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Abstract
This paper proposes a relaxed algorithm based on
mixed integer linear programming (MILP) to extend
the LAD methodology to solve multi-class classifica-
tion problems, where One-vs-Rest (OvR) learning mod-
els are constructed to classify observations in prede-
fined classes. The suggested algorithm has two con-
trol parameters, homogeneity and prevalence, for im-
proving the classification accuracy of the generated pat-
terns. The utility of the proposed approach is demon-
strated through experiments on multi-class benchmark
datasets.

1 Introduction
In various fields, research has been shifted from hypothe-
sis driven to data driven where the classication problem has
become ubiquitous in many real-world applications. Super-
vised learning algorithms are trained on a given set of ob-
servations with known outcome and multiple features and
produce a classification model or classifier function to pre-
dict the outcome of a new/unseen observation.

For solving binary classication problems, a learning
model is constructed to separate observations into two pre-
defined classes. Well known classification methods such
as support vector machines (Burges 1998; Schölkopf and
Smola 2001), neural networks (Fausett 1994; Bishop 2007),
decision trees (Bishop 2007; Duda, Hart, and Stork 2001),
and a pattern based technique, called Logical Analysis of
Data (Alexe et al. 2007), are designed to solve binary clas-
sification problems. However, many real-world applications
require the identification of more than two subgroups of ob-
servations and the features and patterns associated with each
subgroup (Subasi and Avila-Herrera 2016), Since the prob-
lem is of practical importance, there have been several at-
tempts to extend binary classification algorithms to multi-
class problems in literature.

The most common approaches to multi-class classica-
tion are the natural extension of binary classication prob-
lem known as One-vs-One (OvO) (Hastie and Tibshirani
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1998), and One-vs-Rest (OvR). Given a K−class dataset,
OvO scheme assumes that there exists a separator between
any two classes and builds (K − 1)/2 classiers, denoted
byfij , to distinguish each pair of classes Ci, Cj ∈ C, where
C = {C1, · · · , CK}.The class of a new/unseen observation is
then assigned by the use of the discriminant function:

f(ϕ) = argmax
i

∑
j

fij(ϕ). (1.1)

A less expensive approach OvR assumes the existence of
a single separator between a class Ci (for some i) and all
other classes, and builds K different binary classifiers. Let
fi be the ith classifier separating observations in class Ci
(considered to be positive) and observations not in Ci (form
the set of negative observations). In this case a new/unseen
observation ϕ is classified by

f(ϕ) = argmax
i

fi(ϕ). (1.2)

Since both approaches are easy to adopt, diverse groups of
researchers invented them independently and the choice be-
tween the use of OvO and OvR in multi-class problems is
largely computational.

In this paper, we integrate the mixed integer linear pro-
gramming LAD pattern generation approach of (Ryoo and
Jang 2009), with the multiclass LAD method of (Subasi
and Avila-Herrera 2016), to develop a parametric multiclass
LAD algorithm, where two control parameters, homogene-
ity and prevalence, are incorporated to generate relaxed pat-
terns with high classification accuracy. LAD is a pattern-
based two-class learning method which integrates principles
of combinatorics, optimization, and the theory of Boolean
functions. The research area of LAD was introduced and
developed by Hammer (1986) and Crama, Hammer, and
Ibaraki (1988). The LAD methodology has been expanded
from theory to successful data applications in numerous
biomedical, industrial, and economics case studies, see, e.g.,
(Boros et al. 2000; Reddy 2009; Hammer, Kogan, and Leje-
une 2011; Subasi et al. 2017) and the references therein. The
implementation of LAD algorithm was described in (Boros
et al. 1997), and several further developments of the origi-
nal algorithm were presented in (Alexe and Hammer 2006;
Bonates, Hammer, and Kogan 2008; Hammer et al. 2004;
Guo and Ryoo 2012; Ryoo and Jang 2009). An overview of



standard LAD algorithm can be found in (Alexe et al. 2007;
Bonates, Hammer, and Kogan 2008). Various recent appli-
cations of LAD are presented in (Dupuis, Gamache, and
Pagé 2010; Esmaeili 2012; Kwok 2001; Lejeune and Margot
2011; Mortada, Yacout, and Lakis 2011). LAD method has
been extended to survival analysis (Reddy 2009) and regres-
sion analysis (Bonates and Hammer 2007; Lemaire 2011) as
well.

