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Abstract

The Distributed Constraint Optimization Problem (DCOP)
offers a powerful approach for the description and resolution
of cooperative multi-agent problems. In this model, a group
of agents coordinates their actions to optimize a global ob-
jective function, taking into account their local preferences.
In the majority of DCOP algorithms, agents operate on three
main graphical representations of the problem: (a) the con-
straint graph, (b) the pseudo-tree, or (c) the factor graph.
In this paper, we introduce the Constraint Composite Graph
(CCG) for DCOPs, an alternative graphical representation on
which agents can coordinate their assignments to solve the
distributed problem suboptimally. By leveraging this repre-
sentation, agents are able to reduce the size of the problem.
We propose a novel variant of Max-Sum–a popular DCOP in-
complete algorithm–called CCG-Max-Sum, which is applied
to CCGs. We also demonstrate the efficiency and effective-
ness of CCG-Max-Sum on DCOP benchmarks based on sev-
eral network topologies.

Introduction
In a cooperative multi-agent system multiple autonomous
agents interact to pursue personal goals and to achieve
shared objectives. The Distributed Constraint Optimization
Problem (DCOP) model (Modi et al. 2005; Yeoh and Yokoo
2012) is an elegant formalism to describe cooperative multi-
agent problems that are distributed in nature. In this model,
a collection of agents coordinate a value assignment to
the problem variables with the goal of optimizing a global
objective within the confines of localized communication.
DCOPs have been used to solve a variety of problems in
the context of coordination and resource allocation (Léauté
and Faltings 2011; Zivan et al. 2015; Miller, Ramchurn, and
Rogers 2012), sensor networks (Farinelli et al. 2008), and
device coordination in smart homes (Rust, Picard, and Ram-
parany 2016; Fioretto, Yeoh, and Pontelli 2017).

DCOP algorithms are either complete or incomplete.
Complete algorithms find an optimal solution to the problem
employing one of two broad modus operandi: distributed
search-based techniques (Modi et al. 2005; Yeoh, Felner,
and Koenig 2010; Netzer, Grubshtein, and Meisels 2012) or
distributed inference-based techniques (Petcu and Faltings
2005; Vinyals, Rodrı́guez-Aguilar, and Cerquides 2011). In
search-based techniques, agents traverse the search space

by selecting value assignments and communicating them to
other agents. Inference-based techniques rely instead on the
notion of agent belief, describing the best cost an agent can
achieve for each value assignment to its variables. These be-
liefs drive the value-selection process of the agents to find
an optimal solution to the problem.

Since finding an optimal DCOP solution is NP-hard
(Modi et al. 2005), optimally solving a DCOP requires expo-
nential time or space in the worst case. Thus, there is grow-
ing interest in the development of incomplete algorithms,
which trade off solution quality for better runtimes. Sim-
ilar to complete algorithms, incomplete algorithms can be
classified as local search-based (Maheswaran, Pearce, and
Tambe 2004; Zhang et al. 2005) and inference-based (Petcu,
Faltings, and Mailler 2007; Farinelli et al. 2008). Some in-
complete algorithms have been used in several multi-agent
applications. For instance, Max-Sum (Farinelli et al. 2008;
Stranders et al. 2009) is an inference-based incomplete al-
gorithm which has been successfully used to solve sensor
networks problems (Farinelli et al. 2008), multi-agent task
allocation for rescue teams in disaster areas (Ramchurn et
al. 2010), and smart home coordination problems (Rust, Pi-
card, and Ramparany 2016).

In both complete and incomplete DCOP algorithms, the
problem resolution process is characterized by the graph-
ical representation of the problem. The three most impor-
tant problem representations are the constraint graph, the
pseudo-tree, and the factor graph. The first represents a
problem as a graph whose nodes describe the variables and
whose edges describe the constraints. The second is a rear-
rangement of the constraint graph, where a subset of edges
forms a rooted tree and where two variables in the scope
of the same constraint appear in the same branch of the
tree. The third represents the problem as a bipartite graph
where nodes represent both variables and constraints, and
edges link the constraint nodes to the variables in their
scope. In many local search algorithms, such as MGM (Ma-
heswaran, Pearce, and Tambe 2004), DSA (Zhang et al.
2005), or the region-optimal algorithm family (Pearce and
Tambe 2007), agents operate directly on the constraint graph
and perform distributed local searches by exchanging in-
formation with their neighbors in the constraint graph. In
the main inference-based algorithms, the agents operate ei-
ther on a pseudo-tree (e.g., P-DCOP (Petcu, Faltings, and
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Figure 1: Example DCOP: Constraint graph (a), pseudo-tree (b), factor graph (c), and a constraint (d).

