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Abstract

Melanoma is a highly proliferative, chemo-resistant
cancer without a durable response in most patients.
Survival of patients with metastatic melanoma varies
widely, and response rates to treatment range from 20-
40% with combination therapy, and frequently there is
no observed improvement in overall survival. Many of
the available therapies have targeted the BRAFV600E
mutation, which gives rise to increased cell proliferation
through constitutive activation of the regulatory MAPK
pathway. These drugs have not proven successful for all
patients with tumors expressing these mutations, there-
fore identifying other key genes influencing response
and survival is important.
In this paper, we utilize data from 62 skin tumor cell
lines from the Cancer Cell Line Encyclopedia (CCLE)
to examine features of gene expression (> 19, 000)
and DNA copy number variation (> 20, 000) to assess
the existence of clusters and, if so, the features which
give rise to those clusters. In order to explore, analyze,
and extract information from this large-scale dataset we
adopt a ensemble feature selection approach that in-
tegrates a univariate multiclass Fisher ranking method
with other well-known powerful machine learning tech-
niques. In comparison to other stand-alone feature se-
lection techniques, our proposed method provides a
subset of features that can reliably distinguish between
subtypes of melanoma cell lines across many different
types of classifiers. Our methods reduced the 19,000
gene feature space into only the top 15 gene features
that maintained the same initial clustering of the data.
Of these 15 top genes, some were already known to be
linked to melanoma prognosis, or linked to other can-
cers with novel relevance to melanoma, and some were
never before linked to melanoma prior to this work.
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1 Introduction
Melanoma is a devastating disease and incidence is on the
rise while treatment options remain limited for the most ag-
gressive forms of the disease. Several gene mutations are
widely expressed across melanoma cases: for example, the
BRAFV600E mutation occurs in approximately 60% of pa-
tients. This mutation results in constitutive activation of
BRAF signaling in the ERK/MAP Kinase pathway with
an end result of increased cell proliferation and survival
(Ascierto and et al. 2012). Some of the most promising treat-
ments have been developed as selective inhibitors of this
pathway. However, 40% of patients do not carry mutations
in this pathway, and of those that do, not all respond to these
therapies. Even initial responsiveness may disappear with
disease recurrence. Malignant melanoma has shown poor
durability overall in response to available treatments. The
question that arises from this information is what other fac-
tors drive treatment response, tumor aggressiveness, and the
ability to metastasize from the original primary lesion site.
A long-term goal of this project is to identify subset popula-
tions of melanoma as distinguished by gene expression, and
subsequently assess drug response in these subset popula-
tions as a means to predict patterns that may indicate treat-
ment response and prognosis.

In an effort to address this question, different studies have
taken various approaches in a number of studies. One ap-
proach is to profile gene expression using techniques like
cDNA microarray screening, or transcriptome analyses from
patient tumor libraries. These techniques have the advan-
tage of providing known information on tumor response to
different therapies, tumor staging, prognosis and survival
data. Downsides to this approach include limited access to
tissues, tissue heterogeneity, and overall tissue availability
(Ryu and et al. 2007). An alternate approach is the eval-
uation of melanoma cell line data, made possible by open
access databases with patient and cell line datasets. Typi-
cal strategies for this approach are hierarchical clustering,
similarity core analysis, and Elastic Net regression (Cov-
ell 2015; Garnett and et al. 2012; Rambov and et al. 2015;
Ryu and et al. 2007). These methods have had some suc-
cess in identification of potential genes that may be in-
volved in upregulation of cell proliferation, drug response,
and propensity for metastasis to distant sites. However, suc-
cess has been limited due to the low correlation of results



from one approach to the next. General classes of gene prod-
ucts are identifiable, those being effectors of the cell cy-
cle, its checkpoints, apoptosis, cell adhesion, tumor sup-
pressors and DNA repair. The availability of data through
publicly accessible large databases has paved the way for
tailored approaches to data mining and machine learning.
Many of these approaches in the literature have been used
to assess drug sensitivity data with pathway and gene ex-
pression clustering (Brubaker and et al. 2014; Covell 2015;
Garnett and et al. 2012; Jang and et al. 2014). Large datasets
are a powerful tool for identifying pathways and gene ex-
pression patterns that are critical in determining overall sen-
sitivity to treatments and prognosis. The Cancer Cell Line
Encyclopedia (CCLE) is one such database, in which gene
expression (GE), copy number (CN), and drug response
data are available for over 1000 cancer cell lines (http:
//www.broadinstitute.org/ccle/home). In this
study, we have selected the skin tumor cell lines from the
CCLE as a starting point, and used a novel algorithmic ap-
proach to extract information from the large scale dataset to
identify genes of interest that distinguish these 62 cell lines
into 3 discrete clusters. To date, the use of biomarker data
from these databases has provided limited success and will
require confirmation in biologic systems to determine true
correlative benefit. Hopefully these analyses will lead to de-
velopment of molecular signatures for prognosis and stag-
ing, targeted therapies, and the ability to personalize treat-
ment for the most durable response.

