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Abstract

We study the complexity of fair division of indivisible goods
and consider settings where agents can have nonzero utility
for the empty bundle. This is a deviation from a common
normalization assumption in the literature, and we show that
this inconspicuous change can lead to an increase in com-
plexity: In particular, while an allocation maximizing social
welfare by the Nash product is known to be easy to detect in
the normalized setting whenever there are as many agents as
there are resources, without normalization it can no longer be
found in polynomial time, unless P = NP. The same state-
ment also holds for egalitarian social welfare. Moreover, we
show that it is NP-complete to decide whether there is an
allocation whose Nash product social welfare is above a cer-
tain threshold if the number of resources is a multiple of the
number of agents. Finally, we consider elitist social welfare
and prove that the increase in expressive power by allowing
negative coefficients again yields NP-completeness.

Introduction
We consider problems of social welfare optimization for al-
locating indivisible resources (or goods or objects or items)
and study them in terms of their computational complexity.
For an overview of the field, see the survey by Chevaleyre et
al. (2006) and the book chapters by Bouveret, Chevaleyre,
and Maudet (2016) and by Lang and Rothe (2015).

We restrict our attention to k-additive utilities. A common
assumption in the literature is that an agent that receives no
resources should have utility zero. We deviate from this nor-
malization assumption. For a fixed number of agents and re-
sources, this allows for more opportunities to increase social
welfare because agents can forgo resources. While it may
happen that some agent has to receive a certain resource un-
der the normalization assumption in order to guarantee some
utility level among all agents, it is now possible that a greater
utility level is achievable by assigning no resources to some
agents. The excess resources can then be allocated to other
agents.

Note that performing a simple “shift” to convert nonnor-
malized utility functions to normalized utility functions does
not capture the allocation model. In order to simulate the
fact that no resources can be assigned to an agent while still
realizing positive utility, additional resources have to be in-
troduced into the original model. This is problematic for the

setting where there are as many agents as resources, which
we are going to consider because this is one of the few set-
tings where polynomial-time algorithms do exist.

Our contribution is to show that allowing nonnormalized
utility functions comes at a steep cost, namely, that it is un-
likely that polynomial-time algorithms for maximizing so-
cial welfare exist. This is in contrast to the setting of nor-
malized utility functions, where, under certain restrictions,
such algorithms exist.

We also consider elitist social welfare that can be maxi-
mized in polynomial time for k-additive utilities whenever
all coefficients in the k-additive representation are nonneg-
ative. We show that such an algorithm cannot exist for the
same problem under k-additive utility functions for k ≥ 2
and arbitrary coefficients, assuming P 6= NP. This is based
on a reduction that Chevaleyre et al. (2008) designed for util-
itarian social welfare.

Preliminaries
Let A denote a set of n agents and R a set of m indivisible
and nonshareable resources. Each agent ai ∈ A is equipped
with a utility function ui : 2R → Q and U = (u1, . . . , un).
Then (A,R,U) is an allocation setting. A utility function u
over resources R is k-additive if for every X ⊆ R there is a
(unique) coefficient αX ∈ Q, which vanishes if ‖X‖ > k,
such that for every Y ⊆ R,

u(Y ) =
∑
X⊆Y

αX .

An allocation π ∈ ΠA,R of an allocation setting (A,R,U) is
a partition of R into n (possibly empty) subsets. Then π(ai)
denotes the bundle that agent ai receives.

We measure the social welfare of an allocation π using
• utilitarian social welfare:

swu(π) =
∑
ai∈A

ui(π(ai)),

• egalitarian social welfare:
swe(π) = min

ai∈A
ui(π(ai)),

• Nash product social welfare:

swN (π) =
∏
ai∈A

ui(π(ai)), and



• elitist social welfare:

swE(π) = max
ai∈A

ui(π(ai)).