Mailler 2007)) or a factor graph (e.g., Max-Sum). In the
former, agents exchange messages following the structure
of the pseudo-tree, typically alternating between a phase in
which messages are propagated up from the leaf agents to
the root agent of the pseudo-tree, and one in which infor-
mation is propagated down. In the latter case, there are two
types of entities, namely, variable nodes (representing vari-
ables) and function nodes (representing constraints). Both
these entities participate in the message exchange process to
solve the problem.

All these representations allow agents to exploit the
graphical structure of the problem. However, they hide the
numerical structure of the problem’s constraints. Thus, in
this paper, we introduce the Constraint Composite Graph
(CCG) for DCOPs, a lifted graphical representation that pro-
vides a framework for exploiting simultaneously the graph-
ical structure of the agent-coordination process as well as
the numerical structure of the constraints involving the vari-
ables controlled by the agents. CCGs have been recently
introduced in the context of Weighted Constraint Satisfac-
tion Problems (WCSPs) (Kumar 2008a; 2008b; 2016), and
shown to be highly effective in solving a wide range of prob-
lems (Xu, Kumar, and Koenig 2017; Xu, Koenig, and Kumar
2017). We contribute to the development of inference-based
DCOP algorithms by investigating the CCG representation
for DCOPs and developing a variant of Max-Sum which can
be used directly on CCGs.
Contributions: This paper makes the following contribu-
tions: (1) We adapt the recently introduced CCG represen-
tation for Weighted Constraint Satisfaction Problems (WC-
SPs) to DCOPs. (2) We present a novel framework for
solving DCOPs sub-optimally whose agent interactions are
driven by the structure of the CCG representation. (3) By
leveraging this representation, agents are able to exploit
techniques that are effective, in general, in reducing the size
of the original problem. (4) We analyze the behavior of the
proposed framework on different graph topologies and show
its efficiency and effectiveness on several important classes
of graphs, including grid networks and scale-free networks,
which are used to describe many applications in distributed
settings.

To the best of our knowledge, we are the first in proposing

a distributed message-passing algorithm based on the CCG
representation. We refer to our algorithm as a “lifted” mes-
sage passing algorithm to refer to that it works on the CCG
representation of a DCOP.

Background
We now review the distributed constraint optimization
framework, the graphical models commonly adopted to rep-
resent a DCOP, and the CCG model.

Distributed Constraint Optimization
A Distributed Constraint Optimization Problem (DCOP) is
a tuple P = 〈X,D,F,A, α〉, where: X = {x1, . . . , xn}
is a set of variables; D = {Dx1

, . . . , Dxn
} is a set of

finite domains for the variables in X; F = {f1, . . . , fe}
is a set of constraints (also called cost functions), where
f :

∏
x∈xf Dx → R+ ∪ {∞} and xf ⊆ X is the set of

the variables (also called the scope) of f ; A={a1, . . . , ap}
is a set of agents; and α : X → A is a function that maps
each variable to one agent. Figure 1(d) shows an example
constraint. It specifies the costs of all combinations of val-
ues for the variables x1, x2 in the scope of the constraint. For
a variable x∈X, we use fx to denote the set of constraints
that involve x in their scopes.

