A Direct Equivalence-Testing Algorithm for SLRs

Ondiej Cepek and James Weigle

Department of Theoretical Computer Science and Mathematical Logic, Charles University
Malostranské ndmésti 25, 118 00 Praha 1, Czech Republic
ondrej.cepek @mff.cuni.cz, weigle @posteo.net

Abstract

In this paper we study the recently introduced switch-list
representations (SLRs) of Boolean functions. An SLR is a
compressed truth table representation of a Boolean function:
we only store the function value of the first row, and a list
of switches (Boolean vectors whose function value differs
from the value of the preceding vector). The paper (Cepek
and Chromy 2020) systematically studies the properties of
SLRs and among other results gives polynomial time algo-
rithms for all standard queries investigated in the Knowledge
Compilation Map (Darwiche and Marquis 2002). In partic-
ular, the equivalence query (EQ) is implemented in (Cepek
and Chromy 2020) by first compiling both input SLRs into
OBDDs and then running the EQ query on the constructed
OBDD:s. In this short note we present an algorithm that an-
swers the EQ query directly by manipulating the input SLRs
(hence eliminating the compilation step into OBDD) which
improves the time complexity of the procedure.

Introduction

Switch-list representations of Boolean functions were in-
troduced in (Cepek and Husek 2017) as a variant to inter-
val representations introduced in (Schieber, Geist, and Zaks
2005). Given a fixed order of variables of function f de-
fined on variables {x1,...,2,}, a switch of f is a vector
(binary number) x with bits in the prescribed order such
that f(x — 1) # f(z). A switch-list is an ordered list of all
switches of a given function. A switch-list of f together with
the function value f(0,0,...,0) forms a switch-list repre-
sentation (SLR) of f. It is important to note that switch-lists
are ordered by the natural order on binary numbers (as op-
posed to just maintaining unordered sets of switches) as this
is required by the algorithms presented in this paper. Given a
SLR F of function f we shall denote F' = (FV(F), SL(F))
where FV(F) is the value of £(0,0,...,0) and SL(F) is the
ordered switch-list.

SLRs form an interesting representation language with a
reasonable trade-off between succinctness on one hand and
the complexity of queries and transformations on the other.
A SLR may be exponentially smaller than the full truth ta-
ble or the list of models, yet the language of SLRs supports
answering all standard queries (considered in (Darwiche
and Marquis 2002)) in polynomial time. These queries are:
checks for consistency (CO), validity (VA), clausal entail-

ment (CE), implicant (IM), equivalence (EQ), and sentential
entailment (SE), and furthermore model counting (CT), and
model enumeration (ME). We refer the reader to (Darwiche
and Marquis 2002) for the definitions of these queries.

In this paper we consider the equivalence query (EQ)
which takes two SLRs as an input and decides whether they
represent the same Boolean function. We shall without loss
of generality assume that both SLRs are defined on the same
set of variables. If both input SLRs moreover respect the
same order of variables then the query is trivial: it suffices
to compare whether both input SLRs are identical (note that
once the order of variables is fixed, a function has a unique
SLR representation). The interesting case is when the two
input SLRs respect orders given by two different permuta-
tions of variables.

The paper (Cepek and Chromy 2020) (and also the pre-
ceding conference version (Cepek and Chromy 2020)) pro-
vide an indirect algorithm for the equivalence query. Both
SLRs are first compiled into OBDDs where both OBDDs
respect the same order of variables and then the (EQ) query
is answered using an algorithm from (Wegener 2000). Hence
the main difficulty of this compilation step is the fact that for
one of the input SLRs the order of variables must be changed
during the compilation procedure. This makes the compila-
tion step computationally expensive and the time complexity
of (EQ) is O(k*n®) where n is the number of variables and
k is the total number of switches in both input SLRs.

In this paper we present a direct equivalence testing al-
gorithm that manipulates the input SLRs without compil-
ing them into another representation language. The direct
algorithm we introduce here has time complexity O(k?n?)
which beats the complexity of the previous algorithm by a
factor of n. It heavily uses the conditioning transformation
for SLRs (also introduced in (éepek and Chromy 2020)) so
we shall start by describing this procedure in the next sec-
tion.

