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ABSTRACT: 
 
Three-dimensional indoor navigation requires various functions, such as the shortest path retrieval, obstacle avoidance, and secure 
path retrieval, for optimal path finding using a geometrical network model. Although the geometrical network model can be 
prepared manually, the model should be automatically generated using images and point clouds to represent changing indoor 
environments. Thus, we propose a methodology for generating a geometrical network model for indoor navigation using point 
clouds through object classification, navigable area estimation, and navigable path estimation. Our proposed methodology was 
evaluated through experiments using the benchmark of the International Society for Photogrammetry and Remote Sensing for indoor 
modeling. In our experiments, we confirmed that our methodology can generate a geometrical network model automatically. 
 
 

1. INTRODUCTION 

A combination of positioning, mapping, and navigation is 
essential for achieving location-based services (LBS) in indoor 
environments, which are required because satellite-based 
positioning is not available indoors. The various positioning 
systems in indoor positioning use Wi-Fi (Liu et al. 2012), radio-
frequency identification (Athalye et al. 2015), Bluetooth 
(Ahmed  et al. 2014), indoor messaging systems (Manandhar et 
al. 2008), near-infrared, ultra-sonic, visible light, etc. In 
addition, pedestrian dead reckoning (Groves, 2008) is proposed 
as an approach to assist indoor positioning systems. These 
indoor positioning techniques are required to satisfy positioning 
accuracy, availability, continuity, and cost. 
In three-dimensional (3D) model generation in indoor mapping, 
there are various approaches, such as 3D modeling using 
building drawings, 3D model generation from point clouds 
using a terrestrial laser scanner and mobile laser scanning 
systems with a simultaneous localization and mapping 
algorithm (Nakagawa et al. 2014), 3D model generation from 
point clouds using a time-of-flight area scanner (Henry et al. 
2012), and 3D texture model generation based on structure from 
motion, multi-view stereo, and photogrammetry (Teo, 2015). In 
all these approaches, there are technical issues to be discussed, 
such as the 3D measurement accuracy, model generation 
accuracy, processing speed and processing cost. 
In indoor navigation, there are various approaches and 
methodologies related to the shortest path retrieval, optimized 
path finding, spatial subdivision, and navigation model 
generation (Zlatanova et al. 2013). The representative 
application of navigation in an outdoor environment is the 
shortest path retrieval from a current position to a destination 
based on Dijkstra’s algorithm. In the shortest path retrieval, 
alternative routes can be selected with factors, such as 
transportation modes and route conditions. The shortest path 
retrieval is applied to indoor as well as outdoor navigation. 
However, indoor navigation differs from outdoor navigation in 
some respects. The first point concerns the navigation route 
distance. An indoor navigation route is shorter than an outdoor 
navigation route. The shortest route has a lower priority than 

other objectives in indoor navigation. In indoor navigation, 
stray risk decrease and obstacle avoidance are more important 
than shortest path finding, as these require multi-path 
suggestions and optimized path selection. For example, locked 
doors are rejected from navigation nodes, and elevators are 
excluded from evacuation navigation nodes. Moreover, indoor 
navigation users include not only pedestrians, but also 
autonomous robots and drones. It is not easy to connect discrete 
distributed landmarks (points around paths) and waypoints 
(points along a path) to achieve avoidance of obstacles, such as 
tables, furniture, and other pedestrians, in indoor environments. 
Thus, the generation and preparation of higher landmarks and 
waypoints are needed to supplement the data in closed sensing. 
An optimized path in indoor environments can be determined 
with these requirements. 
Optimized path finding requires navigation modeling and 
spatial subdivision. The navigation model is a structured 
geometrical model, such as polylines, polygons, grids, and, 
voxels, with semantics. There are three basic navigation 
models: a network model represented by vector data, a grid 
model represented by a cell space, and a potential field model 
represented by attractive and repulsive forces. In addition, in 
navigation model generation, a geometrical model is subdivided 
into a quadtree and an octree to improve the spatial retrieval 
speed and to compress navigation data. A navigation model can 
be easily generated in manual mode. However, it is not easy to 
achieve representation of changing objects in manual editing of 
a navigation model. 
In indoor mapping, conventional studies have examined object 
extraction and classification from point clouds acquired in 
indoor environments, such as semantic segmentation with 
convolutional neural network (Babacan et al. 2017), and 
extraction and relationship reconstruction of elements such as 
walls and stairs with machine learning (Zeng et al. 2017). These 
studies include indoor mapping with point cloud segmentation, 
segmented point cloud classification, and network modeling 
from point clouds to achieve indoor navigation. 
In indoor navigation, there are mainly two approaches to find a 
path using measured point clouds. The first approach is A* 
algorithm-based path finding between two points through empty 
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voxels (Rodenberg et al. 2016). Although the processing cost is 
high, voxel data processing can be applied for various users 
such as pedestrians and drones. However, when a quadtree and 
an octree are applied to voxel processing, based on the 
restriction that indoor space consists of hexahedrons, the input 
point clouds should be rotated and translated to suit each 
hexahedron surface to the x, y, and z axes. Moreover, in path 
planning based on the Voronoi Diagram (Díaz-Vilariño et al. 
2016), a navigable model from a door to a destination such as a 
chair is reconstructed in a meeting room. These studies are 
based on the shortest path-planning approaches between the 
current location to a destination with obstacle avoidance in a 
local space. However, when the optimized path is determined in 
a wider indoor space, multi-path preparation is required on the 
geometrical network model. 
Therefore, we propose a methodology to generate a geometrical 
network model using point clouds for indoor navigation. We 
evaluated our methodology using the benchmark set by the 
International Society for Photogrammetry and Remote Sensing 
(ISPRS) for indoor modelling that consists of five-point cloud 
datasets (Khoshelham et al. 2017). 
 

