not connected to v*; thus, for simplicity we
assume that GG is connected and has at least one voter.

Weight-Selecting Mechanisms: In this paper, we are inter-
ested in finding recommendations through a two-step ap-
proach: 1) using a weight-selecting mechanism to assign a
weight to each voter in the network only as a function of
the network structure (G, the subset of voters S, and the tar-
get node v* (thus, independent of the voters’ opinions), and
ii) using a weighted aggregation function that takes as input
the weights assigned by the weight-selecting mechanism and
the voters’ opinions, and outputs the final recommendation.
Popular choices for the weighted aggregation function in-
clude weighted mean and weighted median; Section 3.1 dis-
cusses how this choice impacts the overall recommendation
system. For the remaining parts of the paper, we are only in-
terested in studying weight-selecting mechanisms and their
properties (the first step). For a weight-selecting mechanism
— ignorant of the voters’ opinions — a problem instance is
given by the tuple (G, S, v*).

Definition 1 (Weight-Selecting Mechanisms). Given an in-
stance (G, S,v*), a weight-selecting mechanism outputs a
weight vector w = (W )yes such that w, > 0 forv € S,
andy’, .qw, = 1.

Weight-selecting mechanisms are compelling because
they allow harmonious aggregation of opinions of various
formats, ranging from binary to real-valued opinions.

False-Name Manipulations: In the absence of additional
restrictions, one can simply choose the weight-selecting
mechanism that returns the most appropriate weight vector
for the setting of interest. In this paper, however, we consider
an important restriction that stems from game-theoretic con-
siderations: preventing false-name manipulations.

'A simple graph has no self-loops and at most one edge be-
tween every pair of vertices.



Online social networks typically lack a proof of authen-
ticity of nodes, thus allowing users to easily create fake ac-
counts. In this case, a weight-selecting mechanism may in-
advertently provide an incentive to a malicious user for cre-
ating multiple fake accounts and voting through them in or-
der to gain a higher total weight, and thus a greater influence
on the final recommendation. Such manipulations are known
as false-name manipulations or sybil attacks.

In a false-name manipulation, the malicious node in the
network can easily create any desired subset of edges among
the identities it controls: its own node, and the fake nodes it
creates. Altering edges with other real nodes (e.g., creating
new edges or deleting existing edges), on the other hand, is
often more costly. Given that (arguably) recommendations
are not the primary objective in most social networks, we as-
sume that nodes do not alter their edges with other real nodes
as part of a false-name manipulation due to lack of sufficient
incentive. That said, alterations to edges with real nodes are
a powerful form of manipulation, and preventing such ma-
nipulations is an interesting theoretical challenge (see Sec-
tion 6).

Definition 2 (False-Name Manipulations). In an instance
(G, S,v*), avoterv € S can perform a false-name manipu-
lation by creating a set of false nodes M, and edges between
a subset of pairs of nodes in M’ x M, where M' = MU{v}.
Also, v can choose a subset of nodes in M’ to act as vot-
ers, and can choose their recommendations. The resulting
instance is given by (G',S’,v*), where V(G') = V U M,
SN(V\{v}) =S\ {v},and E'N(V x V) =E.

A node that has a personal opinion may choose to abstain
from voting as part of a manipulation. Such a node would be
a voter in the underlying true instance, but not in the manip-
ulated instance observed by the mechanism. We refer to it as
an “opinionated node” to avoid confusing it with “voters” in
the observed instance. In this paper, we only focus on false-
name manipulations by individual nodes; Section 6 briefly
discusses group false-name manipulations.

Optimal Weight Vector: Preventing false-name manipula-
tions may prohibit us from always choosing the most de-
sirable weight vector for the setting at hand. For the pur-
pose of this paper, we assume a setting in which the ideal
weight vector has equal weights for all voters, i.e., in the
ideal weight vector each voter in S has weight 1/|S|. This is
interesting due to multiple reasons:

e False-name-proof recommendation mechanisms can em-
ploy the knowledge of the social network structure in two
clearly distinct ways: i) to weight nodes in a way that pro-
vides no incentive for false-name manipulations, and ii) to
weight nodes to reflect their level of homophily? or trust
with the target node. Treating the uniform weight vector
as the ideal focuses exclusively on the former purpose.
This is also the appropriate choice for networks where no
prior information about user opinions is available to con-
clude homophily.

