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Abstract

Consider a problem of estimating an unknown high di-
mensional density whose support lies on unknown low-
dimensional data manifold. This problem arises in many
data mining tasks, and the paper proposes a new geo-
metrically motivated solution for the problem in mani-
fold learning framework, including an estimation of an
unknown support of the density.

Firstly, tangent bundle manifold learning problem is
solved resulting in transforming high dimensional data
into their low-dimensional features and estimating the
Riemannian tensor on the Data manifold. After that,
an unknown density of the constructed features is es-
timated with the use of appropriate kernel approach. Fi-
nally, with the use of estimated Riemannian tensor, the
final estimator of the initial density is constructed.

The general goal of Data Mining is to extract previously un-
known information from a given dataset. Thus, it is supposed
that the information is reflected in the structure of a dataset
which must be discovered from the data by Data Analysis
algorithms. Data mining has a few main “super-problems”,
which correspond to various tasks: exploratory data analysis,
clustering, classification, association pattern mining, outlier
analysis, etc. These problems are challenging for Data min-
ing because they are repeatedly used as building blocks in
the context of a wide variety of data mining applications
(Han and Kamber 2012; Zaki, Mohammed J 2013).

Smart mining algorithms are based on various data mod-
els which reflect a dataset structure from algebraic, geomet-
ric, and probabilistic viewpoints and play a key role in data
mining.

Geometrical models are motivated by the fact that many
of the above tasks deal with real-world high dimensional
data and the “curse of dimensionality” phenomena is often
an obstacle to the use of many data analysis algorithms for
solving these tasks.

Although the data for a given data mining problem may
have many features, in reality the intrinsic dimensionality of
the data support (usually called Data space, DS) of the full
feature space may be low. It means that high dimensional
data occupy only a very small part in high-dimensional “ob-
servation space” whose intrinsic dimension is small. The

most popular geometrical data model which describes the
low-dimensional structure of the DS is Manifold model (Se-
ung and Lee 2000) by which high-dimensional real-world
data lie on or near some unknown low-dimensional Data
manifold (DM) embedded in an ambient high-dimensional
observation space. Various data analysis problems studied
under this assumption about processed data, usually called
manifold valued data, are referred to as the Manifold learn-
ing problems whose general goal is a discovering of the low-
dimensional structure of the high-dimensional DM from
given sample (Huo and Smith 2008; Ma and Fu 2011).

Sampling model describes a way for extracting data from
the DS. Typically, this model is a probabilistic model: data
are selected from the DS independently of each other ac-
cording to an unknown probability measure on the DS
whose support coincides with the DS. Statistical problems
for unknown Probabilistic model consist in estimating un-
known probability measure or its various characteristics, in-
cluding density.

Many high dimensional mining algorithms require accu-
rate and efficient density estimators. For example, a general
algorithm for scalable mining of patterns in high dimen-
sional spaces approximation is based on low dimensional
projections, and this technique is based on a density estima-
tion to determine whether a high dimensional candidate is
promising (Miiller et al. 2009).

In subspace clustering (Kriegel et al. 2005) and the Pat-
tern Fusion approach for frequent itemset patterns (Zhu et al.
2007) use “‘step-by-step” so called “jump” algorithms that
search the subspace/pattern lattice in a large high dimen-
sional data bases. The density estimation technique (namely,
the DensEst one (Miiller et al. 2009)), which can be eas-
ily integrated into subspace clustering and frequent item set
mining algorithms, improves both their efficiency and accu-
racy.

Classification and clustering are key steps for many data
mining tasks whose aim is to discover unknown relation-
ships and/or patterns from large sets of data (Bradley,
Fayyad, and Reina 1998). A simple and appealing approach
to classification is the K-nearest neighbour method that
Finds the K-nearest neighbours of the query point X in the
dataset, and then predicts the class label of X as the most fre-
quent one occurring in the K neighbours. However, for large
datasets, the time required to compute the neighbourhoods