Conditioning for SLLRs

This section is based on the description of conditioning for
SLRs in (éepek and Chromy 2020), but provides more de-
tail and describes this transformation in a more algorithmic
style, which should be helpful for a future computer imple-
mentation.

Let f be a Boolean function on variables x1, ..., x, and
let x; be an arbitrary variable. Consider the truth table of
f that respects the identical permutation of variables. We
interpret an assignment of variables x1, ..., z;_1 as a binary
number ¢, 0 < ¢ < 20~ — 1, and denote the corresponding
block of consecutive vectors sharing the same prefix ¢ in the
truth table of f as By. Furthermore, we split By into half-
blocks By and B} depending on the value of x;. We will
write the vectors from the truth table of f that belong to B,
as triples (¢, b, ¢) where b € {0, 1} represents the value of
x;and 0 < ¢ < 2"~% — 1 is a binary number representing
Tiy1,.--,Tn. We will use 0 and 1 as shorthands for the all-
zero and all-one vectors of length n — ¢, s0 0 < ¢ < 1 holds
if we treat g as a vector rather than a number.

Our aim is to generate SLRs of

Jo = flz;=0 and f1 = flz,=1

which originate from the SLR of f by conditioning (CD) on
the value of variable x;. We will denote the vectors from the
truth tables of f and f; as pairs (¢, ¢) (consistently with the
notation introduced above).

For a switch-list representation F' of function f, let
FV(F') denote the function value of the first row of the truth
table (i.e., f(0,...,0)), and let SL(F) denote the ordered
list of switches. We can also just write FV(f) and SL(f) to
denote the same things, when the SLR in question is obvious
by context. Let us now consider a fixed input SLR F' and let
SL(F) = {s1,...,Sk}. Moreover, for 1 < j < k let

s; = (45,b5,q;) € {0,1}"

be the split of each switch in triples as described above.

We will treat the construction of SLRs for fy and f; sep-
arately. First we present the procedure for constructing the
SLR Fy of fj by a single pass through SL(F').

CD(F,z; =0)
1 FV(F) « FV(F)
2 p < 0 // parity initialization
3 j < 1//index of the currently processed switch s,
4 while (j < k) do
5 cp < {; // current prefix for this iteration
6 if (b; =0)and (¢; =0)
7 then {if (p = 0) then output (¢;,0); j++}
8 else {if (p = 1) then output (¢;,0)}
9 p <0 // parity reset
10 while (¢; = cp) and (b; = 0) do
11 {output (¢;, g;); j++}
12 while (/; = cp) and (b; = 1) do
13 {p (L—p)ij++}
14 if(p=1)and(cp # 1)and(cp+1 < ¥;)
15 then {output (cp + 1,0); p < 0}

Let us explain in words what the code does. The first line
sets the initial value FV(F}), which in this case is the same
as FV(F"): the all-zero vector from the truth table of f “sur-
vives” conditioning and becomes the all-zero vector in the
truth table of fy. Each iteration of the main while-loop on
line 4 processes a subsequence of switches from SL(F’) that
belong to the same block By, —which is to say that it pro-
cesses those switches that share the same prefix ¢; stored in

the variable cp. The body of the main while-loop (lines 5—
15) has three parts where switches of SL(F{)) are generated
(by the command output).

The first part (lines 6-8) deals with the first vector in
By; = Bcp, namely the vector v = (£, 0, 0), which requires
a special treatment:

* If vis the current switch (i.e. v = s;) which happens when
(b; = 0) and (¢; = 0), then (¢;, 0) becomes a switch in
SL(Fp) in two cases. One possibility is that j = 1 (v is
the first switch in SL(F")) in which case p = 0 thanks to
its initialization. Note that in this case necessarily ¢; #
0 since the all-zero vector is never a switch. The other
possibility is that 5 > 1 and the immediately preceding
half-block Bép_l contains even number of switches, in

which case p = 0 also holds, since otherwise (if Bclpf1

contained odd number of switches) p = 1 would be set in
the previous iteration of the main while-loop (see the next
explanation for details). If p = 1 was set in this way then
the current switch s; is skipped (nothing is generated but
7 is incremented).

