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Abstract

We investigate how to reconstruct social networks from vot-
ing data. In particular, given a voting model that considers
social network structure, we aim to find the network that best
explains the agents’ votes. We study two plausible voting
models, one edge-centric and the other vertex-centric.

For these models, we give algorithms and lower bounds,
characterizing cases where network recovery is possible and
where it is computationally difficult. We also test our algo-
rithms on United States Senate data.

Despite the similarity of the two models, we show that their
respective network recovery problems differ in complexity
and involve distinct algorithmic challenges. Moreover, the
networks produced when working under these models can
also differ significantly. These results indicate that great care
should be exercised when choosing a voting model for net-
work recovery tasks.

Introduction

One approach to investigating voting data assumes that
agents’ votes are independent of one another, conditioned on
some underlying (sometimes probabilistic) model of ground
truth. This is usually an unrealistic assumption, leading to a
more recent line of inquiry which asks how the social net-
work structure of the voters affects the relationship between
votes. Each agent in a social network expresses a position
(votes for or against a bill, prefers one brand over another,
etc.) that is influenced by their social connections. In this
view, it is possible to detect the organization and evolution of
voting communities by looking at the social network struc-
ture. The literature on congressional and political voting net-
works focuses on detecting community structure, partisan-
ship, and evolutionary dynamics [1} [7, 9} [13} [17} [18]], while
the literature on idea propagation investigates how to best
maximize the spread of ideas [3 8]

However, it is often not necessarily clear how to build this
social network graph. For example, Macon et al. give a few
different variants on how to define the social network of the
voters of the United Nations [9]]. In this approach, different
graphs may reveal different aspects of the social network
structure.

This corresponds neatly with a typical view in social
choice theory that votes are manifestations of subjective
preferences. At the other extreme, a voter votes according to

a noisy estimate of the ground-truth qualities of the possible
choices on which he or she is voting. While both are over-
simplified extremes, it is useful to consider the extremes in
order to investigate their consequences [4]]. In this paper, we
take the latter approach.

This is the maximum likelihood approach to voting. In
this approach, a fixed probabilistic model is used to deter-
mine the relationship between how the ground-truth qual-
ities of the possible choices lead to the noisy estimates of
those qualities, which the voters then use to vote. This prob-
abilistic model takes into account the social network struc-
ture in which the voters are embedded.

In this approach, it is typically assumed that the social
network of the voters is known. The goal is then to find the
correct choice from votes, as tackled by Conitzer and then
others [4} 14, [16]. This can be made more difficult depend-
ing on the structure of a social network, which may enforce
the wrong choice by aggregating individual opinions over
dense subgraphs, leading voters with low degree to possibly
change their mind to the majority view of the subgraph.

In practice, however, the social network is not known and
it is not necessarily clear how to infer the graph. In this pa-
per, we tackle the problem of inferring the social network
from the votes alone. We discuss two similar but distinct
voting models in the vein of Conitzer [4], and show how to
recover the graph given the votes under these voting models
and under several notions of what it means to recover the
graph. We show that your ability to learn the graph from the
votes is highly dependent on the underlying voting model
- in some settings, it is computationally hard to do so but
not in others. Moreover, we demonstrate that the resulting
learned graphs can differ significantly depending on which
underlying voting model is assumed.

Models and results

We give results for two similar models: an edge-centric
model, which Conitzer calls the independent conversation
model [4]), and a vertex-centric model, introduced in this pa-
per, which we will call the common neighbor model. Sim-
ilar to some existing models, the common neighbor model
is, for instance, equivalent to the “deterministic binary ma-
jority process” run for one step (where the initial assign-
ment is random). This process was examined by Goles and
Olivos [6] and related work, e.g. by Frischknecht et al. [,



and it has been used in the press to illustrate the dispropor-
tionate influence of certain voters [[15]].

In both models, there is an unknown simple undirected
graph G on n vertices. Each vertex is an agent, who can vote
“—1” or “1”. Both models describe how each agent votes in
one round of voting. We consider m rounds of voting and in
each round every vertex votes, leading to a sequence of vote
sets VMl = Vi,...,V,, where each V; is the set of votes
from all voters. The problem is to recover G from V™!,

First, we define the independent conversation model, a
two-step process where edges represent conversations be-
tween voting agents, and each agent votes according to the
majority outcome of his conversations.