“Homophily is a commonly observed phenomenon where
nodes closer in a network are more likely to agree on opinions.

e Our model also applies to the case where the goal is not
to find a recommendation for the target node; instead, the
target node conducts a vote on the network, and invites its
peers to vote. In this case, treating all voters equally is the
de facto fairness consideration in the voting literature.

o Finally, if the opinions offered by the individuals are not
subjective preferences, but rather independent noisy esti-
mates of an objective ground truth, using equal weights to
aggregate these independent estimates provably yields the
most accurate estimation of the underlying ground truth.

That said, aggregating subjective opinions of nodes into a
recommendation by weighting the nodes according to their
homophily (closeness of opinion) with the target node is
an interesting and widely studied topic. As we discuss in
Section 6, our results have interesting implications about
designing false-name-proof recommendation mechanisms
when a model of homophily is given; in this sense, we also
view our paper as a stepping stone for studying this more
general setting.

Finally, we impose a mild restriction — symmetry — on
the weight-selecting mechanism. Informally, this requires
the mechanism to assign equal weight at least to the nodes
that are “symmetrically placed” in the network with respect
to the target node.

Definition 3 (Symmetric Mechanisms). We call a weight-
selecting mechanism symmetric if, given an instance
(G, S,v*), it assigns equal weights to voters v1 and vy
whenever there exists an automorphism of G (i.e., an iso-
morphism from G to itself) that fixes v* and maps vy to vs.

Unless stated otherwise, throughout the paper we will as-
sume a weight-selecting mechanism to be symmetric.

3 Uniform Aggregation

In the context of this paper, the ideal weight-selecting mech-
anism returns the weight vector that has equal weight for
all voters. However, this mechanism suffers from a crucial
problem. A node that performs a false-name manipulation
by creating an arbitrarily large number of fake nodes and
voting through them can accrue a weight arbitrarily close
to 1, thus becoming a dictator. Crucially, this manipulation
also hurts the other nodes in the network by reducing their
weights. To design a robust mechanism, we require that this
should not be possible.

Definition 4 (No Harm Axiom). We say that a weight-
selecting mechanism satisfies the no harm axiom if a false-
name manipulation by a node does not reduce the weight of
any other node in the network. Let M denote the family
of symmetric weight-selecting mechanisms satisfying the no
harm axiom.

3.1 No Harm Versus False-Name-Proofness

The standard desideratum in the literature on false-name
manipulations is false-name-proofness, which requires that
even with full information an agent should not be able to
find a beneficial false-name manipulation. In our setting, this
means a voter should not be able to move the recommenda-
tion closer to its personal opinion through a false-name ma-



nipulation even if the voter knows the network G, the set of
voters S, their personal opinions r, and the target node v*.
The no harm axiom directly implies that a voter can-
not gain weight by performing a false-name manipulation.
Could the voter, however, increase the weights of other vot-
ers with similar opinions, thereby achieving a more favor-
able recommendation? This of course depends on how the
recommendation mechanism uses the weights to aggregate
the opinions. We show that for the weighted median aggre-
gation, the no harm axiom implies false-name-proofness.

Theorem 1. With real-valued opinions and aggregate rec-
ommendation, computing the weighted median of the opin-
ions using the weights returned by a weight-selecting mech-
anism satisfying the no harm axiom is false-name-proof.