Utilitarian social welfare, swu, captures the average util-
ity that agents receive in an allocation setting. Clearly, lop-
sided allocations are possible when a single agent receives
all the goods. This is put to an extreme under elitist social
welfare, swE , whose usage can be justified, e.g., in settings
where the center controls all agents. At the other side of
the spectrum is egalitarian social welfare, swe. Maximizing
egalitarian social welfare corresponds to paying attention to
the worst-off agent only, neglecting concerns of efficiency.
Nash product social welfare, swN , strikes a balance between
swu and swe in the sense that balanced utility values maxi-
mize swN and its outcomes are Pareto-efficient (see also the
paper by Caragiannis et al. (2016)).

Let us now define our optimization problems and their
associated decision problems, starting with the most promi-
nent one: the problem of maximizing utilitarian social wel-
fare.

Q-MAXIMUM-UTILITARIAN-SOCIAL-WELFAREk-ADD

Input: An allocation setting (A,R,U), where each util-
ity function ui : 2R → Q is represented in k-
additive form.

Output: max{swu(π) | π ∈ ΠA,R}

We will also use the shorthand Q-MAX-USWk-ADD for
this problem. If we require in addition that the number of
agents be equal to the number of resources, the resulting
problem is denoted by Q-MAX-USWn=m

k-ADD; analogously,
this superscript “n = m” indicates the same restriction for
the problems defined below.

The decision problem associated with the optimization
problem Q-MAX-USWk-ADD is defined as follows.

Q-UTILITARIAN-SOCIAL-WELFARE-OPTIMIZATIONk-ADD

Given: An allocation setting (A,R,U), where each util-
ity function ui : 2R → Q is represented in k-
additive form, and a number K ∈ N.

Question: Does there exist an allocation π ∈ ΠA,R such that
swu(π) ≥ K?

Again, we will also use the shorthand Q-USWOk-ADD

for this problem. Furthermore, by replacing utilitarian so-
cial welfare by other types of social welfare, we can define
the following decision and optimization problems. Here, the
symbol Q+ denotes the set of nonnegative rational numbers.

• Q-EGALITARIAN-SOCIAL-WELFARE-OPTIMIZA-
TIONk-ADD (for short, Q-ESWOk-ADD) and
Q-MAX-EGALITARIAN-SOCIAL-WELFAREk-ADD (for
short, Q-MAX-ESWk-ADD),

• Q+-NASH-PRODUCT-SOCIAL-WELFARE-OPTIMIZA-
TIONk-ADD (for short, Q+-NPSWOk-ADD) and
Q+-MAX-NASH-PRODUCT-SOCIAL-WELFAREk-ADD

(for short, Q+-MAX-NPSWk-ADD), and
• Q-ELITIST-SOCIAL-WELFARE-OPTIMIZATIONk-ADD

(for short, Q-ELSWOk-ADD) and

Q-MAX-ELITIST-SOCIAL-WELFAREk-ADD (for short,
Q-MAX-ELSWk-ADD).

We assume the reader to be familiar with the basic no-
tions of complexity theory, such as the complexity classes P
(deterministic polynomial time) and NP (nondeterministic
polynomial time), polynomial-time many-one reducibility,
and the notions of NP-hardness and -completeness based on
this reducibility.

Nash Product Social Welfare
In this section, we study the complexity of social welfare op-
timization by the Nash product, assuming k-additive utility
functions for k ≥ 1.

Known Results
Roos and Rothe (2010) showed that the general problem
Q+-NPSWOk-ADD is NP-complete. NP-completeness still
holds when the given allocation setting has only two agents
and normalized utility functions. In addition, they and, in-
dependently, Ramezani and Endriss (2010) showed that this
problem is NP-complete also when utilities are given in the
bundle form (Roos and Rothe 2010; Nguyen et al. 2014).
Also for other representation forms that we do not consider
here, analogous results have been obtained (Ramezani and
Endriss 2010) (see also, e.g., (Cole et al. 2017) for the ap-
proximability of Nash product social welfare).

