
Exact Graph Coloring Algorithms of Getting Partial and All Best Solutions

Jianding Guo, Laurent Moalic, Jean-Noel Martin, Alexandre Caminada
{jianding.guo, laurent.moalic, jean-noel.martin, alexandre.caminada}@utbm.fr

Univ. Bourgogne Franche-Comté, UTBM, OPERA, F-90100 Belfort, France

Abstract

Designing effective exact algorithms for graph coloring
problem is still an interesting topic. Instead of getting
only one best solution, two exact graph coloring algo-
rithms, PexaCol (Partial best solutions Exact graph Col-
oring algorithm) and AexaCol (All best solutions Exact
graph Coloring algorithm), have been proposed, which
are able to obtain a best solution subset and all best so-
lutions respectively. Based on TexaCol (Total solutions
Exact graph Coloring algorithm) which is capable of
getting all coloring solution subsets for each subgraph,
these two algorithms utilize the backtracking method,
in which they only choose the best solution subset each
step to continue the coloring until partial or all best solu-
tions are obtained. The result analysis shows that Pexa-
Col and AexaCol can deal with larger graphs than Texa-
Col and especially, AexaCol runs much faster than Tex-
aCol and the solver Gurobi to get all best solutions.

Graph coloring problem is a well-known traditional NP-
complete problem, which has been extensively researched
and has great significance to improve the efficiency for some
industrial applications. Although there have been a lot of
works on it up to now, no methods can make sure of obtain-
ing the best solution exactly for large graphs (e.g., graphs
with several thousand nodes) in an acceptable time. On the
other hand, instead of getting only one best solution, very
few works engage in getting multiple or all best coloring
solutions which are obviously much difficult. Therefore, it
is still necessary to explore new methods of graph coloring
from different perspectives.

Generally, there are two kinds of methods for coloring a
graph: the exact methods and the heuristic methods. The ex-
act methods are capable of attaining the best solution for
a given graph while the graph’s size is small (Malaguti,
Monaci, and Toth 2011; Mehrotra and Trick 1996), however,
it is really limited to solve practical problems which are of-
ten modeled as larger graphs. The heuristic methods can deal
with much larger graphs, nevertheless, they often cannot get
the best solution. So far, in order to solve graph coloring
problem, a lot of heuristic algorithms have been proposed
while there are very few exact algorithms.

There have already been some studies on graph color-
ing by analyzing the graph structure or by decomposing the
graphs. In (Rao 2004), the graph coloring is conducted us-

ing the split decomposition tree, in which a graph is recur-
sively partitioned into smaller graphs until they cannot be
split anymore. Then, after coloring the prime graphs which
cannot be split, the solutions are combined gradually to get
the solutions for all the graph. In (Bhasker and Samad 1991),
the authors research the clique-partitioning for a graph based
on the principle that the graph coloring and the clique-
partitioning are equivalent to some extent. Two methods
are presented to partition cliques, which perform better in
runtime than some efficient graph coloring algorithms. In
(Lucet, Mendes, and Moukrim 2006), an exact graph color-
ing algorithm is proposed by linearly decomposing a graph,
which can run faster than other exact algorithms when the
linearwidth is small. The graph is dynamically decomposed
into subgraphs and the corresponding boundaries between
these subgraphs. Then the coloring results can be obtained
by analyzing different coloring cases from these boundaries.

Moreover, there are plenty of papers that work on the
chromatic polynomial and the number of best solutions.
In (Read 1968), the traditional method called the deletion-
contraction is presented to get the chromatic polynomial
which utilizes the characteristic of chromatic polynomial to
do the operations to the graph. In (Lin 1993), an approxima-
tion algorithm is proposed to calculate the chromatic poly-
nomial after obtaining its upper bound and lower bound,
which has good performance in time complexity.

