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Abstract

Probabilistic methods for causal discovery are based on the
detection of patterns of correlation between variables. They
are based on statistical theory and have revolutionised the
study of causality. However, when correlation itself is unreli-
able, so are probabilistic methods: nonsense correlations can
lead to spurious causal links, while nonmonotonic functional
relationships between variables can prevent the detection of
causal links. We describe a new heuristic method for infer-
ring causality between two continuous or integer variables,
based on a nonparametric randomness test. We evaluate the
accuracy of the method by comparing it to published algo-
rithms on real and artificial datasets, and show that it largely
avoids these false positives and negatives.

Introduction

Inferring cause-effect relationships between variables is of
great importance in many areas, including medicine, soci-
ology, bioinformatics, agriculture and most sciences. The
standard scientific approach for determining such relation-
ships is to design controlled experiments in which a few
variables are manually changed and the results on other vari-
ables are observed. To many scientists this is the only ac-
ceptable method, but in applications where controlled ex-
periments are expensive, unethical or infeasible we must try
to infer causality from observed data only. In causal discov-
ery we are given data consisting of observations of a number
of variables, and our task is to infer causal relationships be-
tween the variables.

In recent years sophisticated probabilistic methods have
been devised by Artificial Intelligence (AI) researchers for
causal discovery in graphical form. Probabilistic methods
are based on detecting patterns of conditional independence
between variables, by applying a correlation test to some
variables while conditioning on others. Algorithms such as
IC (Pearl 2000), PC and FCI (Spirtes, Glymour, & Scheines
2000) have a sound statistical basis and have stimulated a
great deal of interest and research. Non-probabilistic meth-
ods have also been reported in the AI literature. Addi-
tive Noise Models (Hoyer et al. 2009) can detect nonlin-
ear causal relationships between two (or more) variables, by
testing whether one variable y is a function of the other vari-
able x, plus a noise term that is statistically independent of
x. In this case there is usually no equivalent model with x

and y interchanged, an asymmetry that is exploited to infer
that x causes y (x → y). Information-Geometric Causal
Inference (Daniusis et al. 2010; Janzing et al. 2012) can
also be applied to a pair of variables. It is based on the idea
that the hypothesis x → y is only acceptable if the short-
est description of Px,y (the joint probability distribution of
x and y) is obtained from separate descriptions of Px and
Py|x. The length of a description is defined in terms of its
Kolmogorov complexity, which is uncomputable in princi-
ple but can be estimated. Outside AI there has been a great
deal of research into causality. A survey of this vast litera-
ture is outside the scope of this paper, but see (Reiss 2015)
for a recent overview.

A drawback of probabilistic methods is that nonmono-
tonic relationships between variables can be hard to detect
by statistics such as Pearson’s correlation coefficient. For
example the correlation coefficient of y = x2 with x sam-
pled around 0 is close to 0, because the positive and nega-
tive correlations (for x > 0 and x < 0 respectively) tend to
cancel out; similarly for periodic functions. Yet we might
reasonably assume x to be a cause of y (assuming no other
influences), because each x value has a unique y value but
not vice-versa. As a more realistic example, we show below
that electricity consumption depends nonmonotonically on
temperature: house owners use heating when it is cold and
air conditioning when it is hot, so consumption is least at
intermediate temperatures.

Another drawback of probabilistic methods is their re-
liance on the principle of the common cause (PCC) (Re-
ichenbach 1956): if two random variables x and y are prob-
abilistically dependent then either x → y, y → x or x ←
z → y where z is a confounding (or latent) variable. But ex-
ceptions to the PCC have been reported. (Sober 2001) points
out that two variables whose values increase monotonically
(for example the Venetian sea level and British bread prices)
will pass a correlation test though they are unrelated. These
nonsense (or illusory) correlations were first described in
(Yule 1926). (Hoover 2003) argues that this example relies
on nonstationary data, for which correlation is an inappro-
priate measure of statistical association. (Spirtes, Glymour,
& Scheines 2000) suggest that nonsense correlations might
be caused by “remote unmeasured common causes”. How-
ever, nonsense correlations can occur between time series
that are both stationary and independent, as in this example



from (Reiss 2015):

xt = θxxt−1 + ǫxt
yt = θyyt−1 + ǫyt

where |θ| < 1 and the ǫ are independent and identically
distributed random variables with zero mean. A dataset of
such (xt, yt) pairs will exhibit many nonsense correlations
(in about 30% of cases when θ = 0.75). Preprocessing the
data by differencing does not help because the mathematical
form of the differenced series is identical to that of the orig-
inal. Reiss also cites other ways in which nonsense correla-
tions can occur, and concludes that there are no data prepara-
tion methods (such as differencing and detrending) that cure
the problem, and no single causal inference algorithm that
works well on all forms of data.

