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Abstract

In this paper, we characterize the deterministic condi-
tions on the locations of the sampled entries, i.e., sam-
pling pattern, that are equivalent to finite completabil-
ity of a matrix that represents the union of several low-
rank subspaces. To this end, in contrast with the ex-
isting analysis on Grassmannian manifold for conven-
tional matrix completion problem, we propose a geo-
metric analysis on the manifold structure for the union
of several subspaces to incorporate all given rank con-
straints simultaneously. Then, using the developed tools
for this analysis, we also derive a sufficient condition on
the sampling pattern that ensures there exists only one
completion of the sampled data.

Introduction
Low-rank matrix completion has received significant recent
attention and finds applications in various areas including
image or signal processing (Candès et al. 2013; Ji et al. 2010;
Candès and Recht 2009), data mining (Eldén 2007), network
coding (Harvey, Karger, and Murota 2005), bioinformatics
(Ogundijo, Elmas, and Wang 2017), fingerprinting (Liu et al.
2016a), systems biology (Ogundijo, Elmas, and Wang ), etc.,
and one of the main reasons of such versatility is that matri-
ces consisting of the real-world data typically possess a low-
rank structure. Recently, several approaches are proposed
to tackle a more complicated version of the low-rank matrix
completion problem named the union of low-rank subspaces
completion problem, where each column belongs to a sub-
space among multiple low-rank subspaces, and therefore the
whole matrix belongs to the union of those multiple low-
rank subspaces (Eriksson, Balzano, and Nowak 2012; Gao
et al. 2015). Also, in many applications, the subspace clus-
tering problem is of importance (Elhamifar and Vidal 2009;
Pimentel-Alarcón and Nowak 2016). However, in this paper,
we consider the completion problem and not subspace clus-
tering, where we assume that the subspace that each column
is chosen from is specified.

In general, the existing methods in the literature on low-
rank matrix and tensor completion can be categorized into
several approaches, including those based on convex re-
laxation of matrix rank (Candès and Recht 2009; Candès
and Tao 2010; Cai, Candès, and Shen 2010; Ashraphijuo,
Madani, and Lavaei 2016; 2015; Candès et al. 2013) or dif-
ferent convex relaxations of tensor ranks (Gandy, Recht,
and Yamada 2011; Tomioka, Hayashi, and Kashima 2010;
Signoretto et al. 2014; Romera-Paredes and Pontil 2013;

Kreimer, Stanton, and Sacchi 2013; Ashraphijuo and Wang
2017c), those based on alternating minimization (Wang, Ag-
garwal, and Aeron 2016; Liu et al. 2016b), and other heuris-
tics (Liu et al. 2016a; Kressner, Steinlechner, and Vander-
eycken 2014; Krishnamurthy and Singh 2013; Goldfarb and
Qin 2014). Note that the optimization-based approaches to
low-rank data completion require strong assumptions on the
correlations of the values of all entries (such as coherence).
On the other hand, recently, deterministic conditions on the
sampling patterns have been studied for subspace clustering
in (Pimentel-Alarcón, Balzano, and Nowak 2016; Pimentel-
Alarcón, Boston, and Nowak 2015; Pimentel-Alarcón et al.
2016; Pimentel-Alarcón, Nowak, and EDU 2016). In par-
ticular, fundamental conditions on the sampling pattern (in-
dependent from the values of entries) that guarantee the
existence of finite or unique number of completions, have
been investigated for single-view and multi-view matrix
completion (Pimentel-Alarcón, Boston, and Nowak 2016;
Ashraphijuo, Wang, and Aggarwal 2017c; 2017b), low
canonical polyadic (CP) rank tensor completion (Ashraphi-
juo and Wang 2017b), low Tucker rank tensor completion
(Ashraphijuo, Aggarwal, and Wang 2016; 2017), low tensor-
train (TT) rank tensor completion (Ashraphijuo and Wang
2017a) and rank determination of low-rank data comple-
tion (Ashraphijuo, Wang, and Aggarwal 2017d; 2017a). In
this paper, we study these fundamental conditions for matri-
ces obtained from the union of several low-rank subspaces,
i.e., we propose a geometric analysis on the manifold struc-
ture for union of low-rank subspaces to study the mentioned
problem.