Our work is based on TexaCol in our previous work (Mar-
tin 2010), which can get all graph coloring solutions as well
as the chromatic polynomial. TexaCol is a graph-structure-
based algorithm, in which the graph is decomposed into
maximal cliques, and the relationship between these max-
imal cliques is analyzed to get all coloring solutions. We
improve this work in this paper to propose two exact graph
coloring algorithms, which can get multiple best solutions
or all best solutions. Our contributions are as follows:

• Based on TexaCol, an algorithm called PexaCol has been
designed to get partial best solutions (see section Pexa-
Col). Each step, instead of dealing with all solution sub-
sets, PexaCol utilizes backtracking method to choose only
the best solution subset for subgraphs to calculate until a
best solution subset for all the graph is obtained.

• Based on PexaCol, we proposed another algorithm called
AexaCol which is capable of getting all best solutions for

a graph (see section AexaCol). Different from PexaCol,
this algorithm will not stop the calculation until all best
solutions are acquired.

• By calculating a lot of graph instances, the performance
of these algorithms has been evaluated (see section Result
analysis). Result analysis shows that PexaCol and Aexa-
Col are able to deal with larger graphs and can run faster
than TexaCol. In addition, AexaCol can run much faster
than the famous solver Gurobi in getting all best solutions.

Preliminaries
The vertex coloring of a graph G is a proper coloring such
that all nodes are colored and all neighboring nodes are col-
ored differently. In this paper, each proper coloring solution
is called one solution and all proper coloring solutions are
called all solutions. Partial solutions is defined as a proper
coloring solution subset and all of these subsets compose all
solutions. If at most k colors are used for the proper color-
ing, it is called proper k-coloring. The chromatic number is
k if at least k colors are used for the proper coloring. If the
chromatic number is k, each proper k-coloring solution is
called one best solution. All best solutions is the set of all
proper k-coloring solutions when k is the chromatic num-
ber. If not all but a part of the best solutions are found, we
call that partial best solutions, i.e., a best solution subset.

We use a specific data structure called column to deal
with the coloring solutions. Given the coloring sequence, a
column denotes a proper coloring solution subset and they
are equivalent in the aftermentioned part. All this kind of
columns compose all graph coloring solutions. In each col-
umn, each node’s coloring constraint is indicated, containing
either the set of nodes which should have different colors or
the same color with this node. The minus sign means two
nodes have the same color. Specially, if a new node can have
the same color with some colored nodes, we find the first
colored node among them and add a minus sign before it as
the coloring constraint of this new node. Given the number
of colors k, a factor representing the number of optional col-
ors for each node, can be obtained from each node’s coloring
constraint. The chromatic polynomial for a column, indicat-
ing the number of solutions included in this column, is the
product of all nodes’ factors. Then the chromatic polynomial
for the graph is the sum of all column’s chromatic polynomi-
als. The number of colors for a column equals the maximal
number of nodes in all nodes’ coloring constraint plus 1.
While coloring, we gradually add an uncolored node’s col-
oring constraint to the column until all nodes are colored.

1

2

3

4

[]
[1]

[1 4]
[1 2]

1
4
2
3

Coloring
sequence

Solution
subset 1

[]
[-1]
[1]

[1 2]

Solution
subset 2

2(1)(2)k k k� � (1)(2)k k k� �Chromatic
polynomial

Figure 1: Example of the coloring data structure

In Figure 1, the coloring result for a graph with 4 nodes is
shown, which contains two columns. All coloring solutions

are included in these two columns and each column is a col-
oring solution subset. The coloring constraint for each node
is written in the corresponding bracket. For instance, in the
first column, the constraint of the node 2 is [1 4], that means
the node 2 is colored differently with the node 1 and the node
4. In the second column, the constraint of the node 4 is [-1],
that means the node 4 is colored the same as the node 1. The
number of colors for both columns equals 3, i.e., the chro-
matic number. The chromatic polynomial of both columns
is indicated in the figure and each column contains 6 best
solutions.

TexaCol
TexaCol is an exact algorithm for getting all proper coloring
solutions, which has been proposed in [9]. Based on the fact
that the graph structure has significant influence on graph
coloring, this algorithm decomposes a graph G into maximal
cliques and colors the graph clique by clique considering the
connection between these maximal cliques. In the algorithm,
all proper coloring solutions of G are partitioned into several
columns according to different coloring cases. For instance,
if two nodes can have the same color, this gives rise to one
column, representing the case that they are colored the same;
meanwhile, another column can be obtained, which means
the case that they are colored differently. In this way, this al-
gorithm can obtain all proper coloring solutions for a given
graph G by listing all columns without repetition. Further-
more, given the number of colors k, the chromatic polyno-
mial for G can be gained according to these columns.