 If v is not a switch and the immediately preceding half-
block B, , contains odd number of switches then (£, 0)
becomes a “new” switch in SL(fy) generated by the dis-
appearing switches from Bipfl' In this case p = 1 holds
because it was set on lines 12—13 of the previous iteration
of the main while-loop in which cp = ¢; — 1, and p could
not be reset to zero on lines 14-15 because cp+1 = ¢;
prevents such a reset.

The second part of the main while-loop contains two
nested while-loops. The first one (lines 10—11) generates
switches (¢;,¢q;) with ¢; # 0 in the half-block B, which
of course all survive the conditioning. The second one (lines
12—13) then just counts the parity of the number of switches
in the half-block Bclp.

Finally, the last part of the main while-loop (lines 14—15)
generates a switch (cp+1,0) in the beginning of the next
block BSP 44 if (i) there is an odd number of disappearing

switches in Bclp (so p = 1 was set), (ii) the current block is
not the last one in the truth table (cp # 1 holds and thus
the next block exists), and (iii) the next block contains no
switches (hence cp+1< /;) in which case the next block
will be “skipped” by the main while-loop.

Let us remark, that it is better to treat each ¢; and g; as
a bit string rather than a number. In such a case the pseu-
docode works also for the cases ¢ = 1 (conditioning on the
leftmost variable x1 in the truth table) and 7 = n (condition-
ing on the rightmost variable x,, in the truth table). In the for-
mer case £; is an empty string for every j (we have only one
block By and the pseudocode makes a single pass through
the main while loop) and in the latter case g; is an empty
string for every j (every block then contains only two vec-
tors and every half-block is a single vector). When working
with bit strings rather than numbers, we interpret inequali-
ties as comparing the bit strings with respect to the lexico-
graphic order. Similarly, we interpret cp+1 as the bit string
that follows after cp in the lexicographic order. Finally, to
make the pseudocode terminate properly, we define £ to

be a string lexicographically greater than any bit string (even
in the case when we consider only empty bit strings).

To construct the SLR F} for f; by a single pass through
SL(F) = {s1,..., sk}, the algorithm works differently.

CD(F,z; =1)
p < 0 // parity initialization
J <1 // index of the currently processed switch s,
while (/; = 0) and (b; = 0) do
{p (L—p);j++}
if (¢; = 0) and (b; = 1) and (g; = 0)
then {p + (1 —p); j++}
if (p=20)
then FV(Fy) < FV(F)
else FV(Fy) < —FV(F)
10 while (¢; = 0) and (b; = 1) do
11 {output (0,q;); j++}
12 while (j < k) do
13 cp < {; // current prefix for this iteration
14 p <+ 0 // parity reset
15 while ({; = cp) and (b; = 0) do
16 {p (1—p)j++}
17 if ({; = cp)and (b; = 1) and (g; = 0)
18 then {if (p = 0) then output (¢;,0); j++}
19 else {if (p = 1) then output (¢,,0)}
20 while (/; = cp) and (b; = 1) do
21 {output (¢;,q;); j++}

O 00NNk~ W -

In this case it is more complicated to compute FV(F})
and therefore the block By is processed separately before
the main while-loop starts. First the parity p of the number
of switches in the half-block B is counted on lines 3-4 and
if (0,1,0) is a switch then it is added to the computation
of p on lines 5-6. Then the value of FV(f;) stays the same
as FV(f) if p is even and it takes the opposite value if p is
odd. Note also that (0, 1,0) never generates a switch as it
becomes the first (all-zero) vector in the truth table of fi.
Next we generate on lines 10-11 all remaining switches in
the half-block B} (which of course survive conditioning).
This part of the code (lines 3—11) covers also the case 1 = 1
(conditioning on the leftmost variable x;) by identifying an
empty string with an all-zero bit string with no bits.

Then the main while-loop starts on line 12. In this case it
simpler than when constructing Fj. The first nested while-
loop (lines 15-16) counts the parity p of the number of
switches in the half-block ng~ The conditional statement on
lines 17-19 treats the vector v = (¢;,1,0). If v is a switch
then it survives the conditioning if p is even. If v is not a
switch then it generates a switch (¢;,0) in SL(F}) if p is
odd. The last nested while cycle on lines 20-21 generates
switches (¢}, ;) with ¢; # 0 in the half-block B, which of
course all survive the conditioning.