Problem Statement
Assume that k ≥ 2 is a fixed integer and n1 < n2 < · · · <
nk are given integers. Let U ∈ Rm×nk be a sampled matrix
and denote the matrix consisting of the first ni columns of
U by Ui, i = 1, . . . , k. Hence, note that U = Uk and this
is shown in Figure 1. Moreover, assume that rank(Ui) = ri,
i = 1, . . . , k. For notational simplicity assume n0 = r0 = 0
and U0 = ∅. Let Gr(ri,Rm) denote the Grassmannian of
ri-dimensional subspaces of Rm such that the space cor-
responding to ri is a subspace of the space corresponding
to ri+1. Assume that PGi denotes the uniform measure
on Gr(ri,Rm) and Pθi denotes the Lebesgue measure on
Rri×si , where si = ni − ni−1 for i = 1, . . . , k. In this
paper, we assume that the first n1 columns of U are chosen
generically from the manifold of m × n1 matrices of rank
r1, i.e., the entries of the first n1 columns of U are drawn
independently with respect to Lebesgue measure on the cor-



responding manifold. And in general the columns number
ni−1 + 1 to ni of U are chosen generically from the mani-
fold of m× (ni − ni−1) matrices of rank ri, i.e., the entries
of the columns number ni−1 + 1 to ni of U are drawn in-
dependently with respect to Lebesgue measure Pθi on the
corresponding manifold, i = 2, . . . , k. Also, in this paper
the probability measure is Πk

i=1PGi
Pθi .

Note that the problem of union of two low-rank subspaces
(k = 2) is different from the multi-view matrix completion
studied in (Ashraphijuo, Wang, and Aggarwal 2017c), as the
multi-view matrix completion has one extra rank constraint
that is independent from one of the rank constraints.

Let Ω denote the binary sampling pattern matrix that is
of the same size as U. The entries of Ω that correspond to
the observed entries of U are equal to 1 and the rest of the
entries are set as 0. Assume that the entries of U are sampled
independently with some probability. This paper is mainly
concerned with treating the following two problems.

Problem (i): Given the rank constraints rank(Ui) = ri,
i = 1, . . . , k, characterize the necessary and sufficient con-
ditions on the sampling pattern Ω, under which there exist at
most finitely many completions of U with probability one.

Problem (ii): Given the rank constraints rank(Ui) = ri,
i = 1, . . . , k, characterize sufficient conditions on the sam-
pling pattern Ω, under which there exist only one comple-
tion of U with probability one.

nk − nk−1n2 − n1n1

U1

U2

U =Uk

m

Figure 1: The structure of the sampled matrix U.

Deterministic Conditions for Finite
Completability

In this section, we first study the geometry of the manifold
corresponding to the union of subspaces to define an equiv-
alence class to classify the bases such that each basis of the
sampled data belongs to exactly one of the defined classes.
To this end we characterize the canonical structure of the
bases and show the uniqueness of canonical basis for the
sampled data with probability one. Then, we define a poly-
nomial based on each observed entry and through studying
the geometry of the manifold corresponding to the rank con-
straints, we transform the problem of finite completability
of U to the problem of including a certain number of alge-
braically independent polynomials among the defined poly-
nomials for the observed entries. A binary matrix is con-
structed based on the sampling pattern Ω, which allows us
to study the algebraic independence of a subset of polyno-
mials among all defined polynomials based on the samples.
Finally, we characterize the necessary and sufficient condi-
tion on the sampling pattern for finite completability of the

sampled data given the rank constraints.

Geometry
For each U, there exist infinitely many rank decompositions,
i.e., V ∈ Rm×rk and T ∈ Rrk×nk such that U = VT.
However, we are interested in obtaining the canonical ba-
sis V such that there exists exactly one rank decomposition
with canonical basis. In other words, we want a pattern on
the basis that plays role as an equivalence class such that
there exists exactly one basis V for U in each class. We
start by the following lemma which will be used character-
ize such an equivalence class.

Lemma 1. There exists a matrix V ∈ Rm×rk such that
Ui belongs to the column span of the first ri columns of V,
i = 1, . . . , k. Note that V is a basis for U and we call such
basis an “appropriate basis”.

Proof. We construct such a matrix V by induction on i. In
other words, in the i-th step, we construct Vi such that Us

belongs to the column span of the first rs columns of Vi,
s = 1, . . . , i. Note that for i = 1 it is straightforward to
construct V1, which is simply a basis for U1. Induction hy-
pothesis results in the matrix Vi with the mentioned proper-
ties and in order to complete the induction, we need to show
the existence of a matrix Vi+1 such that Us belongs to the
column span of the first rs columns of Vi, s = 1, . . . , i+ 1.