A partial assignment σX is an assignment of values to
a set of variables X ⊆ X that is consistent with the do-
mains of the variables; i.e., it is a partial function θ : X →
∪ni=1Dxi such that, for each xj ∈ X, if θ(xj) is defined
(i.e., xj ∈ X), then θ(xj) ∈ Dxj . For a set of variables
V = {xi1 , . . . , xih} ⊆ X , πV (σX) = 〈θ(xi1), . . . , θ(xih)〉
is the projection of σX to the variables in V , where i1 <
. . . < ih. When V = {xi} is a singleton, we write πxi

(σX)
to denote the projection of σX to xi. The cost F(σX) =∑
f∈F:xf⊆X f(πxf (σX)) of an assignment σX is the sum

of the evaluation of the constraints involving all the vari-
ables in X . A solution is a partial assignment σX (written σ
for shorthand) for all the variables of the problem, i.e., with
X=X, whose cost is finite (i.e., F(σ) 6=∞).

The goal is to find an optimal solution σ∗ =
argminσ F(σ). In this paper, we restrict our attention to
Boolean DCOPs (i.e., DCOPs where all domains are {0, 1}).



Despite our focus on Boolean DCOPs, the concepts intro-
duced in the next sections are easily generalizable, as dis-
cussed in the Conclusions.

Given a DCOP P , its constraint graph is GP = (X, EC),
where an undirected edge {x, y} ∈ EC exists if and only
if there exists an f ∈ F such that {x, y} ⊆ xf . The con-
straint graph provides a standard representation of a DCOP
instance. It highlights the locality of interactions among
agents and therefore is commonly adopted by DCOP res-
olution algorithms. Figure 1(a) shows an example constraint
graph of a DCOP with three agents a1, a2, and a3, each
controlling one variable with domain {0,1}. There are three
constraints: f1 with scope xf1 = {x1, x2}, f2 with scope
xf2 = {x2, x3}, and f3 with scope xf3 = {x1, x3}.

The pseudo-tree for P is a subgraph TP = 〈X, ET 〉 of
GP such that TP is a spanning tree of GP , i.e., a connected
subgraph of GP that contains all nodes and is a rooted tree,
with the following additional condition: for each x, y ∈ X,
if {x, y} ⊆ xf for some f ∈ F, then x and y appear in the
same branch of TP (i.e., x is an ancestor of y in TP or vice
versa). Figure 1(b) shows one possible pseudo-tree of our
example DCOP, where the solid lines represent tree edges
and the dotted line represents a backedge that connects an
agent with one of its ancestors.

A factor graph (Kschischang, Frey, and Loeliger 2001)
is a bipartite graph used to represent the factorization of a
function. Given a DCOP P , the corresponding factor graph
FP = 〈X,F, EF 〉 is composed of variable nodes x ∈ X,
function nodes f ∈ F, and edges EF such that there is an
undirected edge between function node f and variable node
x if and only if x ∈ xf . Figure 1(c) illustrates the factor
graph of our example DCOP, where each agent ai controls
its variable xi and, in addition, a1 controls the constraints f1
and f3, and a2 controls the constraint f2.

Max-Sum
Max-Sum (Farinelli et al. 2008) is a popular incomplete
DCOP algorithm. Max-Sum agents operate on a factor graph
FP through a synchronous iterative process. Albeit the logic
of each variable node and each function node is executed
within an agent, to ease exposition, in what follows, we treat
them as entities that are able to send and receive messages.

In each iteration, each function node f exchanges mes-
sages with the nodes of variables in its scope xf , and each
variable node x exchanges messages with the nodes of con-
straints which involve x in their scopes fx. Thus, each node
exchanges messages with its neighbors in the factor graph.

The content of the messages sent by each function (vari-
able) node is based exclusively on the information received
from neighboring variable (function) nodes. The message
qix→f sent by a variable node x to a function node f in
fx at iteration i contains, for each value d ∈ Dx, the ag-
gregated costs for d received from all neighboring function
nodes in iteration i− 1, excluding f . It is defined as a func-
tion qix→f : Dx→R+∪{∞}, whose value is 0 for all d∈Dx

when i=0 and

qix→f (d) = αixf +
∑

f ′∈fx\{f}

ri−1f ′→x(d) (1)

when i > 0, where ri−1f ′→x is the message received by vari-
able node x from function node f ′ in iteration i− 1 and αixf
is a normalizing constant used to prevent the values of the
transmitted messages from growing arbitrarily. It is chosen
such that ∑

d∈Dx

qix→f (d) = 0

holds. The message rif→x sent by a function node f to a
variable node x in xf in iteration i contains, for each value
d ∈ Dx, the minimum cost of any assignments of values to
the variables in xf in which x takes value d. It is defined as
a function rif→x : Dx → R+∪{∞}, whose value is 0 when
i = 0 and

rif→x(d) = min
σ
xf : πx(σxf )=d

f(σxf ) +
∑

x′∈xf\{x}

qix′→f (πx′(σxf ))

(2)
when i > 0. Here, σxf represents a possible value assign-
ment to all variables involved in the scope xf of the con-
straint f , under the constraint that variable x ∈ xf takes
value d.