NP-hardness of Q+-NPSWOk-ADD rests on a reduction
from the problem PARTITION that is well known to be NP-
complete (Karp 1972).

PARTITION

Given: A sequence (c1, . . . , cs) of nonnegative integers

such that C =
s∑

i=1

ci for an even number C ∈ N.

Question: Does there exist a subset J ⊆ S = {1, . . . , s}
such that

∑
i∈J

ci =
∑

i∈S\J
ci?

Our proof of NP-completeness of Q+-NPSWOn=mk-ADD (see
Theorem 1) extends the proof by Roos and Rothe (2010).

Regarding the optimization problem, Nguyen, Roos, and
Rothe (2013) proposed a polynomial-time algorithm that
provides an allocation with maximal Nash product if both
the number of agents equals the number of resources to dis-
tribute and the utility functions are normalized.

The Price to Pay for Forgoing Normalization
We show that, assuming P 6= NP, Q+-NPSWOn=mk-ADD is
no longer solvable in polynomial time if utility functions
are not required to be normalized, i.e., if ui(∅) = λi with
λi ∈ Q+ \ {0} for at least one agent ai. Concretely, we
show NP-completeness of Q+-NPSWOn=mk-ADD. Our proof is
based on the observation that in the construction of Roos
and Rothe (2010) arbitrarily many agents may be added to
the given allocation setting without changing its Nash prod-
uct. In this sense, it can be seen as an extension of their proof
of NP-completeness of Q+-NPSWOk-ADD.



Theorem 1. For each k ≥ 1, Q+-NPSWOn=mk-ADD is NP-
complete.
Proof. Membership of Q+-NPSWOn=mk-ADD in NP is easy
to observe. To prove its NP-hardness, we focus on the
case k = 1 (the cases k > 1 then follow immediately)
and we give a reduction from the problem PARTITION. Let
c = (c1, . . . , cs) be a sequence of nonnegative integers such

that C =
s∑
i=1

ci is even. Let S = {1, . . . , s}. Construct a

Q+-NPSWOn=m1-ADD instance ((A,R,U),K) from (c, C) with
s agents, s resources, and s utility functions having only
nonnegative coefficients αTi for any bundle T ⊆ R. Specif-
ically, let A = {a1, . . . , as} and R = {r1, . . . , rs}, and
define the utility functions ui by the following coefficients:

α
{rj}
i = cj (i ∈ {1, 2})
α∅i = 1 (i ∈ {3, . . . , s})

for 1 ≤ j ≤ s. Since we assume the 1-additive case, all
other coefficients are zero. For the lower bound, chooseK =
(C/2)

2.
It remains to show that (c, C) is a yes-instance of

PARTITION if and only if ((A,R,U),K) is a yes-instance
of Q+-NPSWOn=m1-ADD.

From left to right, suppose that (c, C) is a yes-instance of
PARTITION. Thus there is a subset J ⊆ S such that

∑
i∈J

ci =∑
i∈S\J

ci = C/2. Define an allocation π as follows:

π(a) =


{rj | j ∈ J} if a = a1,

{rj | j ∈ S \ J} if a = a2,

∅ if a ∈ {a3, . . . , as}.

It follows that

swN (π) = u1(π(a1))u2(π(a2)) · · ·us(π(as))

=

(∑
i∈J

u1({ri})

) ∑
j∈S\J

u2({rj})

 1(s−2)

=

(∑
i∈J

ci

) ∑
j∈S\J

cj


=

(
C

2

)2

= K.

From right to left, suppose that (c, C) is a no-instance of
PARTITION. By definition of the coefficients αTi we have
ui(B) = 1 for 3 ≤ i ≤ s and all bundles B ⊆ R. Sup-
pose there were an allocation π satisfying swN (π) ≥ K.
For convenience, view swN (π) as a function

g : [0, C]× [0, C]→ Q, (x, y) 7→ x · y · 1s−2,

where C is the total sum of all ci and x + y = ξ for some
ξ ∈ [0, C] ∩ N.