If the input SLR F' has k switches then both of the above-
described pseudocodes for conditioning on x; take O(n)
time per switch (which is the work between two consecu-
tive j++ commands), and therefore can be implemented to
run in O(kn) time. Since each of the two output SLRs Fj
and F; have at most as many switches as the input SLR F',
we can repeat the process |.S| times to achieve conditioning
on any set .S of variables in O(an) time.

Generating switches for a permuted SLR

In this section we shall introduce an algorithm NEXT-
SWITCH that takes as an input a SLR F' of func-
tion f which respects a (non-identical) permutation 7 =
(Tx(1),- - Tr(n)) Of variables and a Boolean vector b =
(b1,...,by), and outputs the first (lexicographically small-
est) switch s in the truth table of f with respect to the iden-
tical permutation ¢ = (x1, ..., x,) of variables that follows
after b (i.e. s is lexicographically strictly greater than b).
NEXT-SWITCH uses the conditioning algorithm from the
previous section as a subroutine, and uses a stack of SLRs
which originate from F' by subsequent conditioning on the
variables in the order given by ¢. NEXT-SWITCH(f, b)
starts with a full stack of depth n 4 1 which has Fg = F on
the bottom of the stack and each subsequent F'; is obtained
from F';_; by conditioning on variable x; when its value is
set to b;:

Fi:CD(Fi,l,xi:bi),lgign

We can think of the work of NEXT-SWITCH(f,b) as a
walk on the complete binary tree which branches on the vari-
ables in the order given by the identical permutartion ¢. The
walk starts at the leaf of the tree indexed by b and backtracks
from this leaf as far as necessary, which is followed by a for-
ward walk towards the next switch s. Note that if f(b) = v
then s is the lexicographically smallest vector greater than b
for which f(s) = —w. If we backtrack over an edge where
x; = 1 was set, we do not have to check anything: indeed
going forward to locate s now makes no sense as we would
have to go back to the vertex from which we just back-
tracked. On the other hand, if we backtrack over an edge
where x; = 0 was set, we must check whether s is in the
subtree accessible by the edge z; = 1. This can be checked
by conditioning xz; = 1 and looking whether the resulting
F'; contains no Boolean vector with value —wv. If yes, we
still have to backtrack, if no, we start the forward walk. The
following subroutine NO-SWITCH (which returns yes/no)
performs such a check.

NO-SWITCH(i)

I POP(F;)

2 F; + CD(Fi,l,xi = 1)

3 PUSH(F})

4 return (FV(F;) = v) and (SL(F;) = 0)

Here POP/PUSH are standard stack operations which re-
move/add an SLR from/to the top of the stack. NO-SWITCH
removes the SLR F; that we got by conditioning z; = 0 and
replaces it by SLR obtained by setting x; = 1. Then it tests
whether this SLR represents a constant v function (i.e. there
is no switch in the subtree) which happens if and only if the
first value is v and the switch-list is empty.

Now we are ready to present the pseudocode of NEXT-
SWITCH. Here we present an iterative version of the algo-
rithm, where we maintain a stack of SLRs explicitly. We find
this version easier to explain and analyze. However, the al-
gorithm also admits of a good functional implementation,
where the stack is handled implicitly in recursive calls.

NEXT-SWITCH(f, b)

1 v+« FV(F,)
2 1< n // depth down the tree
3 while (¢ > 1) and [(b; = 1) or (NO-SWITCH(3))] do
4 {POP(F,);i—-}
5 if (= 0) // we reached the root; no next switch exists
6 then {output (0, ...,0); terminate}
7 // we know the first ¢ bits
8 for jfrom¢+ 1tondo
9 if(FV(F,-1) =)
10 then // all bits of the switch starting at j are zero
11 for r from j to n do
12 ¢ < 0 // we set the rth bit
13 F, <« CD(F,_1,z, =0)
14 PUSH(F;)
15 exit the main for-loop over j // i.e. go to line 26
16 else
17 Fj (—CD(Fj_l,ijO)
18 if SL(F;) # 0
19 then
20 c;j < 0 // we found the jth bit
21 PUSH(F};)
22 else
23 cj < 1 // we found the jth bit
24 Fj (*CD(Fj_l,l‘j :1)
25 PUSH(F})

26 output (by,...,b;—1,1,¢i11,---,Cn)