These observations do not contradict the work on proba-
bilistic methods. They merely illustrate the known fact that
those methods rest on assumptions that are violated by some
forms of data (Spirtes, Glymour, & Scheines 2000). In this
paper we describe a new causal discovery method designed
to handle such data: it can discover nonmonotonic causal
relationships between two continuous or integer variables
without being misled by nonsense correlations. We describe
our method, evaluate it on real and artificial data, and briefly
discuss possible integrations with other methods.

A note on terminology based on (Salkind & Rasmussen
2007). Nonsense correlations are distinct from spurious
correlations, which are accidental correlations that are not
brought about by their claimed natural causes. They are arti-
facts of method and arise from factors such as sample selec-
tion bias or use of an inappropriate correlation coefficient.
They can occur in compositional data such as proportions
or percentages (Pearson 1897). The term spurious correla-
tion may also refer to correlation caused by a confounding
variable.

The algorithm

In this section we describe our new algorithm for inferring a
causal relationship between two variables.

A causal discovery heuristic

Our algorithm is based on a simple heuristic:

Given two variables x and y, if y is everywhere a non-
random function of x then infer x→ y.

where everywhere means for any subsequence of the sorted
x values (for simplicity we assume these are distinct). We
can apply any convenient statistical test to decide whether or
not a subsequence is a nonrandom function.

This is merely a heuristic and it is not hard to find exam-
ples in which it gives incorrect results. Firstly, suppose y is
a monotonic function of x: then x will also appear to be a
monotonic function of y. In this case our heuristic is unable
to detect the direction of causality and will infer x ↔ y.
Secondly, suppose y is a function of x with a plateau region
(sometimes called saturation (Bunge 2009) Section 4.1.2).
A plateau with added random noise looks like a random
function, so y fails to be everywhere a nonrandom function
of x and our heuristic will fail to identify the causal link
x→ y.

Despite these limitations, we shall show that the heuristic
leads to an interesting causal discovery algorithm that can
match or outperform state-of-the-art methods. Before de-
scribing the algorithm we illustrate the motivation behind
the heuristic.

Nonmonotonic causal relationships

As pointed out above, a nonmonotonic functional relation-
ship can lead to a correlation coefficient close to zero, so
that causal discovery algorithms based on correlations will
not detect some causal links. In contrast, we propose to ex-
ploit such relationships.

First consider the y = x2 example with added noise. Fig-
ure 1(a) shows a scatter plot of the data points. Would a
human guess that x→ y or y → x? One way of deciding is
to use a form of Occam’s Razor (which is often invoked in
causal inference research): choose whichever function looks
most natural.

If x→ y then we would expect y to be a reasonably well-
behaved function of x, that is a function that does not look
random. To test this hypothesis we could sort the data points
by x then plot the y values as a function of rank(x) using a
line graph (where rank(x) maps each x value to its rank in
the dataset), giving the noisy but nonrandom-looking graph
in Figure 1(b).

Similarly, to test the hypothesis y → x we could plot
rank(y) against x, obtaining the line graph shown in Figure
1(c). This is much less natural-looking and would represent
a more complicated function. We conclude that y is a func-
tion of x and not vice-versa, hence that x→ y.

Next consider the dataset shown in Figure 1(d). Figure
1(e) plots y against rank(x) and is nonrandom everywhere.
Figure 1(f) plots rank(y) against x: though much of the
graph looks nonrandom, and the graph as a whole might pass
a test of nonrandomness, there is a small random segment:
it is not everywhere nonrandom. Hence we infer x→ y and
not y → x.

Nonsense correlations

To illustrate the point that nonsense correlations can lead to
spurious causal links, we created an artificial dataset with
50 variables and 200 observations. Each variable is inde-
pendent of the others and its values are constructed by time
series:

xi,1 = N(0, σ) xi,t = xi,t−1 +N(0, σ)

Because the variables are independent and are not caused by
any confounding variable the causal graph should be empty.
However, applying the PC algorithm (Spirtes, Glymour, &
Scheines 2000) with α = 0.05 yields a causal graph that in-
volves all 50 variables each with 1–4 links to other variables.