Substituting the constraints simplifies this function to:

hξ : [0, C]→ Q, x 7→ x · (ξ − x).

The first two derivatives of hξ are given by

∂hξ
∂x

(x) = −2x+ ξ and
∂2hξ
∂2x

(x) = −2 < 0.

For 0 ≤ ξ ≤ C, we have hξ(0) = 0 and

hξ(C) = C · (ξ − C) = ξC − C2 ≤ 0.

It follows that the social welfare is maximal for x = ξ/2.
Since the value of hξ at this point is hξ(ξ/2) = (ξ/2)

2, (ξ/2)
2

is monotonically increasing on Q+, and ξ is bounded above
by C, the partition must satisfy u1(π(a1)) = u2(π(a2)) =
C/2 for reaching the bound K. Since all ci are nonnegative,
this means that we must have started from a yes-instance of
PARTITION, a contradiction. It follows that no allocation π
can satisfy swN (π) ≥ K.

Since the transformation can be computed in polynomial
time, NP-completeness of Q+-NPSWOn=mk-ADD follows. q

Example 1. Let c = (c1, . . . , c5) = (1, 2, 3, 5, 9) and

C =
5∑
i=1

ci = 20 be given. Construct from (c, C) the

Q+-NPSWOk-ADD instance ((A,R,U),K) according to the
reduction given in the proof of Theorem 1, with lower bound
K = (20/2)2 = 100, agents A = {a1, a2, . . . , a5}, re-
sources R = {r1, . . . , r5}, and utility functions ui(B) =
1[r1] + 2[r2] + 3[r3] + 5[r4] + 9[r5] for i ∈ {1, 2}, and
uj(B) = 1[∅] for j ∈ {3, 4, 5}, where [ri] is 1 if {ri} ⊆ B
and is 0 otherwise.

For J = {1, 5}, we have
∑
i∈J

ci =
∑

j∈S\J
cj , so this is a

yes-instance of PARTITION.
The allocation from the proof of Theorem 1 is π =

({r1, r5}, {r2, r3, r4}, ∅, ∅, ∅) with swN (π) = 100 ≥ K,
so we also have a yes-instance of Q+-NPSWOk-ADD.

Further Restrictions
The problem Q+-NPSWOn=mk-ADD is a special case of
Q+-NPSWOk-ADD, so NP-hardness of the former is imme-
diately inherited by the latter, and this also holds true for
only two agents (Roos and Rothe 2010, Theorem 5.1).

We now consider the case where the number of resources
to distribute is a multiple of the number of agents.

Theorem 2. Fix an integer p ≥ 2. For each k ≥ 1,
the problem Q+-NPSWOk-ADD restricted to instances with
‖R‖ = p · ‖A‖ and normalized utility functions is NP-
complete.

Proof. Membership of the problem in NP is again easy
to observe, just as in the proof of Theorem 1. To prove its
NP-hardness, it is sufficient to consider the case with k = 1
and p = 2.

Again, we give a reduction from PARTITION. Let
(c1, . . . , cs) be a sequence of nonnegative integers such

that C =
s∑
i=1

ci is even. Let S = {1, . . . , s}. Construct

a Q+-NPSWOk-ADD instance I = ((A,R,U),K)) with s



agents, 2s resources, and s utility functions having only non-
negative coefficients αTi for any bundle T ⊆ R:

A = {a1, a2, a3, . . . , as},
R = {r11, . . . , r1s , r21, . . . , r2s}, and

K =

(
C

2

)2

.

Define the utility functions ui by the following coeffi-
cients:

α
{r1j}
i = cj α

{r2j}
i = 0 (1 ≤ i ≤ 2, 1 ≤ j ≤ s)

α
{r1`}
i = 0 α

{r2`}
i = 1 (3 ≤ i ≤ s, 3 ≤ ` ≤ s)

It follows that α{r
2
1}

q = α
{r22}
q = 0 for all q, 1 ≤ q ≤ s.