Definition (independent conversation model). Firsz, each
edge flips a coin i.i.d. that with probability p is 1 and with
probability (1 — p) is —1. Then each vertex votes according
to the majority of its adjacent edges’ preferences. If there is
a tie, then it is broken in favor of voting 1 with probability q
and —1 with probability 1 — q.

This process is depicted for a particular graph in Figure[T]
Note that the set of votes V; only includes the final votes, not
the initial preferences.

Figure 1: Left: the outcome of pairwise “conversations” be-
tween connected neighbors. Right: the resulting votes. For
simplicity, the edge probabilities are not depicted.

The common neighbor model is similar, except here the
initial preferences are on the vertices, not the edges:

Definition (common neighbor model). Each vertex ini-
tially flips a coin i.i.d. that with probability p is 1 and with
probability 1 — p is —1. Then each vertex votes 1 if more ad-
Jacent vertices’ initial preferences were 1 then —1 and vice
versa. If there is a tie, then it is broken in favor of voting 1
with some probability q and —1 with probability 1 — q.

This process is illustrated in Figure

Figure 2: Left: the initial preferences of the nodes. Right: the
resulting votes. For simplicity, the preference probabilities
are not depicted.

It is straightforward to see how they are different. In the
independent conversation model, two vertices’ votes are in-
dependent of each other if and only if they do not share an

edge, while in the common neighbor model, they are inde-
pendent if and only if they have no common neighbors.

Our main contribution consists of algorithms to recover
the hidden graph G from the votes, lower bounds, and ex-
periments for both models.

Our results span a few different notions of what it means
to recover the unknown graph. First, we ask whether there
exists a polynomial time algorithm (using only a polyno-
mial number of votes in the number of voters) that finds the
unknown graph G when the votes were drawn from G. We
show the following:

Result 1. In the independent conversation model, there is an
algorithm that, given a number of votes and time polynomial
in the number of vertices, recovers the unknown graph when
p = 1/2 with high probability. Moreover, for constant p #
1/2, an exponential number of votes are required to recover
the graph. (See Observation [I|and Theorem 2] )

Our algorithm is a statistical test for edges between pairs
of vertices by calculating sample covariances of their votes,
which here measures how likely it is that two voters vote
the same way. This is very similar to how voting networks
are often constructed in the literature [2, |9l [17]]. This result
can then be seen as a formal motivation for why this type of
method should be used.

Result 2. In the common neighbor model, no algorithm can
exactly recover the unknown graph. (See Observation[7])

The above two results motivate us to consider other no-
tions of what it means to recover the graph because the graph
is generally not recoverable efficiently here. Moreover, in a
setting where there is not necessarily a ground-truth graph
from which the votes were drawn, we are still interested in
finding a graph that explains the votes. We make this pre-
cise by asking for the maximum likelihood estimator (MLE)
graph, that graph that maximizes the probability of the ob-
served votes over the distribution of votes induced by a fixed
voting model. As is standard for the maximum likelihood es-
timator, we assume that the prior over graphs is uniform.

Result 3. For the independent conversation model, there
is a polynomial-time bounded-probability random reduction
from a #P-complete problem to finding the likelihood of the
MLE graph. (See Theorem[5])

This result is an indication that computing the likelihood
of the MLE graph is difficult, since if there were an effi-
cient algorithm to compute this quantity then there would be
an efficient algorithm to solve a #P-complete problem that
succeeds with high probability.

In the common neighbor model, we investigate a third ap-
proach to finding a graph that explains the votes. Given that
we recover graphs in the independent conversation model
using covariances between votes, it is natural to ask whether
it is possible to find a graph whose expected covariances are
close to the observed covariances in the common neighbor
model. We show that even if you were to know the expected
covariances exactly, it would still be computationally diffi-
cult to find such a graph.

