
J. Parallel Distrib. Comput. 71 (2011) 132–142

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Assigning real-time tasks to heterogeneous processors by applying ant colony
optimization✩

Hua Chen a, Albert Mo Kim Cheng b,∗, Ying-Wei Kuo b

a Planning, Scheduling & Blending Group, Aspen Technology Inc., Houston, TX 77042, USA
b Real-Time Systems Laboratory, Department of Computer Science, University of Houston, TX 77204, USA

a r t i c l e i n f o

Article history:
Received 16 March 2010
Received in revised form
16 August 2010
Accepted 25 September 2010
Available online 15 October 2010

Keywords:
Scheduling
Real-time systems
Multiprocessors
Heterogeneous processors
Ant colony optimization
Power-aware computing
Periodic tasks

a b s t r a c t

The problem of determining whether a set of periodic tasks can be assigned to a set of heterogeneous
processors without deadline violations has been shown, in general, to be NP-hard. This paper presents
a new algorithm based on ant colony optimization (ACO) metaheuristic for solving this problem. A
local search heuristic that can be used by various metaheuristics to improve the assignment solution
is proposed and its time and space complexity is analyzed. In addition to being able to search for a
feasible assignment solution, our extended ACO algorithm can optimize the solution by lowering its
energy consumption. Experimental results show that both the prototype and the extended version of
our ACO algorithm outperform major existing methods; furthermore, the extended version achieves an
average of 15.8% energy saving over its prototype.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The heterogeneous computing environment is well suited to
meet the computational demands of diverse tasks. However,
implementing real-time applications upon multiprocessors has
been shown to be difficult. A major challenge is that scheduling
algorithms need to not only specify an execution order of
tasks, but also determine the specific processor to be used. For
a homogeneous multiprocessor platform where all processors
are identical, assigning tasks to the processors requires solving
the Bin Packing Problem (BPP) [14]. The assignment problem
becomesmore difficult when the computing environment consists
of heterogeneous multiprocessors. The additional complexity
arises from the fact that a piece of code may need different
execution times upon different processors. For example, a routine
responsible for intensive mathematical calculation may execute
much faster on a floating-point coprocessor than on a digital

✩ Supported in part by the National Science Foundation under Award No.
0720856, a 2006 grant from the Institute for Space Systems Operations, and GEAR
Grant No. I092831-38963. Parts of this work have appeared in their preliminary
forms in [10], a 4-page work-in-progress article published in the WIP session of
IEEE RTAS 2005.
∗ Corresponding author.

E-mail addresses: birch.chen@aspentech.com (H. Chen), cheng@cs.uh.edu
(A.M.K. Cheng), ykuo@cs.uh.edu (Y.-W. Kuo).

signal processor. Consequently, a periodic task is allowed to
have different utilization requirements on different processors.
This extension makes BPP an invalid simulation model, with the
Generalized Assignment Problem (GAP) taking over the role.While
efficient heuristics and polynomial time approximation schemes
have been developed for GAP [25,21], their special application to
assigning real-time tasks to heterogeneous processors has not been
investigated before.

As in [17], here we study the partitioned scheduling problem
where each task is assigned to a specific processor and there is no
inter-processor migration. Here we consider the off-line version
of the task assignment problem (TAP), that is, determining each
task’s processor assignment without exceeding each processor’s
computing capacity and violating task deadlines. The computation
times and deadlines of the given tasks are known a priori and will
not change over time. The tasks are independent and thus there
are no precedence constraints among them. Also, there is no inter-
task communication. We employ the Earliest-Deadline-First (EDF)
algorithm [11] to schedule all tasks in each processor.

A metaheuristic is an adaptive algorithmic framework that can
be used to define heuristic methods applicable to a wide range
of different problems. A particularly successful metaheuristic, Ant
Colony Optimization (ACO) [13,22], is inspired by the behavior
of real ants, which are able to find the shortest path between
food sources and their nest. Living with poor vision (some ant
species are completely blind), real ants communicate with each

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.09.011

http://dx.doi.org/10.1016/j.jpdc.2010.09.011
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:birch.chen@aspentech.com
mailto:cheng@cs.uh.edu
mailto:ykuo@cs.uh.edu
http://dx.doi.org/10.1016/j.jpdc.2010.09.011


H. Chen et al. / J. Parallel Distrib. Comput. 71 (2011) 132–142 133

other or the environment via chemical substances produced by
themselves. These chemicals are called pheromones. The likelihood
of choosing a specific path by an ant depends on the intensity of
the pheromones in that path [23]. The path’s intensity increases if
this path is chosen by many ants and thus more pheromones are
deposited, attracting even more ants. On the other hand, if few or
no ants choose a path, then little or no pheromone is deposited in
this path and thus this pheromone trail evaporates as time passes.
ACO is motivated by this collective behavior of ants.

ACO employs simple agents called artificial ants to imitate
the behavior of ant colonies. These artificial ants communicate
with each other through environmental variables modeling the
pheromone trails, making it possible to apply this searchmetaphor
to solve combinatorial optimization problems. Starting with the
Ant System, a number of algorithmic approaches based on the very
same ideas were developed and applied with considerable success
to a variety of combinatorial optimization problems fromacademic
as well as real-world applications.