NEXT-SWITCH starts by setting v = f(b). Note that F',,
actually just represents the constant value f(b) as the val-
ues of all variables were set to b: this constant is stored in
FV(F,,), while SL(F',,) is empty. The while-loop on lines
3—4 does the backward part of the walk through the tree. It
unconditionally backtracks over edges where x; = 1 was
set (i.e. b; = 1 holds), and if this is not the case (the back-
track occurs over an edge where z; = 0 was set) it runs
NO-SWITCH(7) and backtracks only if the result is TRUE.
When the loop ends there are two possibilities:

* The stack is empty except for Fy, which means that we
backtracked to the root of the tree. Hence, the truth table
of f with respect to ¢ is constant v from vector b onwards,
so there is no switch to output. We treat this “failure” case
on lines 5-6 by outputting the all-zero vector 0. No con-
fusion is possible here, since 0 cannot be a switch.

* Some F'; for which x; = 1 was set sits at the top of the
stack and the subtree rooted at this node of the tree is
guaranteed to contain some vector with value —v. Note
that we are seeking a vector that respects the ordering ¢,
but the SLRs on our stack still respect 7. Nevertheless,
after reordering the columns of the truth table of this par-
tial function with respect to ¢, the desired vector (the first
with value —w) is still going to be in the subtree rooted at
the current node. Also note that this scenario means we
know the first ¢ bits of the next switch: the first — 1 are
given by by, ..., b;_1, and the ith bit must be 1.

In the latter case the main for-loop on line 8 starts the for-
ward walk one step per iteration. In each iteration we first
check on line 9 whether the current subfunction has value

—w at its all-zero vector (which is of course the first vec-
tor with respect to both 7 and ¢) and if this is the case we
blindly follow the all-zero branch of the tree setting the ¢
variables to zero and pushing the corresponding SLRs to the
stack. Then we exit the main for-loop as we have already
reached the leaf of the tree which represents the switch we
were looking for.

If the all-zero vector of the current subfunction has value v
we enter the else branch of the conditional command on line
16. We first try to follow the x; = 0 branch and generate
F; for this branch. If F'; # () then the first switch is in
this subtree and we iterate, in the other case this subtree is
constant v and the first switch then must be in the z; = 1
branch so we generate F'; for this branch. In both cases we
record the direction of the walk in the tree in the c variable
and push the corresponding SLR to the stack.

Finally, when we exit the main for-loop, we output on line
26 the switch which corresponds to the leaf of the tree where
the forward walk terminated.

To analyze the complexity of NEXT-SWITCH(f,b),
suppose that the input SLR F' of f has k switches (which
are vectors of length n similarly as b). The backward walk
in NEXT-SWITCH calls CD (conditioning on a variable) at
most once per step (when NO-SWITCH is called), and the
forward walk calls CD at most twice per step. Hence the total
number of CD calls is O(n) and each such call takes O(kn)
time as discussed in the previous section. The complexity of
the rest of the NEXT-SWITCH algorithm (in particular of
the PUSH and POP calls) is dominated by the CD calls, and
hence the overall complexity is O (an)

Equivalence testing

Let f and g be two Boolean functions on the same
set {x1,...,2,} of variables represented by SLRs F
and G where F respects an arbitrary permutation 7 =
(Tx(1),- -+ Tr(n)) and G respects the identical permutation
¢ (we may assume this without loss of generality: if ¢ is not
an identical permutation we can renumber the variables ac-
cordingly). Let us furthermore assume that SL(F’) consists
of ky switches and SL(G) consists of k, switches where
SL(G) = (51, -+, 5k,)-

To test whether f and g are logically equivalent one can
either compile F' and G into some other representation lan-
guage (e.g. into OBDDs as in (Cepek and Chromy 2020)) or
try to answer the equivalence query directly by manipulating
F and G. It should be obvious that constructing a SLR of f
that respects ¢ (or a SLR of g that respects) first and only
then comparing the two SLRs of f and g which both respect
the same permutation of variables will not work, since the
output representation after the first step may be exponen-
tially large with respect to the size of the input. However,
we do not have to construct the entire SLR of f that respects
¢ to test the equivalence. It suffices to generate its switches
one by one and compare them with the switch-list SL(G)
until either a mismatch is found or an identical switch-list is
generated (note that two SLRs which respect the same per-
mutation of variables represent the same function if and only
if they are identical). This idea is described in the following

algorithm EQ-TEST.