(i.e., the distances of the query from the points in the dataset)
becomes prohibitive, making exact answers intractable. An-
other relevant problem for data mining applications is the
approximation of multi-dimensional range queries. Answer-
ing range queries, in fact, is one of the simpler data explo-
ration tasks. When the number of dimensions increases, the
query time is linear to the size of the dataset (Weber, Schek,
and Blott 1998). Thus the problem of efficiently approxi-
mating the selectivity of range queries arises naturally. In
general, only efficient approximation algorithms can make
data exploration tasks in large datasets interactive. Kernel
density estimation technique applied to the above tasks our
technique allows to efficiently solve range query approxi-
mation, classification and clustering problems for very large
datasets (Domeniconi and Gunopulos 2004), see also (Zaki,
Mohammed J 2013), Ch. 15. To build a clustered index for
efficient retrieval of approximate nearest neighbour queries,
a density estimation approach was used in (Bennett, Fayyad,
and Geiger 1999) to reorganize the data on the disk, with the
objective of minimizing the number of cluster scans at query
time.

Density-based methods are also used in Outlier analysis
(Han and Kamber 2012), Ch. 8, in knowledge discovery
algorithms (Stanski and Hellwich 2012), etc. High dimen-
sional density estimation is one of the main techniques for
data visualization (Scott 2009; 2012).

There are many methods for estimating an unknown den-
sity, including an estimating of high dimensional density.
There are some (though a limited number of) methods for es-
timating an unknown high dimensional density whose sup-
port (a domain of density definition) is low-dimensional
manifold. The latter methods are known for estimating a
density on the known manifold; the obtained estimators are
generalized on a case of the unknown manifold in a few pa-
pers.

To the best of our knowledge, used techniques give only
point density estimators, without estimating a domain of def-
inition of unknown density, and kernel density on unknown
manifold estimation problem has not been considered in
Manifold learning framework. This framework means that,
first, low-dimensional features are constructed with the use
appropriate manifold learning technique, and, after this, ini-
tial data analysis problem is reduced to a similar problem for
constructed features. Finally, the obtained solution to the re-
duced low-dimensional problem is used for solving the ini-
tial high dimensional problem.

The paper presents a new geometrically motivated method
for estimating an unknown density on unknown low-
dimensional Data manifold based on manifold learning
framework. The solution includes an estimation of an un-
known support of the unknown density.

Density on manifold estimation: statement and
review of related works
Assumptions about Data Manifold

Let M be an unknown “well-behaved” g-dimensional Data
manifold (DM) embedded in an ambient p-dimensional
space P, ¢ < p; an intrinsic dimension ¢ is assumed to

be known. Assume that the DM M is a compact manifold
with positive condition number (Niyogi, Smale, and Wein-
berger 2008); thus, no self-intersections, no ‘short-circuit.’
For simplicity, we assume that the DM is covered by a sin-
gle coordinate chart ¢ and, hence, has a form

M={X=¢p(b) e R°P:beBC R} (1)

in which chart ¢ is one-to-one mapping from open bounded
Coordinate space B C RY to the manifold M = ¢(B) with
inverse map ¥ = ¢! : M — B. Inverse mapping 1 de-
termines low dimensional parameterization on the DM M
(g-dimensional coordinates, or features, ¢ (X) of manifold
points X)), and chart ¢ recovers points X = (b) from their
features b = ¥(X).

If the mappings (X ) and ¢ (b) are differentiable (the co-
variant differentiation is used in (X ), X € M) and Jy; (X)
and J,,(b) are their ¢ x p and p x ¢ Jacobian matrices, re-
spectively, than ¢-dimensional linear space

L(X) = span(J,(¢(X))) @)

in RP is tangent space to the DM M at point X € M; here-
inafter, Span(H) is linear space spanned by columns of ar-
bitrary matrix H. These tangent spaces are considered as el-
ements of the Grassmann manifold Grass(p, ¢) consisting
of all g-dimensional linear subspaces in RP.

As follows from identities p(¢(X)) = X and ¥ (p(b)) =
b for all points X € M and b € B, Jacobian matrices J,;, (X)
and J,(b) satisfy the relations

o) Jo(X) = (20
Tu((8) x J,(6) = I, 3)
()

Jo (b
in which I, is ¢ x ¢ unit matrix and
matrix onto the tangent space L(X)
X eM

Consider tangent space L(X) in which point X corre-
sponds to zero vector 0 € L(X). Then any point Z € L(X)
can be expressed in polar coordinates as vector ¢ X 6 where
t €[0,00)and § € Sq_1 C L(X), where S;_1 is (g — 1)-
dimensional sphere in R9.