Figure 2(a) shows an example of two time series. De-
spite being independently generated they are negatively cor-
related, which misleads correlation-based methods. Figure
2(b) plots y against rank(x) and 2(c) plots rank(y) against
x. Both look noisy but non-random: (b) has a general
downward trend while (c) has two distinct segments. How-
ever, neither is everywhere nonrandom because each con-
tains rather long subsequences that look random, so our
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Figure 1: Inferring nonmonotonic causality between two variables

heuristic detects no causal link between the variables. For
the 50-variable example our algorithm (described below)
correctly finds no causal links.

The RCI algorithm

Whereas correlation is a symmetric statistic defined on two
variables, we use an asymmetric statistic based on the well-
known Wald-Wolfowitz runs test (Wald & Wolfowitz 1940).
In the runs test we are given a binary sequence containing
N0 zeroes and N1 ones, and we test the null hypothesis that
the sequence was randomly generated, that is independently
drawn from the same distribution. This is a nonparametric
test as it does not rely on any assumptions regarding proba-
bility distributions. To test the hypothesis we count the num-
ber of runs R in the sequence, where a run consists of all
zeroes or all ones. For example the sequence 0010111011
contains R = 6 runs (00, 1, 0, 111, 0 and 11). We also
compute the expected number of runs

R̄ =
2N0N1

N0 +N1

+ 1

and its standard deviation

S =

√

(R̄ − 1)(R̄− 2)

N − 1

Finally we compute the test statistic

Z =
R̄−R

S

and reject the null hypothesis if |Z| is greater than a thresh-

old Ẑ chosen to correspond to a significance level α (for
example a value of 1.96 corresponds to an α of 5% and 2.58
to 1%); we shall denote the significance level by α. (The
above formulae are based on a normal approximation and
are only useful for a reasonably large number of samples
such as N > 30, so for smaller N we compute R̄ and S by
brute force enumeration.)

The runs test can be used as a goodness-of-fit test: to
test whether a curve y = f(x) fits a dataset {(xi, yi) | i =
1, 2, . . .} derive a binary sequence bi where bi = 1 if
yi > f(xi) and 0 otherwise, then if the sequence passes
the randomness test the curve is considered to be a good fit.

We use the runs test for causal inference as follows. Sup-
pose we have a set S of n observations of two variables
(x, y). To test whether y is everywhere a nonrandom func-
tion of x we sort the observations by x and extract the
ordered list L of y values. For each sublist L′ in a se-
lected set s(L) of sublists of L, we compute the Z statis-
tic for a goodness-of-fit test to the flat line y = µ where
µ = mean(L′). We denote the least such Z by Zx(S); simi-
larly for Zy(S). The set s(L) is computed as follows:

s(L) =
m = length(L)
if m < ℓ

return ∅
else

return {L} ∪ s(L1...⌈2m/3⌉) ∪ s(L⌊m/3⌋...m)

We do not consider sequences shorter than some minimum
length ℓ, unless n < ℓ in which case we use {L} instead of

s(L). Now if Zx > Ẑ we infer x → y, and if Zy > Ẑ we
infer y → x.

We call this algorithm Randomness-based Causal Infer-
ence (RCI). The time complexity of RCI on n observations
of v variables is O(v2n logn): each pair of variables are
tested for causality, and the time for each pair is dominated
by the need to sort pairs of values. However, this assumes
that we require a full causal graph: if we are only interested
in the causes and/or effects of a single variable then we need
only consider v−1 possible causal links, and the complexity
is reduced to O(vn log n). The algorithm has two parame-

ters that a user must tune: ℓ and α (or Ẑ).
A further modification is required to handle a feature of

many datasets: each x may have multiple y values and vice-
versa, perhaps because of quantisation or rounding. For such
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Figure 2: Time series example

data we simply take the median of the y values for each x
value.

