
AUGMENTED REALITY SYSTEM USING LIDAR POINT CLOUD DATA FOR 

DISPLAYING DIMENSIONAL INFORMATION OF OBJECTS ON MOBILE PHONES  

 

 

S. Gupta *, B. Lohani  

 

 Geo-informatics Laboratory, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur  

surabhi131190@gmail.com, blohani@iitk.ac.in 
 

 

 

KEY WORDS: Mobile augmented reality, LiDAR, intensity image, dimension measurement, feature matching, registration 

 

ABSTRACT: 

 

Mobile augmented reality system is the next generation technology to visualise 3D real world intelligently. The technology is 

expanding at a fast pace to upgrade the status of a smart phone to an intelligent device. The research problem identified and  

presented in the current work is to view actual dimensions of various objects that are captured by a smart phone in real time. The 

methodology proposed first establishes correspondence between LiDAR point cloud, that are stored in a server, and the image t hat 

is captured by a mobile.  This correspondence is established using the exterior and interior orientation parameters of the mobile 

camera and the coordinates of LiDAR data points which lie in the viewshed of the mobile camera.  A pseudo intensity image is 

generated using LiDAR points and their intensity.  Mobile image and pseudo intensity image are then registered using image 

registration method SIFT thereby generating a pipeline to locate a point in point cloud corresponding to a point (pixel) on the 

mobile image.  The second part of the method uses point cloud data for computing dimensional information corresponding to the 

pairs of points selected on mobile image and fetch the dimensions on top of the image.  This paper describes all steps of the  

proposed method.  The paper uses an experimental setup to mimic the mobile phone and server system and presents some initial 

but encouraging results. 

 

 

                                                             

*  Corresponding author.   

1. INTRODUCTION 

1.1 Motivation  

Smart phones are the most popular and common device 

nowadays because of their user friendly and portable 

advantages. Smart phones are being integrated with the latest 

technology to provide the best possible applications.  Currently 

the focus of researchers and industry is to use the capabilities 

of a mobile to offer something beyond reality which is Mobile 

Augmented Reality System (MARS). With this technology a 

user is able to view information about an area in front of his 

mobile device helping him to get the location details, name of 

the street and other relevant information available. This is one 

example of mobile AR application providing location details. 

The other example is where a user is able to visualise an object 

which he is interested to buy. A user can have an idea of how a 

furniture will look like by posing the camera in that position 

and AR provides the view of the scene with the furniture which 

actually was not present there.    

Mobile augmented reality is being applied in navigation 

systems also by integrating geospatial domain with this 

technology. Navigation using mobile AR location based 

services is now popular where a user is able to view a virtual 

environment for navigation on his mobile onsite. Thinking 

apart from navigation services a user may also be interested in 

more details about his surroundings. The most common objects 

that we come across in our environment are the buildings, 

electric or telephone poles, trees, sign boards, landmarks, road 

furniture etc. It is possible to identify these features by their 

name and location using popular mobile map services 

currently. A mobile user will appreciate such services more if 

he is also able to know the sizes of these objects onsite. So the 

problem statement taken in this paper is to make it possible for 

a mobile user to get dimensions of buildings and other features 

around him on his mobile by just clicking over the image taken 

by the mobile.  The motivation for the current work comes 

from the increasing importance of geospatial domain in the AR 

framework to provide geo-referenced information on site. The 

idea of augmenting dimensions of buildings and other objects 

in the mobile’s field of view can help a mobile user to know 

measurements of various features in front of him. This also 

holds a good potential for personnel associated with 

construction and mining sites where it can provide a quick 

means of measurement which is highly interactive in nature.  

Additionally, a municipal worker will benefit by quick 

supervision of sites, while security personnel can know 

dimensions of environment they are operating in.  

The problem of determining dimensions of objects which are 

seen in a mobile image utilizes LiDAR point cloud in our 

proposed method.  Moreover, the point can be from any source 

with laser scanning being the most significant source currently. 

Dimensions can be easily computed between any two points in 

LiDAR 3D point cloud which therefore is the motivation to use 

these for realizing the objective of this research.  LiDAR data 

from a terrestrial and/or mobile laser scanner provide 3D point 

cloud data of the scenes along with the intensity of each point. 