We first claim that Vi belongs to the column span of
Ui+1. Note that according to the induction hypothesis, Vi

is a basis for Ui and also Ui is a subset of columns of Ui+1,
which proves our claim. Let Si denote the column span of
Vi, which is an ri-dimensional space and S ′i+1 denote the
column span of Ui+1, which is an ri+1-dimensional space.
As a result of our earlier claim, Si is a subspace of S ′i+1.
Let S ′′i denote the (ri+1−ri)-dimensional subspace of S ′i+1

such that the union of Si and S ′′i is S ′i+1.
Consider an arbitrary basis Vi′ ∈ Rm×(ri+1−ri) for the

space S ′′i . Observe that by putting together the columns
of Vi and Vi′ , i.e., Vi+1 = [Vi|Vi′ ], the new matrix
Vi+1 ∈ Rm×ri+1 is a basis for the space S ′i+1. There-
fore, Ui+1 belongs to the column span of the first ri+1

columns of Vi+1 since Vi has exactly ri+1 columns. Given
the induction hypothesis, the proof is complete as Us be-
longs to the column span of the first rs columns of Vi+1,
s = 1, . . . , i + 1.

Corollary 1. There exists a rank decomposition U = VT,
where V ∈ Rm×rk , T ∈ Rrk×nk , T(r1 + 1 : rk, 1 :
n1) = 0(rk−r1)×n1

, T(r2 + 1 : rk, n1 + 1 : n2) =
0(rk−r2)×(n2−n1), . . . and T(rk−1 + 1 : rk, nk−1 + 1 :
nk) = 0(rk−rk−1)×(nk−nk−1). We call such decomposition
an “appropriate decomposition”, which is shown in Figure
2.

Proof. Note that T ∈ Rrk×nk , T(r1 + 1 : rk, 1 : n1) =
0(rk−r1)×n1

is equivalent to having that U1 belongs to the
column span of the first r1 columns of V. Similarly, we
can observe that the assumptions given in Corollary 1 are
equivalent to the assumptions on the appropriate basis V in
Lemma 1, and therefore according to Lemma 1, the proof is
complete.



nk − nk−1n2 − n1n1

rk − r1

rk − rk−1

0(rk−r1 )×n1 0(rk−r2 )×(n2−n1 )

0(rk−rk−1 )×(nk−nk−1 )

Figure 2: A matrix T that satisfies the properties of an appropriate
decomposition.

From now on, we only consider appropriate decomposi-
tions. In fact, given Corollary 1, it is easy to verify that
there exists infinitely many appropriate decompositions for
U. However, we are interested in having a canonical ba-
sis V so that for any U there exits exactly one appropriate
decompositions satisfying the canonical structure.

Definition 1. For notational simplicity, we divide the
columns of a basis V ∈ Rm×rk for U as V =
[V1|. . . , |Vk], where V1 ∈ Rm×r1 denotes the first r1
columns of V, V2 ∈ Rm×(r2−r1) denotes the next (r2− r1)
columns of V, . . . and Vk ∈ Rm×(rk−rk−1) denotes the
next (rk − rk−1) columns of V.

Definition 2. A basis V ∈ Rm×rk for U has canonical
structure if V(1 : r1, 1 : r1) = Ir1 , V(1 : r2, r1 + 1, r2) =
[0(r2−r1)×r1 |I(r2−r1)]>, . . . and V(1 : rk, rk−1 + 1, rk) =

[0(rk−rk−1)×rk−1
|I(rk−rk−1)]

>, as shown in Figure 3.

rk − rk−1r2 − r1r1

r1

r2 − r1

Ir1

Ir2−r1

0r1×(r2−r1 )

Irk−rk−1

0rk−1×(rk−rk−1 )

rk − rk−1

Figure 3: A canonical basis.
The following lemma characterizes the relationship be-

tween appropriate bases, which will be used in Lemmas 3
and 4.

Lemma 2. Consider an appropriate basis V ∈ Rm×rk
for U. Then, the full rank matrix V′ ∈ Rm×rk is an
appropriate basis for U if and only if there exist matri-
ces A1 ∈ Rr1×r1 , A2 ∈ Rr2×(r2−r1), . . . and Ak ∈
Rrk×(rk−rk−1) such that V′1A1 = V1, [V′1|V′2]A2 = V2,
. . . and [V′1|V′2|. . . |V′k]Ak = V′Ak = Vk.

Proof. Assume that V′ is an appropriate basis for U. Then,
the first r1 columns of V′, i.e., V′1, is a basis for the
rank-r1 matrix U1 and note that V is also an appropri-
ate basis for U. Therefore, V′1 and V1 span the same
r1-dimensional space, and therefore each column of V1
can be written as a linear combination of the columns of

V′1, i.e., V′1A1 = V1 for some A1 ∈ Rr1×r1 . Simi-
larly, [V′1|V′2] and [V1|V2] span the same r2-dimensional
space since both of them are a basis for the rank-r2 ma-
trix U2. As a result, each column of V2 can be written
as a linear combination of the columns of [V′1|V′2], i.e.,
[V′1|V′2]A2 = V2 for some A2 ∈ Rr2×(r2−r1). Similarly,
we can show [V′1|V′2|. . . |V′k]Ak = V′Ak = Vk for some
Ak ∈ Rrk×(rk−rk−1).