Denote expx an exponential mapping from the L(X)
to the DM M defined in the small vicinity of the point
0 € L(X). The inverse mapping exp;(1 determines Rie-
mannian normal coordinates ¢ x 6 = expy' (X') € R? of
near point X’ = expx (t X 6).

(X) is p X p projection
(2) to the DM M at point

Data Manifold as Riemannian manifold

Let Z = J,(¥(X)) X zand Z' = J,(¥(X)) x 2’ be vec-
tors from tangent space L(X) with coefficients z € RY
and z’ € RY of expansion of these vectors in a basis con-
sisting of columns of Jacobian matrix J,(¢)(X)). An inner
product (Z, Z') induced by inner product on R? equals to
2T x Ay (X) X z, here ¢ x ¢ matrix

Dp(X) = (Jo (X)) x Ty (¥(X) )

is metric tensor on the DM M. Thus, M is Riemannian mani-
fold (M, A,) with Riemannian tensor A, (X') in each man-
ifold point X € M smoothly varying from point to point
(Jost 2005; Lee 2009). This tensor induces an infinitesimal



volume element on each tangent space, and, thus, a Rieman-
nian measure on the manifold

m(dX) = /|det A, (X)| x dr(X), 5)
where dp X is a Lebesgue measure on the DM M in-
duced by exponential mapping expy from the Lebesgue
measure on the L(X). Denote 0x(X’) the volume den-
sity function on M as the square-root of the determinant
of the metric A expressed in Riemannian normal coordi-
nates of the point expy'(X’). Strict mathematical defini-
tions of these notations are in (Pennec 1999; Pelletier 2005;
Henry, Muoz, and Rodrguez 2013).

Probability measure on Data Manifold

Let o(M) is Borel o-algebra of M (the smallest o-algebra
containing all the open subsets of M) and (s is a probability
measure on the measurable space (M, o(M)) whose support
coincides with the DM M. Assume that p is absolutely con-
tinuous with respect to the measure m (5), and

F(X) = p(dX)/m(dX) ©)

is its density that separates from zero and infinity uni-
formly in the M. This measure induces probabilistic mea-
sure v (a distribution of random vector b = (X)) on full-
dimensional space B = 1)(M) with standard Borel o-algebra
with density

1/2
fb) = dvfdb = det(p(b))|  x F(p(b)), )
with respect to the Lebesgue measure db in R?. Hence,
—-1/2
F(X) = det(X)]  x f(X)). ®)

Density on manifold estimation problem

Let dataset X,, = {X1, Xa,..., X, } consists of manifold
points which are randomly and independently of each other
sampled from the DM M according to an unknown prob-
ability measure p. We suppose that the DM M is “well-
sampled”; this means that the sample size n is sufficiently
large.

Given the dataset X,,, the problem is to estimate the den-
sity F'(X) (6), including to estimate its support M. An esti-
mation of the DM M means a construction of g-dimensional
manifold M embedded in an ambient Euclidean space RP
which meets manifold proximity property M~ M meaning
small Hausdorff distance dz (M, M) between these mani-
folds. The sought-for estimator F(X ) defined on the con-
structed manifold M should provide proximity F(X ) ~
F(X) for all points X € M.

Therefore, we meet two interrelated topics: estimating a
domain of definition (the DM M) of unknown density, which
is Manifold learning problems, and estimating an unknown
density with manifold support, which is a statistical prob-
lem. Next two sections give a short review of related works.

Manifold Learning: Related Works

The goal of Manifold Learning (ML) is to find a descrip-
tion of the low-dimensional structure of an unknown g-
dimensional DM M from random sample X,, (Freedman
2002). The term “to find a description” is not formalized in
general, and it has a different meaning in different articles.

In computational geometry this term means “to approx-
imate (to reconstruct) the manifold”: to construct an area
M* in RP that is “geometrically” close to the M in a suit-
able sense (using some proximity measure between subsets
like Hausdorff distance (Freedman 2002)), without finding a
low-dimensional parameterization on the DM which usually
required in the Machine Learning/Data Mining tasks.