The agent controlling a variable node x decides its value
assignment at the end of each iteration by computing its as-
sociated belief bix(d) for each d ∈ Dx:

bix(d) =
∑
f∈fx

ri−1f→x(d)

and choosing the assignment d∗i such that,

d∗i = argmin
d∈Dx

bix(d). (3)

This form of message passing allows an inference-based
method: Max-Sum agents initialize all their messages to 0
and, in each iteration i > 1, retain only the most recent mes-
sages, overwriting the messages received in previous itera-
tions.

Max-Sum is an incomplete DCOP algorithm. However,
on acyclic problems, it is guaranteed to converge to an opti-
mal solution (Farinelli et al. 2008).

The Constraint Composite Graph
We now describe the constraint composite graph (CCG), a
graphical structure that can be used to represent DCOPs.
Its goal is to exploit simultaneously the graphical structure
of the agent interactions as well as the numerical structure
of the cost functions. It is a node-weighted tripartite graph
GCCG = 〈V = X ∪ Y ∪ Z, E, w〉, where X, Y, and Z
are the three partitions of the nodes V : X contains nodes
that correspond to decision variables, whereas Y and Z con-
tain nodes that correspond to auxiliary variables. We use
GCCGi

= 〈Vi = Xi ∪ Yi ∪ Zi, Ei, wi〉 to denote the portion
of the CCG decomposed from constraint fi. The concept of
a CCG was first proposed by Kumar (2008a) as a combina-
torial structure associated with a Weighted Constraint Satis-
faction Problem (WCSP). WCSPs are similar to DCOPs, ex-
cept that all computations are centralized. In this proposal,



Algorithm 1: CCG-MAX-SUM

// CCG Construction Phase
1 foreach fi ∈ Fi do
2 pi ← construct-polynomial(fi);
3 GCCGi =〈Vi = Xi ∪ Yi ∪ Zi,Ei,wi〉 ←

decompose-polynomial(pi) ;

4 foreach f ∈ FCCGi involving variable vj with α(vj) 6=ai do
5 ai sends f to aα(vj);

6 When agent ai receives f involving vi ∈ Xi from
neighboring agent aj : fvi(1)← fvi(1) + f(1) ;
// Message Passing Phase

7 µvi→vj ← 0 (∀vi ∈ Vi, ∀vj ∈ N(vi));
8 while termination condition is not met do
9 Wait for all messages µvj→vi from

vj ∈N(vi) (∀vi∈Vi);
10 foreach vi ∈ Vi do
11 Update µvi→vj according to Equation (6);

12 for vi ∈ Xi do
13 if wvi <

∑
vj∈N(vi)

µvj→vi then vi ← 1 else vi ← 0;

it was shown that the task of solving a WCSP can be re-
formulated as the task of finding a Minimum Weighted Ver-
tex Cover (MWVC) on its associated CCG (Kumar 2008a;
2008b; 2016).

A desirable property of the CCG is that it can be con-
structed in polynomial time and is always tripartite (Kumar
2008a; 2008b; 2016). CCGs also enable the use of kerneliza-
tion methods for solving WCSPs (Xu, Kumar, and Koenig
2017), which are polynomial-time procedures that can sim-
plify a problem to a smaller one, called the kernel. The
Nemhauser-Trotter reduction (NT reduction) (Nemhauser
and Trotter 1975; Chlebı́k and Chlebı́ková 2008) is one such
kernelization method. It makes use of a maxflow proce-
dure to find the kernel and can be extended in a distributed
way (Homayounnejad and Bagheri 2015).