Result 4. For the common neighbor model, finding a graph
with given expected covariances between votes is at least



as hard as recovering an adjacency matrix from its square.
Moreover, a generalization of this problem, namely the gen-
eralized squared adjacency problem, is NP-hard. (See Ob-
servation 8| and Theorem[10})

The squared adjacency problem and its generalized ver-
sion are defined as follows:

Definition. The input for the squared adjacency matrix
problem is a matrix B, and the decision problem asks if

there is an adjacency matrix A of a simple graph such that
A?2=DB

Definition. The input for the generalized squared adjacency
problem is a collection of n? sets S;j, and the decision prob-
lem asks if there is a simple graph whose ad]acency matrix
is A such that A € S;; for each entry AZ, ofA2

To the best of our knowledge, the squared adjacency ma-
trix problem is not known to be NP-hard nor is it known to be
in P. It is a difficult open problem in its own right, and other
versions of it have been proven NP-hard [10]. It is equiva-
lent to the special case of the generalized version where the
set sizes are exactly one.

The independent conversation model

In this section, we show when there is a algorithm to recover
the hidden graph. We will also show that it is hard to find
the likelihood of the maximum likelihood graph for an input
sequence of votes. Before we present those two results, we
start with the following observation:

Observation 1. For constant p # 1/2, under the indepen-
dent conversation model, it takes exponentially many votes
to distinguish with high probability between the complete
graph and the complete graph minus an edge.

This follows directly from the fact that in both the com-
plete graph and the complete graph minus an edge, if p #
1/2, with exponentially high probability every voter will
vote 1. Our only hope is that it becomes possible to recover
the graph G when p = 1/2, which we show to be the case.

An algorithm for p = 1/2
In this section, we prove the following:

Theorem 2. Let p = q = 1/2. For any graph G on n ver-
tices and 6 > 0, if m = Q (n2 (ln% +In n)) votes are
drawn from G under the independent conversation model,
there is a polynomial-time algorithm that will recover G
with probability at least 1 — 4.

Let X,, € {1,—1} be the random variable representing
the outputted vote of vertex u, so X, = 1 if u votes 1 and
—1 otherwise. Now consider two vertices v and v. The votes
of u and v are independent if and only if (u, v) is not an edge.
This yields a natural approach to determining if (u, v) is an
edge of G: measure the sample covariance between the votes
of u and v and if this covariance is sufficiently far away from
zero, there must be an edge.

To formalize this, we need to calculate the covariance be-
tween X, and X, if there is an edge between them:

Lemma 3. For any edge (u,v) of G, let d,, and d,, be the
degrees of u and v. For convenience, let p = (1 — 2p)q + p.
Then Cov (X, X,,) is

1P (L) (B2 G -p) ™ evendayd,

4p(iiiﬁ;zl) (iiv_i) (p(1—p)) g , evend,, oddd,

4p(%22:11) (‘3@:21) (p(1 — p))dﬁdr1 , oddd,, evend,
du‘i'dv

4(51) (3’;’3) (p(1=p) %,

Proof. Consider an edge (u,v) € E(G). Since u and v
vote independently given the vote of the edge (u, v), we will
write the probability that each of these vertices vote 1 given
the edge vote.

Namely, call P} = P (u votes 1|edge (u,v) votes 1) and
Pl = P (uvotes 1|edge (u,v) votes -1) and similarly
P&, P! the analogous probabilities for v.

We can write the covariance in terms of these four proba-
bilities: Cov (X, X,) = 4p(1—p) (Pl — P 1)(P} - P 1).

To show this, it suffices to write the covariance as a func-
tion of the joint probabilities P(X,, = 1,X, = 1), etc.,
and then write each joint probability as a function of the
probabilities that a vertex votes 1 given that how the adja-
cent edge votes. For example, by conditioning on the vote of
edge (u,v),

P(X,=X,=1)=pP'P' + (1

odd dy, d,.

—p)P, Pt

The others are similar.

To complete the proof, all we need is a formula for P}
(P, P, and P! are calculated analogously). This is
done by choosing edges to form the majority vote of u’s
neighborhood.

Recall d(u) — 1 and d(v) — 1 are the degrees of v and v,
respectively, minus 1 (in order to discount the edge (u, v)).
We then have

d(u)—

Sicd (M7 )1 even d(u)

Ph=d o) 0
Sed (M7 (1= p)ipd-1=i odd d(u).
The statement of the lemma then follows. O
In the case where p = 1/2, we show that the covari-

ance will be sufficiently large; namely that it will be Q(1/n),
where n is the number of vertices of G.