The ML problem in Machine Learning/Data Mining is
usually formulated as Manifold embedding problem: given
dataset X,,, to construct a low-dimensional parameterization
of the DM M which produces an Embedding mapping

h:XEMCRP »>y=h(X)€Y,=h(M)CR? (9

from the DM M to a Feature Space (FS) Y, preserving spe-
cific geometrical and topological properties of the DM like
local data geometry, proximity relations, geodesic distances,
angles, etc. Various Manifold embedding methods such as
Linear Embedding, Laplacian Eigenmaps, Hessian Eigen-
maps, ISOMAP, etc., are proposed, see the surveys (Huo and
Smith 2008; Ma and Fu 2011) and others.

Manifold embedding is usually the first step in various
Machine Learning/Data Mining tasks, in which reduced fea-
tures y = h(X) are used in the reduced learning procedures
instead of initial p-dimensional vectors X. If the mapping h
preserves only specific properties of high-dimensional data,
then substantial data losses are possible when using a re-
duced vector y = h(X) instead of the initial vector X.
To prevent these losses, mapping h must preserve as much
available information contained in the high-dimensional
data as possible (Freedman 2002); this means the possibil-
ity to recover high-dimensional points X from their low-
dimensional representations /(X ) with small recovery error
which can describe a measure of preserving the information
contained in high-dimensional data. Thus, it is necessary to
find a Recovery mapping

g:y€Y,—>X=g(y) €R’ (10)
from the FS Y, to the ambient space R which, together
with the Embedding mapping h (9), ensures proximity

The(X) =g(h(X)) = X, VX eM, (11)

in which 7y, 4(X) is the result of successively applying of
embedding and recovery mappings to a vector X € M.

The reconstruction error 5, o(X) = |X — 15 4(X)| is a
measure of quality of the pair (h, g) at a point X € M. This
pair determines a g-dimensional Recovered Data manifold
(RDM)

M, ={X =9g(y) € R" :y € Y;, C R}, (12)

embedded in RP and parameterized by single chart g
defined on the FS Y,. An inequality dg(Mp 4,M) <
sup M |7h.g(X) — X[ implies manifold proximity

M~M,;, =rpq(M). (13)



There are some (though a limited number of) methods for re-
covery the DM M from the FS Y},. For specific linear man-
ifold, the recovery can be easily found using the Principal
Component Analysis (PCA) technique (Jolliffe 2002). For
nonlinear manifolds, the sample-based Auto-Encoder Neu-
ral Networks (Kramer 1991; Hecht-Nielsen 1995; Berry and
Sauer 2017) determine both the embedding and recovery
mappings. A general method, which constructs a recovery
mapping in the same manner as Locally Linear Embedding
algorithm (Singer and Wu 2012) constructs an embedding
mapping, has been introduced in (Tyagi, Vural, and Frossard
2013). Manifold recovery based on estimated tangent spaces
to the DM M are used in Local Tangent Space Alignment
(Hamm and Lee 2008) and Grassman&Stiefel Eigenmaps
(GSE) (Wolf and Shashua 2003) algorithms.

Due to further reasons, Manifold recovery problem can
include a requirement to estimate Jacobian matrix J, of
mapping g (10) by certain p x ¢ matrix G4(y) providing
proximity

Gy(y) = Jg(y), Vy €Y. (14)

This estimator G, allows estimating the tangent spaces
L(X) to the DM M by ¢-dimensional linear spaces

Lin.g(X) = span(G,(h(X))) (15)

in RP which approximates a tangent space to the RDM
M,, 4 at the point r}, , € My, 4 and provides tangent proxim-

1ty
LX)~ Lpy(X), VXM (16)

between these tangent spaces in some selected metric on
the Grassmann manifold Grass(p, q).

In manifold theory (Jost 2005; Lee 2009), the set com-
posed of manifold points equipped by tangent spaces at these
points is called the Tangent bundle of the manifold. Thus, a
manifold recovery problem, which includes a recovery of
its tangent spaces too, is referred to as the Tangent bundle
manifold learning problem: to construct the triple (h, g, G)
which, additionally to manifold proximity (11), (13), pro-
vides tangent proximity (16) (Golub 1996).