Proof. Let (G,S,v*) be the true instance for which the
weight vector is w and the recommendation is x. Suppose
v € S performs a false-name manipulation, after which
the weight vector becomes w’ and the recommendation be-
comes z’. If 7, = x, then v has nothing to gain. Without loss
of generality, let r,, > z. Define T' = {u € S|r, < z}. Let
w(T) = > erwy and w'(T) = >, .y w,,. Then, by the
no harm axiom and the definition of weighted median, we
have w'(T') > w(T) > 0.5, which implies 2’ < z. Hence,
the manipulation is not beneficial to v. ll

Theorem 1 shows that the no harm axiom easily yields
false-name-proofness. But at first glance, it may seem too
strong if the ultimate goal is false-name-proofness. The fol-
lowing result shows that in a simple setting with binary
(0/1) opinions and reasonable weighted aggregation func-
tions (e.g., the weighted average), the no harm axiom is
equivalent to false-name-proofness.

Theorem 2. Let the opinions be binary (i.e., in {0,1}), and
the recommendation be computed using a weighted aggrega-
tion function that is strictly monotonically increasing in the
total weight of all voters with opinion 1, where the weights
are computed using a weight-selecting mechanism M. Then,
the recommendation system is false-name-proof if and only
if M satisfies the no harm axiom.

Proof. Suppose M satisfies the no harm axiom. Without
loss of generality, consider a voter with opinion 0. If the
voter performs a false-name manipulation, none of the real
voters with opinion 1 lose weight due to the no harm axiom.
Hence, the total weight of all voters with opinion 1 does not
decrease after the manipulation. Hence, due to monotonicity
of the weighted aggregation function, the recommendation
cannot decrease due to the manipulation. That is, no false-
name manipulation can be beneficial, implying that the rec-
ommendation system is false-name-proof.

Now, suppose that M does not satisfy the no harm axiom.
Then, there exists an instance (G, S, v*), a false-name ma-
nipulation by v € S that results in an instance (G’, S’ v*),
and a voter v € S\ {v} such that under M, voter u re-
ceives less weight in (G, S, v*) than in (G, S,v*). Sup-
pose in (G, S,v*) all voters in S\ {u} vote for 1, and only
u votes for 0. Since the weights sum to 1 and u loses weight

after the manipulation, the total weight of voters with opin-
ion 1 increases after the manipulation. Strict monotonicity of
the weighted aggregation function implies that the manip-
ulation would bring the recommendation closer to v’s true
opinion, 1. Hence, the recommendation system is not false-
name-proof in this case. B

3.2 Search for a Robust Mechanism

Our starting point is a compelling mechanism proposed by
Andersen et al. (Andersen et al., 2008) for binary (0/1) rec-
ommendations. Imagine doing a random walk on the social
network graph starting from the node v*,> and terminating
the walk as soon as a voter is encountered. Then, their mech-
anism recommends an opinion such that the walk is more
likely to terminate on a node having that opinion than termi-
nating on a node having the alternative opinion. We observe
that this mechanism, which we denote RANDOMWALK, can
be viewed as a weight-selecting mechanism.

Definition 5 (RANDOMWALK). Given an in-
stance (G, S,v*), the weight-selecting mechanism
RANDOMWALK outputs the weight vector w such
that for v € S, w, is the probability that a random walk
starting from v* encounters v before any other voter.

Our assumption of G being connected and having at
least one voter implies that the weights assigned by
RANDOMWALK sum to 1. Also, we assume that the edges of
the undirected graph G are essentially bidirectional, that is,
a walk can traverse an edge in either direction. Crucially, ob-
serve that RANDOMWALK satisfies the no harm axiom: Fix
a voter v and a walk that leads the random walk to v. When a
voter v’ # v performs a false-name manipulation, the neigh-
borhoods of nodes on the walk do not change. Hence, the
walk still leads the random walk to v with the same proba-
bility post-manipulation. As this argument applies to every
walk leading the random walk to v in the original graph,
the total probability of the random walk terminating on v
does not reduce after the manipulation. It is also clear that
RANDOMWALK is symmetric.

Theorem 3. RANDOMWALK is a symmetric weight-
selecting mechanism satisfying the no harm axiom.

Example 1. Let G be the network shown in Figure 1. Here,

filled .
nodes represent voters. It is evident

that neither v, nor vy is fake (i.e.,

they cannot be artificial nodes cre-

ated by a single node in the network Vo

through a false-name manipulation).