Experiments

We now apply RCI to several datasets and compare its re-
sults with those of other causal inference algorithms, includ-
ing the PC algorithm implemented in the R software package
(Kalisch et al. 2012). Unless stated otherwise we set the PC
parameter α = 0.05, and the RCI parameters ℓ = 50 or 0.1n
whichever is greater (to reduce plateau effects and avoid ran-

domness tests on short subsequences) and Ẑ = 2.58 (hence
α = 1%).

The Tübingen CEP benchmarks

Our algorithm works on pairs of variables so we start by
testing it on bivariate datasets. A collection of these is main-
tained by the Max-Planck-Institute for Intelligent Systems
at Tübingen (Mooij et al. 2014a) and an extension of a col-
lection of datasets from a competition held in a causality
workshop in 2008. The Cause Effect Pairs (CEP) collec-
tion is continually being updated and at the time of writing
has 98 examples, but we use examples 1–88 so that we can
compare our results with those in (Mooij et al. 2014b).

The CEP benchmarks were obtained from 31 datasets in a
variety of domains: abalone measurements, census income,
fuel consumption, geyser eruption, concrete properties, car
traffic, ozone levels, UN statistics, stock returns, internet
traffic, human face classification, sunspots, food and agricul-
ture, light response, US country growth, milk protein, sup-
ply and demand for accommodation, environmental factors,
climate and meteorology, and medicine. In each case there
are two variables and the direction of causality (the ground
truth) is self-evident.

Because the datasets are grouped into families with sim-
ilar characteristics, the Tübingen group weighted the re-
sults so that each family’s best possible marks summed to
unity, giving a simple way of assigning an accuracy mea-
sure to the results of a causal inference method. (Mooij
et al. 2014b) presented results using nine Additive Noise
Models and three Information-Geometric Causal Inference
methods. The results are plotted in graphs so we do not
have exact figures, but we can estimate them by inspection:
the highest accuracy was approximately 70–75% achieved
by variant “ent-KDP” while most variants achieved below
65%.

The RCI results are shown in Table 1 which shows the
values of Zx and Zy , and the inferred direction of causality.
Correct inferences are highlighted by *. Under the accuracy
measure we achieved 74.6%. As pointed out by (Mooij et
al. 2014b) it is hard to know how significant these results
are, and some of the choices made by RCI are probably not
meaningful: for example instances 43–46 all have large pos-
itive causal strengths in both directions, while 81–83 have
negative strengths in both directions. The results are encour-
aging but more experiments are required.

Electricity consumption

Next we take a dataset from the energy industry (the data is
real but its source is confidential). The load (kW/hour) on a
power station was measured hourly for 9504 hours, and the
outside temperature was measured at the same times. So we
have three variables: hour (integers in the range 0–23), temp
(real values rounded to the nearest 0.5) and load (real values
to four decimal places). Three bivariate scatterplots of the
data are shown in Figure with the following x-y pairs: (a)
hour vs temp, (b) hour vs load, and (c) temp vs load. The
authors recently submitted these datasets to the Tübingen
CEP collection as pairs 94–96.

We would like to know which variables cause which. By
common sense we know that hour and temperature might
influence load but not vice-versa, and that hour influences
temperature. Each of these dependencies corresponds to a
nonmonotonic function. The temperature peaks at approxi-
mately mid-day, the load appears to follow a slightly more
complex pattern as the day proceeds, and the load increases
as low and high temperatures: at low temperatures heating
is used, while at high temperatures air conditioning is used
(Taieb & Hyndman 2014).

RCI finds causal links hour→temp, hour→load and
temp→load as expected. PC with α = 0.05 finds undi-
rected links between all three variables, while with smaller
α it finds hour→load and temp→load but not hour→temp.
We conjecture that the nonmonotonic nature of temperature
with respect to hour confuses the correlation measure used
by PC.

Communities and crime

Finally, from the UCI Machine Learning Repository (Lich-
man 2013) we obtained the Communities and Crime dataset
(Redmond & Baveja 2002) which has 128 variables and
1994 observations. We ignore 25 of the variables which are
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Figure 3: Three views of the electricity consumption data

textual, nominal or have missing values. The variable to be
predicted in this dataset is ViolentCrimesPerPop (total num-
ber of violent crimes per 100K population).