We claim that (c, C) is a yes-instance of PARTITION
if and only if ((A,R,U),K) is a yes-instance of
Q+-NPSWOn=m1-ADD.

From left to right, suppose that I is a yes-instance of
PARTITION. Then there is a subset J ⊆ S such that

∑
i∈J

ci =∑
i∈S\J

ci = C/2. Define an allocation π as follows:

π(a) =


{r1j | j ∈ J} ∪ {r21, r22} if a = a1,

{r1j | j ∈ S \ J} if a = a2,

{r2t } if a = at (3 ≤ t ≤ s).
It follows that
swN (π) = u1(π(a1)) u2(π(a2)) · · · us(π(as))

=

(
u1({r21}) + u1({r22}) +

∑
i∈J

u1({r1i })

)
· ∑

j∈S\J

u2({r1j})

 · 1(s−2)
=

(∑
i∈J

ci

)
·

 ∑
j∈S\J

cj


=

(
C

2

)2

= K.

From right to left, suppose that I is a no-instance of
PARTITION. Assume there were an allocation π satisfying
swN (π) ≥ K. Then we have

swN (π) = x · y ·

 s∏
j=3

(zj · 1)

 ≥ K,
where zj indicates for each agent aj how many resources
from the set R = {r23, . . . , r2s} are assigned to her. Since
the utility functions are normalized, every agent aq with 3 ≤
q ≤ s must be assigned exactly one resource from R for the
Nash product to be distinct from zero.

Because of uq({r21}) = uq({r22}) = 0 for 1 ≤ q ≤ s and
up({r1`}) = 0 for 3 ≤ p ≤ s and 1 ≤ ` ≤ s, it suffices to
show

swN (π) = x · y

for x + y = ξ ∈ [0, C] ∩ N. The same argument as in the
proof of Theorem 1 shows that we would have started from a
yes-instance of PARTITION then, a contradiction. It follows
that no allocation π can satisfy swN (π) ≥ K.

Again, the transformation can be computed in polynomial
time, which completes the proof of NP-completeness. q

Example 2. Let c = (c1, . . . , c4) = (1, 3, 5, 7) and C =
16 be given. Construct from (c, C) the Q+-NPSWOk-ADD

instance ((A,R,U),K) according to the reduction given
in the proof of Theorem 2, with lower bound K =
(16/2)2 = 64, agents A = {a1, a2, . . . , a4}, resources
R = {r11, . . . , r14, r21, . . . , r24}, and utility functions ui(B) =
1[r11] + 3[r12] + 5[r13] + 7[r14] for i ∈ {1, 2}, and
uj(B) = 1[r23] + 1[r24] for j ∈ {3, 4}. This is a yes-
instance of PARTITION, as with J = {1, 4} and S \
J = {2, 3} we have the equality

∑
i∈J

ci =
∑

j∈S\J
cj .

The allocation from the proof of Theorem 2 then is
π = ({r11, r14, r21, r22}, {r12, r13}, {r23}, {r24}), which satisfies
swN (π) = 64 ≥ K, so we also have a yes-instance of
Q+-NPSWOk-ADD.

Egalitarian Social Welfare
In this section, we study the complexity of egalitarian so-
cial welfare optimization, again assuming k-additive utility
functions for k ≥ 1.

Known Results
Based on the work of Irving, Leather, and Gusfield (1987),
Golovin (2005) provided an algorithm solving the prob-
lem Q-MAX-ESWn=m

1-ADD with normalized utility functions
in polynomial time. The paper by Bansal and Sviri-
denko (2006) provides one of the many approximability re-
sults on maximizing egalitarian social welfare, see the sur-
vey by Nguyen, Roos, and Rothe (2013) for an overview.