Generally, TexaCol is composed of three steps: maximal
clique decomposition, suite construction and node coloring.
The first two steps, as the prerequisite for node coloring,
are engaged in decomposing the input graph into maximal
cliques and getting a suitable sequence of them to conduct
the coloring. The third step attains all the proper coloring so-
lutions by means of analyzing the relationship between these
maximal cliques while coloring them one by one.

Although TexaCol is capable of obtaining all proper col-
oring solutions for a graph, its performance is extremely lim-
ited. The results show that it can only deal with the coloring
for very small graphs (e.g., graphs with about 15 nodes). As
the number of nodes increases, getting all coloring solutions
becomes really intractable, for the traverse of all coloring
cases can hardly be finished in a polynomial time. In ad-
dition, using graph coloring to solve the practical problem
usually requires only the best coloring solution rather than
all coloring solutions. So, instead of getting all solutions, we
try to get the best solution in this paper based on TexaCol.

PexaCol
General idea
From TexaCol, we have a simple method to get the best solu-
tion. After all columns for the graph have been obtained, we
can choose the columns with the minimum number of col-
ors as the best columns by calculating their number of col-
ors. All best solutions for graph G are included in these best
columns. Considering the coloring process of TexaCol, each
node is colored according to a certain coloring sequence

and while coloring a new node, we add the skeleton, i.e.,
the initial coloring constraint, of this node to each column
of colored nodes (the concept of skeleton can be found in
the subsection Key concept). By dealing with the skeleton,
some new columns are obtained containing the new color-
ing constraint of this new node. In this way, until all nodes
are colored, we get all columns for the graph. That means,
in TexaCol, to get all solutions for the graph, each step we
need to deal with skeleton based on each column. However,
to get only the best solution for graph G, only some columns
are interesting.

As an improvement, in PexaCol, given the fixed coloring
sequence, each step only the best columns for the subgraphs
are chosen to continue the coloring until all nodes are col-
ored. The best column here should satisfy two conditions: it
requires the minimal number of colors and it has the maxi-
mal number of nodes if the first condition has been satisfied.
So, in order to choose the best column each step, two values
are calculated for each column: numColor and numNode,
which indicate the number of colors and the number of
nodes respectively. The process of choosing the best col-
umn is illustrated in Figure 2. Let m be the total number of
columns for subgraphs with different number of nodes and
N be the total number of nodes. Si represents the column
i, i = 1, 2, ...,m. Vj is the node’s index, j = 1, 2, ..., N .
For each column i, the number of colors is ci, and the num-
ber of nodes is ni, i = 1, 2, ...,m. The minimum number of
colors required for these columns is minColor = {ci|ci ≤
cj , i �= j}, i = 1, 2, ...,m, j = 1, 2, ...,m, and the columns
with the minimum number of colors are included in the can-
didate set {si|ci = minColor}, i = 1, 2, ...,m. Then, the
best column is the column in the candidate set who has the
maximal number of nodes. If more than one columns satisfy
the conditions of best column, we can choose one of them
randomly.

...

...

...

...

...

...

...

...

Best solution
subset

...

...

...

...
numColor

numNode
1c 2c 3c ic i+1c i+2c 2mc � m-1c mc

1n 2n 3n in i+1n i+2n 2mn � m-1n mn

1s 2s 3s is i+1s i+2s 2ms � m-1s ms
1v
2v
3v

N-1v
Nv

..

.

..

.

..

.