The objective is to get the dimension of buildings and other 

objects over a captured mobile image using the LiDAR point 

cloud data stored in a server in near-real time. 

 

1.2 Challenges in the proposed system 

The problem presented in this paper requires registration of 

any pixel in mobile image to the corresponding point in LiDAR 
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point cloud data to compute real world measurements. There 

are many issues in this process as the image captured by a 

smart phone device is RGB image and its characteristic is 

different than the point cloud data acquired by a 

terrestrial/mobile laser scanner. Further, LiDAR data differ in 

their intensity values even for same material due to the 

different range and incidence angle at different points in the 

scene.  These issues pose difficulty during registration process 

and demand a robust method to find correspondence in the 

datasets. Also, there is difference in the resolution of both 

datasets. Mobile image will have a different resolution from 

that of the 2D representation of a point cloud data, which is 

desired to be produced in this research as an intermediate data. 

So the chosen methodology should be such that it produces 

reliable results even with this difference in resolution of the 

datasets. Another important issue is the availability of only 

rough position and orientation information of the mobile 

camera. In view of the above issues the challenge is to utilize 

available information to get a good correspondence in mobile 

image and LiDAR point cloud, which would decide the success 

of this work.  

   

1.3 Related work 

Augmented Reality for location based services is a fast growing 

area of interest for researchers. Smart phones equipped with 

GPS and gyroscopes provide a basis to link this information 

with geospatial database. Bae et al. (2013) proposed a mobile 

augmented reality system to access 3D cyber information 

onsite. The database in chosen system is a collection of various 

site images and Building Information Model (BIM) and these 

are utilized to augment BIM information over the mobile 

image. The authors have used the structure for motion 

algorithms for 3D point cloud reconstruction using pre-

collected site images. Guan et al. (2010) developed an outdoor 

AR system which involves efficient matching method for 

robust feature matching. Hierarchical image partitioning 

method is used to detect scale of a live image by matching this 

image with the database images. Lazaridis et al. (2013) 

designed a method to search and retrieve multimodal data. 

This framework links images to semantic annotation using 

some similarity measure. The concept of semantic annotation 

added to the existing database provides a basis for 

distinguishing different content type. Kai-Chen et al. (2012) 

developed a lightweight helmet to project construction 

drawings and related information as a location based service. 

The information is extracted from a collection of site images 

(2D drawings) database and is overlaid over the device in 

image format. Yabuki et al. (2012) proposed AR registration 

technique using point cloud data in which the point cloud data 

are retrieved from the data server and are displayed over a 

video image. 

 

 

2. METHODOLOGY 

Smart phones are integrated with different types of sensors like 

GPS, accelerometers, magnetometers and gyroscopes that 

provide acceleration and orientation of mobile camera at any 

point of time in the world coordinate system. So the work 

presented here assumes that a mobile phone is aware of its 

location and orientation in the world coordinate system. This 

information is attached within the EXIF tags of mobile. This 

extracted information of mobile image and camera parameters 

are used for 2D projection of LiDAR data as required in the 

steps described in the following paragraphs. 

 

2.1 Proposed solution 

The solution to the problem of this paper is realized through 

three modules, as discussed in the following paragraphs.  The 

first module utilizes the mobile camera parameters to 

determine the location and extent of LiDAR data point cloud 

corresponding to the mobile image and projecting these data 

onto a 2D plane.  The intensity values of LiDAR point cloud 

are used to give digital numbers to this plane thus generating a 

pseudo intensity image corresponding to mobile image.  In the 

second module corresponding pixels are identified between the 

pseudo image and the mobile image. Finally in the third 

module, the corresponding points in both the datasets are used 

to derive a transformation model to transform from one image 

to other. After transformation points corresponding to image 

pixels are selected from LiDAR data and used for dimension 

computations. Each module is discussed in detail in the 

following sections. 

 

2.2 2D representation of LiDAR data 

The geo-referenced 3D LiDAR data are defined in the world 

coordinate system and to generate their corresponding 2D 

representation these points are projected onto a plane defined 

by mobile camera parameters. The coordinate system of this 

projection plane is defined as shown in Fig. 1. 