The key ingredient of two-class LAD method is the identi-
fication of patterns distinguishing between positive and neg-
ative observations in a dataset Ω = Ω+ ∪ Ω−, where Ω+

is the set of positive observations and Ω− is the set of
negative observations containing n-dimensional real vectors
and Ω+ ∩ Ω− = ∅. LAD usually produces several hun-
dreds (sometimes thousands) of patterns. Once all patterns
are generated, a subset of patterns is selected by solving a
set covering problem or by greedy-type heuristics to form an
LAD classification model such that each positive (negative)
observation is covered by at least one positive (negative) pat-
tern (and ideally, is not covered by any negative (positive)
pattern) in the model. The patterns selected into the LAD
model are then used to define a discriminant function that
allows the classification of new or unseen observations.

Extensions of LAD algorithm to multi-class problems
are studied by Moreira (2000) and Mortada (2010). Mor-
eira (2000) proposed two methods to break down a multi-
class classification problem into two-class problems using
an OvO approach. The first method uses the typical OvO
type approach which does not require the alteration of the
structure of the standard LAD algorithm as described in
(Boros et al. 2000). The second OvO-type method modifies
the architecture of the pattern generation and theory forma-
tion steps in standard LAD method, where an LAD pattern
Pij is generated for each pair of classes Ci, Cj ∈ C, i ̸= j.

The paper by Mortada (2010) proposed a multi-class
LAD method algorithm which integrates ideas from the sec-
ond approach presented by Moreira (2000) which is based
on OvO approach and an implementation of LAD based
on mixed integer linear programming (MILP) presented by
Ryoo and Jang (2009). The methodology of Mortada (2010)
was applied to five multi-class benchmark datasets. The au-
thors of this paper observed that the MILP based LAD ap-
proach of Ryoo and Jang (2009) combined with the second
approach of Moreira (2000) provides classification models
with higher accuracy than those models obtained by Mor-
eira (2000) approach applied to standard LAD algorithm.

Recent papers by Subasi and Avila-Herrera (2013; 2016)
and Kim and Choi (2015) have also considered the multi-
class extension of LAD. Subasi and Avila-Herrera (2016)
explored and rectified the limitations of the MILP LAD ap-
proach by Ryoo and Jang (2009), relating to its poor differ-
entiating power in two-class classification. Ryoo and Jang’s
MILP approach produces a set of LAD patterns associated
with a positive (negative) class that loops as many times as
necessary until all observations in positive (negative) class
are covered by at least one pattern, which is inconvenient
because a single pattern is sufficient to cover every observa-
tion in positive (negative) class which results in a classifier
with small number of patterns. Moreover, Ryoo and Jang’s

algorithm removes the observations covered by a pattern,
whilst looping through execution. This is counterproduc-
tive because every time the algorithm loops through again,
it uses less information (smaller training set) to compute
new patterns. Subasi and Avila-Herrera’s extension of Ryoo
and Jang’s MILP to multiclass LAD approach avoids the re-
moval of observations from the training dataset when gener-
ating new patterns that form a multiclass LAD model, these
modifications are discussed in further detail later.

In this paper we propose a parametrized/relaxed algorith-
mic approach that builds on the MILP pattern generation
approach of Ryoo and Jang (2009) and multiclass LAD ap-
proach of Subasi and Avila-Herrera (2016) that constructs
an OvR-type LAD classier to identify patterns in a multi-
class dataset. This modification introduces two control pa-
rameters, homogeneity and prevalence, to improve the clas-
sification accuracy of the generated patterns. The organiza-
tion of the paper is as follows. Section 2 describes the basic
principles of the standard LAD algorithm. Section 3 presents
the proposed MILP based parametrized/relaxed algorithmic
multiclass LAD approach to obtain OvR-type multi-class
LAD classier. In Section 4 we present experiments on multi-
class benchmark datasets to demonstrate the utility of our
proposed methodology.