Figure 2: Choose the best column at each step

Each step we choose the best column and add a new
node’s coloring constraint to it according to the coloring
sequence. Then new columns including this new node cor-
responding to different coloring cases are added to the old
columns. At this time, we choose again the best column
among these columns, implying that if new columns are not
good, we go back and choose one among the old columns.
So we call it the backtracking method. The reason why this

method helps to get a best column for all the graph is ex-
plained as follows. Firstly, among columns of the subgraphs,
the one requires the minimum number of colors are more
likely to cause a best column for all the graph. Then, if two
columns have the same number of colors, the column with
the maximal number of nodes can accelerate the coloring
of all the graph. If we choose the column with less nodes,
the number of colors will be more than or equal to that with
more nodes, as shown in the example in Figure 3. Note that
after coloring a new node, the number of colors will stay the
same or increase by 1 at most, for the worst case is to give
the new node a new color. In Figure 3, there are two columns
to choose: the column 1 with 3 colors and 4 nodes, and the
column 2 with the same number of colors and 5 nodes. If we
choose the column 1, there will be two possibilities, all of
which cannot be better than column 2 itself which need only
3 colors for 5 nodes. For the case of choosing column 2, it
will also be two possibilities: one with 3 colors and 6 nodes,
which is much better than the old column 1 and column 2;
the other one with 4 colors and 6 nodes, which is no better
than that while choosing the old column 1. If we choose the
column 2, it is really possible that we can get a much better
new column; if the better column has not been obtained, we
can also do the backtracking and choose the old column 1 to
continue.

3 3
4 5

numColor
numNode

3 3
5 5

numColor
numNode

4 3
5 5

numColor
numNode

3 3
4 6

numColor
numNode

3 4
4 6

numColor
numNode

Choose
column 1

Choose
column 2

 Column 1 New
column 2

New
column 1 Column 2

Column 1 Column 2

Figure 3: The possibility of choosing different columns
when the number of colors is equal

Key concept
From the graph structure point of view, two essential con-
cepts are explained below. Some relevant concepts can also
be found in our previous works (Martin 2010; Guo et al.
2017).

Maximal clique: A maximal clique is a maximal set of
nodes who connect with each other. If all maximal cliques
are searched out, we say a graph is decomposed into the
maximal cliques. It is possible that one node belongs to more
than one maximal cliques.

Skeleton: All colored nodes which are adjacent to the node
v are the skeleton of v. It is divided into two parts: the first
part contains the maximal number of nodes in the skeleton
which are adjacent to one another, called layer 1; the second
part, called layer 2, includes all the rest of nodes in the skele-
ton. Each layer is written in a bracket. Skeleton is the initial
coloring constraint for a node, which reflects the connection
between a node to color and all nodes colored, and it also
reflects the connection between maximal cliques.

Algorithm description
Based on TexaCol, the main flow graph for PexaCol is
shown in Figure 4. It also contains three steps: maximal
clique decomposition, suite construction and node coloring.
Note that even the first two steps and the function of treat-
ing the skeleton are the same as that in TexaCol, PexaCol
utilizes the backtracking method to do the node coloring, in
which only the best column for subgraphs rather than each
column is chosen out to continue the skeleton treating each
step. The functions are explained in detail as follows.

Input graph
matrix G, Sbest=Ø

Start

maxCliqueDecomposition

suiteConstruction

solutionSize = size of Sbest

solutionSize=|V|

Output Sbest

end

Get coloring sequence and
skeleton for all nodes

Sbest = chooseBestColumn(allColumns)

newColumns=skeletonTreat(
Sbest,skeleton)

Add newColumns to allColumns and
delete Sbest

N

YnodeColoring

Figure 4: Flow graph of the graph coloring algorithm

maxCliquesDecomposition(): This step reflects the basic
idea of coloring based on graph structure, which decom-
poses a graph into maximal cliques. It can be realized by
searching from each node recursively until a maximal clique
has been obtained. Starting with the node with the minimum
index, to simplify the search process, it is confined that only
the nodes whose index is larger than that of the nodes added
in the clique are considered as the candidate nodes.

suiteConstruction(): Suite construction aims to find a
good coloring sequence for the maximal cliques, called the
suite. There are two important rules to choose the cliques:
maximal constraint and maximal contact (Martin 2010). The
maximal constraint equals the sum of all nodes’ degree in a
maximal clique subtracts the number of edges in this maxi-
mal clique. The maximal contract of a maximal clique is the
number of nodes in the intersection between this maximal
clique and the set of all colored nodes. The first clique in
the suite is chosen having the maximal constraint and then
the cliques are gradually chosen having the maximal contact.
The nodes’ coloring sequence is determined by the sequence
of their appearance in the suite.