 

 

 
 

Figure 2.  Projection of 3D laser point onto a plane defined in 

camera coordinate system 

 

 

 

The origin of any camera coordinate system is the center of its 

lens. The Z-direction is along the camera axis, i.e., 

perpendicular to the CCD sensor or XY plane of the camera 

system with positive direction pointing towards the objects to 

be imaged. The image plane on which laser point cloud is to be 

projected is defined as of the same size as that of CCD array of 

the mobile camera and is assumed to be situated at a distance 

equal to focal length of camera from the origin of camera 

coordinate system. LiDAR data points are projected onto this 

defined plane using the well known collinearity equations.   

This equation includes rotation and translation required to 

align camera and image plane coordinate system. The position 

of projection centre at the time of clicking image is known 

from the onboard GPS. The width (w) and height (h) of the 
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mobile image is used to define the interior orientation 

parameters (xo,yo,-f), where xo=(w/2) and yo=(h/2). The focal 

length of the mobile camera lens defines f. Rotation matrix M 

is a 3x3 matrix (Eq. 1). The elements of rotation matrix M 

used in collinearity equation are defined in terms of rotation 

parameters (ω,ϕ,Ʀ) which are the rotations about X, Y and Z 

axis, respectively, and are given by the onboard gyroscope. As 

illustrated in Fig. 1 these rotation angles rotate the world 

coordinate system to camera coordinate system. 
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The computed pseudo image coordinates requires a re-

sampling step as (x’,y’) may not always be integers. These 

coordinates are rounded off to the nearest integer value and 

thus one image coordinate may correspond to more than one 

LiDAR point.  Each image pixel in the projected plane 

corresponding to a 3D LiDAR data point contains the intensity 

value of the LiDAR point and in case of multiple points, 

average intensity value is taken. Thus the image generated 

from this process is a pseudo intensity image which 

corresponds to the camera image.        

 

2.3 Feature detection and matching 

The next step in the proposed methodology is to find 

correspondences between mobile RGB image and pseudo 

intensity image generated using LiDAR point cloud data. The 

intensity image generated from LiDAR data differs from 

mobile image in terms of information stored in each pixel. 

Intensity image is represented by intensity values captured by 

laser scanner while the mobile images have RGB values. As 

already discussed these images differ in their radiometric 

characteristics, resolution, exposure station and viewshed.    

So, a robust method of registration is needed which can work 

under available constraints. 

Objects such as trees, grass patches, building planes can be 

identified in LiDAR data as cluster of points having similar 

intensity.  Correspondence detection using features in different 

types of images has been found to provide reliable results 

(Meierhold et al., 2010). In view of this and the above 

discussion feature based registration method SIFT by Lowe 

(2004) is selected in this work.  This algorithm is robust 

enough to find corresponding features in images of different 

scale, orientation and resolution (Lowe, 2004).  

SIFT is a keypoint extractor and finds distinct keypoints in the 

images which are invariant to scale and rotation. SIFT searches 

for local features in an image and has ability to detect large set 

of features even in small objects. Different smoothing versions 

of the same image are created to generate scale space. This 

reduces the effect of illumination differences in the images 

while finding keypoints. The scale space peaks are selected 

which are potential locations of local features. These keypoints 

are localized to find accurate position of all keypoints. Each 

keypoint is also assigned orientation. The most important thing 

about this algorithm is the descriptors attached with each 

keypoint which describe it. The keypoints which are detected 

also contains information about its orientation and descriptors 

are then further matched against feature database of the other 

image. Correspondence among features is obtained if the 

distance between keypoints within descriptor space is less than 

a certain threshold. This threshold is manually optimised in our 

work to find consistent matches.  

    

2.4 Transformation Model 

SIFT finds a number of matches in the images but it is not 

necessary that all computed matches are correct. There may be 

several false matches as well, which should be removed before 

further steps. Random Sample Consensus (RANSAC) is a 

popular method for outlier removal. It is an iterative method in 

which random sample dataset from the given data is derived 

and a model is fit to this dataset. After this the number of 

outliers is computed and the procedure is repeated until a best 

fit model is obtained. The subset of data used in the best model 

fit is the set of inliers and are considered to be true matches. 