Recall that by our assumption, v*

does not manipulate. Hence, for uni- v

form aggregation we should weight .

them equally, if possible. Fig. 1: Graph G
Under RANDOMWALK, voters v; and vy receive (un-

equal) weights 2/5 and 3/5, respectively. This can be shown

by solving systems of linear equations (see Section 4). Note

that these probabilities are not 1/4 and 3/4, respectively, due

U1

*

3That is, in each step, move from the current vertex to one of its
neighbors chosen uniformly at random.



to walks that go from v* to one of its three non-voter neigh-
bors and return to v* a number of times, before finally going
to v1.

Admittedly, Andersen et al. (Andersen et al., 2008) study
a slightly different setting than ours. Their ultimate goal, un-
like ours, is not to uniformly aggregate the opinions; they
want the opinion of a voter to be weighted by the level of
“trust” v* can plausibly have for the voter. Hence, in their
setting it makes sense to weight the two voters unequally. In
other words, our goal is not to evaluate RANDOMWALK in
our setting, because RANDOMWALK is not designed to give
equal weight to voters in the first place. We use Example 1
simply to demonstrate the need to investigate whether there
exists a mechanism satisfying the no harm axiom that can
provide more uniform weights.

3.3 An Impossibility Result

As the no harm axiom prohibits always selecting the uni-
form weight vector (with equal weight for all voters), our
goal is to find a weight vector that is as uniform as possible.
To formalize the notion of “uniformity”, we use the classic
leximin criterion that compares two weight vectors by their
minimum weights (and prefers the one with greater mini-
mum weight), and then breaks ties by comparing their sec-
ond minimum weights, and so on. For example, according
to the leximin criterion weight vector (0.3, 0.5, 0.2) is better
(i.e., more uniform) than weight vector (0.4,0.5,0.1), but is
no different than weight vector (0.5,0.3,0.2). The leximin
criterion has been studied extensively in the literature (Sen,
1970; Moulin, 1991, 2003), and has been applied success-
fully in a broad spectrum of domains including constraint
programming (Bouveret and Lemaitre, 2009), wireless net-
works (Huang and Bensaou, 2001), resource allocation (Gh-
odsi et al., 2011; Kurokawa, Procaccia, and Shah, 2015),
cake-cutting (Chen et al., 2013), and kidney exchange (Roth,
Sénmez, and Unver, 20053).

Definition 6 (Leximin Comparison). On an instance
(G, S,v*), let weight-selecting mechanisms M and M’
return weight vectors w and W', consisting of weights
(w1, ..., wg) and (wi,... ,wl’SI), respectively, sorted in
the non-decreasing order. Then, M is leximin-better than
M’ on (G, S,v*) if there exists t € {1,...,|S|} such that
w; = wj foralli € {1,...,t — 1} and wy > wj.
Comparing mechanisms across instances, we say that M
is leximin-better than M’ if M’ is not leximin-better than M
on any instance, and M is leximin-better than M’ on at least
one instance.
Definition 7 (Leximin-Optimality). In a family of weight-
selecting mechanisms C, mechanism M € C is called
leximin-optimal for C if M is leximin-better than every other
mechanism in C.

We can now cast our search for a good mechanism as
a formal question. Does there exist a mechanism that is
leximin-optimal for the family MM of symmetric weight-
selecting mechanisms satisfying the no harm axiom? Note
that at most one mechanism could satisfy this desideratum.
Unfortunately, the next result shows that in our case none
meets the bar.

Theorem 4. No mechanism is leximin-optimal for MNH,

Proof. Let G; and G be the networks shown in Fig-
ure 2. Suppose for contradiction that there exists a weight-

V2 U3
U2
U1 U1

v* v*

(a) Graph G1 (b) Graph G2
Fig. 2: Impossibility of leximin-optimality for MNH

selecting mechanism M € MM that is leximin-optimal
for MNH_ Tt can be shown that there exists a mechanism
in MM that weights both voters in G equally. While
RANDOMWALK does not satisfy this, the reader may check
that the mechanism LEGITT that we later propose in Sec-
tion 3.4 does. Leximin-optimality of M now implies that A/
must assign weight 1/2 to both voters in G.