skeletonTreat(): It is to divide the coloring cases by ana-
lyzing each node’s skeleton. If there is only one layer for one
node’s skeleton, the new coloring constraint of this node is

the same as its skeleton and no other different possibilities
of coloring. If one node’s skeleton has two layers, there are
different possibilities of coloring. For instance, some nodes
in layer 2 may have the same color with some nodes in layer
1. So in this case, by adding this node’s skeleton to a col-
umn and treating it, it will generate multiple new columns,
in which the new coloring constraint of this node is at-
tained and the relevant colored nodes’ coloring constraint
are changed according to different coloring cases.

chooseBestColumn(): After skeleton treating, this func-
tion chooses the best column to continue (see Algorithm
1). The input is allColumns, denoting the old columns for
subgraphs. Two indicators are calculated for each column:
numColor and numNode. Then, a best column, which has
the minimum numColor and has the maximal numNode
among the columns with the minimum numColor, is cho-
sen from all columns.

Algorithm 1: Function chooseBestColumn()
Input: allColumns

Output: best column Sbest

1 Initialization: numColor ← ∅, numNode← ∅, minColor ← 0,
maxNode← 0, Sbest ← ∅.
/* Phase 1: get numNode and numColor */

2 for each new generated column in allColumns do
3 get the corresponding numNode and numColor;

/* Phase2: choose the best column */

4 minColor ← numColor[1];
5 maxNode← numNode[1];
6 numColumns← sizeof(allColumns);
7 for i from 1 to numColumns do
8 if numColor[i+ 1] < minColor /* If columns with less

colors have been found */

9 then
10 Sbest ← allColumns[i + 1];
11 minColor ← numColor[i + 1];
12 maxNode← numNode[i + 1]; /* Update minColor

and maxNode */

13 else if numColor[i + 1] = minColor then
14 if numNode[i + 1] > maxNode/* Choose the column

with more nodes */

15 then
16 Sbest ← allColumns[i + 1];
17 maxNode← numNode[i + 1];

Example
An example is given to illustrate how to choose the best col-
umn each step. The input graph and its adjacent upper tri-
angular matrix are shown in Figure 5. The suite of maximal
cliques and the coloring sequence are shown in Table 1. We
color the vertices one by one according to the coloring se-
quence. The column for the first 5 nodes can simply equal
their skeletons, which have only one layer.

As it is shown in Figure 6, after the vertex 4 has been col-
ored, we get two columns (columns at left side), represent-
ing the case that the vertex 3 and the vertex 5 have the same
color and different colors respectively. Then, after calculat-

1

3

7

2

8

4

6

5

Figure 5: The input graph and its adjacent matrix

Table 1: Basic information for coloring the input graph

suite
coloring
sequence

skeleton
column for

the first 5 nodes
{1,2,3} 1 [] []
{1,2,8} 2 [1] [1]
{1,2,5} 3 [2 1] [2 1]
{3,4} 8 [2 1] [2 1]
{4,5} 5 [2 1] [2 1]
{3,6} 4 [3] [5]
{6,8} 6 [3] [8]
{7,8} 7 [8] [4]
{4,7}

ing each column’s numColor and numNode, the column
with 3 colors is chosen, because it has the minimum num-
ber of colors. Based on this column, by treating the skeleton
of the node 6 (in the dashed rectangle at the left side), two
new columns are obtained (columns in the middle). Then,
numColor and numNode for these new columns are cal-
culated. Because the column with 3 colors and 7 nodes is
obviously better, it is chosen to continue. At the end, the best
column for all the graph is obtained, which only requires 3
colors, i.e., the chromatic number (columns at right side).