To prove the other direction of the statement, assume that
there exist matrices A1 ∈ Rr1×r1 , A2 ∈ Rr2×(r2−r1),
. . . and Ak ∈ Rrk×(rk−rk−1) such that V′1A1 = V1,
[V′1|V′2]A2 = V2, . . . and [V′1|V′2|. . . |V′k]Ak =
V′Ak = Vk. Note that V is an appropriate basis for
U, and therefore the assumption V′1A1 = V1 results that
V′1 and V1 span the same r1-dimensional space. Hence,
V′1 is basis for U1. The assumptions V′1A1 = V1 and
[V′1|V′2]A2 = V2 together and the fact that V′ is a full rank
matrix results that [V′1|V′2] and [V1|V2] span the same r2-
dimensional space. Therefore, [V′1|V′2] is a basis for U2.
Similar reasoning results that V′ is an appropriate basis for
U.

Lemma 3. There exists at most one appropriate decompo-
sition U = VT such that V has the canonical structure.

Proof. By contradiction assume that there exist two differ-
ent canonical bases V and V′. Then, according to Lemma
2, we have V′1A1 = V1, [V′1|V′2]A2 = V2, . . . and
[V′1|V′2|. . . |V′k]Ak = V′Ak = Vk for some A1 ∈
Rr1×r1 , A2 ∈ Rr2×(r2−r1), . . . and Ak ∈ Rrk×(rk−rk−1).
Since both V and V′ are canonical bases, V(1 : r1, :) =
V′(1 : r1, :) = Ir1 , and therefore the equation V′(1 : r1, :
)A1 = V(1 : r1, :) results that A1 = Ir1 . As a result,
V1 = V′1. Moreover, we have [V′1|V′2]A2 = V2, which re-
sults [V′1|V′2](1 : r1, :)A2 = V2(1 : r1, :) = 0r1×(r2−r1).
Since we have V′2(1 : r1, :) = 0r1×(r2−r1) and V′1(1 :
r1, :) = Ir1 , then [V′1|V′2](1 : r1, :)A2 = 0r1×(r2−r1)
reduces to Ir1A2 = 0r1×(r2−r1), i.e., A2(1 : r1, :) =
0r1×(r2−r1). Therefore, [V′1|V′2]A2 = V2 reduces to
V′2A2(r1 + 1 : r2, :) = V2. Now, with the similar ap-
proach that we showed V1 = V′1, we can show V′2 = V2
since V′2(r1+1 : r2, :) = V2(r1+1 : r2, :) = Ir2 . The sim-
ilar approach results that V′3 = V3, . . . and V′k = Vk, and
therefore V′ = V, which contradicts the assumption.

The following lemma shows the uniqueness of canonical
structure in Definition 2.
Lemma 4. With probability one, there exists a unique ap-
propriate decomposition U = VT such that V has the
canonical structure.

Proof. As in Lemma 3 we showed that there exist at most
one appropriate canonical basis, it suffices to show the exis-
tence of one appropriate canonical basis for U with prob-
ability one. According to Lemma 1, there exists an ap-
propriate basis V′ for U and we will construct an appro-
priate canonical basis based on V′ to complete the proof.
The genericity assumption results that the submatrix con-
sisting of any r1 rows of V′1 is full rank as each column
of U1 is chosen generically from the Grassmannian mani-
fold of Gr(r1,Rm). As a result, V′1(1 : r1, :) is full rank,
i.e., V′1(1 : r1, :) is nonsingular, with probability one with



respect to the probability measure PG1Pθ1 . Define A1 =
V′1(1 : r1, :)

−1 ∈ Rr1×r1 and V1 = V′1A1 ∈ Rm×r1 .
Note that V1(1 : r1, :) = Ir1 .

Similarly, [V′1|V′2](1 : r2, :) is full rank with probabil-
ity one with respect to the probability measure Π2

i=1PGiPθi .
Define A′2 = [V′1|V′2](1 : r2, :)

−1 ∈ Rr2×r2 ,
A2 = A′2(:, r1 + 1 : r2) ∈ Rr2×(r2−r1) and V2 =
[V′1|V′2]A2 ∈ Rm×(r2−r1). Therefore, V2(1 : r2, :) =
[0(r2−r1)×r1 |I(r2−r1)]>. By repeating this procedure we
construct V = [V1|. . . |Vk] such that V has the canonical
structure with probability one with respect to the probability
measure Πk

i=1PGi
Pθi . Moreover, according to Lemma 2, V

is an appropriate basis for U.