Next, note that G5 is created when voter vy in G per-
forms a false-name manipulation. Thus, the no harm axiom
implies that M must still assign a weight of at least 1/2 to
v1 in G2. As the remaining weight is divided equally among
the remaining two voters by symmetry, it follows that the
minimum weight in G2 under M is at most 1/4. However,
it can be checked that the minimum weight in G2 under
RANDOMWALK is 2/5, which is greater than 1/4. Hence,
RANDOMWALK € MM is leximin-better than M on G,
which contradicts leximin-optimality of M for MNH. Il

3.4 A Possibility Result

Theorem 4 implies that subject to the no harm axiom, a
mechanism cannot be the best on every instance. It faces
an inevitable trade-off whereby choosing to be better on one
instance requires it to be worse on another. Which instances
should get more emphasis? In social networks, often very
few users make the effort to vote, and this scarcity of infor-
mation is further exacerbated in smaller networks. Thus, ar-
guably, achieving a uniform weight vector is more important
in smaller networks so that every opinion counts. In larger
networks, it is often excusable to discard a few opinions in
order to achieve robustness. We translate this informal goal
of giving more importance to smaller networks into a for-
mal desideratum, “optimized for small networks”, which we
view as a novel conceptual contribution of the paper as its
formulation may be useful in other settings as well.

Definition 8 (Domination). For weight-selecting mecha-
nisms M and M’ , we say that M dominates M’ on network
G for target node v* if M’ is not leximin-better than M on
(G, S,v*) forany S C V(G)\{v*}, and M is leximin-better
than M' on (G, S, v*) for some S C V(G) \ {v*}.

Definition 9 (Optimized for Small Networks). For a family
of weight-selecting mechanisms C and M € C, we say that
M is optimized for small networks within C if the following
holds: If M € C is leximin-better than M on an instance



(G, S,v*), there exists a strict subgraph H of G with v* €
V(H) such that M dominates M' on H for target node v*.

While being optimized for small networks is weaker than
(is implied by) leximin-optimality, the bar is still high, as
the next observation shows. Its simple proof is omitted due
to space constraints.

Proposition 1. In a family of weight-selecting mechanisms,
at most one mechanism is optimized for small networks.

We now design an intuitive weight-selecting mechanism,
and show that it is optimized for small networks within the
family MM, A key idea behind the mechanism is due to
Conitzer et al. (Conitzer et al., 2010), who propose a method
of identifying certifiably legitimate nodes in a network in the
presence of false-name manipulations. In their more general
setting, this is a tricky problem, but in our setting it boils
down to a simple observation: v could possibly be a fake
node created by u if and only if removing u disconnects v
Sfrom v*.

Let F'(u), called the lobe of u, be the set of all nodes that
become disconnected from v* by removing u. As a conven-
tion, v ¢ F(u), and F(v*) is undefined. Now, node v is
certifiably legitimate if v ¢ F'(u) forany u € V' \ {v*}. In
other words, v should remain connected to v* after remov-
ing any single node. Equivalently, it should either be a direct
neighbor of v*, or be 2-vertex-connected to v*.* Suppose
we can weight all certifiably legitimate voters equally. The
following lemma helps us deal with the remaining voters.

Lemma 1. A symmetric weight-selecting mechanism satis-
fying the no harm axiom cannot assign a positive weight to
any node in the lobe of a voter.

Proof. Suppose for contradiction that node v € F'(u) re-
ceives weight § > 0, where u is a voter. Suppose all nodes in
the graph (including those in F'(u)) are real. As the nodes in
F'(u) are only connected to the remaining network through
u, under a false-name manipulation u can create N copies of
F(u) that are attached to u in a way identical to how F'(u)
is attached. The no harm axiom implies that v still receives
weight at least §, and by symmetry, now so does each of its
N copies. However, this is infeasible when N > 1/ as the
weights must sum to 1.