2 Preliminaries: Logical Analysis of Data
Logical Analysis of Data (LAD) is a two-class learning algo-
rithm based on combinatorics, optimization, and the theory
of Boolean functions. The input dataset, Ω, consists of two
disjoint classes Ω+ (set of positive observations) and Ω− (set
of negative observations), that is, Ω = Ω+ ∪ Ω− and Ω+ ∩
Ω− = ∅. The main task of LAD algorithm is to identify pat-
terns separating the positive and negative observations based
on features measured (Boros et al. 2000). Below we briefly
outline the basic components of the LAD algorithm. A more
detailed overview can be found in (Alexe and Hammer 2006;
Hammer and Bonates 2006).

2.1 Discretization/Binarization and Support Set
Selection

This step is the transformation of numeric features (at-
tributes/variables) into several binary features without los-
ing predictive power. The procedure consists of finding cut-
points for each numeric feature. The set of cut-points can
be interpreted as a sequence of threshold values collectively
used to build a global classification model over all fea-
tures (Boros et al. 2000). Discretization is a very useful step
in data mining, especially for the analysis of medical data
(which is very noisy and includes measurement errors) –
it reduces noise and produces robust results. The problem
of discretization is well studied and many powerful meth-
ods are presented in literature, see, e.g., the survey papers
(Kotsiantis and Kanellopoulus 2006; Liu et al. 2004)). Dis-
cretization step may produce several binary features some
of which may be redundant. Support set is defined as the
smallest (irredundant) subset of binary variables which can
distinguish every pair of positive and negative observations
in the dataset. Support sets can be identified by solving a
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minimum set covering problem (Boros et al. 2000).

2.2 Pattern Generation
Patterns are the key ingredients of LAD algorithm. This step
uses the features in combination to produce rules (combi-
natorial patterns) that can define homogenous subgroups of
interest within the data. The simultaneous use of two or more
features allows the identification of more complex rules that
can be used for the precise classification of an observation.

Given a binary (or binarized) dataset Ω = Ω+ ∪ Ω−,
where Ω+ ∩ Ω− = ∅, a pattern P is simply defined as a
subcube of {0, 1}n, where n is the number of features in the
dataset. A pattern can be also described as a Boolean term,
that is, a conjunction of literals (binary variables or its nega-
tion) which does not contain both a variable and its negation:

P =
∧

j∈NP

xj

where NP ⊆ {1, · · · , n} and xj is a literal. The number of
literals (associated with features) involved in the definition
of a pattern is called the degree of the pattern.

Patterns define homogeneous subgroups of observations
with distinctive characteristics. An observation ϕ ∈ Ω satis-
fying the conditions of a pattern P , i.e., P (ϕ) = 1, is said to
be covered by that pattern. A pure positive (negative) pattern
is defined as a combination of features which covers a pro-
portion of positive (negative) observations, but none of the
negative (positive) ones: P (ϕ) = 1 for at least one o ∈ Ω+

(or, ϕ ∈ Ω−), and P (ϕ) = 0 for every ϕ ∈ Ω− (or, o ∈ Ω+).
Coverage of a positive (negative) pattern P , denoted by
Cov(P ), is the set of observations ϕ ∈ Ω+(or, ϕ ∈ Ω−)
for which P (ϕ) = 1. A pattern P is called a strong pattern if
there is no pattern P ′ such that Cov(P ) ⊂ Cov(P ′). Pattern
P is called a prime pattern if the deletion of any literal from
P results in a term that is no longer a pattern.

The most straightforward approach to pattern generation
is based on the use of combinatorial enumeration techniques,
for example, a bottom-up/top-down approach as described
by Boros et al. (2000). The bottom-up approach follows a
lexicographic order in generating the patterns in order to re-
duce the amount of computations necessary. The approach
starts with terms of degree one that cover some positive ob-
servations. If such a term does not cover any negative obser-
vation, it is a positive pattern. Otherwise, literals are added
to the term one by one until generating a pattern of prefixed
degree. The top-down pattern generation approach starts by
considering all uncovered observations as patterns of degree
n and for each of those patterns, literals are removed one
by one, until a prime pattern is reached. The enumeration
type pattern generation approach is a costly process. Given
a two-class binary dataset with n features, the total number
of candidate patterns to be searched is

∑n
i=1 2

i
(
n
i

)
and the

number of degree d patterns can be 2d
(
n
d

)
.