In this paper, the model fitting in RANSAC is done using the 

concept of estimating homography (Li et al., 2005). 

Homography is a projective transformation which transforms 

between two views of a planar surface. This mapping between 

corresponding image points can be represented by a 

homogenous matrix H3x3. In homogenous coordinate system, 

transformation of point (x1,y1) in one image to (x2,y2) in other 

image is represented by Eq. 2 and Eq. 3. 
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The above equation Eq. 2 is solved using Direct Linear 

Transform (DLT) method and at least four correspondences are 

required to fit the model. For more than four matches the 

solution is computed by homogenous least square approach 

(Brown et al., 2007). Thus this transformation matrix is used 

to register camera image to LiDAR intensity image. This 

threshold is manually optimised in our work to find consistent 

matches.     

     

2.5 Finding 3D point correspondence 

For every pixel in the camera image that a user clicks there is a 

registered pixel in the intensity image. This intensity pixel may 

correspond to multiple points in the LiDAR data. There are 

issues in selecting the most appropriate point from this data 

set. A pixel can correspond to several points on objects that are 

in the same line of sight from the user. For example, there may 

be a tree in front of building and when a building point is 

selected it may conflict with tree points which are projected 

into the same pixel or nearby pixels. So point selection 

criterion is also an important factor that may affect the final 

results. Here we are bound with the assumption that 

dimensions can be found for the points that are visible from the 

user viewpoint. In the present work, to differentiate between 

front and rear object points we define point selection criteria as 

defined in Eq. 4. 

 

 )),(( co PPdistmedianP       (4) 
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The point is selected from a candidate set of points Pc by 

computing distance of each candidate point from the user 

location point Po and then finding median of those distances. 

For more reliability the candidate set is expanded by 

considering neighbourhood of the pixel selected. This approach 

produces more reliable results, though still there is scope for 

improvement. 

 

 

3. EXPERIMENT 

3.1 Experimental setup 

Instead of using a mobile phone and a server as is originally 

proposed in this research the algorithm designed here is being 

tested through an experimental setup that mimics the mobile 

phone and server system. LiDAR 3D data for the experiments 

are acquired using ILRIS-3D terrestrial laser scanner. The data 

are collected at a location with some prominent buildings in IIT 

Kanpur campus. For algorithm testing a high resolution Nikon 

D200 camera was used and placed over the laser scanner to 

capture images of the scanned area. To keep track of the 

rotation of the camera and its position a POS system (IMU and 

GPS) was used where IMU was placed parallel to the camera. 

The IMU used was Landmark 40 INS/GPS. There is no such 

significance of placing camera and IMU system over scanner as 

TLS data is later georeferenced and the setup is used just for 

the sake of convenience in carrying out experiments. The setup 

is shown in Fig. 2. 

 

 

.    

 

Figure 2.  Experimental setup 

 

 

It is clear from Fig. 2 that IMU and camera coordinate system 

are not aligned. The orientation parameters measured by IMU 

is defined for its own coordinate system and thus a 

transformation is applied to obtain orientation of camera. The 

desired orientation parameters of camera used in our 

experiments are (ω-180o, ϕ+270o, Ʀ+270o) which can be 

interpreted from the alignment difference of IMU and camera 

body system. 

 

3.2 Data pre-processing 

Six laser scans were conducted to comprehensively capture the 

experiment's site. Different buildings were targeted in these 

scans. Four camera images were captured in this area as the 

sample images for the experiment. These sample images differ 

in the amount of feature information present in them. Data 

points acquired by terrestrial laser scanner are in a local 

coordinate system defined by the scanner for each scan. After 

merging the scans these are georeferenced using the ground 

control points.  Cloudcompare software was used in the 

experiment for merging and georeferencing. The accuracy of 

georeferencing is defined in terms of RMSE (Root Mean 

Square Error) of the georeferencing model as a measure of 

deviation between points and model. The details of scans and 

their georeferencing accuracy are shown in Table 1.  