While Lemma 1 requires us to discard all nodes in the
lobe of a voter, it does not prevent us from distributing the
weight that a certifiably legitimate non-voter would have re-
ceived (had it been a voter) to the nodes in its lobe. In fact,
such distribution is necessary for the weights to sum to 1
when all voters reside in lobes of other nodes. A natural way
is to apply this procedure recursively in each such lobe. This
leads to our mechanism, which we call LEGITT because it
recursively passes legitimacy to nodes. It is presented as Al-
gorithm 1. Crucially, we only recursively apply the mech-
anism to a lobe if it has a voter. Note that our mechanism
assigns a positive weight to the maximal set of nodes sub-
ject to Lemma 1. This leads us to the next result.

*Using Menger’s theorem (Menger, 1927), being 2-vertex-
connected to v* is equivalent to having two vertex-disjoint paths
to v™.

ALGORITHM 1: Mechanism LEGITT
Data: Social network G, set of voters S, central node v
Result: Weight vector w = (wy)yes
Vu e V\ {v*}, F(u) « {t € V' \ {u} | tis not
connected to v* in Gy {4} }3
(AueV\{v'}:veF(u)A
(Flo)u{v})NS #0};

*

L+ {veV\{v}

Yv € S, w, < 0;
for v € L do
if v € S then
| w, + 1/|L

else

T+ F(v)U{v};

wree « LEGITT (Gr, S N T,v);

foru e F(v)NSdo w, + wi®-1/|L|;
end

[l

end
return w = (W, )yes;

Lemma 2. If a node receives zero weight under LEGIT™, it
receives zero weight under all mechanisms in MM,

We are now ready for the main result of this paper.

Theorem 5. LEGIT™ is optimized for small networks within
the family MM,

4 Computational Complexity

Let us begin with RANDOMWALK. Andersen et al. (2008)
show that aggregation of binary recommendations under
RANDOMWALK amounts to solving a single system of lin-
ear equations Ax = b, where the LHS matrix A isn x n
(n = |V] is the number of nodes) and the RHS vector b is
n X 1. Solving this system can take, even with recent exact
solvers, O(|V|15 - (|[V| + |E|)) time (Eberly et al., 2006).
Implementing RANDOMWALK as a weight-selecting mech-
anism is computationally even more difficult. We need to
solve one system of linear equations for each voter, which
can take O(|V'|25 - (V| + |E|)) time (Eberly et al., 2006).

Let us now consider LEGITT. Arguably, it is harder to
describe than RANDOMWALK, and Algorithm 1 is more in-
tricate than simply solving a collection of linear systems.
More specifically, in the first step of Algorithm 1 sim-
ply computing F'(u) for every node u would naively take
O(|V]- (V] + |E|)) time. Surprisingly, we show that there
exists a more efficient implementation that computes the
weights under LEGIT™ in merely O(|V |+ |E|) (linear) time.
This implementation uses as a subroutine the remarkable lin-
ear time algorithm by Hopcroft and Tarjan (1973) for finding
biconnected components in a graph. A biconnected compo-
nent (or a block) is a maximal 2-vertex-connected subgraph.
Nodes that belong to multiple blocks (i.e., whose removal
disconnects the graph) are called cut vertices or articulation
points. A connected graph G decomposes into a block-cut
tree T whose vertices are the blocks and the articulation
points of GG, and a block B and an articulation point u are
connected if u € B.



Let A denote the set of articulation points of G, and B,
denote the set of blocks of GG containing u. First, u has a non-
empty lobe F'(u) if and only if u € A. Next, if u € A, the
lobe F'(u) can be computed as follows. Remove the vertex of
T representing u, which disconnects 7" into connected com-
ponents, one of which contains all blocks containing v*. The
set of nodes in the blocks contained in every other connected
component of the tree (except w itself) constitute F'(u). This
key observation leads us to a linear time implementation of
LEGITT, the details of which are omitted due to space con-
straints.

Theorem 6. Weights under LEGITT can be computed in
O(|V] + |E|) time.