As a result of Lemma 4, for each U there exists a unique
appropriate decomposition with the canonical basis and ob-
serve that an arbitrary appropriate decomposition with the
canonical basis results in a certain matrix U that satisfies
the given rank constraints. Hence, the canonical structure
plays the role of a bijective mapping from a generic mem-
ber of the manifold corresponding to U to the appropriate
decomposition with canonical basis and generic entries (ex-
cluding the entries of the canonical pattern). Consequently,
those entries excluding the canonical pattern entries are cho-
sen with respect to the Lebesgue measure on R, i.e., are cho-
sen generically.

Remark 1. Similarly to the proof of Lemma 4, we can show
the uniqueness of the bases having a structure of any per-
mutation of the rows of the canonical structure given in Def-
inition 2. Considering all these permutations of the canon-
ical structure, we obtain some patterns that operate like an
equivalence class such that with probability one, exactly one
basis belongs to each class, i.e., exactly one basis satisfies a
certain pattern, among all the bases for appropriate decom-
positions. This also leads to the fact that the dimension of
all appropriate bases is equal to mrk−

∑k
i=1 ri(ri− ri−1),

which is the number of unknown entries of the canonical
structure.

Polynomials and Finite Completability
We consider an appropriate decomposition U = VT, where
V ∈ Rm×rk and T ∈ Rrk×nk . We are interested in obtain-
ing all entries of V and T using the sampled entries of U.
Assuming that the unknown entries of V and T are vari-
ables, each sampled entry of U results in a polynomial in
terms of these variables as the following,

U(i, j) =

rk∑
l=1

V(i, l)T(l, j). (1)

Here, we briefly mention the following two notes to high-
light the fundamentals of our proposed analysis.

• Note 1: As it can be observed from (1), any sampled entry
U(i, j) results in a polynomial that involves the entries of
the i-th row of V and the entries of the j-th column of T.
Moreover, for a sampled entry U(i, j), the values of i and
j specify the location of the entries of V and T that are
involved in the corresponding polynomial, respectively.

• Note 2: It can be concluded from Bernstein’s theorem
(Sturmfels 2002) that in a system of n polynomials in n
variables with each consisting of a given set of monomi-
als such that the coefficients are chosen with respect to
the Lebesgue measure on the manifold corresponding to
the basis of the given rank, the n polynomials are alge-
braically independent with probability one, and therefore
there exist only finitely many solutions. However, in the
structure of the polynomials in our model, the set of in-
volved monomials are different for different set of polyno-
mials, and therefore to ensure algebraically independency
we need to have for any selected subset of the original n
polynomials, the number of involved variables should be
more than the number of selected polynomials.

The following assumption will be used frequently in this
paper.

Assumption 1: Each column of Ui that does not belong
to Ui−1 includes at least ri sampled entries, i = 1, . . . , k.

Lemma 5. Given the basis V, Assumption 1 holds if and
only if T is uniquely solvable.

Proof. We prove that Assumption 1 is necessary and suf-
ficient condition for unique solvability of each column of
T. We show that the first column of U1 has less than r1
sampled entries if and only if the first column of T is in-
finitely many solvable, and the same reasoning works for
other columns as well. According to Note 1, only sampled
entries of the first column of U1 result in a linear polynomial
that involves the entries of the first column of T (since V is
given the polynomials are linear). Note that as we consider
appropriate decompositions, the first column of T includes
r1 unknown variables, and therefore exactly r1 polynomials
with generic coefficients results in a unique solution and less
than r1 polynomials results in infinitely many solutions.

Definition 3. For notational simplicity, define M =∑k
i=1 ri(ni − ni−1) (the number of non-zero entries of an

appropriate T, i.e., the number of sampled entries described
in Assumption 1), M ′ = rknk −M (the number of zero en-
tries of an appropriate T), N =

∑k
i=1 ri(ri − ri−1) (the

number of fixed entries of a canonical basis) and N ′ =
mrk − N (the number of entries of a canonical basis ex-
cluding the entries of the canonical pattern).

As a result of Lemma 5, we specify the M sampled entries
described in Assumption 1 to obtain T uniquely based on
V. Hence, we want to obtain the necessary and sufficient
condition on the sampling pattern for finite solvability of V
given T.

Definition 4. Let P(Ω) denote the set of polynomials cor-
responding to the observed entries as in (1) excluding the
M observed entries of Assumption 1. Note that since T is
already solved in terms of V, each polynomial in P(Ω) is in
terms of the entries of V.