[]
[1]

[2 1]
[2 1]

[3 2 1]
[5 3]

[]
[1]

[2 1]
[2 1]
[-3]
[3]

[]
[1]

[2 1]
[3 2 1]

[-3]
[3]

[8 3]

[]
[1]

[2 1]
[-3]
[-3]
[3]
[3]

[]
[1]

[2 1]
[3 2 1]

[-3]
[3]

[8 3]

[]
[1]

[2 1]
[-3]
[-3]
[3]
[3]

[4 3]

1
2
3
8
5
4
6
7

[]
[1]

[2 1]
[2 1]

[3 2 1]
[5 3]

[]
[1]

[2 1]
[2 1]

[3 2 1]
[5 3]

4 4 3

6 7 7

4 4 3

6 7 8
4 3
6 6

numColor
numNode

[3] [8]
[8] [4]

Best solution
subsetColoring

sequence

Figure 6: Example of choosing the best column

AexaCol
Instead of getting only a part of best solutions, AexaCol is
able to get all best solutions for a given graph. Here the num-
ber of all best solutions equals the value of the chromatic
polynomial when k is the chromatic number. For PexaCol,
it will stop while getting a best column in which all nodes
are colored, so only partial best solutions are obtained. How-
ever, to get all best solutions, we need to obtain all columns
whose minColor equals the chromatic number.

It can be realized in this way. After obtaining the first best
column for the graph, we know the chromatic number. Then,

all columns whose numColor is larger than the chromatic
number will be deleted, because it is sure that they cannot be
the best columns. Each step before choosing a best column
to continue, all columns whose numColor is larger than the
chromatic number are also deleted. Until no columns left in
allColumns, all best solutions are obtained. In the example
in section PexaCol, only one column has the minimum num-
ber of colors, so this column also contains all best solutions.

Result analysis
The result analysis is conducted in this section. To evaluate
the performance of our algorithms, we mainly focus on the
number of best solutions achieved, the number of columns
and the runtime. The experiment has been implemented un-
der the system Ubuntu 14.4 on a computer with CPU Intel
Core(TM) i7-4790 (3.60 GHZ, 3.60 GHZ) and RAM 8 Go.

Firstly, as there are really few algorithms who are engaged
in getting all best solutions, our algorithm AexaCol is com-
pared with the famous solver Gurobi in getting all best color-
ing solutions (Gurobi Optimization 2017). Both Gurobi and
our algorithm are implemented in C++. We let Gurobi to
get the chromatic number first with the objective of using
the minimal number of colors and the constraints that each
node has one color and all adjacent nodes are colored differ-
ently. Then we use it to get all best solutions based on the
same objective and constraints by setting the model parame-
ter ”PoolSearchMode”. As Gurobi cannot finish most of the
small DIMACS graphs, in order to draw the comparison, a
lot of random graphs are used. All graphs whose name be-
gins with ”gr ” are created randomly by ourselves, while all
other graphs are DIMACS benchmark graphs. The result is
shown in Table 2. V denotes the number of nodes and E de-
notes the number of edges. χ is the chromatic number. Na

is the number of all best coloring solutions, and t is the run-
time, whose unit is second. While Gurobi and AexaCol can
both get all best solutions for the instances, the comparison
is drawn on runtime. As shown in the table, AexaCol can
run much faster than Gurobi. For all these graphs, AexaCol
can get all best coloring solutions very quickly. However,
Gurobi costs a lot of time. Taking gr n23 e80 for example,
Gurobi’s runtime is 193190 times of that with AexaCol.

Table 2: Comparison between AexaCol and Gurobi

graph name V E χ Na
t(s)

Gurobi AexaCol
queen5 5.col 25 160 5 240 0.303 0.011
gr n15 e25 15 25 4 147456 102.335 0.003
gr n15 e30 15 30 4 36864 7.111 0.002
gr n20 e87 20 87 5 2880 0.362 0.006
gr n17 e20 17 20 3 52488 15.442 0.002
gr n18 e35 18 35 4 24576 4.428 0.002
gr n18 e64 18 64 5 61919 24.417 0.026
gr n17 e65 17 65 5 127200 101.460 0.017
gr n15 e28 15 28 4 150523 123.103 0.002
gr n19 e47 19 47 4 24576 4.449 0.002
gr n19 e49 19 49 4 18432 2.985 0.003
gr n22 e80 22 80 5 150000 124.792 0.004
gr n23 e80 23 80 5 300000 579.571 0.003