In the next section, we introduce an extension of the Max-
Sum algorithm, called CCG-Max-Sum, which can be used
directly on CCGs.

CCG-Max-Sum

CCG-Max-Sum is an incomplete, iterative DCOP algorithm
which works in two phases, namely, the CCG construction
phase and the message passing phase, which are executed
sequentially and summarized in Algorithm 1. In the CCG
construction phase, the agents coordinate in the construc-
tion of a CCG and take ownership of the auxiliary variables
and constraints introduced by this lifted graphical represen-
tation. Afterwards, in the message passing phase, the agents
execute the iterative synchronous process which extends the
Max-Sum algorithm.

In what follows, we use Gi = 〈Xi,Fi〉 to denote the sub-
graph of the constraint graph controlled by agent ai, where
the sets Xi ⊆ X form a partition of the set of variables X,
and the sets Fi ⊆ F form a partition for the constraint set F.
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x2
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Figure 2: The projection of an MWVC on the IS {x1, x2}
of this node-weighted undirected graph leads to Figure 1(d).
The weights on x1, x2, and y1 are 0.2, 0.1, and 0.5, respec-
tively. The entry 0.6 in cell (x1 = 0, x2 = 1) in Figure 1(d),
for example, indicates that, when x1 is necessarily excluded
from the MWVC but x2 is necessarily included in it, then
the weight of the MWVC—{x2, y1}—is 0.6.
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Figure 3: The lifted graphical representation of terms in a
polynomial for linear (a), negative nonlinear (b), and posi-
tive nonlinear (c) terms. We assume thatw > 0 in (b) and (c)
(but no such assumption in (a)). A node has a zero weight if
no weight is shown. In (a), w1 and w2 satisfy w1−w2 = w.

CCG Construction Phase
The CCG construction proceeds in 3 stages:

1. Expressing Constraints as Polynomials In this stage,
each agent ai transforms the constraints fi ∈ Fi it controls
into polynomials pi (line 2 of Algorithm 1) using standard
Gaussian Elimination. Consider the example constraint f1 in
Figure 1(d), which involves the variables x1 and x2. It can
be written as a polynomial p1(x1, x2) in x1 and x2 of degree
1 each:

p1(x1, x2) = c00 + c01x1 + c10x2 + c11x1x2.

The coefficients c00, c01, c10, and c11 of the polynomial can
be computed by solving a system of linear equations, where
each equation corresponds to an entry in the constraint table,
using standard Gaussian Elimination. In our example:

p1(0, 0) = 0.5 p1(0, 1) = 0.6

p1(1, 0) = 0.7 p1(1, 1) = 0.3.

2. Decomposing the Terms of the Polynomials In this
stage, for each fi ∈ Fi, the agent that controls it constructs a
subgraph GCCGi

of the CCG (line 3 of Algorithm 1). At the
end of this stage, each agent introduces new sets of auxiliary
variables Yi and Zi and replaces its constraints with a new
set FCCGi

of constraints that involve the decision variables
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Figure 4: CCG gadget graph construction in the “Decomposing the Terms of Polynomials” stage for the example DCOP of
Figure 1. The original constraint is shown on the left of each panel, the associated CCG gadget graph is shown in the middle,
and, the new constraints are shown on the right of each panel.

and its newly introduced auxiliary variables. Before describ-
ing this procedure, we review the concept of the MWVC, a
cornerstone concept for the notion of the CCG.

A minimum vertex cover ofG = 〈V,E〉 is the smallest set
of nodes S ⊆ V such that every edge in E has at least one
of its endpoint nodes in S. When G is node-weighted, (i.e.,
each node vi ∈ V has a non-negative weight wi associated
with it), its MWVC is defined as a vertex cover of minimum
total weight of its nodes.