Since patterns play a central role in LAD methodology,
various types of patterns (e.g., prime, spanned, maximum)
have been studied and several pattern generation algorithms
have been developed for their enumeration (Alexe et al.
2007; Bonates, Hammer, and Kogan 2008; Hammer et al.

2004; Guo and Ryoo 2012; Ryoo and Jang 2009). Our OvR-
type multi-class LAD algorithm is motivated by the MILP
approach of Ryoo and Jang (2009) that generates strong
LAD patterns in a two-class dataset. This approach is out-
lined below:

Consider a two-class dataset Ω consisting of m binary
observations and n features. Let I+ = {i : ϕi ∈ Ω+}
and I− = {i : ϕi ∈ Ω−}, where Ω = Ω+ ∪ Ω− and
Ω+ ∩ Ω− = ∅. For each observation ϕi ∈ Ω, let ϕij de-
note the binary value of the j-th feature in that observation.
Let aj , j = 1, · · · , n, denote the features in Ω and introduce
n new features an+j = 1 − aj , j = 1, · · · , n (negation of
aj). Ryoo and Jang (2009) formulated the following MILP
to generate strong patterns:

Minimize z = c d+
∑
i∈I+

wi

subject to
2n∑
j=1

ϕijyj + nwi ≥ d, i ∈ I+

2n∑
j=1

ϕijyj ≤ d− 1, i ∈ I−

yj + yn+j ≤ 1, j = 1, · · · , n
2n∑
j=1

yj = d; 1 ≤ d ≤ n

wi, yj ∈ {0, 1}, i = 1, · · · ,m; j = 1, · · · , 2n

(2.3)

where c ∈ IR is a constant and variables yj and yn+j are
associated with features aj and an+j , j = 1, · · · , n, respec-
tively. Binary variables wi’s are associated with the coverage
of a positive pattern P and are defined by

wi =

{
1 if P (ϕi) = 0, i ∈ I+

0 if P (ϕi) = 1, i ∈ I+

Ryoo and Jang (2009) proved that when c > 0, an optimal
solution (w, y, d) of problem (2.3) is a positive strong prime
pattern of the form:

P =
∧

{j : yj=1,j=1,··· ,n}

aj
∧

{j : yn+j=1,j=1,··· ,n}

āj .

Note that if we change the roles of index sets I+ and I− in
problem (2.3), an optimal solution of the problem provides
us with a pure negative strong prime pattern when c > 0.

2.3 LAD Model
An LAD model is a collection of positive and negative pat-
terns which provides the same separation of the positive and
negative observations as the entire collection of patterns,
called pandect and denoted by P = P+ ∪ P−, where P+

and P− are disjoint sets of all positive and negative pat-
terns generated in pattern generation step, respectively. In
many cases, when constructing an LAD model, every ob-
servation in the training dataset is required to be covered
at least k times (k ∈ ZZ+) by the patterns in the model,
M = M+ ∪ M−, where M+ ⊆ P+ and M− ⊆ P−.
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Such an LAD model can be obtained from the pandect P
by solving a set covering problem. However, in general, the
size of the pandect is very large. In this case the standard
LAD algorithm (where patterns are generated by, for exam-
ple, top-down/bottom-up approach) uses greedy heuristics to
solve the set-covering problem to generate an LAD model.

In case of MILP approaches to generate LAD patterns,
Ryoo and Jang (2009) presented the following pattern gen-
eration algorithm based on their MILP approach to produce
an LAD model (a set of positive and negative patterns):

Algorithm 1: Pattern Generation
Data: Training data, Support Features, MILP model

(2.3) for pattern generation
Result: Set of + and − patterns (M+ andM−, resp.)