S Experiments

We compare LEGITT with two baseline mechanisms: LEGIT
and RANDOMWALK. We define weight-selecting mecha-
nism LEGIT as the simpler version of LEGIT™ that assigns
equal weight to all certifiably legitimate voters, but does not
apply the procedure recursively within the lobes of certifi-
ably legitimate non-voters. Thus, comparison with LEGIT
indicates the gain from recursively applying LEGIT™ within
the lobes of certifiably legitimate non-voters. We note that
LEGIT™ is expected to (though theoretically not guaranteed
to) outperform RANDOMWALK, because RANDOMWALK
is not designed to assign uniform weights.

We perform experiments using 16 real-world social net-
works from the KONECT project (Kunegis, 2013). The
number of nodes and edges in these networks vary from 23
to 26,475, and from 78 to 146,385, respectively.> For each
network GG, we sample the target node v* uniformly at ran-
dom. For each pair (G, v*), we determine the set of voters
by making each node in the network a voter independently
with probability pyoe. We use both low values (from 0.01
to 0.09 in increments of 0.02) and high values (from 0.1 to
0.9 in increments of 0.2) of pyee, representative of varying
levels of voter engagement. For each network and each of
10 values of pyoe, We choose 100 random target nodes, and
for each target node, choose 100 random subsets of voters.
In the results presented below, we compare LEGITT with
LEGIT and RANDOMWALK across the simulations for each
network. To solve the linear system in RANDOMWALK, we
use Matlab’s mldivide operator, and to find the biconnected
components in LEGIT™, we use the MatlabBGL library .

Figure 3(a) shows a log-log plot of the running time of all
three mechanisms (LEGIT+ as magenta diamonds, LEGIT
as red circles, and RANDOMWALK as blue stars) as a func-
tion of the number of nodes in the network. The experi-
ments were performed on a dual-core machine with 3.10
GHz processors and 8 GB RAM. While LEGIT is trivially
faster than LEGIT™ (as it requires a strictly less number of
operations), the difference is not significant. On the other
hand, while RANDOMWALK is slightly faster than LEGIT"

SRunning experiments on the larger datasets was infeasible due
to the prohibitive running time of RANDOMWALK.

*https://www.cs.purdue.edu/homes/dgleich/
packages/matlab_bgl/

on smaller networks, LEGIT™ is significantly faster on net-
works with more than 200 nodes. This is consistent with our
result from Section 4 that the worst-case complexity is sig-
nificantly lower for LEGIT™ than for RANDOMWALK (lin-
ear versus super-quadratic). Across the entire experiment,
LEGIT" ran about 13 times faster than RANDOMWALK, and
only about 3 times slower than LEGIT.

In the remaining figures, we only plot two lines: one
that compares LEGITT with LEGIT (with red circles), and
one that compares LEGITT with RANDOMWALK (with blue
stars).

Our next goal is to determine which mechanism outputs a
more uniform weight vector. Lacking an objective definition
of uniformity, we use three metrics: i) leximin comparison as
used in our theoretical results in Section 3, ii) the percentage
of voters discarded, i.e., assigned zero weight to (the lower,
the better), iii) the (L?-)distance from the uniform weight
vector, which is equal to the variance of the weight vector
(the lower, the better).

Figure 3(b) shows that LEGIT™ is leximin-better than both
LEGIT and RANDOMWALK in more than 50% simulations
in each network. In fact, it is leximin-better than LEGIT
(resp. RANDOMWALK) in more than 75% (resp. 85%) sim-
ulations in all but one (resp. two) networks. Superior em-
pirical performance in such large networks nicely comple-
ments our theoretical result (Theorem 5), which indicates
that LEGIT™ should be superior in small networks in gen-
eral.

Next, while Lemma 2 ensures that LEGITT discards the
smallest subset of voters subject to the no harm axiom, Fig-
ure 3(c) shows that LEGIT and RANDOMWALK can discard
up to 60% and 20% more voters, respectively, than LEGIT™
(about 30% and 10%, respectively, on average across net-
works).

Finally, comparing variance of the returned weight vec-
tor, Figure 3(d) shows that LEGITT performs better than
both LEGIT and RANDOMWALK in more than 50% sim-
ulations in each network. Further, it outperforms LEGIT
in at least 69% simulations in all but one network, and
RANDOMWALK in at least 89% simulations in all but one
network.