Matrix Gy determines ¢ x ¢ matrix

Dhg(X) = Gg (M(X)) x Gy(h(X)) (17)

consisting of inner products between columns of the matrix
G_g(h(X)) and considered as metric tensor on the RDM
My, ;.

l\fathematically (Wang, Wang, and Feng 2006), a “pre-
serving the important information of the DM’ means that
manifold learning algorithm should “recover the geometry”
of the DM, and “the information necessary for reconstruct-
ing the geometry of the manifold is embodied in its Rieman-
nian metric tensor”. Thus, the solution (k, g, G,) to the tan-
gent bundle manifold learning problem determines Rieman-
nian manifold (Mj, 4, Ay 4) that accurately approximates
the Riemannian Data manifold (M, A).

In real Manifold Learning/Data Mining tasks, intrinsic
manifold dimension q is usually unknown too, but this in-
teger parameter can be estimated with high accuracy from

given sample (Genovese et al. 2012; Yanovich 2016; 2017;
Rozza et al. 2011; Campadelli et al. 2015): an error of di-
mension’s estimator proposed in (Campadelli et al. 2015)
has rate O(exp(—c x n)) in which constant ¢ > 0 doesn’t
depend on sample size n. Because of this, the manifold di-
mension is usually assumed to be known (or already esti-
mated).

Density estimation: related works

Let X1, X5, ..., X, be independent identically distributed
random variables taking values in R? and having density
function p(z). Kernel density estimation is the most widely-
used practical method for accurate nonparametric density es-
timation. Starting with the works of Rosenblatt (Rosenblatt
1956) and Parzen (Parzen 1962), kernel density estimators
have the form

R - X;
ﬁ(x)=deKd(m . ) (18)
=1

here kernel function K (t1, t, . .., t4) is nonnegative bound-
edness function that satisfies certain properties the main of
which is

Ki(ti,ta, - ta) dtadty - dty = 1, (19)
Rd
and “bandwidth’ @ = a,, is chosen to approach to zero at a
suitable rate as the number n of data points increases. Op-
timal bandwidth is a,, = O(n~/(4+4)) that yields optimal
rate of convergence of Mean Squared Error (MSE) of the
estimator p:

MSE(f) = /R (@)~ p (@) pla)ds
= O(n~ /), (20)

Therefore, the use the kernel estimators (18) with MSE
of the order O(n~*/(P*+4)) is not acceptable for high dimen-
sional data.

Various generalization of the estimator (18) was pro-
posed. For example, adaptive kernel estimators were intro-
duced in work (Wagner 1975) in which bandwidth a =
an(z) in (18) depends on x and is the distance between x
and the k-nearest neighbour of x among Xi, Xo,..., X,
and k£ = k,, is a sequence of non-random integers such that
lim,,—s o0 ky, = 00.

There are some works concerning an estimation of an
unknown probability density on non-Euclidean spaces such
as low-dimensional manifolds, including concrete manifolds
(circle, curve, sphere, Grassmann and Stiefel manifolds,
etc.).

Density estimators on a general known compact Rieman-
nian manifold without boundary with the use of Fourier ex-
pansions technique was proposed in (Hendriks 1990).

The first time, kernel estimators on general known
g-dimensional Riemannian manifold embedded in p-
dimensional ambient Euclidean space were proposed by Pel-
letier (Pelletier 2005). Denote da (X, X') the Riemannian
distance (the length of the smallest geodesic curve) between



near points X and X’ defined by known Riemannian metric
tensor /. The proposed estimator

ﬁ(x):%z:ex.l(X)Kl (d(XC,LXi))’ 1)

under the bandwidth a,, = O(n~'/(4t%)), has the MSE
of the order O(n—*/(a+4) ) (Pelletier 2005; Henry and Ro-
driguez 2009) which is acceptable for high dimensional
manifold valued data.

The paper (Henry, Muoz, and Rodrguez 2013) general-
izes the estimators (21) to the estimators with adaptive ker-
nel bandwidth a,,(x) (similar to the work (Hendriks 1990)
for Euclidean space) depending on .