1 for ∗ ∈ {+,−} do
2 setM∗ = ∅ ;
3 while I∗ ̸= ∅ do
4 formulate and solve an instance of the MILP

problem (2.3);
5 form a pattern P from the solution obtained;
6 M∗ ←M∗ ∪ {P};
7 I∗ ← I∗ \ {i ∈ I∗ : ϕi is covered by P};

8 returnM∗;

Algorithm 1 generates the minimum number of patterns
required to cover the training data set. Note that after a pat-
tern is generated, observations covered by that pattern is
deleted from the training data to prevent the algorithm from
finding the same pattern found in the previous solutions of
problem (2.3). The resulting set of positive and negative pat-
terns form an LAD modelM.

2.4 Classification and Accuracy
In the final step for the LAD framework, generated patterns
are employed to form a classication model, known as theory.
The theory plays the role of a classier as the weighted lin-
ear combination of positive and negative patterns. Therefore,
given an LAD modelM = M+ ∪M−, the classification
of a new/unseen observation ϕ /∈ Ω is determined by the
sign of a discriminant function ∆ : {0, 1}n → IR associated
with the modelM, where ∆(ϕ) is defined as the difference
between the proportion of positive patterns and negative pat-
terns covering o, that is,

∆(ϕ) =
∑

P+
k ∈M+

ω+
k P

+
k (ϕ) −

∑
P−

k ∈M−
ω−
k P

−
k (ϕ),

where ω+
k ≥ 0 and ω−

k ≥ 0 are the weights assigned to pos-
itive patterns P+

k ∈ M+ and negative patterns P−
k ∈ M−,

respectively. The weights ω+
k and ω−

k can be calculated in
several ways. One possibility is to use the proportion of pos-
itive (negative) observations covered by a positive pattern
P+
k ∈M

+ (a negative pattern P−
k ∈M

−) to the total num-
ber of positive (negative) observations (called the prevalence

of a pattern):

ω+
k =

1

|Ω+|
∑
i∈I+

P+
k (ϕi) and ω−

k =
1

|Ω−|
∑
i∈I−

P−
k (ϕi)

where I+ = {i : ϕi ∈ Ω+}, and I− = {i : ϕi ∈ Ω−}.
The accuracy of the model is estimated by classical cross-

validation procedure (Dietterich 1998; Efron and Tibshirani
1986; Hastie et al. 2005; Kohavi 1995). If an external dataset
(test/validation set) is available, the performance of model
M is evaluated on that set.

3 Relaxed Multi-class LAD Algorithm
In this section we present an OvR-type extension of LAD
algorithm to multi-class classification problems. As in con-
ventional LAD algorithm our multi-class LAD approach has
four steps: (i) binarization and support set selection, (ii) pat-
tern generation, (iii) theory formation, and (iv) prediction.
We refer to (Subasi and Avila-Herrera 2016) for the discus-
sion of step (i) and focus on the pattern generation step for
the relaxed OvR multiclass LAD approach.

3.1 Pattern Generation: MILP Based Approach
Let Ω = Ω1 ∪ · · · ∪ ΩK be a K-class binary dataset with
n features and m observations. Let C = {C1, · · · , CK} de-
note the corresponding family of classes in Ω, that is, any
observation in Ωk has class Ck (k = 1, · · · ,K).

In order to formulate an MILP to generate a pattern PCp

covering some of the observations in class Cp and none of
the observations in Ck, k ̸= p, we proceed as follows:

(1) Associate a vector y = (y1, · · · , y2n) ∈ {0, 1}2n to pat-
tern PCp , where the components y1, · · · , y2n of vector y
are relative to the features such that if we have yj = 1 for
some j = 1, · · · , n, then the literal xj (associated with
the j-th feature in Ω) is included in pattern PCp and if
yn+j = 1, then the literal x̄j (complement of xj) is in-
cluded in pattern PCp . Since a pattern cannot include both
xj and x̄j , we impose the condition

yj + yn+j ≤ 1, j = 1, · · · , n. (3.4)

(2) Define a binary vector w = (w1, w2, · · · , wm) that is as-
sociated with the coverage of the pattern PCp and will be
used to score penalization as follows: For 1 ≤ i ≤ m

wi =

{
1 if ϕi ∈ Cp is not covered by pattern PCp

0 otherwise.