2. METHODOLOGY 

The proposed methodology is shown in Figure 1. First, point 
clouds containing a floor are cut out from the acquired point 
clouds including multi-stories. Next, object extraction and 
classification are applied to the point clouds. Point clouds are 
projected onto the horizontal grid data to generate a digital 
surface model (DSM) and accumulated point count map. The 
point clouds are then classified into floors, walls including 
doors, objects excluding floors and walls (tables, chairs, 
furniture, foliage plants, etc.) using height values and the 
number of point clouds in each grid. Then, walkable paths are 
estimated using the object classification results to generate a 
geometrical network model. These steps are executed on a 
multilayered model that consists of layers of the DSM, 
accumulated point cloud map, floor map, wall map, other object 
maps (objects excluding floors and walls), as well as the 
walkable region and path maps, and the geometrical network 
model. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Geometrical network model generation 
 
2.1 Point Cloud Clipping 

In point cloud clipping, a floor of point clouds is clipped from 
the acquired point clouds, based on the floor section map shown 
in Figure 2. Point clouds are extracted from the height under 
floors to a height including pedestrian heads. The height under 
the floors is determined from the minimum height of a floor 
including the slopes and measurement accuracy in point cloud 
acquisition. The height including pedestrian heads was assumed 
to be 2 m from the floor. Ceilings and hanging objects, such as 

illuminators and projectors, are located at a height higher than 
pedestrian heads. Moreover, height differences in ceiling spaces 
were assumed to have no effect on walkable spaces. Based on 
these concepts, objects around ceilings were excluded from our 
object extraction. 
 
 
 
 
 
 
 
 

Figure 2. Objects on a floor 
 
2.2 Object Classification 

In object classification, point clouds are classified as floors, 
walls, and other objects. The floors are extracted from point 
clouds using the floor height values set in the point cloud 
clipping. The walls are extracted from point clouds using the 
number of point clouds recorded in the accumulated point count 
map. The remaining point clouds are classified as other objects. 
First, point clouds were projected onto grid data prepared on a 
horizontal plane with an arbitrary resolution, as shown in steps 
1 and 2 in Figure 3. Next, the DSM and the accumulated point 
count map were generated (Figure 4). The upper image in 
Figure 4 shows a section of the measured point clouds. The 
horizontal axis indicates a section direction, and the vertical 
axis indicates height values. The center image in Figure 4 
shows a section of the accumulated point count map. The 
horizontal axis indicates a section direction, and the vertical 
axis indicates the number of accumulated point clouds in each 
grid. The bottom image in Figure 4 shows a section of the DSM. 
The horizontal axis indicates a section direction, and the 
vertical axis indicates the height value of the highest point in 
each grid. 
 
 
 
 
 
 
 
 
Figure 3. Floor map generation (outline extraction and missing 
area interpolation in point clouds) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Point cloud rasterization (upper: measured point 
clouds, center: accumulated point clouds, bottom: DSM) 
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Point clouds classified as floors include many missing areas, 
because there are laser scanning shadows and occlusions caused 
by a laser scanner and objects, such as tables and chairs. 
Although floors with slopes can be extracted from point clouds 
with region segmentation-based approaches (Kawashima et al. 
2014), a technical issue remains for floor extraction when point 
clouds include missing areas. Therefore, interpolation 
processing was applied for the missing areas in point clouds 
with outline extraction and filling holes, as shown in steps 2 to 
4 in Figure 4. First, outlines assumed as walls were extracted 
from point clouds, based on the precondition that the wall point 
clouds were sufficiently acquired. Next, the inside of the outline 
was filled on the assumption that floors were surrounded by 
walls. Through these steps, missing areas on floors were 
interpolated. 
 