The following lemma provides the necessary and suffi-
cient condition onP(Ω) for finite completability of the sam-
pled matrix U.

Lemma 6. Suppose that Assumption 1 holds. With proba-
bility one, there exist only finitely many completions of U if
and only if there exist N ′ algebraically independent polyno-
mials in P(Ω).



Proof. The proof is omitted due to the similarity to the proof
of Lemma 2 in (Ashraphijuo, Aggarwal, and Wang 2016).
The only minor difference is that here the dimension is N ′

instead of
(

Πj
i=1ni

) (
Πd
i=j+1ri

)
−
(∑d

i=j+1 r
2
i

)
which is

the dimension of the core for Tucker decomposition.

Having Lemma 6, we only need to obtain the maximum
number of algebraically independent polynomials in P(Ω)
to determine if U is finitely many completable. Next, we
construct a binary matrix based on the sampling pattern Ω
to obtain this number.

Constraint Matrix
In this section, we provide a procedure to construct a bi-
nary valued matrix based on the sampling pattern such that
each column of it represents one polynomial, and therefore
we can later obtain the maximum number of algebraically
independent polynomials in P(Ω) in terms of some combi-
natorial properties of the sampling pattern.

Let li = NΩ(U1 (:, i)) denote the number of observed
entries in the i-th column of U1, where i ∈ {1, . . . , n1}.
Assumption 1 results that li ≥ r1. We construct a binary
valued matrix Ω̆1 based on Ω and r1. Specifically, we con-
struct li − r1 columns with binary entries based on the lo-
cations of the observed entries in U1 (:, i) such that each
column has exactly r1 + 1 entries equal to one (if li = r1
then Ω̆1 = ∅). Assume that x1, . . . , xli are the row indices
of all observed entries in this column. Let Ωi

1 be the corre-
sponding m × (li − r1) matrix to this column which is de-
fined as the following: for any j ∈ {1, . . . , li − r1}, the j-th
column has the value 1 in rows {x1, . . . , xr1 , xr1+j} and ze-
ros elsewhere. Define the binary constraint matrix as Ω̆1 =[
Ω1

1|Ω2
1 . . . |Ω

n1
1

]
∈ Rm×K1 (Pimentel-Alarcón, Boston,

and Nowak 2016), where K1 = NΩ(U1)−n1r1. Similarly,
we construct Ω̆i for the matrix consisting of the columns of
Ui that do not belong to Ui−1 based on the corresponding
sampling pattern and ri, i = 2, . . . , k. Then, we put together
all these k binary matrices Ω̆ =

[
Ω̆1|Ω̆2|. . . |Ω̆k

]
∈ Rm×K

and call it the constraint matrix, where K = NΩ(U)−M .
In the next subsection, we characterize a relationship be-

tween the maximum number of algebraically independent
polynomials in P(Ω̆) and a combinatorial condition on the
sampling pattern Ω.
Definition 5. A submatrix of the constraint matrix is called
a proper submatrix if its columns correspond to different
columns of the sampling pattern.

Algebraic Independence
In this subsection, we characterize the necessary and suf-
ficient condition on the sampling pattern for finite com-
pletability of the sampled data given the rank constraints,
i.e., the necessary and sufficient condition on the sampling
pattern for having N ′ algebraically independent polynomi-
als in P(Ω̆) = P(Ω).

Definition 6. Let Ω̆′ be a subset of columns of the constraint
matrix Ω̆. Let g(Ω̆′) denote the number of nonzero rows of
Ω̆′ and P(Ω̆′) denote the set of polynomials that correspond
to the columns of Ω̆′. Moreover, let Ω̆′i denote the columns

of Ω̆′ that include exactly ri + 1 nonzero entries, i.e., corre-
spond to the columns of Ui and not columns of Ui−1.

Lemma 7. Let Ω̆′ ∈ Rm×t be a proper subset of columns
of the constraint matrix Ω̆. Then, the maximum number of
algebraically independent polynomials in P(Ω̆′) is at most

k∑
i=1

(ri − ri−1)(g(Ω̆′i)− ri)
+. (2)

Proof. Note that each observed entry of U1, i.e., each col-
umn of Ω̆′1, results in a polynomial that involves all r1
entries of a row of V1. As a result, the number of en-
tries of V1 that are involved in the polynomials is exactly
(r1 − r0)g(Ω̆′1). However, the rows of the canonical pattern
in V1 can be permuted, and therefore in the case of Ω̆′1 6= ∅
the number of known entries of the pattern in V1 is r21 for a
pattern. Hence, the minimum number of variables (unknown
entries) of V1 is (r1− r0)g(Ω̆′1)− r21 = (r1− r0)(g(Ω̆′1)−
r1)+ since Ω̆′1 6= ∅ implies g(Ω̆′1) ≥ r1 + 1. Moreover,
clearly in the case of Ω̆′1 = ∅ the number of variables (un-
known entries) of V1 is (r1 − r0)(g(Ω̆′1)− r1)+ = 0. Sim-
ilarly, we can show that the minimum number of variables
(unknown entries) of V1 is