The Price to Pay for Forgoing Normalization
As we did in the previous section for the Nash product, we
now investigate whether the normalization requirements for
the algorithm mentioned above are necessary. We will show
that without this normalization, the corresponding decision
problem is NP-complete. Making use of a reduction due to
Lipton et al. (2004) for two agents and m resources, we pro-
vide a reduction from PARTITION to Q-ESWOk-ADD, again
by extending the original allocation setting by a suitable
number of dummy agents without changing its egalitarian
social welfare.
Theorem 3. For each k ≥ 1, Q-ESWOn=mk-ADD is NP-
complete.
Proof. Membership of Q-ESWOn=mk-ADD in NP again is
obvious for each k ≥ 1. To prove NP-hardness, we
only consider the kase k = 1 and reduce PARTITION to
Q-ESWOn=m1-ADD. Let c = (c1, . . . , cs) be a sequence of

nonnegative integers such that C =
s∑
i=1

ci is even. Let

S = {1, . . . , s}. Construct a Q-ESWOn=m1-ADD instance I =
((A,R,U),K) from (c, C) with lower bound K = C/2,



s agents, s resources, and s utility functions having only
nonnegative coefficients αTi for any bundle T ⊆ R, i.e.,
A = {a1, . . . , as} and R = {r1, . . . , rs}, and define the
utility functions ui by the following coefficients:

α
{rj}
i = cj (i ∈ {1, 2})
α∅i = K (i ∈ {3, . . . , s})

for 1 ≤ j ≤ s. Since we assume the 1-additive case, all other
coefficients are zero.

This transformation obviously can be done in polynomial
time. It remains to show that (c, C) is a yes-instance of PAR-
TITION if and only if ((A,R,U),K) is a yes-instance of
Q-ESWOn=m1-ADD.

From left to right, suppose that (c, C) is a yes-instance of
PARTITION. Thus there is a subset J ⊆ S such that

∑
i∈J

ci =∑
i∈S\J

ci = C/2. Define an allocation π as follows:

π(a) =


{rj | j ∈ J} if a = a1,

{rj | j ∈ S \ J} if a = a2,

∅ if a ∈ {a3, . . . , as}.

It follows that

swe(π) = min{u1(π(a1)), u2(π(a2)), . . . , us(π(as))}

= min

∑
i∈J

u1({ri}),
∑
j∈S\J

u2({rj}),K, . . . ,K


= K.

From right to left, suppose that (c, C) is a no-instance of
PARTITION. Then

∑
i∈J

ci 6=
∑

i∈S\J
ci for every subset J ⊆

S = {1, . . . , s}.
Suppose there were an allocation π satisfying swe(π) ≥

K. Since ui(B) = K (3 ≤ i ≤ s) for all bundles B ⊆ R,
we have

min{u1(π(a1)), u2(π(a2))} ≥ K.
This is possible only in one of the following four cases:
1. u1(π(a1)) > K = C

2 and u2(π(a2)) > K = C
2 ,

2. u1(π(a1)) = K = C
2 and u2(π(a2)) > K = C

2 ,

3. u1(π(a1)) > K = C
2 and u2(π(a2)) = K = C

2 ,

4. u1(π(a1)) = K = C
2 = u2(π(a2)).

If one of the first three cases were to occur, it would follow
that (

C

2
+ ε1

)
+

(
C

2
+ ε2

)
= C + (ε1 + ε2) > C

with positive ε1, ε2 ∈ N for the first case, and ε1 = 0 and
ε2 > 0 for the second and third case; this is possible only
if one resource is assigned more than once. In the fourth
case, finally, it would follow that we must have started from
a yes-instance of PARTITION, again a contradiction. This
completes the proof. q