(3) Consider the augmented matrix B = [Ω|Ω], where Ω is
the binary data obtained from Ω by replacing 0 entries by
1 and 1 entries by 0. Define the vector v = By. In order
to produce a pure pattern PCp with degree d we prescribe
the following constraints:

vi + nwi ≥ d, i ∈ Ip , (3.5)
vi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K and k ̸= p (3.6)

and
2n∑
j=1

yj = d , (3.7)

where 1 ≤ d ≤ n, Ip = {i : ϕi is in class Cp} and
Ik = {i : ϕi is in class Ck} for all k ̸= p.
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The conditions in (3.4)-(3.7) can be used to write an MILP
whose optimal solution produces a pure pattern PCp associ-
ated with class Cp for some 1 ≤ p ≤ K as shown below:

Minimize z = d+
∑
i∈Ip

wi

subject to
vi + nwi ≥ d, i ∈ Ip
vi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K, k ̸= p
yj + yn+j ≤ 1, j = 1, 2, · · · , n
2n∑
j=1

yj = d; 1 ≤ d ≤ n

wi, yj ∈ {0, 1}, i = 1, · · · ,m; j = 1, · · · , 2n

(3.8)

Notice that problem (3.14) is a modified version of the
MILP problem (2.3) of Ryoo and Jang (2009) that is de-
signed to generate patterns in a two-class dataset. An op-
timal solution of problem (3.14) can be used to form a
pure strong prime pattern PCp associated with class Cp,
1 ≤ p ≤ K. The objective function of (3.14) ensures that the
coverage of pattern PCp is maximized and the degree of PCp

(i.e., the number of literals used in PCp ) is as small as possi-
ble.

3.2 Relaxed Multiclass LAD: OvR Type Relaxed
Multi-class LAD Method

In this section we present an algorithm that produces an
OvR-type multi-class LAD model based on the multi-class
MILP approach given in Section 3.1. Note that in case of
two-class MILP approach, Algorithm 1 of Ryoo and Jang
(2009) (shown in Section 2.3) produces a set of patterns as-
sociated with a positive (negative) class that loops as many
times as necessary until all observations in positive (neg-
ative) class are covered by at least one pattern. The setup
proposed by Ryoo and Jang (2009) is inconvenient because
a single pattern is sufficient to cover every observation in
positive (negative) class which results in a classifier with
small number of patterns and hence, poor differentiating
power between the two classes of a dataset. In such cases
the prediction of a new or unseen observation would depend
on a single or a few patterns. Note also that once a posi-
tive (negative) pattern P is found as an optimal solution of
problem (2.3), in order to produce a new positive (negative)
pattern P ′, i.e., another optimal solution of problem (2.3),
Algorithm 1 removes the observations covered by pattern
P while execution. This is counterproductive because every
time the algorithm uses less information (smaller training
set) to compute new patterns. Mortada (2010) has adopted a
similar approach to develop an OvO-type multi-class LAD
algorithm, where observations covered by a pattern are re-
moved from the training dataset while executing the pro-
posed algorithm. The difference between Ryoo-Jang’s algo-
rithm (2009) and Mortada’s algorithm (2010) is that in Mor-
tada’s algorithm the looping stops when each observation is
covered by l patterns.

In order to avoid the removal of observations from the
training dataset when generating new patterns that form a
multi-class LAD model, (Avila-Herrera 2013) modified con-
straint (3.5) as follows:

Define κ as an m-vector that keeps track of the num-
ber of patterns covering an observation ϕi ∈ Ω for all
i = 1, · · · ,m. Initially, for each class Ck, 1 ≤ k ≤ K we set
κ = 0. This vector shall be updated as new solutions of the
MILP problem (3.14) are found. With the help of new vector
κ, condition (3.5) can be replaced by

vi + n (wi + κi) ≥ d, i ∈ Ip . (3.9)

where κi ≥ 0, i = 1, · · · ,m.