Corollary 4. When p = 1/2 and (u,v) is an edge of G,

1 1 1
>

=or Vd,d, ™

Proof. We simplify the formula for the covariance derived
in Lemma 3|by giving lower bounds for the central binomial
coefficients, from which the result immediately follows: For
any positive integer k, the central binomial coefficient(s) sat-

isfy ([ ]) > \Qﬁ These lower bounds follow from Ster-
ling’s approximation k! = v/27k (Z) (14+0(3))- O

Cov(Xy, Xy) >




Note this lower bound was only polynomial in 1/n be-
cause p = 1/2; otherwise, the exponential term (p(1— p))™,
for p constant, ensures that the covariance goes to 0 expo-
nentially quickly in n.

We are now ready to prove Theorem 2] which uses the Ho-
effding bound to establish that the sample covariance con-
verges quickly enough to its expectation, which if there is
an edge is given in Lemma [3|and if there is no edge is just 0.

proof of Theorem[2] Recall that in the independent conver-
sation model, we are given m votes X, ; i X, for
i = 1,...,m and all v in G, where X, is the {—1,1}-
valued random variable found by taking the majority vote
of the initial votes of w’s neighborhood.

Forp = ¢ = 1/2, E(X,,) = 0 for each vertex u, which
means that Cov (X,, X,) = E(X,X,). This means that
the (biased) sample covariance between u and v is Cy", =
% Zzn Xu,in,i~

The algorithm to recover G from the m votes is straight-
forward: For each pair of vertlces u, v, calculate the sample
covariance Cy%,. If O, > then the algorithm claims
there is an edge between U and v, and otherwise, the algo-
rithm claims there is no such edge. We call this the covari-
ance test. It suffices to show that the probability that the co-
variance test is wrong is low: Using Corollary [4] we get for
edge (u,v),

m 1
P (op.< b ) <

and for (u,v) ¢ E(G),

41n

P(cr, ~E(CT) < ).

1

m 1 m. m -
(Cu v 47m> <Cu v (Cu 1)) > 47m> .

From the Hoeffding bound each of these two terms is
bounded above by e~ w27 for some constant c.

Let G’ be the network inferred by the above algorithm.
Then the probability that G’ is not G is no more than

1 1
E P(C™ — E P(Cc™ —
< wy < 47m) + ( wo 47rn> ’
u, el u,v¢E

cm

which is bounded from above by (g) e w2,
Hence, for any 6 > 0, setting m = Q (n2 (ln % +1In n))
suffices so that (J)e” 72+ < 4. O

Hardness of computing the MLE

As we have seen, when p = ¢ = 1/2, distinguishing be-
tween graphs can be done in polynomial time. This might
give hope that, in this case, computing the likelihood of the
MLE graph, given a set of votes, may be easy. Alas, we give
hardness results indicating this is not the case.
We reduce from Conitzer’s problem of computing
*|G), where V* is a vote produced by a given graph
Gh He shows that this is problem is #P-hard by reducing

1Whlle the problem Conitzer considers is slightly different than
computing P (V*|G), in the case where p = 1/2, his problem
reduces to computing P (V*|G).

from counting the number of perfect matchings in a bipar-
tite graph. Surprisingly, our proof of this hardness result uses
the easiness of distinguishing graphs in polynomial time in
the case when p = ¢ = 1/2. This is a key component in
Lemma [6] Formally, we prove the following theorem.

Theorem 5. There is a randomized polynomial-time oracle
reduction from computing the MLE of the maximum likeli-
hood graph from a sequence of votes w.h.p. to counting the
number of perfect matchings in a balanced bipartite graph.

First, we need some notation: For any graph GG on n ver-
tices, let Vo be the distribution over a set of n votes in-
duced by G under the independent conversation model for
p = 1/2. For convenience we will denote the m-product

distribution Vg X ... X Vg as V[m] That is, for any vote
Ve{-1,1}", Py, (V)= (V\G) is the probability mass
of V under Vg. Similarly, for a sequence of votes yiml
Pyim) (V) = P (VI™)|@) is the probability mass of V™!

under V2!

Once a large enough sample is drawn from G, we show
that not only with high probability G is the MLE for the
votes, but also its probability of producing the sample can
be made arbitrarily better than that of the second most likely
graph. Furthermore, the size of the sample needed in order
to have this happen is only polynomially large in the number
of vertices.