Elitist Social Welfare
Finally, we make a small observation regarding elitist so-
cial welfare. Heinen, Nguyen, and Rothe (2015) observed
that the problem Q-ELSWO1-ADD (which is called n-RANK
DICTATOR in their paper) can be solved in polynomial time.
It is not hard to see that essentially the same argument gives
the same result for Q-ELSWOk-ADD for each k ≥ 2, pro-
vided that all coefficients in the k-additive representation
are nonnegative.1 However, if negative coefficients are al-
lowed, this decision problem turns NP-complete, which fol-
lows immediately from a known reduction due to Cheva-
leyre et al. (2004).
Theorem 4. For each k ≥ 2, Q-ELSWOk-ADD with arbi-
trary coefficients is NP-complete.
Proof. It is obvious that Q-ELSWOk-ADD is in NP for
each k ≥ 2: Nondeterministically, choose an allocation π
and verify whether max{ui(π(ai)) | ai ∈ A} ≥ K.

To prove NP-hardness of Q-ELSWO2-ADD, we make
use of a reduction due to Chevaleyre et al. (2004) who
showed NP-hardness of Q-USWO2-ADD by a reduction
from the well-known NP-complete problem MAXIMUM-2-
SATISFIABILITY (for short, MAX-2-SAT), which is defined
as follows:

MAXIMUM-2-SATISFIABILITY

Given: A boolean formula ϕ in conjunctive normal form,
where each clause has exactly two literals, and a
nonnegative integer K.

Question: Does there exist a truth assignment simultane-
ously satisfying at least K clauses of ϕ?

Consider the reduction from the proof of (Chevaleyre
et al. 2008, Proposition 8), which reduces MAX-2-SAT
to Q-USWO2-ADD. That means that a MAX-2-SAT in-
stance (ϕ,K) is mapped to a Q-USWO2-ADD instance
((A,R,U),K) consisting of one resource for each variable
of ϕ, two agents, a1 and a2, with utilities u2 ≡ 0 and u1
as shown in Table 1 such that when there are T satisfied
clauses, there are exactly T additive terms equal to 1.

Clause 2-additive term

(xi ∨ xi) 1[xi]
(¬xi ∨ ¬xi) 1− [xi]
(xi ∨ xj) [xi] + [xj ]− [xi|xj ]
(xi ∨ ¬xj) [xi] + (1− [xj ])− [xi] · (1− [xj ])
(¬xi ∨ ¬xj) (1− [xi]) + (1− [xj ])− (1− [xi]) · (1− [xj ])

Table 1: 2-additive terms for u1 assuming i 6= j

Note that utility function u1 can also have negative co-
efficients. It holds that ((A,R,U),K) is a yes-instance
of Q-USWO2-ADD exactly if there exists an allocation π
with swu(π) = u1(π(a1)) + u2(π(a2)) = u1(π(a1)) ≥
K, if and only if there exists an allocation π with
swE(π) = max{u1(π(a1)), u2(π(a2))} = max{T, 0} ≥
K, which in turn is equivalent to ((A,R,U),K) being a

1In particular, this assumption ensures that every agent realizes
the highest utility by receiving all resources.



yes-instance of Q-ELSWO2-ADD. Hence MAX-2-SAT re-
duces to Q-ELSWO2-ADD in polynomial time. The NP-
hardness claim for Q-ELSWOk-ADD, k > 2, follows imme-
diately. q

Conclusions
We have studied the implications of the normalization as-
sumption in fair division of indivisible goods. For the com-
mon notions of egalitarian and Nash product social wel-
fare, we have shown that this assumption is crucial to have
polynomial-time algorithms in certain settings. The key idea
of the NP-hardness proofs for nonnormalized utility func-
tions is that dummy agents can be inserted easily to en-
sure the cardinality constraint. For n = m, the results also
suggest that there is no general and efficient transforma-
tion to simulate allocation settings with nonnormalized util-
ity functions using normalized utility functions only, as this
would imply P = NP. This is interesting because assigning
nonzero utility to the empty bundle corresponds to merely
having a positive base level of happiness.

In the future, it might be worthwhile to study the effect
of the normalization assumption in settings apart from fair
division such as (cooperative) game theory.
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