3.3 Relaxed MILP LAD Modifications
The MILP model in the previous section whose optimal so-
lution produces pure patterns can be modified to incorpo-
rate relaxed homogeneity and/or minimum prevalence pref-
erences and generate robust patterns. Adopting the ideas
from (Ryoo and Jang 2009) relaxed MILP approach and in-
tegrating it with (Subasi and Avila-Herrera 2016) multiclass
MILP approach, problem (3.14) can be modified to gener-
ate a strong p -pattern with freedom given to ignore up to
(α × |Ωp|)% of p observations outside class, where |Ωp| is
the number of observation in class p and α ∈ (0, 1), usu-
ally, α 6 0.1, by replacing constraint (3.5) with constraints
(3.10)− (3.12) below:

vi − zi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K, k ̸= p (3.10)∑
i∈Ik

zi ≤ α|Ωp|, i ∈ Ik , k = 1, · · · ,K, k ̸= p (3.11)

0 6 z 6 1, (3.12)
Observe that these conditions together relax the homo-

geneity requirement of the pattern generated. Additionally,
the problem can be further modified to incorporate a min-
imum prevalence requirement by the introduction of con-
straint (3.13) ∑

i∈Ip

wi ≤ (1− β)|Ωp|, i ∈ Ip, (3.13)

Condition (3.13) imposes a prevalence requirement on the
new MILP model that generates a pattern with the preva-
lence of β or better, where β ∈ (0, 1) , usually, β ∈
[0.05, 0.2] .

Minimize z = cd+
∑
i∈Ip

wi

subject to
vi + n(wi + ki) ≥ d, i ∈ Ip∑

i∈Ip
wi ≤ (1− β)|Ωp|, i ∈ Ip,

vi − zi ≤ d− 1, i ∈ Ik , k = 1, · · · ,K, k ̸= p∑
i∈Ik

zi ≤ α|Ωp|, i ∈ Ik , k = 1, · · · ,K, k ̸= p
yj + yn+j ≤ 1, j = 1, 2, · · · , n
2n∑
j=1

yj = d; 1 ≤ d ≤ n

wi, zi, yj ∈ {0, 1}, i = 1, · · · ,m; j = 1, · · · , 2n
(3.14)

Note that in Algorithm 2 we do not require the removal
of observations from the training dataset at any iteration by
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Algorithm 2: Multi-class LAD Algorithm
Input: p: index of current class

1 Global data: Ω: binary dataset, b: class vector
Result: MyPats[p] : patterns for class Cp

2 B = [Ω|Ω];
3 v = B y; (* y unknown variable *)
4 MyPats[p] = {};
5 κ = 0;
6 NewConstraint = {};
7 TotCov = 0;
8 while TotCov < |Ip| do
9 R = {constraintsfrom : (3.14)} ∪ NewConstraint;

10 pat = Minimize

cd+ ∑
i∈Ip

wi : R and v, y,w, d ∈ Z


y∗ part of pat corresponding to variables y;

11 for i = 1 to m do
12 if vi = d then
13 κi = κi +1;

14 TotCov = 0;
15 for i = 1 to m do
16 if (i ∈ Ip) ∧ (κi ̸= 0) then
17 TotCov = TotCov+1;

18 NotFound = True;
19 for i = 1 to m do
20 if

(i ∈ Ip) ∧ (κi = 0) ∧ (vi < d) ∧ (NotFound)
then

21 NewConstraint = {vi = d}; (* d and Y
as unknown variables *)

22 NotFound = False;

23 MyPats[p] = MyPats[p] ∪ {y∗};
24 return MyPats[p];

adding NewConstraint to the relaxed MILP problem each
time a new pattern is generated to prevent the algorithm
from finding the same pattern found at the previous itera-
tions. This is achieved by introducing that keeps track of the
number of patterns covering observations ϕi ∈ Ω and Tot-
Cov that counts the number of observations covered so far.

