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Towards the goal of explainable AI, Bayesian networks
offer a rich framework for probabilistic reasoning. Bayesian
Network Structure Learning (BNSL) from discrete observa-
tions corresponds to finding a compact model which best
explains the data. It defines an NP-hard problem with a
superexponential search space of Directed Acyclic Graphs
(DAG). Several constraint-based (exploiting local condi-
tional independence tests) and score-based (exploiting a
global objective formulation) BNSL methods have been de-
veloped in the past.

Complete methods for score-based BNSL include dy-
namic programming (Silander and Myllymäki 2006),
heuristic search (Yuan and Malone 2013; Fan and Yuan
2015), maximum satisfiability (Berg, Järvisalo, and Malone
2014), branch-and-cut (Bartlett and Cussens 2017) and con-
straint programming (van Beek and Hoffmann 2015). Here,
we focus on the latter two.

GOBNILP (Bartlett and Cussens 2017) is a state-of-the-
art solver for BNSL. It implements branch-and-cut in an in-
teger linear programming (ILP) solver. At each node of the
branch-and-bound tree, it generates cuts that improve the
linear relaxation. A major class of cuts generated by GOB-
NILP are cluster cuts, which identify sets of parent sets that
cannot be used together in an acyclic graph. In order to find
cluster cuts, GOBNILP solves an NP-hard subproblem cre-
ated from the current optimal solution of the linear relax-
ation.

CPBayes (van Beek and Hoffmann 2015) is a con-
straint programming-based (CP) method for BNSL. It uses
a CP model that exploits symmetry and dominance rela-
tions present in the problem, subproblem caching, and a
pattern database to compute lower bounds, adapted from
heuristic search (Fan and Yuan 2015). van Beek and Hoff-
mann showed that CPBayes is competitive with GOBNILP
in many instances. In contrast to GOBNILP, the inference
mechanisms of CPBayes are very lightweight, which allows
it to explore many orders of magnitude more nodes per time
unit, even accounting for the fact that computing the pattern
databases before search can sometimes consume consider-
able time. On the other hand, the lightweight pattern-based
bounding mechanism can take into consideration only lim-
ited information about the current state of the search. Specif-
ically, it can take into account the current total ordering im-
plied by the DAG under construction, but no information

that has been derived about the potential parent sets of each
vertex, i.e., the current domains of parent set variables.

In this work, we derive a lower bound that is computation-
ally cheaper than that computed by GOBNILP. We give a
polynomial-time algorithm that discovers a subclass of clus-
ter cuts that provably improve the linear relaxation. We then
give a greedy algorithm for solving the linear relaxation,
inspired by similar algorithms for MaxSAT and Weighted
Constraint Satisfaction Problems (WCSP). Finally, we give
an algorithm that enforces generalised arc consistency on the
acyclicity constraint, based on previous work by van Beek
and Hoffmann, but with improved complexity and practi-
cal performance. Our implementation of these techniques in
the solver CPBayes leads to significantly improved perfor-
mance, both in the size of the search tree explored and in
runtime.
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Silander, T.; and Myllymäki, P. 2006. A Simple Approach
for Finding the Globally Optimal Bayesian Network Struc-
ture. In Proc. of UAI’06. Cambridge, MA, USA.
van Beek, P.; and Hoffmann, H.-F. 2015. Machine learn-
ing of Bayesian networks using constraint programming. In
Proc. of International Conference on Principles and Prac-
tice of Constraint Programming, 429–445. Cork, Ireland.
Yuan, C.; and Malone, B. 2013. Learning Optimal Bayesian
Networks: A Shortest Path Perspective. J. of Artificial Intel-
ligence Research, 48: 23–65.