For a given graph G, one can project MWVCs on a given
independent set (IS) U ⊆ V . (An IS is a set of nodes in
which no two nodes are connected by an edge.) The in-
put to such a projection is the graph G as well as an IS
U = {u1, u2, . . . , uk} on G. The output is a table of 2k

numbers. Each entry in this table corresponds to a k-bit vec-
tor. We say that a k-bit vector t imposes the following re-
strictions: (a) If the ith bit ti is 0, then node ui has to be
excluded from the MWVC; and (b) if the ith bit ti is 1, then
the node ui has to be included in the MWVC. The projec-
tion of an MWVC on the IS U is then defined to be a table
with entries corresponding to each of the 2k possible k-bit
vectors t(1), t(2), . . . , t(2

k). The value of the entry that cor-
responds to t(j) is the weight of the MWVC conditioned on
the restrictions imposed by t(j).

Figure 2 illustrates this projection for the subgraph of our
example DCOP problem of Figure 1(a) that involves vari-
ables x1 and x2 and constraint f1, whose costs are shown in
Figure 1(d).

The table produced by projecting an MWVC on the IS
U can be viewed as a constraint over |U | Boolean vari-
ables. Conversely, given a (Boolean) constraint, we design
a lifted representation for it so as to be able to view it as
the projection of an MWVC on an IS for some intelligently
constructed node-weighted undirected graph (Kumar 2008a;
2008b). The lifted graphical representation of a constraint
depends on the nature of the terms in the polynomial that de-
scribes the constraint. We distinguish three classes of terms:
linear terms, negative nonlinear terms, and positive nonlin-
ear terms. We can construct a lifted graphical representation,
i.e., a gadget graph, for each term in the polynomial of each
constraint as follows.
• A linear term can be represented with the two-node

graph shown in Figure 3(a) by connecting the variable
node with an auxiliary node.

• A negative nonlinear term can be represented with the

“flower” structure in Figure 3(b). Consider the term −w ·
(xi · xj · xk) where w > 0. The projection of an MWVC
on the “flower” structure on the variable nodes represents
w−w · (xi · xj · xk). The constant term w does not affect
the optimality of the solution.

• A positive nonlinear term can be represented using the
“flower+thorn” structure shown in Figure 3(c). Consider
the term w · (xi · xj · xk) where w > 0. The projection of
an MWVC on the “flower+thorn” structure on the variable
nodes represents L · (1−xk)+w−w · (xi ·xj · (1−xk)),
where L > w + 1 is a large real number. By construct-
ing gadget graphs that cancel out the lower order terms as
shown before, we arrive at a lifted graphical representa-
tion of the positive nonlinear term.
Procedure decompose-polynomial on line 3 of Algorithm

1 takes the input polynomial pi associated with a constraint
fi, constructed in stage 1, and returns its lifted representa-
tion GCCGi

, where Xi = xfi , and Yi, Zi are the set of aux-
iliary variables introduced by the procedure, Ei is the set of
edges between the GCCGi

graph nodes, and wi is the set of
weights associated with the variables in Xi, Yi, and Zi. For
a variable vi ∈ Xi∪Yi∪Zi, a unary constraint fvi in FCCGi

is defined as

fvi(vi) =

{
wi, if vi = 1,

0, if vi = 0.
(4)

For each edge {vi, vj} in Ei, a constraint f{vi,vj} in FCCGi

is defined as

f{vi,vj}(vi, vj) =

{
∞, if vi = vj = 0,

0, otherwise.
(5)

For a CCG gadget graph GCCGi
, Xi contains nodes that cor-

respond to decision variables, Zi contains the nodes with
weight L (if any), and Yi contains the other nodes. At the
end of this stage each agent ai ∈ A controls the set of
decision variables in Xi and the set of auxiliary variables
∪fj∈FiYj ∪ Zj , for all constraints fj ∈ Fi controlled by
agent ai.

3. Merging Gadget Graphs into a CCG Finally, the
CCG-Max-Sum agents construct the CCG by merging their
gadget graphs GCCGi

. This stage is done incrementally. Ev-
ery time an agent builds a new gadget graph, it (1) updates
its internal graphical representation to include the auxiliary
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Figure 5: The CCG of the example DCOP of Figure 1, ob-
tained by merging the CCG gadget graphs of Figure 4.

variables introduced by the construction, and (2) increases
the weight associated with the agent’s variables. Each agent
ai sends to its neighbor aj all unary constraints in FCCGi

in-
volving variable vj controlled by agent aj (i.e., α(vj) = aj)
(lines 4–5). When an agent receives a new unary constraint f
which involves one of its decision variables vi, it increases
the weight associated with the constraint (fvi(vi)) for the
value fvi(1) (line 6).