As we are only interested in the causes of crime we use
RCI to look for direct causal links between ViolentCrimes-
PerPop and all other variables. PC indicates that some vari-
ables are both causes and effects of ViolentCrimesPerPop
because its CPDAG contains loops: for example a 3-loop in-
volving PctIlleg, PctVacantBoarded and ViolentCrimesPer-
Pop. So to compare the two methods we look at the vari-
ables they indicate are causes of crime, in the case of PC
both direct and indirect (mediated by other variables). The
PC causal graph is too large to display here but PC found 26
causes:

householdsize, agePct12t21, agePct16t24, pctWInvInc,
pctWPubAsst, NumUnderPov, PctBSorMore, PctUnem-
ployed, PctOccupMgmtProf, MalePctDivorce, MalePct-
NevMarr, FemalePctDiv, TotalPctDiv, PersPerFam, Pct-
Fam2Par, PctKids2Par, PctYoungKids2Par, PctTeen2Par,
NumIlleg, PctIlleg, NumImmig, PersPerOwnOccHous, Pc-
tHousOwnOcc, PctVacantBoarded, NumInShelters, Num-
Street

whereas RCI found 56 causes:

population, racePctBlack, racePctWhite, racePctAsian,
agePct12t21, agePct12t29, agePct16t24, numbUrban, med-
Income, pctWWage, pctWFarmSelf, pctWInvInc, pctWSoc-
Sec, pctWPubAsst, pctWRetire, medFamInc, perCap-
Inc, blackPerCap, indianPerCap, OtherPerCap, NumUnder-
Pov, PctNotHSGrad, PctBSorMore, PctOccupMgmtProf,
MalePctDivorce, FemalePctDiv, TotalPctDiv, PctKids2Par,
PctYoungKids2Par, PctTeen2Par, PctWorkMomYoungKids,
NumIlleg, PctIlleg, NumImmig, PctImmigRecent, Pc-
tImmigRec5, PctImmigRec8, PctImmigRec10, PctRecen-
tImmig, PctSpeakEnglOnly, PctNotSpeakEnglWell, Pct-
LargHouseFam, PersPerOccupHous, PersPerOwnOccHous,
PctPersDenseHous, PctHousLess3BR, PctHousOccup, Pct-
HousOwnOcc, PctVacantBoarded, PctVacMore6Mos, Me-
dRentPctHousInc, NumInShelters, PctForeignBorn, Pct-
BornSameState, PctSameHouse85, PctUsePubTrans

It is reasonable to ask whether RCI is more sensitive or
merely less discerning than PC, and whether one set of
causes is more correct than the other. Both sets seem rea-
sonable, but this is to be expected because all the variables
were considered possible causes of crime by the researchers
who collected the data.

One way of comparing the results is to analyse how
closely they agree. We are using PC as a benchmark against
which to evaluate RCI, so let us assume that PC has found

the correct K = 26 causes out of N = 102 possibilities.
Then of the n = 56 causes found by RCI k = 20 are cor-
rect. We can compute the probability that at least k of the
n are correct by using the probability mass function of the
hypergeometric distribution:

p(≥ k successes) =

K
∑

i=k

(

K
i

)(

N−K
n−i

)

(

N
n

)

The probability that RCI finds at least 20 correct causes is
p = 0.0076. Thus if our null hypothesis is that RCI chose its
56 causes randomly, we can reject the null hypothesis with
significance 1%. Hence there is a high degree of agreement
between the two methods on the causes of crime (though
RCI is not necessarily correct to indicate 30 extra causes).

Conclusion

We described a new causal discovery algorithm called RCI
and showed that it:

• can detect causal links that are undetected by a probabilis-
tic algorithm;

• can avoid spurious causal links that are found by a proba-
bilistic algorithm;

• performs well on bivariate datasets compared to additive-
noise and information-geometric methods;

• performs well on multivariate datasets compared to a
probabilistic algorithm.

It has a low worst-case time complexity, making it applica-
ble to fairly large datasets. Applications for fast, approxi-
mate causal inference methods include causal feature selec-
tion (Guyon, Aliferis, & Elisseeff 2007).