Lemma 6. Foré >0, o > 1,

Py (]P’ (vi"ie) < o max P (VWG’)) <6

form = (n2 (n2 + ln% + lna)).
Proof. Fix a > 1 and denote by E the event that
maxg/£aG ]P)(V[m”Gl) > 1

P(VIm|G) T a

(If P(VI™|G) = 0, then the desired event occurs, so we
can safely assume the converse.) The idea of this proof is
that we will show the probability of E happening is small
by conditioning on what the vote sequence V™ looks like
when drawn from G. Specifically, in the proof of Theorem[2]
we show that the covariance test would have successfully
found G with high probability, so we condition on this hap-
pening.

Fix a graph G’ # G. We will want to show that the prob-
ability that V1" is pulled from G’ (instead of G) is suffi-
ciently small. The covariance test failed if V1" were pulled
from G’: the covariance test returned G on V™! instead of
G'. And again, the probability that the covariance test failed
is low, as showed in the proof of Theorem 2] so the proba-
bility that V™ is pulled from G’ must be small.

We denote the set of vote sequences for which the covari-
ance test returns G by ®¢.

Using this notation, we condition on yim] being in ® or
not and then get an immediate upper bound:

Py (B) < Py (BIVI™ € @) + P (VI ¢ @)



We then bound each of these two terms. The probability
that the covariance test failed on V™ is small: By inspect-
ing the proof of Theorem 2] we have that for some constant

¢,
n _ _cm_
Py (VI ¢ @) < (2>e ()

Otherwise, the covariance test succeeded and we condi-
tion on V™ € ®,. We now show that

Py (E|V[m] e @G) <a (2(3) - 1) <Z)e_ 7. (2)
Markov’s inequality gives
maxg/4c P(V[m”G/) 1 m
]P)V[Gm] ( ]P’(V[’”HG) > o V[ ] € (DG
<
maxg/ 4 ]P’(V[m”Gl) m
a-Eppm ( P(VImI|G) virhe d ).

It is then enough to expand this expected value using the
definition to get that

Py <E|V[m]e<I>G) <a Z maxP( W|G’)‘
mledg

Now we group the terms of the sum by which graph
G’ # G maximizes the probability P (V[m] |G’). There may
be many terms in the sum that any one graph G’ maximizes,
but certainly each vote sequence associated with each term

is in @ . There are of course 2(3) 1 such graphs, so

P (Vo)< 3 50 B(vie)

Vimlcag GG'#£G Vimlcag

= (2(2)

If V™ were in d but Viml was pulled from G’, then the
covariance test has failed at returning G’. So

P (VW e ¢G|G’) < (Z)e_

implying Equation 2] Combining Equations[T]and 2] we get
n\ (T __cm_
Py (B) < a2(8) <2>e

Thus it suffices to set m = 2 (n2
P

(n2 + ln% + lna)) , for
Vi (E) to be upper-bounded by 4. O
We now give a sketch of the proof of Theorem 3]

proof sketch of Theorem[3] For convenience, we restrict to
the case where all vertices of the graph have odd degree. It
suffices to consider the case where p = 1/2.

The idea of the proof is going to be to build a sequence of

votes V" whose MLE we know to be the input G, and then
[m)
compute P(V*|G) = P‘,/(‘/hin‘]/‘glf) Our oracle will give us

the values of the right-hand side. This approach will work if
P(V*|G) # 0.

- 1)P(v[ml c <I>G|G’).

So we first test for the case if P(V*|G) = 0. Conitzer
provides a way to do this for a similar problem: his reduction
is from the maximum weighted b-matching problem, which
we can adapt to the so-called “c-capacitated” version that we
need [4,[12].

Else, P(V*|G) # 0. We draw a sequence of votes

ylml i Vg X...xVqg. Lemmal6limmediately implies that
G will be the MLE for VI with high probability certainly
when m = Q(n*Inn). In other words, with just Q(n* Inn)
votes we will successfully query the oracle for P(V["|Q)
with high probability.