The rest of this paper is organized as follows. In Section
2, we present our methodology for determining the existence
or non-existence of natural clusters in the data. In Section 3,
we present our ensemble feature selection approach, the re-
sults obtained from it and discussion about the results. Sec-
tion 4 summarizes our results and the main takeaways of the
paper as well as proposes some possible avenues for future
work.

2 Clustering of Melanoma Cell Lines
CCLE Gene expression and DNA copy number variation
data for 62 skin tumor cell lines was used to systemati-
cally assess features of interest for distinguishing subtypes
of melanoma cell lines. CCLE skin tumor cell line data that
we used included > 19, 000 mRNA gene expressions and
> 20, 000 DNA copy number variations (CNV). In order to
identify the distinct clusters of CCLE skin tumor cell lines
we applied the popular K-means++ method to data consist-
ing of 62 cell lines with:

• Gene expression features alone.

• Copy number variation features alone.

• Gene expressions and copy number variation features to-
gether.

K-means is a widely used clustering technique that seeks
to minimize the average squared distance between points
in the same cluster. Simple euclidean distance was used as
the distance metric since all of our feature data were scalar
numeric values. Although it offers no accuracy guarantees,
the simplicity and speed of K-means are very appealing in

practice. Because of the sparsity of our data, we did not ex-
pect to find sufficiently complex, non-convex or dense clus-
ters thus K-means sufficed. K-means++ was presented in
(Arthur and Vassilvitskii 2007) where an algorithm that is
O(log k)-competitive with the optimal clustering was ob-
tained by augmenting K-means with a simple, randomized
seeding technique. Computational experiments have shown
that the augmentation improves both the speed and the ac-
curacy of K-means, often quite dramatically.

As shown in Figures 1-2, the initial fitting of the 19,000
gene expression features suggested approximately 5 true
clusters as signified by the change in slope whereas there
was no clear suggestion for the optimal number of clusters
for the 20,000 copy number variations. Also, note that com-
bining both the copy number variations and the gene expres-
sions data did not affect the natural clustering of the CCLE
skin tumor cell lines as can be seen in Figure 3.

Figure 1: Within-cluster sum of squares (WCSS) error for 19,000
gene expression features over different values of K. Notice the

elbow point at approximately 5 clusters where the slope changes.

Figure 2: Within-cluster sum of squares (WCSS) error for 20,000
CNV features over different values of K. Notice the slope is

relatively constant throughout.

For the sake of high-dimensional data visualization, we
make use of popular Principle Components Analysis (PCA)
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Figure 3: Within-cluster sum of squares (WCSS) error for 19,000
genes + 20,000 CNV features over different values of K. Notice

the same elbow point as in Figure 1.

algorithm to project the data onto the two dimensions of
greatest variation. More advanced visualization methods
like t-Distributed Stochastic Neighbor Embedding (t-SNE)
(van der Maaten and Hinton 2008), were considered but
deemed not necessary for this project since our plots seemed
to make sense for our data. Plots corresponding to all three
5-cluster datasets are presented in Figures 4-6.

Figure 4: PCA plot of 5-clusters in 19,000 gene expression
feature data

Information obtained on the cell lines from the American
Type Culture Collection (ATCC) suggested that a single pa-
tient was the origin of the two cell lines clustered together in
their own cluster. In addition, cell lines from one other clus-
ter originated from Naval Biosciences Laboratory (NBL)
cell lines, some of which have now been removed from the
ATCC due to inability to confirm morphology. Due to the
concern that these could not be confirmed as melanoma tu-
mor lines, we removed these two clusters from further anal-
ysis. This resulted in three clusters for 49 skin tumor cell
lines. Moreover, since the PCA plots in Figures 4-6 showed
that the exclusion of copy number variations from the dataset
provided a better clustering of the CCLE skin tumor cell

Figure 5: PCA plot of 5-clusters in 20,000 CNV feature data

Figure 6: PCA plot of 5-clusters in 19,000 genes + 20,000 CNV
feature data

lines, we continued our investigations on 49 skin tumor cell
lines with the 19,000 gene expression features alone. Fig-
ures 7-8 show the PCA plot of the three clusters of 49 cell
lines based on gene expressions only.