2.3 Walkable Path Estimation and Geometrical Network 
Model Generation 

A walkable region map is a binary raster map to represent a 
walkable region (Figure 2) on a floor map generated after the 
object classification step. Walkable regions are estimated with 
template scanning on the floor map with a circle template. The 
size of the circle template is determined by the size of a 
pedestrian. When a region has no objects excluding floors in the 
circle template, the region is assumed to be walkable region. 
Although stairs, elevators, and escalators can be classified as 
walkable regions, in this work, these objects were excluded 
from our modeling because there were no obstacles in these 
spaces. 
We propose a methodology for determining positions for point 
cloud rendering to generate polygon data from point clouds 
acquired in indoor environments (Nakagawa  et al. 2015). In 
this approach, rasterization and morphological thinning 
processing are applied to extracted point clouds on floors from 
random point clouds. Then, positions for the point cloud 
rendering are determined with intersection extraction from lines 
generated after the morphological thinning processing. This 
approach was applied to a walkable path map generation using 
a walkable region map. The proposed conventional approach 
could estimate raster-formatted nodes for positions in point 
cloud rendering. These nodes are used as nodes of a walkable 
path. Moreover, results that excluded nodes after thinning 
processing were used as raster-formatted links in a walkable 
path (Figure 5). 
 
 
 
 
 
 
 
 
 
Figure 5. Walkable path generation from a walkable region 
(left: walkable region, right: walkable path) 
 
It is not easy to represent relative positions among objects in a 
raster format. Thus, the walkable path is vectorized from the 
raster format to generate a geometrical network model. The 
geometrical network model is a network model used to 
represent relative positions among objects with geometrical 
information. The proposed methodology could automatically 
add distance values to each link through data format 
transformation from raster data to vector data. Thus, the 
generated geometrical network model can be applied to 

optimized path finding, such as shortest path retrieval, obstacle 
avoidance, and multi-path planning. The path-planning sample 
from node A to node D shown in Figure 5 can be represented as 
shown in Figure 6. 
 
 
 
 
 
 
 
 

Figure 6. Sample of path finding represented with a tree map 
 

3. EXPERIMENTS 

We conducted experiments using ISPRS benchmark datasets to 
evaluate out methodology. The ISPRS benchmark is a set of 
five-point cloud datasets prepared for researchers by work 
group (WG) IV/5 (Indoor/Outdoor Seamless Modelling, LBS 
and Mobility) at the International Society for Photogrammetry 
and Remote Sensing in 2017. The benchmark consists of point 
clouds with ASCII format acquired with handheld laser 
scanners, terrestrial laser scanners, and backpack laser scanners 
in indoor environments, as shown in Table 1. Each dataset 
includes various indoor objects, such as floors, walls, ceilings, 
pedestrians, tables, chairs, furniture, foliage plants, and 
illuminators. Each dataset also includes many missing areas in 
laser scanning. The point clouds acquired with the handheld and 
backpack laser scanners were supplemented with trajectory data 
in the measurement. 
 

Table 1. Specifications of the point clouds of the ISPRS 
benchmark 

 
 Number 

of points 
Mean point 
spacing (m) 

Color Trajectory Clutter Sensor 

Case study 1 
(TUB1) 

33.6×
106 

0.005 No Yes Low 
Viametris 
iMS3D 

Case study 2 
(TUB1) 

21.6×
106 

0.008 No Yes Low 
ZEB 

REVO 

Case study 3 
(Fire 

Brigade) 

14.1×
106 

0.011 Yes No High 
TLS Leica 

C10 

Case study 4 
(UVigo) 

14.9×
106 

0.010 No Yes Moderate 
UVigo 

Backpack 

Case study 5 
(UoM) 

13.9×
106 

0.007 No No Moderate ZEB1 

 
We applied our methodology to all datasets with the same 
parameters. In point cloud clipping, we used a height from 0.1 
m lower than real floors and 2.6 m above real floors as walkable 
space (Figure 7). In point cloud rasterization, the spatial 
resolution was set as 0.05 m. In object classification, existing 
objects with a height of less than 0.3 m from real floors were 
assumed as floors. Objects with the number of accumulated 
point clouds of less than 6 points were assumed as walls. The 
remaining objects were assumed as “other objects.” These 
parameters were determined manually to classify objects clearly. 
 