It suffices to ensure that with high probability we will also
successfully query the oracle for the m + 1-length sequence
VIml v+, Recall that since P(V*|G) is the sum, over all sat-
isfying edge votes, of the quantity (1) ‘E(G)‘, where E(G)
is the edge set of G and p = 1/2. There must be at least
one satisfying edge-vote assignment since P(V*|G) # 0, so

P(v7(@) = (3))

any G’ # G,IS(XTN?) > a w.h.p. Then for any G’ # G,

. In addition, again by Lemma |6} for

PV, V*|GY) < <;IP’(V[’"]|G)) (2= CIB(v|@))

9lE(G)|
= PV V@),

(67

Finally, o > 2/Z(&)| with probability at least 1 — § when
§ = o(1) and @ = Q(e’), which in turn implies we
need m = Q(n*Inn). Since m is polynomial in n, the or-
acle reduction, once it tests for the existence of at least one
valid edge vote, simply consists of drawing a polynomial
number of votes from G and then querying the oracle for
P(VI™ V*|G) and P(V™|G). O

The common neighbor model

We now turn our attention to the common neighbor model.
Again, we ask if it is possible to recover G by seeing only
polynomially many votes. In general, it is not possible to re-
cover G at all, let alone with only polynomially many votes:

Observation 7. Under the common neighbor model, there
is no algorithm that can distinguish between matchings.

If G is a matching between the vertices, each vertex will
vote how its neighbor votes, meaning that each vertex votes
i.i.d. with probability p regardless. Thus there is no way to
distinguish between different matchings.

Recovering A2 from covariances

Given the impossibility of recovering the graph, we relax
the problem to the following: Find a graph that is likely to
produce the given votes in the sense that the expected co-
variances of this graph should be as close as possible (under
some norm) to the covariances of the observed votes. This
problem is motivated by the algorithm for the independent
conversation model which finds a graph whose expected co-
variances match the measured covariances.



Yet even if we were to know the expected covariances of
the input votes, finding a graph whose expected covariances
are close to those input covariances remains challenging:

Observation 8. For the common neighbor model, finding
a graph with given expected vote covariances is at least as
hard as recovering an adjacency matrix from its square.

To prove this observation, it suffices to show that the ex-
pected covariances are a function solely of the entries of A2,
Then recovering A from A? consists of using the entries of
A? to compute the expected covariances, at which point the
adjacency matrix of a graph with those covariances will be
exactly A. The i, jth entry of A? is the number of length-
two paths between ¢ and j, so it is enough to write the co-
variances of a graph in terms of the following: For I'(v) the
neighborhood of a vertex v, denote d,, = |I'(v) N T'(u)l,
dy = |T(u) \ (T(v) NT(u))|, and d, analogously. The co-
variances are a function of d,,, d,, and d,,,. For the sake of
simplicity we will assume that |T'(u)| and |T'(v)| are odd,
but it is straightforward to modify the formula given below
in the cases when they are not.

Lemma 9. Assume |I'(u)| and |I'(v)| are odd. Forp = 1/2,

d
1 - du'u
Cov(Xu, Xo) = 57— (Z ( . >Puyv(k)Pv,u(k)> —1,

k=0
where, for 0 = (dy, +dy, +1)/2 — k,
s S (B 0 <6< d,
0

e S d,
1 if6 < 0.

P, (k) =

Proof. Let X, represent vertex u’s vote. When p = 1/2,
E[X,] =0,and P(X,, = X, =1) = P(X, = X, =0),
so the covariance Cov(X,, X,) is

E[X,X,] =2P(Xy, = X,)—-1=4P(X, = X, =1)—1.

To determine P(X, = X, = 1), we condition on the num-
ber of common neighbors that voted 1:

Assuming some k common neighbors vote 1, in order for
u to vote 1, u needs an additional W — k neighbors to

vote 1. If k is already at least W, then the probability

of voting 1 is already 1; on the other hand if there aren’t
enough remaining vertices to vote 1, then the probability is
0. This yields P, , (k) as the probability that u votes 1 given
that £ common neighbors of u and v voted 1.

Now we can write P(X,, = X, = 1) as

dyy
> ()= R Ph),

k=0

completing the proof. O

When recovering a graph from a sequence of input votes,
we are not even given the expected covariances of the input
votes. Instead we can calculate the measured covariances,
from which we can determine A2. At this point, we have a
function inversion problem on our hands: We can find A2
merely by recovering these d,,,’s and d,,’s from the covari-
ances, but given that the formula given in Lemma [9] is not

closed, this is not trivial. Since there are only polynomially
many possible values for d,, and d,, we can simply try all
values to find the covariance closest to the observed value.
However, there may be covariances that are exponentially
close to each other, making it impossible to distinguish be-
tween these values for given d,, d,,. In this case the values
recovered for the entries of A% may not be unique, which
in the worst case leads to the generalized squared adjacency
problem. Even in the case when we recover unique values,
it still reduces to the squared adjacency problem.
While the squared adjacency problem is open, we show:

Theorem 10. The generalized squared adjacency problem
is NP-hard.