Figure 7: Within-cluster sum of squares (WCSS) error for 49 cell
lines with 19,000 gene expression features over different values of

K.
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Figure 8: PCA plot of 3-clusters for 49 cell lines with 19,000
gene expression features.

3 Feature Selection and Classification
In order to identify the patterns of gene expression separat-
ing those clusters and to validate the three clusters obtained
by the K-means++ algorithm we applied ensemble feature
selection and classification methods. These analyses are out-
lined in the following sections.

3.1 Identification of Most Significant Gene
Expressions

There exist many different algorithms for feature selection,
but they are typically divided into three main groups: fil-
ter, wrapper and embedded methods. Filter methods rank
each feature according to some univariate metric, and only
the highest ranking features are used; the remaining fea-
tures are eliminated. These methods tend to be computa-
tionally lightweight but do not consider the interactions be-
tween features. Wrapper algorithms explicitly search for the
best subset of features. To assess the quality of a feature
subset, wrapper methods rely on and interact with a clas-
sification algorithm and its ability to discriminate among
the classes. The wrapper algorithm treats a classification al-
gorithm as a black box, so any classification method can
be combined with the wrapper. Standard optimization tech-
niques (hill climbing, simulated annealing or genetic algo-
rithms) can be used. Embedded methods search among dif-
ferent feature subsets, but unlike wrappers, the process is
naturally within a certain classification algorithm itself in-
stead of an outside process. An example of an embedded
feature selection approach is the use of decision trees which
have pruning mechanisms built within the algorithm itself
that perform feature selection. For more information on fea-
ture selection methods and their applications to genomic and
proteomic data the reader is referred to (Dubitz and et al.
2007) and the references therein.

In part because of the high dimensionality and sparse-
ness of the CCLE melanoma data, feature selection meth-
ods often yield vastly different results in terms of the re-
turned utility of one feature versus another. These varying
results depend entirely on what algorithm is used and not

the structure of the data itself. Also, because of the power
of the well-known classification algorithms, they can easily
learn patterns in the data that might not be biologically rel-
evant. Using a large enough subset of features, even with
randomly selected features, can yield good classification ac-
curacy for any one algorithm despite the high probability
that the features are not actually relevant to the outcome vari-
able. This lends the task of biological interpretation to be ex-
tremely difficult if not impossible. We propose that the fea-
tures which most believably distinguish the data will show
relevance across many different kinds of feature selection al-
gorithms and will also yield high classification performances
across many different types of classifiers with a relatively
small subset size. To reach this end, we employ a feature
selection pipeline which can be thought of as an ensem-
ble of algorithms. A univariate statistical technique called
the Fisher Score and a multivariate SVM-based technique
(SVM-RFE+CBR) (Yan and Zhang 2015) are first used to
reduce the dataset to a size that is more manageable for run-
ning a third technique that includes 500 randomized trials of
a sequential floating forward search (Pudil, Novoviov, and
Kittler 1994) wrapped around the popular K-nearest neigh-
bors algorithm. The randomization is captured by random-
izing the training and test sets on each trial. The goal of our
approach is not simply to train one learner or fit one model
to get good classification performance. Instead, we wish for
overall knowledge gain about the feature set itself through
the use of multiple models. This is difficult with stand-alone
methods since the CCLE melanoma dataset contains a small
number of observations yet several thousands of features as
is common in other genomic or proteomic data. In order to
avoid the “curse of dimensionality” (Duda and et al. 2001)
our feature selection procedure, described below, combines
the results and strengths of different algorithms.

Interalgorithmic Consolidation for Feature Selection:

S0. Input Data: 49 skin tumor cell lines with 19,000 gene ex-
pressions.

S1. Apply the Fisher ranking method (univariate correlation
based method extended to multiple features) on “Input
Data” and select top 500 gene expressions based on Fisher
ranking.

S2. Perform Support Vector Machines - Recursive Feature
Elimination with Correlation Bias Reduction (SVM-
RFE+CBR) method (Yan and Zhang 2015) on “Input
Data” and select top 500 gene expressions based on SVM-
RFE+CBR ranking.

S3. Reduced Data: Combine the top 500 gene expressions ob-
tained in (S1) with top 500 genes expressions obtained in
(S2) for 49 cell lines. We eliminate the presence of du-
plicates. The resulting reduced data contains 49 cell lines
with 928 gene expressions.