The communication structure of the underlying DCOP
does not vary after the CCG construction. If an agent ai
is a neighbor of an agent aj in the constraint graph of the
original DCOP, then ai is also a neighbor of aj in the lifted
DCOP representation.

Figure 4 shows the construction of the CCG associated
with our example DCOP of Figure 1. There are three unary
and three binary constraints. Their lifted graphical represen-
tations are shown next to them. Every node in the CCG is
given a weight equal to the sum of the individual weights of
the nodes in the merged CCG gadget graphs.

Computing the MWVC for the CCG yields a solution for
the DCOP: If variable xi ∈ X is in the MWVC, then it is
assigned the value 1 in the DCOP, otherwise it is assigned
the value 0.

Message Passing Phase
Once the CCG has been constructed, the agents start the
message passing phase to find a vertex cover with a small to-
tal weight. The message passing scheme is similar to that of
Max-Sum: During each iteration, each agent waits to receive
all messages from its neighbors, updates the current values
(beliefs) for the variables it controls, computes the messages
to send to its neighbors based on its new beliefs, and sends
these to all its neighbors. Here, we adapt the algorithm pre-
sented in (Xu, Kumar, and Koenig 2017) (see Algorithm 1).
Differently from Max-Sum, where each function node ex-
changes messages with its neighboring variable nodes, and
each variable node exchanges messages with its neighbor-
ing function nodes, in CCG-Max-Sum, the messages are ex-
changed between (decision and auxiliary) variables nodes in
the CCG. The message µu→v sent by a variable u to a vari-
able v in iteration i is:

µiu→v = max

wu − ∑
t∈N(u)\{v}

µi−1t→u, 0

 , (6)

where wu is the weight associated with variable u, and
N(u) is the set of neighboring variables of variable u in the
CCG. Equation (6) is derived from Equations (1) and (2) us-
ing an approach similar to that in (Xu, Kumar, and Koenig
2017). These steps are shown on lines 7–11 of Algorithm 1.
When the algorithm terminates, for a node v, if wv <∑
u∈N(v) µu→v , then v is selected into the MWVC; oth-

erwise it is not. A variable is assigned value 1 if its corre-
sponding decision variable node in the CCG is selected into
the MWVC; otherwise it is assigned value 0 (lines 12–13).

Experimental Evaluation
In this section, we compare the solution costs of CCG-
Max-Sum, Max-Sum, which is executed on the factor graph,
and DSA (Zhang et al. 2005), a local search DCOP al-
gorithm. We also analyze the effect of using the NT re-
duction (Nemhauser and Trotter 1975) in conjunction with
CCG-Max-Sum (denoted CCG-Max-Sum-k). The NT re-
duction is executed as a preprocessing centralized step. We
evaluate these algorithms on random minimization Boolean
DCOPs over three classical networks topologies (Kiek-
intveld et al. 2010): grid networks, scale-free networks, and
random networks, to cover both structured and unstructured
problems. The costs of each joint assignment to the variables
involved in a constraint are generated by sampling from the
discrete uniform distribution U(1, 100). We generate 30 dif-
ferent problem instances, run the algorithms for 5000 itera-
tions, and report the average of those runs.

For grid networks, we generate two-dimensional 10× 10
grids and connect each node with its nearest neighbors. For
scale-free networks, we create an n-node network based
on the Barabasi-Albert model (Barabási and Albert 1999).
Starting from a connected 2-node network, we repeatedly
add a new node, randomly connecting it to two existing
nodes. In turn, these two nodes are selected with probabili-
ties that are proportional to the numbers of their connected
edges. Finally, for random networks, we create an n-node
network, whose density p1 produces bn(n − 1)p1c edges.
We report experiments on low density problems (p1 = 0.4)
and high density problems (p1 = 0.8), and fix the maximum
constraint arity to 4. Constraints of arity 4 and 3, respec-
tively, are generated by merging first all cliques of size 4
and then those of size 3. The other edges are used to gener-
ate binary constraints. In each configuration, we verify that
the resulting constraint graph is connected. For all problems,
we set the number of agents to 100. In order to emphasize
the solution costs returned by the algorithms, we implement
them within an anytime framework, as proposed in (Zivan,
Okamoto, and Peled 2014). Such a framework is used by the
agents to memorize the best solution found up to the current
iteration.