Proof. The reduction is from CLIQUE, which asks if there
is a clique of size k on the input graph. Given a graph G =
(V,E) and an integer k, we construct a set system {S;;}
with (n + 1)? sets, where n = |V/|. We then show that G
has a clique of size k if and only if there is a graph G’ =
(V U {v}, E') such that the i, jth entry of A(G")?isin S, ;,
where A(G') is the adjacency matrix of G’. The (n + 1)2-
sized set system {S; ;} is defined as follows:

{0,1} ifi# jandi,j#vand (i,j) €
{0} ifi#£jandi,j #£vand (i,5) &
g — {0} ifi=vandj#v
v {0} ifj=wvandi#v
(K} ifi=j=v
0,1} ifi=jandi,j #v

Assume there is a clique of size k in G. Then G’ is defined
as follows: Denote the vertex set of the clique in G by C. G’
will have an edge between v and all members of C, and no
other edges. It is straightforward to check that the ¢, jth entry
of A(G')? is in S;; by noting that the diagonal entries of
A(G")? are the vertices’ degrees and the off-diagonal entries
counts the number of common neighbors.

In the other direction, assume there is such a graph G’
whose squared adjacency matrix satisfies the constraints im-
posed by the set system {5, ;}. In this case, the clique of
size k in G will be exactly the neighborhood of v in G’ (not
including v itself). Call N (v) the neighborhood of v in G’.
Note the degree of v in G’ must be k, by definition of S,,,,
i.e. [N(v)| = k. Consider a distinct pair of vertices i, j in
N (v). The vertices ¢ and j have at least one common neigh-
bor in G’, namely v, because both are in N (v), meaning that
A(G")z; > 1. Butif (i, j) is not an edge in G then S;; = {0}
by the definition of S;;, a contradiction, forcing N (v) to be
a clique as required. O

A heuristic approach

Unlike in the independent conversation model, we have no
efficient algorithm for producing the social network under
the common neighbor model. Hence, we employ a heuristic
to find a graph that satisfies or comes close to satisfying the
constraints imposed on it by the measured covariances.
Because of the computational hardness of this problem,
we propose a heuristic approach to learn networks under the
common neighbor model. This heuristic will be used in our



experimental results in Section . Our heuristic, Algorithm [I]
finds those pairs of vertices whose current expected covari-
ance (assuming p = 1/2) is farthest away from the measured
covariance and modifies the graph to decrease that gap.

Algorithm 1 Common neighbor heuristic

Input: {¢;;}, measured covariances between voters ¢ and j.
Input: 7', number of iterations to run.
G ~G(n,1/2), Gpest =10
{cij} =={o(i,j)} # calculate expected covariances
for 0 to 7" do
i,j = argmax; ;[c;j — ¢ ;
G = MOdlfyG(G7 ’i7j, éij7 Cij)
{cij} =={o(i,j)} #update the expected covariances
if Z” cij — C;; is smallest so far then Gpegr 1= G
end for
return Gp.s;

Algorithm 2 ModifyG

Input: Graph G; vertices ¢, j; ¢;j, ¢;; the measured and ex-
pected covariances between ¢ and j.
unconnected ;== V(G)\ (T(7) UT'(G) U {i,j})
en:=T0E)NT(H)
if Cij — éij > 0 then
randomize among whichever of these are available:
1: x :=random(¢, 7), y := random(unconnected)
add edge (z,y) to G
2: x :=random(%, ), y := random(cn).
delete edge (z,y) from G
3: y :=random(cn)
delete edges (i,y) and (4, y) from G
elseif c;; — ¢;; < 0 then
randomize among whichever of these are available:
1: y := random(unconnected)
add edges (i,y) and (j,y) to G
2:y :=random(T'(%) \ ¢n)
add (7, y) or delete (j,y) from G randomly
3: y :=random(I'(j) \ cn)
add (j,y) or delete (4, y) from G randomly
end if
return G