S4. Perform randomized trials of a sequential floating forward
search wrapped around the K-Nearest Neighbor algorithm
on “Reduced Data” and record the genes that occur the
most often in the results.

S5. Output Data: 49 cell lines with the top 15 genes obtained
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from the randomized sequential trials of k-Nearest Neigh-
bors in (S4).

Genes That 

Occurred in 

Results Most 

Often

49x15

Figure 9: Pipeline for feature selection in CCLE melanoma data

Our method can be visualized graphically in Figure 9. The
features which occur most often in our randomized trials are
the features we regard as the best, as they are seen to emerge
repeatedly as good features for classification across random-
ization, as opposed to the results of one execution in isola-
tion. The cut off for feature frequency is in fact very steep as
shown in Figure 10.

3.2 Top 15 Most Significant Genes
Our analyses showed that only the top 15 genes obtained
from the randomized trials in (S4) were sufficient for opti-
mal classification performance. Only under 15 features did
classification performance seem to drop across various clas-
sification algorithms. These genes are given in Table 1.

TBC1D16 SEMA6A AVPI1
TRIM9 ARHGEF6 GST01

DYNC1I1 GPR127B AHR
YPEL2 PIK3CD C16ORF52
CD274 SPATA13 SMTN

Table 1: Top 15 genes for CCLE skin cell line cluster
differentiation.

Of these 15 genes, some are already known to be linked

Figure 10: Number of occurrences of the gene expression
features during randomized trials. Feature index is on the X axis

while frequency in the results set across 500 randomized trials are
shown on the Y axis. We find that the frequency of gene

expression feature occurrence is largely dominated by only a few
features.

to melanoma prognosis or known to be linked to other can-
cers, but their relationship to melanoma was not previously
shown. Some of the top 15 genes seemingly most relevant to
cancer:

• TBC1D16 is suggested to regulate EGFR in melanoma as
a result of a hypomethylation event conferring poor sur-
vival, exacerbated growth and also may increase BRAF
and MEK inhibitor sensitivity (Vizoso and et al. 2015).

• TRIM9 Tripartate Motif Containing 9 is expressed in
many cancer cell lines, the TRIM proteins have been iden-
tified in other hierarchical analyses for melanoma. TRIM9
is thought to be a modifier of disease incidence and pro-
gression in lung cancer. TRIM9 has been identified as a
ubiquitin ligase (E3) (Wang and et al. 2016).

• DYNC1I1 Cytoplasmic Dynein 1 intermediate chain 1
protein is thought to regulate dynein function important
for vesicle motility and trafficking of organelles. It is reg-
ulated by microphthalmia-associated transcription factor
(MITF) which is important to melanocyte development.
Frequent somatic mutations of MITF have been reported
with cutaneous melanoma.

• CD274 This gene codes for Programmed death-ligand 1
(PD-L1) which is currently the target of several large trials
showing substantial benefit with anti-PD-L1 for late stage
melanoma (Ascierto and Marincola 2015).

• GST01 Glutathione S-transferase omega-1 polymor-
phisms associated with the increased risk of developing
breast and liver cancer and has not been previously impli-
cated in melanoma.

3.3 Relevance of TBC1D16 in Melanoma
The top performing gene expression in terms of the fre-
quency in the results set over the randomized trials was
a gene known as TBC1D16. As shown in Figure 10,
TBC1D16 vastly outperforms every other gene. It has been
shown in a recent publication that TBC1D16 has significant
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relevance to the metastatic potential of melanoma and re-
sponse to BRAF and MEK inhibitors. TBC1D16 is also pro-
posed to strongly regulate vesicle trafficking. It is also key to
regulation of the EGFR pathway which exerts control on sur-
vival signaling in melanoma. Expression profiling of tumor
cell lines can provide an avenue for identifying novel can-
didates in developing a molecular signature for melanoma.
A molecular signature could aid in targeting patient centric
treatment approach as well as identifying aggressiveness of
the disease. Large-scale sequencing efforts are being spear-
headed by groups such as the International Cancer Genome
Consortium and the Cancer Genome Atlas to identify new
drug targets and to confirm genes that may predict sensi-
tivity to drugs. Evidence that TBC1D16 may have a role in
regulating the EGRF pathway by activation of a GTP-ase ac-
tivating protein and influence response to MEK, BRAF and
EGRF inhibitors, all drugs targeting metastatic melanoma,
supports our finding that this is an important gene in the dis-
ease profile.

3.4 Validation of the Top 15 Genes
We used K-means++ clustering on the reduced CCLE skin
cancer tumors with the top 15 genes only. We found that the
optimal number of clusters for the reduced data as signified
by the elbow point was much more pronounced to be 3 as
shown in Figure 11.