 
 
 
 
 
 

Figure 7. Case study 3 (clipped result) 
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4. RESULTS AND DISCUSSION 

The proposed methodology was applied to all five datasets to 
classify objects, such as floors, walls, and others as well as for 
walkable path estimation. The object classification and 
walkable path estimation results are shown in Figure 8 (results 
from case study 3 are shown in Figure 11).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Object classification and walkable path estimation 
result (red regions: floors, yellow regions: walls, cyan regions: 
other objects, white lines: walkable paths) 
The processing environment was Intel Core i7-6567U (3.3 
GHz) and MATLAB. We confirmed that the processing time in 

point cloud rasterization was approximately proportional to the 
number of input point clouds, as shown in Table 2. We also 
confirmed that the processing time for object classification and 
path estimation was approximately proportional to the floor 
space. Moreover, we confirmed that our methodology could 
classify objects and estimate the walkable path in the same way 
as conventional approaches. 
 

Table 2. Processing results 
 Input points [points] Rasterization [sec] 

Object classification and 
path estimation [sec] 

Case study 1 21,208,472 91.16 7.78 

Case study 2 
(upper floor)

6,842,373 31.99 9.43 

Case study 2 
(lower floor)

8,299,711 36.49 7.20 

Case study 3 4,830,474 29.60 10.93 

Case study 3 
(filtered 

point clouds)
4,806,575 27.30 9.59 

Case study 4 6,422,515 29.44 41.66 

Case study 5 10,325,504 42.36 6.21 

 
However, when the point clouds included pedestrian noises, 
measurement noises, and parts with nonuniform density, the 
path estimation result differed from the real paths (i.e. the path 
estimation result became unstable). Therefore, we conducted an 
additional experiment to verify whether pedestrian noise 
filtering can improve our results. Pedestrian noises can be 
filtered with subtraction processing using temporal point clouds. 
However, when we use a point cloud acquired in a period, it is 
not easy to classify small objects, such as pedestrians, tables, 
chairs, and foliage plants, from point clouds. Therefore, we 
focused on case study 3, which had the most measurement 
noises. We prepared a filtered point cloud in manual mode 
(Figure 9), and used it to verify the improvement in our 
methodology. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Pedestrian noise deletion (left: input point clouds, 
right: noise deletion result) 
 
The result for geometrical network model generation using 
filtered point clouds is shown in Figure 10. Yellow lines show 
the geometrical network model. The height of the geometrical 
network model was set as 1 m from the floors. 
 
 
 
 
 
 
 
 
Figure 10. Geometrical network model overlaid into point 
clouds 
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The improvement after noise filtering is shown in Figure 11. 
The left image shows the result using the original point clouds 
(4,830,474 points), and indicates that our methodology failed to 
extract the walkable paths from the point clouds around 
measurement noises that existed on floors. The center image 
shows the result using filtered point clouds (4,806,575 points), 
and indicates that our methodology could extract the walkable 
paths from point clouds successfully, because the measurement 
noises were deleted. The right image shows a generated 

geometrical network model (after pruning processing) using 
filtered point clouds. Each vertex shows a node of the 
geometrical network model and has an individual node number. 
Each blue line shows a link of the geometrical network model 
and has an individual node number and distance value. 
Additionally, the right image shows that each link has a curved 
line. From these results, we confirmed that pedestrian noise 
filtering can improve path extraction to represent walkable 
paths in real spaces. 

Figure 11. Improvement after pedestrian noise filtering (left image: object classification and geometrical network generation 
result using non-filtered point clouds; center image: object classification and geometrical network generation result using filtered 
point clouds; right image: geometrical network model using filtered point clouds) 
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Figure 12 shows that the proposed methodology could 
recognize a closed door as a wall. However, in geometrical 
network modeling, links would be connected from a node in 
front of a door to another node behind the door. Although it is 
easy to connect the link in manual mode, an automated link 
connection would be useful. Moreover, other technical issues 
involve node connection between multi-stories, node 
connection between nodes in indoor and outdoor environments, 
and the integration of a geometrical network model with indoor 
positioning. 
 
 
 
 
 
 
 
 
 
 

Figure 12. Unconnected links around a closed door 
 

5. SUMMARY 

In this paper, we proposed a methodology to generate a 
geometrical network model using point cloud for indoor 
navigation. We evaluated our methodology through 
experiments using the ISPRS benchmark consisting of five-
point cloud datasets. We confirmed that the proposed 
methodology could classify indoor objects, such as floors, walls, 
and the other objects, and estimate walkable paths. Additionally, 
we verified that the proposed methodology could generate a 
network model for path finding from point clouds. Some 
technical issues remain, such as point cloud noise filtering for 
object classification and link generation for closed doors, and 
these will be explored in our future work. 
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