Table 3: Comparison between TexaCol, AexaCol and PexaCol

graph name V E χ
TexaCol AexaCol PexaCol

Nc Na Ns t(s) Nc Na Ns t(s) Nc Na Ns t(s)

myciel3.col 11 20 4 4 12480 967 0.033 4 12480 431 0.01 4 384 70 0.004
myciel4.col 23 71 5 \ \ \ \ 5 2.85e+09 1023580 29.012 5 7.16e+06 21309 0.413

queen5 5.col 25 160 5 \ \ \ \ 5 240 57 0.011 5 240 57 0.01
queen6 6.col 36 290 7 \ \ \ \ \ \ \ \ 7 20160 18152 0.547
queen7 7.col 49 476 7 \ \ \ \ 7 20160 174055 4.266 7 20160 174055 4.254
gr n15 e51 15 51 5 5 42600 19697 0.276 5 42600 951 0.017 5 1800 51 0.002
gr n16 e56 16 56 5 5 15840 708 0.013 5 15840 27 0.002 5 15840 27 0.002
gr n17 e62 17 62 5 5 9000 9072 0.206 5 9000 77 0.003 5 9000 77 0.002
gr n18 e91 18 91 7 7 5.38e+06 26220 0.761 7 5.38e+06 718 0.02 7 5.38e+06 718 0.018
gr n19 e86 19 86 5 \ \ \ \ 5 360 100 0.005 5 360 100 0.003
gr n20 e95 20 95 6 \ \ \ \ 6 1.73e+06 4918 0.089 6 47520 124 0.006

gr n21 e105 21 105 6 \ \ \ \ 6 634320 5963 0.11 6 23760 183 0.007
gr n22 e116 22 116 6 \ \ \ \ 6 166320 4796 0.086 6 720 41 0.006
gr n23 e125 23 125 6 \ \ \ \ 6 89280 3099 0.057 6 4320 149 0.007
gr n24 e133 24 133 6 \ \ \ \ 6 103680 3089 0.058 6 2880 143 0.008
gr n25 e149 25 149 6 \ \ \ \ 6 2880 726 0.02 6 1440 212 0.013
gr n26 e166 26 166 6 \ \ \ \ 6 720 346 0.019 6 720 111 0.013
gr n27 e180 27 180 7 \ \ \ \ 7 6.43e+07 51309 1.212 7 221760 327 0.02
gr n28 e193 28 193 7 \ \ \ \ 7 1.14e+08 85030 1.974 7 292320 394 0.024
gr n29 e212 29 212 7 \ \ \ \ 7 6.86e+06 10676 0.259 7 20160 910 0.044
gr n30 e229 30 229 7 \ \ \ \ 7 171360 2435 0.076 7 30240 866 0.047
gr n31 e244 31 244 7 \ \ \ \ 7 20160 1075 0.057 7 20160 1075 0.056
gr n32 e259 32 259 7 \ \ \ \ 7 40320 1127 0.063 7 40320 1127 0.062
gr n33 e277 33 277 8 \ \ \ \ 8 3.93e+09 449094 11.873 8 161280 1031 0.067
gr n34 e294 34 294 8 \ \ \ \ 8 9.86e+08 166416 4.289 8 403200 958 0.085
gr n35 e291 35 291 8 \ \ \ \ \ \ \ \ 8 1.57e+07 81431 1.734
gr n36 e308 36 308 8 \ \ \ \ \ \ \ \ 8 806400 53079 1.183
gr n50 e206 50 206 8 \ \ \ \ 8 1.56e+29 700830 32.232 8 2.60e+25 350 0.036
gr n58 e518 58 518 9 \ \ \ \ \ \ \ \ 9 1.14e+17 43448 1.862
gr n70 e194 70 194 7 \ \ \ \ 7 1.775e+42 8828 0.277 7 3.84e+41 1971 0.195