EQ-TEST(F,G)
if (FV(F) #FV(G))
then {return FALSE}
Fog+ F
PUSH(Fy)
for ¢ from 1 to n do
F;, + CD(Fi_l,.%'i = O)
PUSH(F;)
p < 1 // running index through SL(G)
b < NEXT-SWITCH(f, (0, ...,0))
10 while (p < ky) and (b = sp) do
11 {b+«+ NEXT-SWITCH(f,b); p++}
12 if (p < ky)
13 then {return FALSE}
14 else {return (b = (0,...,0))}

O 00NN A~ W -

The algorithm first tests whether the values at the all-zero
vector are the same and if not trivially outputs (on line 2) that
f and g are not equivalent. Then it fills the stack on lines 3—
7 with SLRs that correspond to the all-zero vector (this is
necessary before running NEXT-SWITCH for the first time)
and computes the first switch of f with respect to the identi-
cal permutation of variables on line 9. The main while-loop
on lines 1011 iteratively checks that the generated switch of
f matches the corresponding switch in SL(G) and generates
the next switch of f. If the loop ends before going through
the entire SL(G) which is tested on line 12 then a mismatch
was found and non-equivalence is reported on line 13. If the
loop goes through SL(g) entirely, then f and g are equivalent
if and only if the last call of NEXT-SWITCH(f, b) found no
further switch of f and hence returned the all-zero vector.

EQ-TEST(F,G) first fills the stack which takes 0(kn?)
and then at most k, + 1 times calls NEXT-SWITCH(f ,b).
Each such call takes 0(kyn?) time (as discussed in the
previous section) and so the overall complexity of EQ-
TEST(F,G) is 0(k¢k,n?) which beats the 0(kkyn®) time
complexity of indirect equivalence testing presented in
(Cepek and Chromy 2020) (which uses compilation into
OBDDs) by a factor of n.

Conclusions

In this paper we have presented an equivalence testing al-
gorithm that manipulates the two input SLRs to answer the
query directly without a compilation into another represen-
tation language. Its time complexity is 0(k*n?) where k is
the total number of switches in the two input switch-list
representations and n is the number of variables. The pre-
sented algorithm beats the 0(k?n?) time complexity of in-
direct equivalence testing from (Cepek and Chromy 2020)
(which uses compilation into OBDDs) by a factor of n. This
leaves the sentential entailment query the only one from the
standard set of queries introduced in the Knowledge Compi-
lation Map (Darwiche and Marquis 2002) that has no direct
algorithm for the switch list representations. Constructing
such an algorithm (perhaps using the switch generation tech-
nique presented in this paper) will be a subject of our future
research.

Acknowledgments

The authors gratefully acknowledge a support by Czech Sci-
ence Foundation (Grant 19-19463S). This research was also
partially supported by TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under
GA No 952215.

References

éepek, 0.; and Chromy, M. 2020. Properties of Switch-List
Representations of Boolean Functions. Journal Of Artificial
Intelligence Research 69: 451-479.

éepek, O.; and Chromy, M. 2020. Switch-List Represen-
tations in a Knowledge Compilation Map. In Bessiere,
C., ed., Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, 1JCAI 2020, 1651—
1657. ijcai.org. doi:10.24963/ijcai.2020/229. URL https:
//doi.org/10.24963/ijcai.2020/229.

Cepek, O.; and Hugek, R. 2017. Recognition of tractable
DNFs representable by a constant number of intervals. Dis-
crete Optimization 23: 1-19. doi:10.1016/j.disopt.2016.11.
002. URL https://doi.org/10.1016/j.disopt.2016.11.002.

Darwiche, A.; and Marquis, P. 2002. A Knowledge Compi-
lation Map. Journal Of Artificial Intelligence Research 17:
229-264.

Schieber, B.; Geist, D.; and Zaks, A. 2005. Computing the
minimum DNF representation of Boolean functions defined
by intervals. Discrete Applied Mathematics 149: 154—173.
ISSN 0166-218X. doi:10.1016/j.dam.2004.08.009.

Wegener, 1. 2000. Branching Programs and Binary De-
cision Diagrams: Theory and Applications. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics.
ISBN 0-89871-458-3.