 

 

Scan Number No. of points  RMSE (m) 

Scan 1 2134707 0.122 

Scan 2 2231860  0.043 

Scan 3 3356672 0.012 

Scan 4 3235504 0.069 

Scan 5 2952643 0.066 

Scan 6 1093101 0.044 

 

Table 1. Scanned LiDAR data statistics 

 

 

The position and orientation of mobile user (here NIKON 

camera) are provided by the POS system in the world 

coordinate system. Here, the position of user/camera is 

measured using GPS (stop and go mode to mimic mobile user) 

without performing any baseline processing in the GPS data. 

The accuracy of GPS position thus obtained is comparable to 

the accuracy of location values provided by mobile GPS which 

is around 5-8 meters. The orientation of camera are measured 

by IMU and converted accordingly for the desired parameters. 

 

3.3 Algorithm testing 

Implementation of the algorithm described in the previous 

section is done using MATLAB 2013. For the experiments the 

setup used is described earlier. The 2D projection of the point 

cloud data is to be done by transforming the points from world 

coordinate system to camera coordinate system to produce 

pseudo intensity images. The user location (Xp,Yp,Zp) and 

orientation parameters (ω,ϕ,Ʀ) corresponding to a particular 

image are measured from GPS and IMU, respectively. These 

values are measured as explained earlier. For each LiDAR 

point (X’,Y’,Z’), its corresponding image plane coordinate 

(x’,y’) is computed using collinearity equation. Pseudo 

intensity image is generated after sampling as defined in the 

methodology section.  After 2D representations of LiDAR data 

in the form of pseudo intensity image, standard SIFT 

implementation by Lowe is used to detect features and find 

correspondences in the images. RANSAC implementation in 

MATLAB is used to compute consistent match set and 

estimate homography model to compute transformation matrix 

H. The transformation parameters in H transforms intensity 

image to camera image. Next, 3D point in LiDAR database 

corresponding to a pixel in intensity image is to be identified 

for every pixel/point selected in camera image for dimension 

computation (it is clear till now that camera and intensity 

image are registered so we have pixel-to-point correspondence 

in hand). This is done by the method discussed in section 2.5 

to fine 3D point correspondence. The dimensions between two 

image points are finally measured by computing the Euclidean 

distance between corresponding 3D points which serves the 

purpose of measurement. 

 

IMU 
X 

Y 

Z 

Camera 
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4. RESULTS AND DISCUSSION 

4.1 2D representation 

The sample camera images for the tests were captured by a 10 

megapixel Nikon D200 camera of focal length 28 mm. A 

snapshot of sample 3D LiDAR data acquired by the TLS is 

shown in Fig. 3 (top). Image taken by the camera is shown in 

Fig. 3 (middle).  The corresponding intensity image, from a 

certain viewpoint, is computed using user location and camera 

image parameters as per the proposed methodology and is 

shown in Fig. 3 (bottom).    

 

 

 
 

 
 

 
 

Figure 3.  LiDAR scanned data (top), camera image taken by 

user (middle) and corresponding intensity image (bottom)   

  

4.2 Feature detection 

In the experiments performed SIFT detection in both the 

images are efficient in terms of running time and number of 

keypoints detected. It is tested on sample set of images 

available and the number of keypoints detected in the images 

shows the robustness of this algorithm in the proposed 

framework. The comparison of number of keypoints detected in 

RGB camera and intensity image is tabulated in Table 2. 

 

 

 

Image No. I II III IV 

Camera image 8238 6468 7028 4854 

LiDAR intensity image 1105 12500 3135 6491 

 

Table 2.  Number of SIFT keypoints in images 

 

 

4.3 Feature matching 

After SIFT keypoints generation, matching of these interest 

points to the corresponding points in the other image is also 

important. For this, a keypoint in one image is matched to a 

keypoint in the other image if the distance ratio is less than a 

specified threshold. Experiments were performed on various 

sample datasets to test and derive a suitable value of distance 

ratio. In this paper, a match is acceptable if the distance ratio is 

less than 0.7 which is used throughout our experiments. It is 

optimized during experiments with four different sample 

images (includes image with less features which produce more 

false matches). This value of distance ratio provided sufficient 

number of true matches to be considered for refinement 

through RANSAC for consistent match set. The results of SIFT 

matching on a sample dataset of experiment is shown in Fig. 4 

 

 

 
 

Figure 4.  Matching results of camera image (left) and LiDAR 

intensity image (right) 

 

 

The above matching using SIFT contains many false matches 

as well. So these matches were refined to remove outlier 

matches and consider only the consistent matches. This was 

done using RANSAC outlier removal technique. The distance 

threshold between data point and the model is used to decide 

whether a point is an inlier. The point coordinates are 

normalised so that their mean distance from the origin is 

squareroot of 2. The value of threshold should be set relative to 

this in the range 0.001-0.01. We have used a threshold value of 

0.01 in RANSAC, though there is not much change in 

experimental results by taking value in the range 0.001-0.01. 