Furthermore, the comparison has been conducted be-
tween TexaCol, AexaCol and PexaCol, as shown in Ta-
ble 3. Nc is the minimum number of colors required for
the best columns in each algorithm. Because the number
of all best solutions Na can be really large, its decimal
is rounded off. For example, for the DIMACS graph my-
ciel4.col, Na is 2.84566e+09. After being rounded off, it is
written as 2.85e+09. Ns represents the number of columns
in allColumns when the algorithm is finished. In our re-
sult, it has counted the best columns for the subgraph each
step. That means, we do not delete them in the data structure
after having chosen and treated them. Generally, it will con-
sume more computer’s memory with larger Ns. The back-
slash means the result cannot be obtained.

From the table, it can be seen that TexaCol is unable to get
the solutions for a lot of graphs, for it calculates all columns
of each subgraph rather than the best column, which has
very high computational complexity. Here the space com-
plexity is the key problem. For TexaCol, it often crashes due
to the memory shortage because it has extremely large Ns.
As shown in the table, even for very small graphs, Texa-
Col has larger Ns than two other algorithms and PexaCol
always has the least Ns. So TexaCol fails to get the result
for a lot of graphs and AexaCol fails for few graphs while
PexaCol can get the result. On the other hand, Ns reflects the

range of choosing the best column, signifying that the less
Ns, the less runtime. In general, PexaCol runs much faster
than AexaCol and AexaCol runs much faster than TexaCol.
For instance, for the graph gr n15 e51, PexaCol’s runtime is
about 12% of AexaCol’s and 0.7% of TexaCol’s. Moreover,
for TexaCol and AexaCol, they are always able to get all
best solutions while PexaCol can only get a part of best so-
lutions, which shows that finding more best solutions costs
more time. Taking myciel3.col for example, PexaCol runs
25 times faster than AexaCol, but it can only get 384 best
solutions, while the number of all best solutions is 12480.

Conclusion
Based on TexaCol, two algorithms, PexaCol and AexaCol,
have been proposed in this paper, which are able to get par-
tial and all best coloring solutions respectively. Instead of
calculating all columns for each subgraph, these two algo-
rithms only choose the best column to continue the calcu-
lation each step. The result analysis shows that these two
algorithms run faster than TexaCol and can deal with larger
graphs. Furthermore, the proposed algorithm AexaCol can
run much faster than the famous solver Gurobi to get all best
solutions. As future work, it is still interesting to find good
mechanisms to get all best coloring solutions on the basis of
these graph-structure-based methods.

References
Bhasker, J., and Samad, T. 1991. The clique-partitioning
problem. Computers & Mathematics with Applications
22(6):1–11.
Guo, J.; Moalic, L.; Martin, J.-N.; and Caminada, A. 2017.
Cluster resource assignment algorithm for device-to-device
networks based on graph coloring. In Wireless Communi-
cations and Mobile Computing Conference (IWCMC), 2017
13th International, 1700–1705. IEEE.
Gurobi Optimization, I. 2017. Gurobi optimizer reference
manual.
Lin, N.-W. 1993. Approximating the chromatic polynomial
of a graph. In International Workshop on Graph-Theoretic
Concepts in Computer Science, 200–210. Springer.
Lucet, C.; Mendes, F.; and Moukrim, A. 2006. An exact
method for graph coloring. Computers & operations re-
search 33(8):2189–2207.
Malaguti, E.; Monaci, M.; and Toth, P. 2011. An exact ap-
proach for the vertex coloring problem. Discrete Optimiza-
tion 8(2):174–190.
Martin, J.-N. 2010. No Free Lunch et recherche de solutions
structurantes en coloration.(No Free Lunch and research of
structuring solutions in graph coloring). Ph.D. Dissertation,
Université de technologie de Belfort-Montbéliard, France.
Mehrotra, A., and Trick, M. A. 1996. A column generation
approach for graph coloring. informs Journal on Computing
8(4):344–354.
Rao, M. 2004. Coloring a graph using split decomposition.
In WG, 129–141. Springer.
Read, R. C. 1968. An introduction to chromatic polynomi-
als. Journal of Combinatorial Theory 4(1):52–71.