Figure 11: Within-cluster sum of squares (WCSS) error for the
top 15 gene expression data across different values of K. Note the

very pronounced elbow point at exactly 3 clusters.

The top 15 genes and their expression levels provide the
same exact clustering with the same cell lines clustering
together (see Figure 4) as when clustering in the original
19,000 gene expression feature space. The PCA plot of the
three clusters using the top 15 genes is presented in Figure
12 which shows the increased density and separability of
clusters as when compared to Figure 8.

In order to further validate the discriminating power of
the top 15 genes among the three clusters we applied var-
ious classification techniques on the 49 cell lines with the
15 gene expression features. The cluster index was used as
the class variable. Table 2 shows the 10-fold cross validated
per-cluster classification accuracy of various classification
algorithms as implemented in WEKA (Hall and et al. 2009).

Figure 12: PCA plot of 3-clusters using the top 15 gene
expression features only. Note the relative density and separability

of the clusters.

Cluster
Multilayer
Perceptron

Logic
Regression

Naive Bayes
Multinomial

1 100% 100% 100%
2 100% 100% 100%
3 100% 85.70% 100%

Average 100% 95.23% 100%

Cluster
k-Nearest
Neighbor

Logic Model
Tree

Random
Forest

1 100% 85% 100%
2 100% 100% 100%
3 100% 100% 100%

Average 100% 95% 100%

Table 2: Classification accuracy for top 15 genes

3.5 Decision Tree Classification Model
It is instructive to develop a human interpretable model for
the sake of understanding what combinations of gene ex-
pressions lead to cluster indices. We applied a decision tree
classification method on data consisting of the 49 cell lines
with the top 15 gene expression features to obtain a classi-
fication model consisting of combinatorial patterns of gene
expressions. A Decision Tree is a non-parametric supervised
learning method used for classification and regression. The
goal is to create a model that predicts the value of a target
variable by learning simple decision rules inferred from the
data features (Quinlan 1993). The decision tree classifica-
tion model for CCLE skin cancer tumors as shown in Table
3 consists of one pattern for cluster 1, one for cluster 2, and
two patterns for cluster 3, where decision rules are based on
three genes including GSTO1, TBC1D16, and TRIM9.

Cluster Decision Tree Rules
1 GSTO1 ≥ 12.7765 & TBC1D16 ≥ 7.28245

2 GSTO1 < 12.7765 & TRIM9 ≥ 5.03635

3 GSTO1 ≥ 12.7765 & TBC1D16 < 7.28245
3 GSTO1 < 12.7765& TRIM9 < 5.03635

Table 3: Decision tree classification model
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The performance of the final classification model was
evaluated with several executions of a 10-fold cross valida-
tion technique. The per-cluster cross-validation accuracy of
the decision tree classification model are provided in Table
4. The high classification performance provides evidence for
the reliability of the rules generated by the algorithm.

Average
Accuracy Cluster 1 Cluster 2 Cluster 3

98.33% 95% 100% 100%

Table 4: Average accuracy of the decision tree model

4 Conclusions & Future Work
This paper presents the usage of an off-the-shelf clustering
technique as well as a novel ensemble feature selection tech-
nique on genomic data that has identified 3 distinct clus-
ters of melanoma cell lines. Despite making use of every-
thing that is available, further biological experimentation is
likely needed to increase the confidence of the cluster’s re-
liable presence across all different instances of melanoma.
The identification of TBC1D16 as the primary gene provid-
ing cluster separability is a significant result given its known
relationship to melanoma. This suggests its potential rele-
vance for melanoma prognosis and anti-cancer drug selec-
tion given its marked variable expression across different
melanoma clusters. Other genes in our results that have not
been previously linked to melanoma may offer themselves
as points of interest for further biological exploration. Sim-
ilar testing will be applied to other public access genomic
databases for melanoma to compare results.

In terms of future work that can extend from this, it is
of interest to see if the genes listed in this work can be
used in a predictive manner. Similar approaches have been
taken with melanoma gene expression assays in clinical tri-
als which hope to provide better diagnostics for staging of
the disease (Castle DecisionDx Melanoma and Myriad my-
Path Melanoma). Both of these assays utilize a similar gene
profile that includes a mixture of housekeeping genes, im-
mune modulators and those involved in pathogenesis (Ferris
and et al. 2016), (Clarke and et al. 2017). Approaches such
as presented here could help tailor treatment options for pa-
tients based on the predicted outcome that is based on the
genetic profile of their individual tumor.
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