The estimator (21) assumes that the DM M is known
in advance, and that we have access to certain geometric
quantities related to this manifold such as intrinsic distances
da (X, X') between its points and the volume density func-
tion Ox(X’). Thus, the estimator (21) cannot be used di-
rectly in a case where the data lives on an unknown Rieman-
nian manifold of RP.

The paper (Ozakin and Gray 2009) proposes a more
straightforward method that directly estimates the density of
the data as measured in the tangent space, without assuming
any knowledge of the quantities about the intrinsic geometry
of the manifold such as its metric tensor, geodesic distances
between its points, its volume form, etc. The proposed esti-

mator
1 « dp(X, X;
plz) = — K1(E(’ )> (22)
1

nad 4 a
1=

in which Euclidean distance (in RP) dg(X, X’) between
the near manifolds points X and X’ is used. Under a,, =
O(n~1/(a+49)  this estimator has also optimal MSE order
O(n~4/(a+4)),

Asymptotic behavior of kernel density estimators on a
compact Riemannian manifold without boundary from a ge-
ometry viewpoint was presented in (Park 2012) in which
was shown that the asymptotic behavior of the estimators
contains a geometric quantity (the sectional curvature) on
the unit sphere. This implies that the behavior depends on
whether the sectional curvature is positive or negative.

The paper (Kim and Park 2013) generalizes the results of
(Park 2012) to a complete Riemannian manifold. Using the
fact that kernel function can be defined on the tangent space
L(X) M, a new kernel estimator

) = ot o ZK( (X)) @)

is proposed, here constant C(a) =
L [ Kq (L expy’ (z)) m(dx) does not depend on
x € M and C(a) — 1 as a — 0. Asymptotic behaviour of
the estimator (23) is studied in (Kim and Park 2013) also.

A significant practical limitation of the current density es-
timation literature is that methods have not been developed
for manifolds with boundary, except in simple cases of linear
manifolds where the location of the boundary is assumed to

be known. This limitation is overcome in (Berry and Sauer
2017) by developing a density estimation method for mani-
folds with boundary that does not require any prior knowl-
edge of the location of the boundary. A consistent kernel
density estimator for manifolds with (unknown) boundary
is introduced in (Berry and Sauer 2017) and has the same
asymptotic bias in the interior as on the boundary.

The kernel density estimators constructed in Manifold
learning framework are proposed in this paper.

Density on manifold estimation: the Solution
Proposed Approach
The proposed approach consists of three stages:

e solving a Tangent bundle manifold learning problem
which results in the solution (h, g, G4 = Jy);

e estimating a density f(y) of random feature y =
h(X) defined on the FS Y;, = h(M) from feature
sample Y,, = {y; = h(X;),i=1,2,...,n};

e calculating the desired estimator F'(X) using f(y)
and (h, g, Gy =~ Jy).

GSE Solution to the Tangent Bundle Manifold
Learning

The solution for Tangent bundle manifold learning is given
by the GSE algorithm (Bernstein and Kuleshov 2012; Bern-
stein, Kuleshov, and Yanovich 2013; Kuleshov and Bern-
stein 2014; Bernstein, Kuleshov, and Yanovich 2015) and
consists of several steps:

1. Apply Local Principal Component Analysis (PCA) to ap-
proximate the tangent spaces. M at points X € M.

Kernel on Manifold definition construction.
Tangent Manifold Learning.
Embedding mapping construction.

Kernel on feature space construction.

A Tl

Constructing the Recovery Mapping and its Jacobian.

Density on the F'S Estimation

Under constructed Embedding mapping i (X) from the DM
M to the FS Y}, unknown probabilistic measure y on the
DM M with density F'(X) (6) gets an unknown probabilistic
measure v on the FS with unknown density defined on full-
dimensional space Yy,

fly) = dv/dy =
-1/2
|det (G () x Go))| " = Flgw)); (24)
with respect to Lebesgue measure on R9.
Consider estimating problem for unknown density f(y)
from the feature sample y1, Y2, ..., Yn.