So far we have focused on

the setting where the opin- ¢ 100 -
ions of voters are subjec- .2
tive, and the goal is to find = 75
a weight vector as close to .E
uniform as possible. We now g 50
conl gl vl

present empirical results for ‘
a slightly different setting in 102 10% 10*
which there exists a binary Dataset Size

(0/1) ground truth, and the
goal is to pinpoint it by ag-
gregating binary opinions of
voters, each of which is “correct” with probability p,.. >
0.5. The accuracy of a weight-selecting mechanism on an
instance (G, S, v*) is the probability that the mechanism as-
signs higher total weight to voters with the correct opinion
than to voters with the incorrect opinion. While we do not
have theoretical results for this setting, we can evaluate the

Fig. 4: Accuracy
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Fig. 3: Comparison of LEGIT' with RANDOMWALK on real-world social networks

mechanisms empirically. For p,.., we use both low values
(0.51 to 0.59 in increments of 0.02) and high values (0.6 to
0.9 in increments of 0.1).

Figure 4 shows that LEGIT™ achieves better accuracy than
both LEGIT and RANDOMWALK in more than 50% simu-
lations in each network. Also, note that LEGITT achieves
better accuracy than RANDOMWALK in at least 70% simu-
lations in all but one network.

6 Discussion

Recall the median-of-medians rule from the introduction:
the recommendation is the median of the opinions of the
target agent’s friends, and for a friend who does not pro-
vide an opinion, we construct one by taking the median
of his friends’ opinions, and so on. In conjunction with
the weighted median aggregation rule (as in Theorem 1),
LEGIT™ can be seen as a similar rule, “median-of-medians
for legitimate nodes”: instead of taking the median of
friends’ opinions, take the median of the opinions of (certi-
fiably) legitimate nodes, and for such nodes that do not pro-
vide an opinion, construct one recursively from opinions in
their lobes.

We uniquely characterize LEGIT" within the family of
symmetric weight-selecting mechanisms satisfying the no
harm axiom. We show this axiom to be closely related, but
in the most general setting incomparable, to false-name-
proofness. The no harm axiom is only defined for weight-
selecting mechanisms. It remains to be seen whether we
can pinpoint an overall recommendation mechanism that
uses LEGIT™ (e.g., median-of-median for legitimate nodes)
within the more general family of false-name-proof mecha-
nisms.

Importantly, in this paper we consider the uniform weight
vector as idealistic. In the context of aggregating subjective
opinions into a personal recommendation for the target node,
this only makes sense in the absence of knowledge of corre-
lation among user preferences (e.g., homophily of opinions).
However, note that Lemma 1 provides a necessary condition
for satisfying the no harm axiom — in the form of having to
assign zero weight to specific nodes — even in the presence
of homophily. Given a model of homophily, we must start by
assigning zero weight to such nodes. Weighting the remain-
ing nodes to maximally align the recommendation with the
target node’s preference is still a difficult problem. Fortu-

nately, it can be shown that choosing the remaining weights
as a function of the vertex-connectivity of a node to the tar-
get node is sufficient to guarantee the no harm axiom. How-
ever, this approach is likely to be suboptimal. An immedi-
ate next step is to design better ways of incorporating ho-
mophily subject to the no harm axiom.

An interesting direction for future research is to study
stronger manipulations. For example, LEGIT" does not
prevent group false-name manipulations or manipulations
where nodes may delete their existing edges with other
real nodes. Can we effectively prevent them? While
RANDOMWALK is group false-name-proof, it can be shown
that it is not optimized for small networks among symmetric
group false-name-proof mechanisms. Does there exist such
a mechanism (recall that there can be at most one)?

False-name manipulations are an increasingly serious
concern in social networks, especially with the effortless ac-
cessibility and increasing popularity of automated tools for
creating fake accounts (Pathak, 2014). Given the difficulty
of distinguishing fake accounts from real ones, we believe
that the study of false-name-proofness is the key to building
the next generation of reliable recommendation systems.
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