3.4 OvR Theory Formation
Given a K−class dataset Ω = Ω1 ∪ · · · ∪ ΩK and a corre-
sponding multi-class LAD modelM = M1 ∪ · · · ∪ MK ,
(Mi ∩Mj = ∅, i ̸= j), the classification of a new (or un-
seen) observation o /∈ Ω is determined by the value of the
discriminant function

∆(ϕ) = argmax
k

∆k(ϕ) (3.15)

where ∆k(ϕ) =
∑

PCk
∈Mk

ωkPCk
(ϕ), k = 1, · · · ,K

and ωk ≥ 0 are the weights assigned to patterns PCk
∈Mk.

The weights ωk, k = 1, · · · ,K) can be calculated in several

ways. One possibility is to use the prevalence of patterns that

is defined by ωk =
1

|Ωk|
∑
i∈ICk

PCk
(ϕi), where Ωk ⊂ Ω is the

set of observations in class Ck and ICk
= {i : ϕi ∈ Ωk} for

some 1 ≤ k ≤ K. If ∆(ϕ) = ∆p(ϕ) = ∆q(ϕ) for some
p ̸= q, then the observation o is unclassified.

Similar to the two-class classification problem the accu-
racy of a multi-class model M is estimated by classical
cross-validation procedure (Dietterich 1998; Efron and Tib-
shirani 1986; Hastie et al. 2005; Kohavi 1995). If an external
dataset (test/validation set) is available, the performance of
the model is evaluated on that set.

4 Experiments
In this section we present experimental results to show how
Algorithm 2 described in Section 3.2 can be used for mul-
ticlass classication of publicly available multiclass datasets.
Regarding the stopping criterion, Algorithm 2 ends once all
patterns for each class have been computed. In the worst
case, an adhoc pattern can be built by the algorithm to cover
a single observation. Table 1 shows the characteristics of
the datasets. In Table 2 we give the average accuracy of our
proposed Relaxed Multiclass LAD Method for each class of
the datasets. Finally, Table 3 presents the overall classifica-
tion accuracy of all five datasets using the relaxed multiclass
LAD method and six other LAD based multiclass classifica-
tion methods. Note that our method produces comparable or
better results on these datasets.

4.1 Experimental Results
In order to test our proposed multi-class LAD methodology
we conduct experiments on five multi-class datasets from
UCI Machine Learning Repository 1. Table 1 summarizes
the characteristics of these datasets. For each dataset the av-
erage accuracy of ten experiments. The average sensitivities
per class for each dataset are shown in Tables 2 and 3.

Dataset No. of
Observations / Class

No. of
Features

Iris 50 / 1, 50 / 2, 50 / 3 4
Glass

ID
69 / 1, 76 / 2, 17 / 3,
13 / 4, 9 / 5, 29 / 6 10

Wine 59 / 1, 71 / 2, 48 / 3 12

E. Coli 143 / 1, 77 / 2, 52 / 3,
35 /4, 20 /5, 5 /6 34

Dermatology 112 / 1, 61 / 2, 72 / 3,
49 /4, 52 /5, 20 /6 19

Table 1: Five multi-class datasets from UCI repository
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Dataset C1 C2 C3 C4 C5 C6
Iris 90% 100% 100%

Glass
ID 89% 80% 30% 86% 89% 86%

Wine 98% 94% 88%
E. Coli 95% 84% 60% 70% 60% 85%

Dermatology 95% 98% 93% 100% 92% 95%

Table 2: Average sensitivity

Table 3: Classification Accuracy of data sets (%)

5 Conclusions
In this paper we have proposed a multiclass LAD classifi-
cation algorithm. Our construct has adopted the vision of
Ryoo and Jang (2009) by using an MILP approach to gener-
ate LAD patterns and the modifications by Subasi and Avila-
Herrera (2016) who proposed an algorithm that works prop-
erly with multiclass datasets. We have extended Subasi and
Avila-Herrera’s work to a relaxed multiclass LAD approach
using homogeneity and prevalence as parameters. Our ex-
periments on five benchmark multiclass datasets show that
by themselves and in comparison to previously successful
multiclass LAD classification methods the proposed relaxed
multiclass LAD algorithm produces highly comparable and
accurate classification models. Our multiclass methodology
integrates principles from integer programming and com-
puter related advancements to efficiently generate relaxed
LAD patterns. It is a very promising option to solve mul-
ticlass classification problems.
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