Let k(y,y’) be chosen kernel on the FS Y},. Consider ker-
nel estimator for the density f(y) having a form

f(y:nXC Zkyyz



in which constant C(y) should provide a requirement (19):

C@:LMMWMM,

Consider kernel K (X, X') = k(h(X),h(X")) on the M,
then relation constant can be written

CWW=AKWWMM%

Assume that kernel K (X, X) is non-zero only for points X'
in an asymptotically small a-neighborhood E,(X), a — 0,
of the point X. As was shown in (Yanovich 2016), random
sample point X’ € X,, fallen into the set E,(X) has condi-
tional asymptotically (n — 0o, a — 0) uniform distribution
in the intersection of a full dimensional Euclidean a-ball cen-
tered at X with the DM M; this intersection is close to the
g-dimensional a-ball centered at X and lying in the tangent
space L(X) (Singer and Wu 2012). Therefore,

CWW%%%?AKWMMW%

where d, is Lebesgue measure on the DM M, |E, (X)| is the
Lebesgue volume of the neighborhood F,(X), and quantity
w(Eq (X)) can be estimated by a proportion n(E,(X))/n
of sampling points fallen into the neighborhood E,(X). For
example, for the estimator

: 1 ~ ()
fly) = mzkl <a)’

i=1
constant C' equals qu k1 (|X'|) dx’ where By is unit ball in
Ra.

In general case, using exponential mapping exp y at point
X, write near point X’ as X’ = expy (t X 0),t € [0,00)
and 6 € S,_1, and suppose that kernel K, (X, X’), which
depends on a small parameter a, has a form K,(X, X’) =
K(X,0,t/a),t = | X' — X|. As it follows from (Yanovich
2017), we have

[ Ka (XX ulax)
M

Ng

~
~

X 1
( )x/ / K(X,0,t) x t7'dtds,
Va Js,Jo

n X

here n,(X) is a number of sampling points fallen into the
p-dimensional a-ball centered at X and V; is the volume of
g-dimensional unit ball B,.

The above formulas allow computing the kernel estima-

tors f(y) of an unknown density f(y) on the FS Y.

Density on the Manifold Estimation

Based on a representation (8) and estimated Embedding
mapping h(X) and Riemannian tensor Ay 4(X) (17), the

estimator F'(X) can be computed by the formula
F(X) = |det Ao (X)]? x f(R(X)). (25)
The approximation A, ,(X) ~ v?(X) x v(X), which

yields equality |deth7g(X)|1/2 ~ |det(v(X))], allows us to
simplify the estimator (25) to formula

F(X) = |det(v(X))] x f(h(X)).

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 1: Manifold example.
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Figure 2: MSE for p (KDE, baseline method) and F (GSE,
proposed method).

Numerical Experiments

The function 25 = sin(30(z1—0.9)*) cos(2(210.9))+ (21 —
0.9)/2, 21 € [0, 1], which was used in (Xiong et al. 2007) to
demonstrate a drawback of the kernel nonparametric regres-
sion (kriging) estimator with stationary kernel (Figure 1),
was selected to compare the proposed kernel density estima-

tor F(X) (25) and stationary kernel density estimator (X )
(22)in RP. Here p = 2, q = 1 and X = (w1, 22)7. The
kernel band-widths were optimized for both methods.

The same training data sets consisting of n €
{10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120} points was
used for constructing the estimators; the sample x1 compo-
nents were chosen randomly and uniformly distributed on
the interval [0, 1]. The true probability were calculated the-
oretically. The errors were calculated for both estimators at
the uniform grid on the interval with 100 001 points, then the
mean squared errors (MSE) were calculated. Experiments
were repeated M = 10 times and the mean value of MSE
and mean plus/minus standard deviation are shown in Figure
2. The numerical results shows that the proposed approach
performs better results than baseline algorithm.

Conclusion

An estimation problem for an unknown density defined on
the unknown manifold is solved in Manifold learning frame-
work. A new geometrically motivated solution to this prob-
lem is proposed. The algorithm is a geometrically motivated
nonstationary kernel density estimator with a single param-
eter for a kernel width. A numerical experiment with artifi-
cial data shows the better results of the proposed approach
against ordinary kernel density estimator and could be con-
sidered as a proof of concept example.
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