∑k
i=1(ri− ri−1)(g(Ω̆′i)− ri)

+.
As a result, the maximum number of algebraically indepen-
dent polynomials in P(Ω̆′) is at most equal to the number
of involved variables in the polynomials, i.e.,

∑k
i=1(ri −

ri−1)(g(Ω̆′i)− ri)
+.

A set of polynomials is called minimally algebraically de-
pendent if the polynomials in that set are algebraically de-
pendent but polynomials in every of its proper subset are al-
gebraically independent. The next lemma which is Lemma 7
in (Ashraphijuo and Wang 2017b), states an important prop-
erty of a set of minimally algebraically dependent among
polynomials in P(Ω̆). This lemma is needed to derive the
maximum number of algebraically independent polynomials
in any subset of P(Ω̆).

Lemma 8. Let Ω̆′ ∈ Rm×t be a proper subset of columns of
the constraint matrix Ω̆. Assume that polynomials in P(Ω̆′)
are minimally algebraically dependent. Then, the number of
variables (unknown entries) of V that are involved in P(Ω̆′)
is equal to t− 1.

Lemma 9. Given a proper subset of columns Ω̆′ ∈ Rm×t
of the constraint matrix, the polynomials in P(Ω̆′) are alge-
braically independent if and only if for any t′ ∈ {1, . . . , t}
and any subset of columns Ω̆′′ ∈ Rm×t′ of Ω̆′ we have

k∑
i=1

(ri − ri−1)(g(Ω̆′′i )− ri)
+ ≥ t′. (3)

Proof. Assume that the polynomials in P(Ω̆′) are alge-
braically dependent. Then, there exists a subset of polyno-
mials P(Ω̆′′) of the set P(Ω̆′) such that the polynomials in
P(Ω̆′′) are minimally algebraically dependent. Let Ω̆′′ ∈
Rm×t′ , where t′ ∈ {1, . . . , t}. According to Lemma 8 the



number of involved variables in P(Ω̆′′) is t′ − 1. However,
in Lemma 7 we showed that the number of involved vari-
ables in P(Ω̆′′) is at least

∑k
i=1(ri − ri−1)(g(Ω̆′′i ) − ri)

+,
and therefore

∑k
i=1(ri−ri−1)(g(Ω̆′′i )−ri)

+ ≤ t′−1 < t′.
In order to show the other direction, assume that the poly-

nomials in P(Ω̆′) are algebraically independent, and there-
fore any subset of polynomials of P(Ω̆′) are also alge-
braically independent. By contradiction assume that there
exists a subset of columns Ω̆′′ ∈ Rm×t′ of Ω̆′ such that
(3) does not hold. Hence,

∑k
i=1(ri − ri−1)(g(Ω̆′′i ) − ri)

+

is less than the number of polynomials in P(Ω̆′′). On the
other hand, according to Lemma (7), the maximum num-
ber of algebraically independent polynomials in P(Ω̆′′) is at
most

∑k
i=1(ri− ri−1)(g(Ω̆′′i )− ri)

+, which is less than the
number of polynomials in P(Ω̆′′), and this contradicts the
assumption.

The next theorem which is the main result of this subsec-
tion characterizes the necessary and sufficient condition on
the sampling pattern for finite completability of U.

Theorem 1. Suppose that Assumption 1 holds. With proba-
bility one, the sampled data U is finitely many completable
if and only if there exists a proper subset of columns Ω̆′ ∈
Rm×N ′ of the constraint matrix Ω̆ such that for any t′ ∈
{1, . . . , N ′} and any subset of columns Ω̆′′ ∈ Rm×t′ of Ω̆′,
(3) holds.

Proof. First we assume that there exists a subset of columns
Ω̆′ ∈ Rm×N ′ of the constraint matrix Ω̆ such that for any
t′ ∈ {1, . . . , N ′} and any subset of columns Ω̆′′ ∈ Rm×t′ ,
(3) holds and we need to show the finite completability of U.
According to Lemma 9, the N ′ polynomials corresponding
to Ω̆′ are algebraically independent, and therefore according
to Lemma 6, U is finitely many completable.