We first analyze the anytime behavior of the algorithms.
Figures 6(a)–(d) show the solution costs reported by all

DCOP algorithms in each iteration, on two-dimensional grid
networks (a), scale-free networks (b), and random networks
with low density (p1 = 0.4) (c) and high density (p1 = 0.8)
(d). The figures illustrate the anytime behavior of the algo-
rithms. The shaded region around each line describes the
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Figure 6: Solution costs for DCOPs with 100 agents on two-dimensional grid networks (a), scale-free networks (b), low density
random networks (p1 = 0.4) (c), and high-density random networks (p1 = 0.8) (d). The blue and red curves overlap in (c) and
(d).

confidence error interval of the solution costs reported by
each algorithm. The plots use a log-10 scale for the x-axis.
We observe that Max-Sum reports solutions with the highest
costs among the costs of the solutions reported by all other
algorithms. DSA agents quickly find local minima, outper-
forming Max-Sum agents. For structured networks (Figures
6(a) and (b)), the costs of the solutions reported by CCG-
Max-Sum are smaller than those reported by both Max-Sum
and DSA, after an average of 95 iterations, for grid net-
works, and 12 iterations, for scale-free networks. Addition-
ally, CCG-Max-Sum-k, which exploits the kernelization pre-
processing, reports solutions with the smallest costs from as
early as the first iteration.

On random network benchmarks (Figures 6(c) and (d)),
the effect of the kernelization is negligible and the costs of
the solutions reported by CCG-Max-Sum-k are identical to
those of CCG-Max-Sum (thus, the former is omitted). On
low density problems, CCG-Max-Sum and DSA report sim-
ilar solution costs, albeit DSA converges faster than CCG-
Max-Sum. On high density problems, CCG-Max-Sum re-
ports solutions with slightly higher costs than those reported
by DSA.

Finally, we consider the CCG construction phase as pre-
processing step. Its construction time affects only marginally
the first iteration of the algorithms. In our experiments, the

average CCG construction time is 0.24t, with t being the
time of one iteration.

Thus, our experiments suggest that CCG-Max-Sum can
bring decisive advantages on grid and scale-free network in-
stances, which are important for a large variety of DCOP
applications ((Farinelli et al. 2008; Fioretto, Yeoh, and Pon-
telli 2017; Rust, Picard, and Ramparany 2016)).

Conclusions
In this paper we adapted the Constraint Composite Graph
(CCG) graphical representation encoding for Distributed
Constraint Optimization Problems (DCOPs). The CCG pro-
vides a framework for exploiting simultaneously the graph-
ical structure of the agent interaction process as well as the
numerical structure of the constraints of a DCOP instance.
We use this representation to introduce CCG-Max-Sum, a
novel incomplete DCOP algorithm which extends Max-Sum
by executing the distributed message passing phase on the
CCG.

Compared to a version of Max-Sum which is executed on
factor graphs and other incomplete DCOP algorithms, CCG-
Max-Sum finds solutions of better quality within fewer iter-
ations on several DCOP benchmarks.

While this paper introduced an inference-based algorithm



that operates on the CCG of a DCOP, we believe that the
CCG can also be exploited with other classes of DCOP al-
gorithms. Additionally, the ideas presented in this paper are
extendable to DCOPs with non-Boolean variables, as shown
in (Kumar 2008b). We expect CCG-Max-Sum to be efficient
for large domain sizes since the size of the CCG increases
only polynomially with respect to domain sizes.

Future directions include applying CCG-Max-Sum to
problems with hard constraints: Many types of hard con-
straints may be simplified during the construction of the
CCG, and therefore resulting in smaller CCGs. Another di-
rection is to investigate the application of the Crown Re-
duction (Chlebı́k and Chlebı́ková 2008) to CCG-Max-Sum,
a kernelization method that is not widely known in the AI
community.
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