RCI might be combined with other methods to yield a
more powerful causal inference system. For example if RCI
detects a bidirectional link caused by a monotonic function
relating the two variables, this might be reduced to a uni-
directional link by additive-noise or information-geometric
methods. As another example, if we infer a ↔ b ↔ c then
we could invoke a rule described by Pearl to refine this to
a→ b← c.
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instance truth Zx Zy infer
1 x→ y 0.1 3.9 y → x
2 x→ y -0.1 0.2 y → x
3 x→ y -0.2 1.5 y → x
4 x→ y 0.4 -1.1 x→ y *

5 x→ y 5.0 10.1 y → x
6 x→ y 5.0 2.0 x→ y *
7 x→ y 5.0 9.6 y → x
8 x→ y 5.0 6.6 y → x
9 x→ y 5.0 -0.6 x→ y *

10 x→ y 5.0 -0.8 x→ y *
11 x→ y 5.0 1.4 x→ y *
12 x→ y 4.2 0.0 x→ y *

13 x→ y 0.6 -2.2 x→ y *
14 x→ y 2.4 0.7 x→ y *
15 x→ y -2.2 0.0 y → x
16 x→ y -1.2 0.3 y → x
17 x→ y 4.5 -0.2 x→ y *
18 x→ y -0.3 1.8 y → x
19 x→ y 0.1 1.0 y → x
20 x→ y 0.6 2.2 y → x
21 x→ y 0.3 -3.1 x→ y *

22 x→ y -0.3 -0.5 x→ y *
23 x→ y 1.1 0.3 x→ y *
24 x→ y -1.0 -0.1 y → x
25 x→ y 1.5 -1.7 x→ y *
26 x→ y 1.4 -0.6 x→ y *
27 x→ y 0.1 -0.9 x→ y *
28 x→ y 0.5 -1.8 x→ y *
29 x→ y -0.5 -2.6 x→ y *
30 x→ y 2.5 -0.6 x→ y *
31 x→ y -0.1 -1.8 x→ y *
32 x→ y 3.3 -1.1 x→ y *

33 x→ y 2.6 1.9 x→ y *
34 x→ y 1.4 -2.0 x→ y *
35 x→ y 1.4 1.1 x→ y *
36 x→ y 2.6 3.3 y → x
37 x→ y 1.4 -1.6 x→ y *

38 x→ y 0.5 -1.9 x→ y *
39 x→ y 1.5 -2.3 x→ y *
40 x→ y 3.2 2.6 x→ y *
41 x→ y 0.8 -0.1 x→ y *
42 x→ y 18.3 12.7 x→ y *

instance truth Zx Zy infer
43 x→ y 23.7 23.5 x→ y *
44 x→ y 28.9 29.5 y → x
45 x→ y 19.3 20.7 y → x
46 x→ y 16.5 16.4 x→ y *

47 y → x -0.7 0.0 y → x *

48 y → x -1.2 0.1 y → x *
49 y → x -1.1 -2.1 x→ y
50 y → x -0.9 -0.9 y → x *
51 y → x -3.0 0.0 y → x *
56 y → x 3.2 -1.4 x→ y
57 y → x 3.5 -1.3 x→ y
58 y → x 3.9 -1.3 x→ y
59 y → x 2.6 -1.4 x→ y
60 y → x 2.9 -1.6 x→ y
61 y → x 3.1 -1.2 x→ y
62 y → x 1.8 -1.1 x→ y
63 y → x 1.8 -0.8 x→ y
64 x→ y 4.4 0.9 x→ y *

65 x→ y -0.9 -1.4 x→ y *
66 x→ y -1.8 -2.3 x→ y *
67 x→ y -2.3 -1.5 y → x
68 y → x 0.0 2.1 y → x *

69 y → x 2.8 6.0 y → x *
70 x→ y 3.5 0.0 x→ y *

72 x→ y -1.1 -2.2 x→ y *

73 y → x -0.3 -2.0 x→ y
74 x→ y -2.7 5.9 y → x
75 y → x -0.7 -1.3 x→ y
76 x→ y 5.2 4.1 x→ y *
77 y → x 15.9 -2.9 x→ y
78 x→ y 0.2 -0.6 x→ y *
79 y → x -0.6 -2.6 x→ y
80 y → x -1.8 -1.1 y → x *
81 x→ y -0.5 -0.7 x→ y *
82 x→ y -1.2 -1.1 y → x
83 x→ y -0.3 -1.4 x→ y *

84 y → x 3.7 4.2 y → x *
85 x→ y 2.1 -0.3 x→ y *

86 x→ y 5.2 3.0 x→ y *

87 x→ y 8.9 -1.8 x→ y *
88 x→ y -1.2 -1.7 x→ y *

Table 1: RCI results on CEP benchmarks