In order to complete the proof, we assume that U is
finitely many completable and show the existence of such Ω̆′

described in the statement of theorem. According to Lemma
6, there exists N ′ algebraically independent polynomials in
P(Ω̆), and therefore according to Lemma 9, the submatrix
corresponding to these N ′ polynomials satisfies the proper-
ties described in the statement of theorem.

Remark 2. One challenge of applying Theorem 1 is the ex-
haustive enumeration that it takes to check if (3) holds for
all the corresponding subsets of columns. A sampling prob-
ability is proposed in complete version of this paper to en-
sure finite completability of the sampled data, which is not
discussed in this paper due to the page limit. In fact, we
obtain a lower bound on the sampling probability that en-
sures the combinatorial conditions in Theorem 1 hold with
high probability. As a consequence of Theorem 1 and the
mentioned analysis, we do not need to check combinatorial
conditions but instead we can certify the above results with
high probability and not deterministically anymore. A sim-
ilar probabilistic analysis is proposed in (Ashraphijuo and
Wang 2017b) for tensor completion problem.

Deterministic Conditions for Unique
Completability

In the previous section, we characterized the deterministic
conditions on the sampling pattern for finite completabil-
ity. In this section, we are interested in obtaining the de-
terministic conditions on the sampling pattern for unique
completability. Note that for matrix completion problem
(and therefore for our problem), finite completability does
not necessarily imply unique completability (Ashraphijuo,
Aggarwal, and Wang 2016). Unique completability simply
means that, any completion of the sampled data obtained by
any algorithm is exactly the original sampled data. We show
that adding a set of mild assumptions to those stated in The-
orem 1 leads to unique completability.

Recall that there exists at least one completion of U since
the original matrix that is sampled satisfies the rank con-
straints. The following lemma is a re-statement of Lemma
25 in (Ashraphijuo and Wang 2017b).

Lemma 10. Assume that Assumption 1 holds. Let Ω̆′ be an
arbitrary subset of columns of the constraint matrix Ω̆. As-
sume that polynomials inP(Ω̆′) are minimally algebraically
dependent. Then, all variables (unknown entries) of V that
are involved in P(Ω̆′) can be determined uniquely.

Theorem 2. Suppose that Assumption 1 holds. With prob-
ability one, the sampled data U is uniquely completable if
there exists disjoint subsets of columns Ω̆′ ∈ Rm×N ′ and
Ω̆′i ∈ Rm×(m−ri) (1 ≤ i ≤ k) of the constraint matrix Ω̆
such that

(i) for any t′ ∈ {1, . . . , N ′} and any subset of columns
Ω̆′′ ∈ Rm×t′ of Ω̆′, (3) holds.

(ii) for any t′i ∈ {1, . . . ,m − ri} and any subset of
columns Ω̆′′i ∈ Rm×t′i of Ω̆′i we have

(g(Ω̆′′i )− ri)
+ ≥ t′i, (4)

i = 1, 2, . . . , k.

Proof. According to Theorem 1, condition (i) results that
there are at most finitely many completions of U. As
we showed in the proof of Theorem 1, there exist N ′ al-
gebraically independent polynomials {p1, p2, . . . , pN ′} in
P(Ω̆′). Note that any set of N ′ + 1 polynomials are
algebraically dependent. Consider a single polynomial
p0 from the set of polynomials ∪ki=1P(Ω̆′i). Hence,
{p0, p1, . . . , pN ′} are algebraically dependent and since
{p1, p2, . . . , pN ′} are algebraically independent, there exist
a set of polynomials P(p0) ⊆ {p0, p1, . . . , pN ′} that is min-
imally dependent.

According to Lemma 10, all variables involved in P(p0)
and therefore all variables involved in p0 can be determined
uniquely, or in other words, we obtain ri linear polynomials
in terms of the entries of Vi given that p0 ∈ P(Ω̆′i). It is
easily verified that given (ii) and substituting p0 by all of the
polynomials in P(Ω̆′i) one by one, Vi can be determined
uniquely, i = 1, 2, . . . , k.

Remark 3. As mentioned in Remark 2, a sampling proba-
bility can be obtained that ensures the combinatorial condi-
tions in Theorem 2 hold with high probability.



Conclusions
This paper is concerned with investigating the fundamental
conditions on the sampling pattern for finite completability
of a matrix that represents the union of several subspaces
with given ranks. This investigation also leads to a lower
bound on the sampling probability to ensure finite com-
pletability of the sampled data, which is not discussed in this
paper due to the page limit. Furthermore, using the proposed
geometric analysis for finite completability, we character-
ize sufficient conditions on the sampling pattern that ensure
there exists only one completion for the sampled data.
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