A major advantage of ACO over other metaheuristics such as
Simulated Annealing (SA) [5] and Genetic Algorithms (GA) [5]
is that the problem instance may change dynamically. In other
words, ACO can adapt to the changing problem instance while
running continuously. This feature is of great interest in TAP. In
many real-time systems, the set of real-time tasks may change
dynamically. For example, the Cell processor developed by IBM,
Sony and Toshiba supports real-time audio processing and 3D
graphic tasks, whichmay be initiated at arbitrary times. Motivated
by this observation, our solution to TAP is based uponACO. It is new
that our algorithm is designed to optimize assignment solutions
in terms of both resource utilization and energy consumption.
Ritchie [20] has also applied ACO to solve the multiprocessor
scheduling problem. However, he only considers single-instance
tasks, whereas we tackle periodic tasks with deadline constraints.

There are projects to minimize energy consumption and
meet scheduling objectives, including the work in [6,1,26], but
they do not use the ACO heuristic. Bunde [6] describes a non-
ACO approximation algorithm for multiprocessor scheduling to
minimize energy consumption and makespan but the tasks must
have equal computation times. Aydin and Yang [1] present
a Worst-Fit-Decreasing heuristic for partitioning the tasks in
a multiprocessor system to reduce energy consumption while
meeting task deadlines but this heuristic is not ACO-based. Zhu
et al. [26] also studymultiprocessor scheduling of tasks in AND/OR
graphs to reduce energy consumption andmeet task deadlines but
the presented approach is not ACO-based.

2. Models and problem statement

HMP = {P1, P2, . . . , Pm} denotes an arbitrary Heterogeneous
Multiprocessor Platform with m preemptive processors based
on CMOS technology. Each processor Pj is limited to operating
only one instruction per clock cycle, and runs at variable speed
according to the type of task it is performing. si,j denotes the clock
frequency, i.e., the speed, of Pj for a particular task Ti. ei,j denotes
the execution time for Ti on processor Pj. Hence, ei,j and si,j are
correlated by: ei,j = ci/si,j, where ci is the number of clock cycles
to execute Ti. The energy consumption of Ti on Pj per period, Ei,j, is
given by:

Ei,j = Poweri,j · ei,j ≈


Cef ·

s3i,j
k2


· ei,j =

Cef

k2
· ci · s2i,j

where Cef and k are constants [7,27]. Therefore, the energy
consumption incurred by executing Ti on Pj is almost linearly
related to the product of ci and s2i,j: Ei,j ∝ ci · s2i,j.

A Periodic Task Set PTS = {T1, T2, . . . , Tn} is comprised of
n real-time tasks. A real-time task Ti is represented by the tuple

(e, p), where e is the estimated worst-case execution time (WCET)
and p is the period. Ti generates an infinite sequence of task
instances of execution time at most e time units each, with
instances being generated exactly p time units apart, and each
instance has a deadline p time units after its arrival. The utilization
matrix Un×m stores the real numbers in (0, 1) ∪ +∞. The value of
ui,j denotes the maximum fraction of the computing capacity of Pj
required to execute Ti, and is equal to the quotient of ei,j/pi, where
pi is the period of Ti. ui,j is also referred to as the utilization of Ti on
Pj. If task Ti is not suitable to be executed on processor Pj, ui,j is set
to +∞.

Given HMP and PTS, the TAP is a combinatorial optimization
problemconsisting of twoobjectives. The first one is called resource
objective; that is, searching for a solution in which each of the tasks
is assigned to a specific processor in such away that the cumulative
utilization of any processor does not exceed the utilization bound
of the EDF algorithm [11]. This objective represents a decision
problem which is proven to be NP-hard in [2]. The second one is
called energy objective; that is, minimizing the cumulative energy
consumption of all assigned tasks in a solution. In this research, the
resource objective takes precedence over the energy objective. This
hierarchical relationship is widely applicable to those time critical
systems in which the participating tasks have hard deadlines.

3. Related work

The related work falls into two categories: heuristic methods
and efficient approximation algorithms that solve various special
cases of the general problem. In [5], Braun et al. compared 11
heuristics for matching (i.e. assigning) and scheduling a set of
independent tasks onto a heterogeneous computing environment,
and the goal was to minimize the makespan. In [2,3], Baruah
proposed a polynomial time algorithm which is guaranteed to
find a feasible assignment solution if the problem instance meets
certain constraints.

3.1. Heuristic methods

Braun et al. [5] compared 11 heuristics for solving the problem
of assigning tasks to heterogeneous processors in such a way that
the total execution time of the tasks is minimized. The simulation
model of their research is rather simple. It is assumed that an
accurate estimate of the execution time for each task on each
machine is known and contained within an ETC (expected time to
compute)matrix. There is no timing constraint for each of the tasks.
Some preliminary terms defined in [5] are as follows:
1.Machine availability time,mat(mj)—The earliest timemachinemj
can complete the execution of all the tasks that have previously
been assigned to it.
2. Completion time for task ti onmachine mj, ct(ti,mj)—Themachine
availability time formj plus the execution time of ti onmachinemj.
Hence ct(ti,mj) = mat(mj) + ETC(ti,mj). The maximum ct(ti,mj)
value is called themakespan.

The performance criterion used to compare the performances
of the heuristics is the makespan. Each heuristic is designed
to minimize the makespan. According to their test results, the
GA consistently gave the best performance. Motivated by this
conclusion, we implemented GA described in the paper with some
modifications for our problemdomain, and compared it to our ACO
approach in our simulation experiments.

3.2. Theoretical analysis

Baruah [3] proposed an efficient (i.e., polynomial-time) algo-
rithm for solving the TAP. His algorithm transforms a TAP instance
into an Integer Linear Programming (ILP) problem, and then ap-
plies an approximation technique based on the idea of LP relax-
ations to solve the ILP in polynomial time.



https://isiarticles.com/article/7649