# where random(.) selects an element of its input u.a.r.

The local changes we want to make clearly cannot just
consist of adding/removing single edges: Say the covariance
between a given pair of vertices needs to go up and those
vertices’ neighborhoods are currently empty. The only way
to increase the covariance is to add at least two edges: (4, v)
and (v, j) for some other vertex v. The natural compromise
is then to add or remove the minimal number of edges (either
one or two) to change the covariance, as seen in Algorithm[2]

Experimental Results

In this section, we test our algorithms on United States Sen-
ate roll call votes. We examine each two-year congressional
session as one voting network. Each Senate member is an
agent who either votes for the bill in question, against, or

does not vote (either because the senator served only part of
the term or because the senator just didn’t vote on the bill),
yielding votes from the set {—1,0, 1}.

Obviously, our models are simplifications — they don’t
take into account evolution of opinion, nor do they take into
account the possibility of anti-correlated voters. Even as-
suming that either model is representative, when presented
real data, the parameter p is not given, as is assumed above.
The algorithms we present assume that p = 1/2, which is
not necessarily the case. Finally, we are given a fixed amount
of data, independent of the number of voters.

Despite these limitations, for the independent conversa-
tion model, our covariance test, which forms the basis for
Theorem [2] results in intuitive behavior. Note that while our
model assumes binary votes, our covariance test is general
enough to handle such votes — covariance is calculated be-
tween the {—1, 0, 1}-valued votes and the threshold remains
the same as in the original covariance testE] Examples of
the results from this covariance test on the US Senate are
shown in Figure [3] Given the highly structured nature of
these graphs, it is possible to recover senators’ places on the
left/right political spectrum, but since this is not the focus of
this paper, we do not go into any further detail here.

For the common neighbor model, we use Algorithm
Examples of results of this heuristic run on US Senate data
are shown in Figure ff] Graphs under this model appear to
be very different from those found using the covariance test
under the independent conversation model.

To demonstrate these marked differences, in Figure E] we
give modularity values and average degrees of Democrats
and Republicans under both models for the period 1989-
2014 (corresponding to the 101st through 113th Con-
gresses). Modularity is a standard measure of the amount
of division between communities [[L1]]. Both average degree
and modularity are much higher under the independent con-
versation model (dashed lines in Figure [5) than under the
common neighbor model (solid lines). Since the heuristic is
randomized, we average these statistics over twenty graphs,
each of which is an independent run of the heuristic with
100,000 rounds.

Conclusion

In this paper we derive algorithms and lower bounds for
recovering graphs from their vertices’ votes under two dis-
tinct models. We also present experiments on the U.S. Sen-
ate voting network. In the independent conversation model,
we show when the graph is recoverable using only a polyno-
mial number of votes. However, if we want to instead take
a maximum likelihood approach to recovering graphs, then
the task becomes computationally hard.

The common neighbor model, on the other hand, leads to
significantly different results. Not only is it impossible to re-
cover the graph using only polynomially many votes, finding
a graph whose votes’ covariances are close to the observed

2We do, however, use the unbiased sample covariance instead
of the biased sample covariance, as the assumption that p = 1/2
no longer necessarily holds, despite the analysis of the algorithm
assuming it.
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(a) 101st Congress (1989-1990) (b) 106th Congress (1999-2000)

(c) 113th Congress (2013-2014)

Figure 3: Graphs of the US Senate for three congressional terms under the independent conversation model. Democrats are
colored blue, Republicans are red, and Independents are green.

(c) 113th Congress (2013-2014)

(a) 101st Congress (1989-1990)

(b) 106th Congress (1999-2000)

Figure 4: Graphs of the US Senate for three congressional terms under the common neighbor model. Democrats are colored
blue, Republicans are in red, and Independents are in green.
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Figure 5: Data for the 101st-113th Congress. Dashed and solid lines are statistics for the independent conversation model and
common neighbor model, respectively. Error bars represent one standard deviation, over 20 trials.
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covariances leads to having to solve a hard problem (the gen-
eralized squared adjacency problem).

This implies that these models really are very different
from each other, despite their very similar definitions. This
is strong evidence that much care needs to be taken when
choosing voting models for network inference. Experiments
on Senate roll call data support this conclusion.
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