The refined results with only consistent matches after applying 

RANSAC is shown in Fig. 5. 
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Figure 5.  Refined matching results of camera image (left) and 

LiDAR intensity image (right) after RANSAC 

 

 

4.4 Transformation using estimated homography 

In RANSAC, a model is fit using projective transformation and 

the estimated homography matrix H is used to transform the 

intensity image to camera image and vice versa. The result of 

registration of two images after applying this transformation is 

shown in Fig. 6. The foreground shows the intensity image 

while RGB image is in the background (shown here as gray 

level image.) The results show that the registration performed 

using the method is satisfactory and reliable. 

 

 
 

Figure 6.  Registration of LiDAR intensity image (foreground) 

and camera image (background) 

 

4.5 Dimension computation and augmentation  

After registration of the two images, LiDAR 3D point 

correspondence for any user clicked pixel in camera image is 

found by the method proposed in section 2.5. The dimensions 

are computed between any two user selected points and shown 

on top of the camera image. The results are shown in Fig. 7. 

The dimensions computed by the proposed method in this 

paper were tested against direct computations in point cloud 

data. Though only one image is used for showing the results in 

this paper, the validation was carried out for all images 

captured.  The validation was done by computing dimensions 

of 70 randomly clicked points on the images and comparing 

these with the directly computed corresponding dimensions. 

The results show that approximately 90% times, the 

dimensions computed are matching within a accuracy of 30 cm 

and 80% of the points are within 25 cm accuracy. Thus this 

paper proves the feasibility of the proposed framework. 

 
 

Figure 7.  Dimensions of user selected points augmented over 

camera image 

 

 

SUMMARY AND CONCLUSION 

In this paper, the problem of augmenting dimension 

information for a mobile augmented reality system is taken up 

and an approach is developed to solve this using LiDAR data. 

The proposed solution for the problem utilizes terrestrial 

LiDAR geo-referenced data to find dimensions between any 

two points clicked by a mobile user onsite. This paper has 

proved the feasibility of the described method for the problem 

framework. The approach presented in this paper is able to 

provide another augmented reality location based service with 

only the location and orientation input from the user. This 

method does not require any additional complex and expensive 

hardware into the mobile device. Thus the approach here 

integrates a mobile camera image and its parameters with the 

geospatial data to know the sizes of buildings and other objects 

in the surrounding. A method is presented to register mobile 

image with 3D point cloud data which involves the projection 

of LiDAR data from user viewpoint to form pseudo intensity 

images. The paper also discusses the issues of working with 

the pseudo intensity image which differ from the camera image 

in terms of orientation, resolution, scale and some geometric 

distortion. The paper has used SIFT algorithm to find feature 

correspondences between these images and found it to work 

satisfactorily. While SIFT establishes a correspondence 

between mobile image and the pseudo intensity image,  to 

realize the desired output, locating the most accurate point in 

LiDAR point cloud  corresponding to the user clicked pixel is 

also important. This issue is also discussed in this paper and an 

approach is presented to select the best matching point from a 

set of candidate points. 

The results of the experiments have shown that the designed 

methodology provides the required result for the problem 

defined here. The problem of finding the best point 

correspondence still holds a scope for improvement though our 

method provides correct results almost 90% of the times with 

an accuracy of 30 cm. The method can be improved by defining 

a more robust method of point picking. The future work will 

deal with the issues of identifying points of interest of user in 

an image and finding the correct point correspondence in the 

database. Visibility of a point from a user location is an 

important factor here. In the next stage of the work the 

methodology presented here will be also implemented using a 

data server and a mobile.   
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